
Learning to Rank QA Data

Evaluating Machine Learning Techniques for Ranking Answers to Why-Questions

Suzan Verberne
CLST, RU Nijmegen

s.verberne@let.ru.nl

Hans van Halteren
CLST, RU Nijmegen

Daphne Theijssen
Dept. of Linguistics,

RU Nijmegen

Stephan Raaijmakers
TNO, Delft

Lou Boves
CLST, RU Nijmegen

ABSTRACT
In this work, we evaluate a number of machine learning tech-
niques for the purpose of ranking answers to why-questions.
We use a set of 37 linguistically motivated features that
characterize questions and answers. We experiment with a
number of machine learning techniques in various settings.
The purpose of the experiments is to assess how the differ-
ent machine learning techniques can cope with our highly
imbalanced binary relevance data. We find that with all
machine learning techniques, we eventually obtain an MRR
score that is significantly above the TF-IDF baseline of 0.25
and not significantly lower than the best score of 0.35. Re-
gression techniques seem the best option for our learning
problem.

1. INTRODUCTION
The research reported in this paper is part of a project

that aims at developing a question answering system for
why-questions (why-QA). Answers to why-questions tend
to be at least one sentence and at most one paragraph in
length [22]. Therefore, passage retrieval appears to be a
suitable approach to why-QA.

In previous work [24] we describe a system for why-QA
that consists of a pipeline of an off-the-shelf passage retrieval
engine (Lemur1), and a re-ranking module that uses a set
of features extracted from the question and each of the can-
didate answers. Until now, we have mainly focused on im-
proving the ranking performance of our system by adapting
and expanding the feature set used for re-ranking. This has
led to a set of 37, mostly linguistically motivated, features
representing the degree of overlap between a question and
each of its candidate answers. In previous work, we used a
genetic algorithm for finding the optimal weights for com-
bining the 37 features [23].

1See http://www.lemurproject.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In the current paper, we aim at improving the ranking
performance of our system by finding the optimal approach
to learning to rank [14] while keeping our feature set un-
changed. More specifically, we try to find the optimal rank-
ing function to be applied to the set of candidate answers in
the re-ranking module.

The task of learning to rank in the context of a QA sys-
tem has two important challenges (which are discussed in
more detail in Sections 2 and 3). First, in QA systems rel-
evance is often treated as a binary variable: a candidate
answer is either relevant (correct), or irrelevant (incorrect).
Following approaches in factoid QA, we decided to consider
answer relevance for why-questions to be a binary variable
(see Section 3). Therefore, a suitable approach for learning
answer relevance would be to consider the task as a classifi-
cation problem. All operational QA systems, however, aim
at presenting a ranked list of answer candidates for each indi-
vidual input question [17]. For our learning-to-rank set-up,
this means that we have to induce a ranked list of answers
from binary relevance judgments2.

A second specific problem in learning to rank QA data is
the high imbalance between positive and negative instances
(correct and incorrect answers) in the training set: there
tend to be much more negative than positive instances [21].
As we will see in Section 3, this is also the case for our
why-QA data.

In this paper, we evaluate a number of machine learn-
ing techniques for the task of learning a ranking function
for why-answers: Naive Bayes, Support Vector Classifica-
tion, Support Vector Regression, Logistic Regression, Rank-
ing SVM, and a Genetic Algorithm. We apply these tech-
niques in pointwise, pairwise and listwise set-ups. Most, but
not all, of these techniques require tuning of several hyper-
parameters. In Section 4, we discuss the techniques that we
evaluated and how we applied them to our learning-to-rank
task.

The goal of this paper is to compare the machine learning
techniques listed above in their performance on our task:
inducing a ranking from a binary classification. In doing so,
we cast the problem in three different ways: optimizing the
ranking pointwise, pairwise and listwise.

The goal of this paper is to compare the machine learning
techniques listed above in their performance on our task:

2In ranking binary relevance data, the goal is to rank the
correct answers higher than the incorrect answers. There is
no ranking among the (in)correct answers themselves.

inducing a ranking from a binary classification. In doing
so, we will pay attention to three factors: (1) the distinc-
tion between the pointwise approach, in which candidate
answers are classified individually (over all questions), and
the pairwise and listwise approaches, in which the ranking
within each cluster of answers is optimized; (2) the distinc-
tion between techniques based on classification and tech-
niques based on regression. (3) Since most, but not all, of
these techniques require tuning of several hyperparameters,
we investigate the distinction between techniques with and
without hyperparameters that must be tuned. In Section 4,
we discuss the techniques that we evaluated and how we ap-
plied them to our learning-to-rank task. In all cases we will
use a measure for the quality of the ranking as the evaluation
criterion.

This paper is organized as follows: in Section 2, we discuss
related work on approaches to learning to rank binary, im-
balanced data. In Section 3 we describe the resources that
we use for our experiments and we specify the characteris-
tics of the data used in our experiments. In Section 4 we
describe the experiments that we conducted. The results
are presented and discussed in Section 5. Section 6 contains
our conclusions.

2. RELATED WORK
In this section, we discuss related work on the two main

characteristics of the QA learning problem mentioned in Sec-
tion 1: Learning to rank binary relevance data (Section 2.1)
and the problem of imbalanced data (Section 2.2).

