
Exploiting GPUs for fast force-directed visualization of large-scale networks

Govert G. Brinkmann∗, Kristian F. D. Rietveld ∗ and Frank W. Takes∗†
∗ LIACS, Leiden University, The Netherlands, E-mail: {krietvel,ftakes}@liacs.nl

† CORPNET, University of Amsterdam, The Netherlands

Abstract—Network analysis software relies on graph layout
algorithms to enable users to visually explore network data.
Nowadays, networks easily consist of millions of nodes and
edges, resulting in hours of computation time to obtain a
readable graph layout on a typical workstation. Although these
machines usually do not have a very large number of CPU
cores, they can easily be equipped with Graphics Processing
Units (GPUs), opening up the possibility of exploiting hundreds
or even thousands of cores to counter the aforementioned
computational challenges. In this paper we introduce a novel
GPU framework for visualizing large real-world network data.
The main focus is on a GPU implementation of force-directed
graph layout algorithms, which are known to create high qual-
ity network visualizations. The proposed framework is used
to parallelize the well-known ForceAtlas2 algorithm, which
is widely used in many popular network analysis packages
and toolkits. The different procedures and data structures of
the algorithm are adjusted to the CUDA GPU architecture’s
specifics in terms of memory coalescing, shared memory usage
and thread workload balance. To evaluate its performance, the
GPU implementation is tested using a diverse set of 38 different
large-scale real-world networks. This allows for a thorough
characterization of the parallelizable components of both force-
directed layout algorithms in general as well as the proposed
GPU framework as a whole. Experiments demonstrate how
the approach can efficiently process very large real-world
networks, showing overall speedup factors between 40× and
123× compared to existing CPU implementations. In practice,
this means that a network with 4 million nodes and 120 million
edges can be visualized in 14 minutes rather than 9 hours.

Keywords-network visualization; force-directed graph layout;
large-scale networks; parallel programming; CUDA;

I. INTRODUCTION

Visualizing data allows the user to manually explore
the represented information, and can aid tremendously in
finding for example patterns and outliers. Here, the focus
is on visualizing networks (or graphs) consisting of nodes,
representing entities, and edges (or links), representing the
relationships between these entities. To visualize a network,
and thus the underlying data, one creates a drawing in
the plane, depicting nodes as circles, and edges as lines
between connected nodes. The main challenge in realizing
such a drawing, is positioning the nodes in such a way
that a ‘useful’ or ‘readable’ layout emerges that allows the
viewer to perceive the structure of the graph. Several layout
principles are generally considered to contribute to such
layouts [1], such as minimizing edge crossings, preventing
long edges and limiting overlap between nodes. Over the

past decades, numerous graph layout algorithms (further
discussed in Section III) have been introduced. Given the
topology of a graph, these algorithms aim at computing a
layout that adheres to common graph layout readability crite-
ria [2]. Given that real networks are mostly non-random, not
too densely connected and, to a certain extent, partitionable,
these algorithms can generally produce a useful, readable
and interpretable layout.

However, commonly used data originating from for ex-
ample social networks, webgraphs, information networks
and communication networks consists of millions of nodes
and edges, resulting in major visualization challenges [3]
in terms of readability. This readability issue is not the
topic of this paper as it has largely been addressed by
modern force-directed algorithms such as ForceAtlas2 [4].
This layout algorithm is widely used in network analysis
toolkits such as Gephi [5] and is generally able to overcome
local minima in the quality of the visualization, resulting
in meaningful and readable visualizations. See Figure 2 for
an example. More importantly, when larger networks are
considered, algorithms must scale well in terms of time and
memory usage. Although memory usage is typically linear
in the number of nodes and edges (and thus acceptable), time
consumption is a challenge. Using force-directed algorithms
to visualize networks with more than a few hundred thou-
sand nodes easily takes several hours of computation time,
and is currently not feasible on workstations using available
software packages. Solving these computational challenges
is highly relevant for the network analysis community and
hence the topic of this paper.

Given that workstation computers typically have four to
eight processing cores at most, we will assess whether
another component of workstations could be used to sig-
nificantly speed up the graph layout process: the Graphics
Processing Unit (GPU). The emergence of General Purpose
computing on Graphics Processing Units (GPGPU) allowed
many data-parallel algorithms to scale to significantly larger
input [6], [7]. This results from the (massively) parallel
architecture of GPUs, which is designed to concurrently
transform billions of pixels per second. It is only recently
that the applicability of GPGPU to graph algorithms has
been studied, given that the irregular memory access patterns
associated with such algorithms were initially considered
challenging for the architecture of most GPUs [8]. How-
ever, the (embarrassingly) parallel character of most force-

directed graph layout algorithms, in which node-based cal-
culations are performed independently of each other, suggest
they are well suited to be run on the parallel platform
provided by GPUs (see e.g. [9] and the discussion of
previous and related work in Section III).

In this paper, we present a GPU framework which im-
plements the different components of force-directed layout
algorithms on a GPU. We evaluate if and how the parallel
architecture of GPUs can be used to reduce the computation
time of layouts of graphs with millions of nodes and edges.
Using a large number of datasets of real-world networks
we assess the performance of our GPU implementation to
determine its feasibility for large-scale network visualiza-
tion. In contrast to earlier studies on the scalability of graph
layout algorithms using GPUs [9], [10], [11], our focus is
entirely on force-directed algorithms for real-world (social)
networks. These networks are typically non-random, sparse,
exhibit a power law degree distribution, have dense clusters,
low average pairwise distances, and above all, are large in
terms of the number of nodes and edges.