2.1 Learning to Rank binary relevance data
As explained in Section 1, one of the characteristics of

evaluation in QA is that relevance is generally defined as
a binary variable3 [25] while the output of a QA system is
a ranked list of answers that are clustered per input ques-
tion [17]. Learning a ranking function for a problem with
binary relevance judgments can be achieved in three ways:
(1) inducing a ranked list from a binary classification of all
question-answer pairs irrespective of the clustering of the an-
swers (pointwise approach), (2) classifying pairs of correct
and incorrect answers for their mutual order and optimizing
the proportion of correctly ordered answers (pairwise ap-
proach), or (3) optimizing a cost function on the ordering of
answers within one answer cluster (listwise approach).

The pointwise approach
One approach to learning answer relevance in QA is con-
sidering the learning problem a classification task. In the
training phase, the clustering of answers per question is ig-
nored: the task of the classifier is to learn whether an in-
stance should be classified as ‘1’ or ‘0’, irrespective of the
answer cluster it belongs to. Relations between the candi-
date answers to the same question are ignored.

A ranked answer list can then be induced by letting the
classifier assign a score to each instance in the test set, ex-
pressing the probability that it should be classified as cor-
rect and then ordering the answers per question according

3Although the quality of answers to why-questions can be
judged on a multi-level scale, we found that these judgments
are very subjective. Therefore, we decided to consider rele-
vance to be a binary variable: does the passage answer the
question, or not?

to these scores (ordinal sort) [2]. Techniques that can be
applied in this approach are classifiers (such as Naive Bayes
and Support Vector Classification) and regression techniques
(such as Logistic Regression and Support Vector Regres-
sion) [5, 9].

The pairwise approach
An alternative way of learning a ranking for the answers
within a cluster is to classify pairs of correct and incorrect
answers for their mutual order and optimizing the propor-
tion of correctly ordered answers. This learning principle is
called ‘pairwise preference learning’, and was introduced by
Joachims [12], who created the learning algorithm Ranking
SVM based on this principle. Pairwise preference learning
has been studied in more detail by in [8] and applied to
several ranking problems such as combining rankings from
multiple retrieval systems in [4].

The listwise approach
A third way of learning to rank answers with binary rele-
vance judgments is the listwise approach, in which a cost
function for the ordering of answers within one answer clus-
ter is optimized. A description of learning algorithms based
on the listwise approach can be found in [26] for data with
multiple ranking levels and and [3] who applied listwise rank-
ing also to data with binary relevance ranks. The listwise
approach is devised for learning to rank data with multiple
relevance levels. Therefore, we expect the listwise approach
to be less suitable for our binary relevance data than the
pointwise and pairwise approaches.

In [23] we followed the listwise approach by implementing
a genetic algorithm for finding the optimal ranking function.
Genetic algorithms are devised for finding an optimum in a
very large data space. The meaning of ‘optimum’ here is
defined by the so-called fitness function in the genetic algo-
rithm. Genetic algorithms have been applied to learning to
rank problems and other retrieval optimization problems by
several researchers in the field [20, 7, 19]. The approach pre-
sented in [20] resembles our approach: it defines the learning
problem as the search for the optimal weight vector for a
given feature vector.

The ranking performance can be defined and implemented
in the fitness function in different ways. In [7], a number
of fitness functions that are derived from ranking evalua-
tion measures (such as Mean Average Precision) are com-
pared for their effectiveness. In [23], Mean Reciprocal Rank
(MRR) is used as optimization measure in the fitness func-
tion.

2.2 The problem of imbalanced data
As mentioned in Section 1, class imbalance is a general

problem in learning to rank QA data [21]. Class imbalance
is especially problematic for classifiers because the classifi-
cation baseline is extremely high: if 98% of the instances
in the training set has the label ‘incorrect’, then classifying
all instances as ‘incorrect’ gives an accuracy of 98%. This
hampers the optimization process.

The problem has been acknowledged by many researchers
in the machine learning field [11, 21, 1, 18]. Because SVMs
are very popular for all sorts of classification tasks, much
work on tackling the problem of imbalanced data is focused
on making SVMs robust to imbalance. In the literature,
three approaches to curing problematic class imbalances for

classifiers are discussed: undersampling the majority class,
oversampling the minority class and cost-modifying accord-
ing to the same ratio as the class balance. In general, the lat-
ter approach gives the best results for various classifiers [11,
18]. In Section 4.2, we explain our attempts for curing the
class imbalance in our data.

Class imbalance causes fewer problems for regression tech-
niques than for classifiers. In the regression model, the so-
called ‘intercept’ value moves the outcome of the regression
function up or down towards the bias in the data. If the class
imbalance is not too extreme, the intercept can be adapted
so that the regression function is robust against it [15]. In
Section ??, we come back to the effect of class imbalance on
regression techniques.

Ranking techniques such as Ranking SVM are not sensi-
tive to class imbalance. This is because they employ pairs of
correct and incorrect answers from the same cluster, thereby
balancing the training data or they optimize for a ranking
criterion based on the highest ranked correct answer per
cluster (independent of how many correct answers there are
in the cluster). In Section 4.4, we discuss these techniques
in more detail.

3. DATA AND SYSTEM SET-UP

3.1 Resources
For our experiments, we used the Wikipedia INEX cor-

pus [6]. This corpus consists of all 659,388 articles extracted
from the online Wikipedia in the summer of 2006, converted
to XML format. Before indexing the corpus, we segmented
all Wikipedia documents into passages. We decided to use
a semi-fixed passage size of 500 to 600 characters (excluding
all XML markup) with an overflow to 800 for the purpose of
completing sentences.We created passage overlap by start-
ing each new passage at a paragraph or sentence boundary
halfway the previous passage. For Wikipedia articles that
contain fewer than 500 characters in total, we included the
complete text as one passage. Our segmentation process pro-
duced an index of 6,365,890 passages. We separately saved
the document title and section heading as metadata for each
passage because this information is used in our feature set.

For development and testing purposes, we exploited the
Webclopedia question set by Hovy et al. [10]. This set con-
tains questions that were asked to the online QA system an-
swers.com. Of these questions, 805 (5% of the total set) were
why-questions. For 700 randomly selected why-questions
from this set, we manually searched for an answer in the
Wikipedia XML corpus. Two examples illustrate the type
of data we are working with:

1. “Why do most cereals crackle when you add milk?”
— “They are made of a sugary rice mixture which
is shaped into the form of rice kernels and toasted.
These kernels bubble and rise in a manner which forms
very thin walls. When the cereal is exposed to milk or
juices, these walls tend to collapse suddenly, creating
the famous ‘Snap, crackle and pop’ sounds.”

2. “Why didn’t Socrates leave Athens after he was con-
victed?” — “Socrates considered it hypocrisy to es-
cape the prison: he had knowingly agreed to live under
the city’s laws, and this meant the possibility of being
judged guilty of crimes by a large jury.”

For 186 of the 700 why-questions from the Webclopedia data,
we were able to manually find the answer in the Wikipedia
corpus4. Thus, our data collections consists of 186 why-
questions.

3.2 System set-up
Our system consists of three modules that are run in se-

quence:
(1) A question processing module that transforms the in-

put question to a query by removing stop words and punc-
tuation.

(2) An off-the-shelf retrieval module that retrieves and
ranks passages of text that share content with the input
query. Here, we use Lemur to retrieve 1505 answers per
question and rank them using TF-IDF as it has been built
in in Lemur6. This gives us a set of 186 questions with
150 candidate answers per question, with for each pair of a
question and a candidate answer a TF-IDF score.

(3) A re-ranking module that re-ranks the retrieved pas-
sages using features extracted from the question and each
of the candidate answers (see Section 3.4 below): 28,050
(186 ∗ 150) question-answer pairs (instances) in total. Find-
ing the optimal ranking function for these data is the aim of
this paper.

3.3 Ground truth labeling
In general (with the exception of questions for which the

definite answer is topic of discussion), why-questions have,
just like factoid questions, only one correct (and thus com-
plete) answer. However, that answer can be formulated in
different ways. As a result, we had to take into account the
possibility of variants, which made it impossible to apply
fully automatic ground truth labeling. We therefore man-
ually assessed each of the candidate answers in our set as
being correct or incorrect7. We supported our manual judg-
ments with a set of TREC-style answer patterns: a regu-
lar expression for each question that defines which answers
should be labeled as correct.

For example, for question 2 above, we developed the fol-
lowing answer pattern after assessing all candidate answers
in our set: /(Socrates.* opportunity.* escape.* Athens.* con-
sidered.* hypocrisy | leave.* run.* away.* community.* repu-
tation)/. The pattern is based on two variants of the correct
answer that we found in the set of candidate answers8. By
producing these answer patterns we ensure that our labeling
can be reproduced in future experiments.

3.4 Feature extraction
4Thus, about 25% of our questions have an answer in the
Wikipedia corpus. The other questions are either too spe-
cific (“Why do ceiling fans turn counter-clockwise but table
fans turn clockwise?”) or too trivial (“Why does a chicken
cross the road?”) for the coverage of Wikipedia in 2006.
5We experimented with a higher number of answer candi-
dates but coverage was hardly improved when increasing this
number to 500.
6In previous work [13], we experimented with other ranking
models and TF-IDF came out as the best.
7The assessments were originally done by one annotator. We
are currently working on assessments by a second annotator
in order to be able to estimate the difficulty of the assessment
task and the reliability of the ground truth annotations.
8Note that the vertical bar separates the two alternative
formulations.

Table 1: Set of 37 features used in our re-ranking module
TF-IDF The score that is assigned to a candidate answer by Lemur/TF-IDF in the retrieval module
14 Syntactic feats Overlap between question and answer constituents (e.g. subject, verb, question focus)
14 WordNet expansion feats Overlap between the WordNet synsets of question and answer constituents
1 Cue word feat Overlap between candidate answer and a pre-defined set of explanatory cue words
6 Document structure feats Overlap between question (focus) words and document title and section heading
1 WordNet Relatedness feat Relatedness between question and answer according to the WordNet similarity tool [16]

From earlier work [24], we compiled a set of 37 features
that are summarized in Table 1. We syntactically parsed
the questions with the Pelican parser9 and the candidate
answers with the Charniak parser. Then we used a Perl
script to extract all feature values from the question, the
answer candidate and both their parse trees.

Each feature represents the similarity between two item
sets: a set of question items (for example: all question’s noun
phrases, or the question subject) and a set of answer items
(for example: all answer words, or all syntactic subjects
in the answer). The value that is assigned to a feature is
a function of the similarity between these two sets. For
determining this similarity, we used a statistic derived from
the Jaccard index that was adapted for duplicate terms in
either of the two sets. For a set of question word tokens Q, a
set of question word types Q′, a set of answer word tokens A
and a set of answer word types A′, the similarity S between

Q and A is defined as: S(Q,A) = |Q∩A′|+|Q′∩A|
|Q∪A|

For a detailed description of the features we use we refer
to Verberne et al. 2009 [24].

Resulting feature vectors and normalization
The normalization procedure is as follows. Feature extrac-
tion led to a vector comprising 37 feature values for each of
the 28,050 items in the data set. We adopted the approach
by Liu et al. [14] for feature normalization per answer clus-
ter, because the absolute values of a feature for different
questions were not comparable. Moreover, this approach
makes it possible to normalize the scores independently of
the answers to other questions: it can be performed for every
new input question and its answers.

Assume a question Qi with the candidate answers Aj(j =
1..150). For each feature Fk(k = 1..37), its value xijk is
normalized by transforming it to its z-score: x′ijk = (xijk −
µik)/σik in which µik is the mean of all values of feature
Fk for the candidate answers to Qi and σik is the standard
deviation of all values of feature Fk for the candidate answers
to Qi.

3.5 Evaluation set-up
Each instance in our data was labeled ‘correct’ if the can-

didate answer was a correct answer to the question and
‘incorrect’ if it was not (see Section 3.3). On average, a
why-question had 1.6 correct answers among the set of 150
candidate answers retrieved by Lemur.

After labeling each of the test instances with correct or
incorrect, we counted the questions that have at least one
correct answer in the top n (n = 10, 150) of the results.
This number divided by the total number of questions in
our test collection gave the measure Success@n. For the
highest ranked correct answer per question, we determined

9See http://lands.let.ru.nl/projects/pelican/

the reciprocal rank (RR = 1/rank). If there was no correct
answer retrieved by the system at n = 150, the RR is 0.
Over all questions, we calculated the mean RR: MRR@150.

We perform 5-fold cross validation on the question set.
We keep the 150 answers to each question together in one
fold so that we do not train and test on the answers to
the same question. For techniques that require tuning of
hyperparameters, we use a development set (see Section 4.1).
In the training stage, we exclude the questions from our
training data for which none of the 150 candidate answers is
correct. The test set on the other hand does contain these
questions, for which RR will naturally be 0.

3.6 The class imbalance in our data collection
In our data collection, we have many more incorrect than

correct answers: the incorrect/correct ratio in our complete
training set (all five folds together) is 71 to 1 (98.6% of the
instances in the training set has value ‘0’). Akbani et al [1]
consider a data set to be ‘highly imbalanced’ if the ratio of
negative against positive instances is bigger than 50 to 1.

4. EXPERIMENTS
In this section, we describe how we applied each of the

learning techniques to our learning problem. In all cases we
used the 37-feature set that we described in Section 3.4.

As baseline we used the system setting in which the an-
swers are retrieved and ranked by Lemur/TF-IDF, without
application of the re-ranking module. Thus, in this base-
line setting, the answers are ranked according to the single
feature value TF-IDF.

4.1 Matrix of techniques
We considered the three learning to rank approaches in-

troduced in section 2.1: the pointwise approach (see Sec-
tion 4.2), the pairwise approach (Section 4.3) and the list-
wise approach (Section 4.4). In the pointwise approach, we
evaluated the following classification and regression tech-
niques: Naive Bayes, Support Vector Classification, Support
Vector Regression and Logistic Regression. In the pairwise
approach, we applied the same classification and regression
techniques together with Ranking SVM. For the listwise ap-
proach, which we expected to be less suitable for our binary
relevance data, we evaluated a Genetic Algorithm.

Hyperparameter tuning
For techniques that expect hyperparameter values, we not
only evaluated the default hyperparameter setting but we
also tried to find optimal values for the hyperparameters
using a grid search over the range(s) of likely values. For
hyperparameter tuning, it is necessary to use development
data that is held out from the training set. We searched for
hyperparameter values that give the best results in terms
of MRR on the development set. Given the small number

of questions in our training set10, we decided to hold out
10 questions with their 150 answers from each training set.
Because development sets of 10 questions are quite small, we
selected three (non-overlapping) development sets for each
fold and tuned three times.

As a further measure to prevent overfitting on the devel-
opment sets, we selected three good hyperparameter settings
for each development set, instead of simply taking the one
leading to the best MRR. The three hyperparameter set-
tings were selected as follows: The first was always the one
leading to the best MRR on the development set. The sec-
ond and third were the highest local optima that are further
than five steps in the grid away from the first chosen point
and from each other (see the descriptions of the used grids
in 4.2).

During testing, the outputs of the nine models for the
three development sets were combined by addition (after
scaling them to a comparable range).

4.2 The pointwise approach
We first investigated the pointwise approach of applying

classification and regression techniques to the problem of
learning a ranking from binary relevance data. In the train-
ing phase, the classifier or regressor learns to classify each
instance (question answer pair) as either correct or incorrect,
irrespective of the cluster it belongs to. In the test phase, we
let the model assign a score to each instance in the data rep-
resenting the probability that this instance should be classi-
fied as correct. The actual ranking is done by a script that
sorts the instances per cluster by the output score of the
classifier.

As discussed in Section 3.6, our data show a strong class
imbalance, with a incorrect/correct ratio in our complete
training set of 71. This may cause problems for machine
learning techniques that are designed for classification. There-
fore, we applied a balancing strategy to all classification and
regression techniques that we evaluated. As observed in the
literature [11, 18], application of a cost factor is the preferred
approach to counter imbalance. If a system did not allow for
this, we applied oversampling of the positive instances. We
will describe for each individual technique which strategy
was applied.

We ran each machine learning technique with its default
hyperparameter settings on the original (imbalanced) data
and with a balancing strategy (cost factor or oversampling).
We only kept the best performing one for hyperparameter
tuning.

Naive Bayes classifier (NB)
For experiments with Naive Bayes, we used the e1071 pack-
age in R.11 This package does not allow for tuning of hyper-
parameters for Naive Bayes so we only ran the Naive Bayes
classifier in its default setting.

SV Classification (SVC) and SV Regression (SVR)
For standard support vector methods, we used LIBSVM.12

Following the LIBSVM guidelines, we first scaled our data

10Around 120 because, as explained in Section 3.5, we ex-
cluded the 21% questions without correct answers and 20%
for each fold to test on.

11See http://cran.r-project.org/web/packages/e1071/index.html
12See http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

using svm-scale. We experimented with support vector clas-
sification (SVC) and support vector regression (SVR). For
both, we used the RBF kernel.

The RBF kernel expects two hyperparameters: c (the
trade-off between training error and margin) and γ (a multi-
plication factor determining the range of kernel space vector
norms). Their default values are c = 1 and γ = 1/k (with k
being the number of instances, giving a γ of 5.5×10−5 for our
data). During grid search, we varied c from 2−13 to 213 and
γ from 2−13 to 27 in steps of ×4, 13 which closely resembles
the grid search suggested in the LIBSVM documentation.14

SVC allows us to use a cost factor for training errors on
positive instances, which we did. During hyperparameter
tuning, we kept the cost factor unchanged at 71 (−w1 = 71).
For SVR (which does not allow for a cost factor), we used
oversampling of the positive instances in such a way that
a training set included approximately as many positive as
negative instances.

Logistic regression (LRM)
We used the lrm function from the Design package in R
for training and evaluating models based on logistic regres-
sion15. LRM uses Maximum Likelihood Estimation (MLE)
as optimization function. It has a built-in option for data
balancing (applying a weight vector to all instances), of
which we found that it has exactly the same effect on the
data as oversampling the positive instances in the training
set. The other hyperparameters in LRM (a parameter for
handling collinearity in stepwise approaches and a penalty
parameter for data with many features and relatively few in-
stances) are not relevant for our data. Therefore, we refrain
from hyperparameter tuning for LRM.

4.3 The pairwise approach
For the pairwise approach, we use the commonly avail-

able Joachim’s Ranking SVM algorithm. In addition, we
use the same classification and regression techniques as in
the pointwise approach. We make this possible by trans-
forming our data into instance pairs that can be handled by
these techniques (as explained below).

Ranking SVM
We used version 6 of SVM light for our Ranking SVM ex-
periments16. Ranking SVM considers the training data to
be a set of instance pairs; each pair consists of one positive
and one negative answer. On these instances, the system
performs pairwise preference learning [12]. The ranking or-
der of a set of training instances is optimized according to

Kendall Tau: τ = (Nc−Nd)
(Nc+Nd)

, in which Nc is the number of

concordant item pairs (the two items are ordered correctly)
and Nd is the number of discordant item pairs (the two items
are ordered incorrectly).

For RankingSVM, we investigated both the linear and the
RBF kernel. The linear kernel only expects the hyperpa-

13This means that each next value is 4 times as high as the
previous, so we go from 2−13 to 2−11 to 2−9 etc.

14For SVR, we changed the grid on second thought after we
found out that the default hyperparameter setting for our
data was not included in the grid search, which led to subop-
timal tuning results. In the adapted grid, we varied γ from
2−6 to 27 in steps of ×2, multiplied by the default value.

15See http://cran.r-project.org/web/packages/Design/index.html/
16See http://svmlight.joachims.org/

rameter c; the RBF kernel takes both the hyperparameters
c and γ. The default values for these hyperparameters in
SVM light are for our data c = 0.01 and γ = 5.5×10−5. For
tuning these parameters, we search over the same grid as for
SVR and SVC.

4.3.1 Classification and regression techniques
To enable the use of pointwise techniques in a pairwise

approach, we transformed our data into a set of instance
pairs. We presented the answers in pairs of one correct and
one incorrect answer (to the same question). We kept the
number of features constant (at 37), but we transformed
each feature value to the difference between the values of
the two answers in the pair. In other words, we created
feature vectors consisting of 37 difference values.

In the training data, each instance pair is included twice:
‘correct minus incorrect’ with class 1 and ‘incorrect minus
correct’ with class 0. As a side-effect, this automatically
cures the class imbalance. In the testing phase, we let the
classifier assign to each instance pair the probability that
it is correctly ordered. Then we transform the data back
to normal answer instances by summing the scores for each
answer i over all pairs [i, j] in which i is ordered first.

In this pairwise approach17, we applied the same classifiers
and regression techniques as we evaluated for the pointwise
approach: Naive Bayes, Support Vector Classification, Sup-
port Vector Regression and Logistic Regression.

4.4 The listwise approach
In the listwise approach there is no classification of in-

stances or instance pairs; instead, the ordering of an answer
cluster as a whole is optimized. As explained in Section 2.1,
the listwise approach might suffer because of our binary rel-
evance data.

Genetic algorithm (GA)
We used a Perl implementation of a genetic algorithm18 for
our experiments. As we pointed out in Section 2.1, genetic
algorithms allow us to to optimize directly for ranking per-
formance. This might compensate for the problems due to
the binary ranking. Our aim when training the genetic algo-
rithm was to find the optimal weight vector for our feature
vector of 37 feature values. As weights, we used the integers
0 to 10. In terms of the genetic algorithm, each possible
weight vector is an individual.

We implemented two fitness functions in the genetic algo-
rithm: one performing pairwise preference learning by opti-
mizing for Kendall Tau (Equation 2), and one optimizing for
MRR. In each run (‘generation’), the GA selects the fittest
individuals for crossover (‘mating’).

By default, the crossover rate is 0.95 and the mutation rate
0.05. For the selection of individuals, we chose tournament
selection, because that is the most efficient strategy. We
used uniform crossover, because the order of our features in
the feature vector is not relevant. In our experiments, we
set the generation size to 500 and the number of generations

17Note that the term pairwise describes this approach in a
slightly different way than in Ranking SVM. There, the pairs
are used only for parameter optimization while the scored
instances are individual answers. Here, the scored instances
are pairs while optimization is done instance by instance
rather than pairwise.

18See http://search.cpan.org/∼aqumsieh/AI-Genetic-0.04

to 50 based on the shape of the learning curve in earlier
experiments on the same data.

We did not perform hyperparameter tuning for the GA,
because a grid search would need too much computational
power.

5. RESULTS AND DISCUSSION
The results that we obtained are in Table 2. For all

settings, success@150 is 78.5%. This score cannot change
by re-ranking the results. For significance testing, we used
the Wilcoxon Signed-Rank test on paired reciprocal ranks
(RRs): Per question, we took the RR of the highest ranked
correct answer in the two system versions. Then we made
186 pairs of RRs for the two system settings and calculated
the Wilcoxon score over them. The highest MRR score that
we obtained is 0.3519 (by SVR for pairwise classification).
We will call this the optimum in the remainder of this sec-
tion.

First, we must note here that it is not relevant to compare
the default settings of different techniques to each other since
default hyperparameter values may be unapplicable to the
data under consideration. However, we can make a number
of interesting remarks on the results. The left side of Table 2
shows that especially pointwise-SVC gives very poor results
in its default setting on our imbalanced data. But it also
shows that if we balance the data, the default settings of
LIBSVM already reach a score close to the optimum of 0.35.
This suggests that the default hyperparameter values chosen
by the developers of LIBSVM are more suitable for balanced
data than for our original imbalanced data.

This is confirmed by the results presented in the right side
of Table 2. Here we see that if the problem is presented as a
pairwise classification problem, the default hyperparameter
settings are much more suitable than for the original data
representation. We assume that this is because the pairwise
representation cures the class imbalance. In general, we see
that the results for the pairwise approach much resemble
the results for balanced data in the pointwise approach: For
SVC (0.318 vs. 0.316), SVR (0.328 vs. 0.320) and LRM
(0.307 vs. 0.307) the results are almost exactly the same
in these two settings. Table 2 also shows that in Ranking
SVM the results for the RBF kernel are only slightly (but not
significantly) better than those for the linear kernel. Appar-
ently, our data can be learned properly using a linear kernel,
at least in the case of pairwise preference ranking.

For Naive Bayes (NB), however, the results for the point-
wise and pairwise approaches are very different. Here we
see that presenting the problem as a pairwise classification
problem is essential for Naive Bayes being able to predict the
data correctly. We suspect that this is because the simplicity
of the Naive Bayes model, which is based on the probability
of each feature value given the class of the instance. Over-
sampling the positive instances will only change the prior
probabilities for the classes20. When presenting the data in
pairs, we apply a form of bagging: Each positive answer is

19The 21% of questions without a correct answer in the top
150 all have an RR of 0. MRR for the successful questions
only is 0.45. This is relatively high considering the suc-
cess@10 score of 56.4% because a large proportion of suc-
cessful questions has a correct answer at position 1 (Suc-
cess@1 for all questions including the unsuccessful questions
is 24.2%).

20Recall Bayes’ theorem: P (A|B) = P (B|A)P (A)
P (B)

. For our

Table 2: Results for the pointwise, pairwise and listwise approaches in terms of MRR@150 and Success@10.
An asterisk (*) on an MRR score indicates a statistically significant improvement (P < 0.01 according to the
Wilcoxon Signed-Rank test) over the TF-IDF baseline. A dagger (†) indicates that the MRR score is not
significantly lower than the MRR score of the optimum setting (0.35).

Pointwise approach Pairwise approach
Orig. default Balanced default Best tuned Default Tuned

techn. MRR S@10 MRR S@10 MRR S@10 MRR S@10 MRR S@10
TF-IDF 0.246 45.2% N/A N/A N/A N/A 0.246 45.2% N/A N/A
NB 0.186 43.6% 0.200 45.7% N/A N/A 0.320*† 56.7% N/A N/A
SVC 0.100 17.2% 0.318*† 56.4% 0.327*† 55.4% 0.316*† 54.8% 0.337*† 55.4%
SVR 0.342*† 53.8% 0.328*† 57.0% 0.347*† 56.5% 0.320*† 56.5% 0.350* 56.5
LRM 0.340*† 57.0% 0.307* 54.8% N/A N/A 0.307* 55.4% N/A N/A
RankingSVM linear kernel N/A N/A N/A N/A N/A N/A 0.313*† 57.0% 0.313*† 56.5%
RankingSVM RBF kernel N/A N/A N/A N/A N/A N/A 0.130 43.6% 0.331*† 55.4%

Listwise approach
Orig. default Balanced default Best tuned

Genetic Algorithm, τ 0.298* 57.8% N/A N/A N/A N/A
Genetic Algorithm, MRR 0.320*† 56.5% N/A N/A N/A N/A

included in the data many times, but each time as part of
a different instance pair. As a result, all positive instance
pairs are different from each other and the algorithm has
more chances of making the right decision for one answer.
Apparently, the Naive Bayes classifier depends on these mul-
tiple chances for proper classification.

Table 2 shows that for regression techniques (SVR and
LRM), balancing the data by oversampling or applying a
cost factor leads to slightly (not significantly) lower MRR
scores. In Section 2.2, we concluded from the literature that
class imbalance causes fewer problems for regression tech-
niques than for classifiers because in the regression model,
the intercept value moves the outcome of the regression func-
tion up or down towards the bias in the data. Building a
regression function on data in which the positive instances
have been oversampled apparently leads to overfitting.

For the listwise approach (bottom part of Table 2), we
see that optimizing the Genetic Algorithm for MRR with
the default hyperparameter values leads to a score that is
not significantly lower than the optimum. Optimizing for
Kendall τ however does not reach the optimum score. An
analysis of the output of the Genetic Algorithm shows that
τ is suboptimal as optimization measure if MRR is used as
evaluation criterion. This is because MRR is much more
sensitive for answers at rank 1 than τ .

In order to get an indication of the maximum MRR score
than can be reached with our feature set, we decided to com-
bine the output of the approaches and techniques we used.
From the three approaches, we included those settings for
which the MRR was not significantly worse that the opti-
mum of 0.35, using its best-scoring settings. This was the
case for eight settings. We created all possible combinations
of these eight settings (we normalized the instance scores
to a number between 0 and 1 and then summed them over
all techniques) and evaluated the performance of each of he
combinations. The maximum MRR that we achieve with a
combination of settings is 0.36 (a combination of SVR point-
wise, SVR pairwise and Genetic Algorithm MRR listwise).
This is not significantly better than the best-scoring indi-
vidual technique.

data, A represents the class (correct or incorrect) and B the
feature values. P(A) is the prior on the class.

6. CONCLUSION
In this paper, we have optimized the re-ranking module of

a system for why-question answering. The goal of this paper
was to compare a number of machine learning techniques in
their performance on our task: inducing a ranking from a
binary classification with highly imbalanced data. We eval-
uated learning techniques in pointwise, pairwise and listwise
approaches.

We found that with all machine learning techniques, we
eventually get to an MRR score that is significantly above
the TF-IDF baseline of 0.25 and not significantly lower than
the best score of 0.35 (reached by Support Vector Regression
in the pairwise approach).

We investigated three factors: (1) the distinction between
the pointwise approach, in which candidate answers are clas-
sified individually (over all questions) and the pairwise and
listwise approaches, in which the ranking within each cluster
of answers is optimized; (2) the distinction between tech-
niques based on classification and techniques based on re-
gression; and (3) the distinction between techniques with
and without hyperparameters that must be tuned.

With respect to (1), we found that we are able to obtain
good results with both the pointwise and the pairwise ap-
proaches for our data. The optimum score was reached by
Support Vector Regression for the pairwise representation,
but some of the pointwise settings reached scores that were
not significantly lower than this optimum. We expect that
this is because the relevance labeling of our our data is on a
binary scale, which makes classification feasible. The good
results obtained with the listwise approach, implemented as
a Genetic Algorithm that optimizes MRR, are probably due
to the fact that this approach allows for optimizing the eval-
uation criterion directly. Based on these results, it would be
interesting to assess the performance of other listwise tech-
niques such as SVM-MAP and AdaRank [26] on our data.
We originally did not take these techniques into considera-
tion for our data because they expect a multi-level relevance
ground truth.

With respect to (2), we found that classification and re-
gression techniques are equally capable of learning to clas-
sify our data in a pointwise setting but only if we balance
our data (by oversampling or applying a cost factor) before

presenting it to a classifier. For regression techniques, bal-
ancing is not necessary and even has a negative effect on the
results. We found that transforming our problem to a pair-
wise classification task is a good option for curing the class
imbalance. This transformation even enables Naive Bayes
to classify and rank the data properly.

With respect to (3), we found that for our imbalanced
data set, techniques with hyperparameters heavily depend
on tuning in order to find sensible hyperparameter values.
However, if we solve the class imbalance by balancing our
data or presenting the problem as a pairwise classification
task then the default hyperparameter values are well appli-
cable to the data and tuning is less important. Since hy-
perparameter tuning is a process that takes much time and
computational power, a technique without hyperparameters,
or a technique for which tuning can be done easily without
heavy computing, should be preferred if it reaches equal per-
formance to techniques with (more heavy) tuning. In this
respect, regression techniques seem the best option for our
learning problem: Logistic Regression reaches a score very
close to the optimum (MRR is 0.34) without tuning. Sup-
port Vector Regression reaches optimal performance (MRR
is 0.35) with tuning.

The maximum MRR that we achieve with a combination
of settings is 0.36, which is not significantly better than the
best-scoring individual technique. This shows that with the
current feature set, the ranking performance of our system
has reached a ceiling. Given the theoretical optimum of 0.79
(if for all questions with at least one correct answer a cor-
rect answer is ranked at position 1), we can conclude that
our features are sub-optimal for distinguishing correct from
incorrect answers. Since we already invested much time in
previous work in finding the best features for describing our
data, we conclude that the problem of distinguishing cor-
rect and incorrect answers to why-questions is more com-
plex than an approach based on textual (overlap) features
can solve.

Part of our future work is to investigate the gap between
the best MRR that we reach with our feature set (0.36) and
the theoretical MRR ceiling (0.785). What are the limita-
tions of the features used? Which aspects of why-questions
and their answers cannot be described with a set of tex-
tual features? What type of information can complement
the description of question-answer pairs? In automatically
answering complex questions such as why-questions, human
reasoning and world knowledge seem to play an important
role. These problems are the focus of our work in the near
future.

7. REFERENCES
[1] R. Akbani, S. Kwek, and N. Japkowicz. Applying support

vector machines to imbalanced datasets. Lecture Notes in
Computer Science, 3201:39–50, 2004.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proceedings of ICML 2005, volume 22,
page 89, 2005.

[3] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank:
from pairwise approach to listwise approach. In Proceedings of
the 24th international conference on Machine learning, pages
129–136. ACM New York, NY, USA, 2007.

[4] B. Carterette and D. Petkova. Learning a ranking from pairwise
preferences. In Proceedings of SIGIR 2006, pages 629–630.
ACM New York, NY, USA, 2006.

[5] D. Cossock and T. Zhang. Subset ranking using regression.
Lecture Notes in Computer Science, 4005:605, 2006.

[6] L. Denoyer and P. Gallinari. The Wikipedia XML corpus. ACM
SIGIR Forum, 40(1):64–69, 2006.

[7] W. Fan, E. Fox, P. Pathak, and H. Wu. The Effects of Fitness
Functions on Genetic Programming-Based Ranking Discovery
for Web Search. Journal of the American Society for
Information Science and Technology, 55(7):628–636, 2004.

[8] J. Furnkranz and E. Hullermeier. Pairwise Preference Learning
and Ranking. Lecture Notes in Computer Science, pages
145–156, 2003.

[9] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank
boundaries for ordinal regression. In KDD’02: Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, pages 133–142. ACM,
2002.

[10] E. Hovy, U. Hermjakob, and D. Ravichandran. A
Question/Answer Typology with Surface Text Patterns. In
Proceedings of HLT 2002, San Diego, CA, 2002.

[11] N. Japkowicz and S. Stephen. The class imbalance problem: A
systematic study. Intelligent Data Analysis, 6(5):429–449,
2002.

[12] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of ACM SIGKDD 2002, pages 133–142.
ACM, 2002.

[13] M. Khalid and S. Verberne. Passage Retrieval for Question
Answering using Sliding Windows. In Proceedings of COLING
2008, Workshop IR4QA, 2008.

[14] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark
dataset for research on learning to rank for information
retrieval. In Proceedings of SIGIR 2007 Workshop on
Learning to Rank for Information Retrieval, 2007.

[15] A. Owen. Infinitely imbalanced logistic regression. The Journal
of Machine Learning Research, 8:761–773, 2007.

[16] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::
Similarity-Measuring the Relatedness of Concepts. In
Proceedings of the National Conference on Artificial
Intelligence, pages 1024–1025, 2004.

[17] L. Shen and A. Joshi. Ranking and reranking with perceptron.
Machine Learning, 60(1):73–96, 2005.

[18] Y. Tang, Y. Zhang, N. Chawla, and S. Krasser. SVMs Modeling
for Highly Imbalanced Classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 39(1):281–288, 2009.

[19] J. Tiedemann. A Comparison of Genetic Algorithms for
Optimizing Linguistically Informed IR in Question Answering.
Lecture Notes in Computer Science, 4733:398, 2007.

[20] A. Trotman. An Artificial Intelligence Approach to Information
Retrieval. Proceedings of the SIGIR 2004 Doctorial
Consortium, page 603, 2004.

[21] N. Usunier, M. Amini, and P. Gallinari. Boosting weak ranking
functions to enhance passage retrieval for Question Answering.
In SIGIR 2004 workshop on Information Retrieval for
Question Answering, pages 1–6, 2004.

[22] S. Verberne. Paragraph retrieval for why-question answering. In
Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 922–922. ACM Press New York, NY, USA,
2007.

[23] S. Verberne, L. Boves, N. Oostdijk, and P. Coppen. Using
Syntactic Information for Improving Why-Question Answering.
In Proceedings of COLING 2008, 2008.

[24] S. Verberne, L. Boves, N. Oostdijk, and P. Coppen. What is
not in the Bag of Words for Why-QA? . 2009. In revision for
Computational Linguistics.

[25] E. Voorhees and D. Tice. Building a question answering test
collection. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 200–207. ACM New York, NY,
USA, 2000.

[26] F. Xia, T. Liu, J. Wang, W. Zhang, and H. Li. Listwise
approach to learning to rank: theory and algorithm. In
Proceedings of the 25th international conference on Machine
learning, pages 1192–1199. ACM New York, NY, USA, 2008.