The remainder of this paper first introduces the concepts,
notation and context of the problem in Section II. Next,
related work on graph layout is discussed in Section III.
The newly proposed GPU framework, including our im-
plementation of ForceAtlas2 on the GPU, is the topic of
Section IV, after which we present our data, experiments
and results in Section V. Section VI concludes the paper
and gives suggestions for future work.

II. PRELIMINARIES

This section briefly reviews the graph theoretic notation
and concepts we use throughout this paper, as well as a short
introduction to GPU programming using CUDA.

A. Networks

A graph (or network) G = (V,E) consists of a set
of vertices (or nodes), V , and a set of edges (or links),
E. In this paper we only consider undirected networks, as
in visualizing graphs, link direction is usually ignored and
simply incorporated by replacing lines by directed arrows.

Node u is adjacent to node v iff {u, v} ∈ E. Adjacent
nodes are also called neighbors. A path from node u to node
v is a sequence of nodes such that each of the subsequent
nodes in the sequence are adjacent. The length of a shortest
path is called the distance between node u and node v,
denoted d(u, v). The degree deg(u) of a node u ∈ V equals
the number of nodes adjacent to u, i.e., |{v | {u, v} ∈ E}|.

A graph is connected if there exists a path between every
pair of nodes. Given a graph G = (V,E), the subgraph
induced by V ′ ⊆ V , is the graph G′ = (V ′, E′) obtained
by taking E′ = {{u, v} ∈ E | u, v ∈ V ′}. A connected
component of G is a connected subgraph of G of maximal
size, i.e., it cannot be extended by adding another node.
Here we focus on the largest connected component, called

the giant component, as a layout for the entire graph can
simply be computed by merging the layouts obtained for
each component.
In this paper we concern ourselves with real-world networks
[12]. This means that the networks are sparse; they have few
edges compared to the maximum number of edges. There
is typically one giant component comprising the majority
of the nodes. Degrees follow a power-law distribution with
many peripheral low degree nodes and a small number of
high degree hubs. The node clustering coefficient, which
indicates the fraction of closed triangles among a node’s
adjacent nodes is, averaged over all nodes, very high, indi-
cating the presence of tightly knitted groups of nodes in the
network. Altogether, this results in very low average node-to-
node distances, referred to as the small world property [12].

B. GPU Architectures and Programming Platforms

Over the past decade, GPUs gained prominence as co-
processors to CPUs, to aid in solving many data-parallel
problems [6]. The arrival of GPGPU programming frame-
works, such as OpenCL [13] and CUDA [14], that do not re-
quire programmers to reformulate their problem in terms of
a computer graphics problem, accelerated this development.
GPUs are ideally suited to tackle parallel problems, as GPUs
dedicate more silicon to functional units that perform data
manipulations. They optimize for throughput, in contrast to
traditional CPU architectures which optimize for latency at
the expense of elaborate control logic for features such as
branch-prediction and out-of-order instruction execution.

The framework described in this paper has been imple-
mented for NVIDIA GPUs using the CUDA platform [14].
GPU programming rests on the specification of compute
kernels, which are the subroutines that are executed in
parallel on the GPU using many threads of execution. To
execute a kernel, a block of threads is formed, of which
the threads are distributed across the GPU cores. In order
to optimize the execution of such kernels on the GPU,
characteristics of the GPU architecture have to be taken into
account. Section IV-B will discuss how we have tailored our
GPU implementation towards these characteristics.

On CUDA architectures, cores are grouped in Streaming
Multiprocessors (MPs). The threads of a block are, in turn,
subdivided into multiple warps of 32 threads each. The
scheduling unit of the multiprocessor is a warp, meaning that
the threads of a warp always co-reside on a single MP. The
notion of a warp is important, as threads in a warp execute
in lock-step through a Single Instruction Multiple Threads
(SIMT) architecture that advances them at the same time
unless branching occurs, causing threads to execute serially
until the next common instruction. Such branch-divergence
is detrimental to performance and should be prevented.
Furthermore, memory accesses made by a warp of threads
are most efficient if they can occur in a coalesced manner.
The GPU used in our experiments (for details, see Section

V), coalesces the memory accesses by a warp to consecutive
words of 4-bytes, starting at an address that is a multiple of
32 bytes. The consecutive data is then fetched from memory
using a strongly reduced number of transactions. For more
details on performance optimization for CUDA GPUs, we
refer the reader to [15].

III. RELATED WORK

One of the first motivations behind the development of
graph layout algorithms, was the the need for automatically
generated flowcharts of algorithms and software [16]. In
that context, Tutte [17] proposed a layout algorithm for 3-
connected planar graphs which was one of the first ‘force-
directed’ graph layout algorithms [18]. In this paper, we
focus on modern force-directed layout algorithms. Several
other approaches to the graph layout exist and we refer the
reader to [1], [3], [19] for a comprehensive overview.

The force-directed as well as the associated spring-
electrical model were first pioneered in [20], [21], [22]. It
approaches the layout problem as an n-body problem by
considering the layout as a physical system in which nodes,
analogous to bodies, impose forces on each other, causing
them to displace. Force-directed algorithms mostly vary in
the force-model they use. While forces were initially chosen
to replicate real-world physical systems, such as springs
[20], this did not seem necessary to obtain good layouts [21].
Since then, artificial force-models have found their use in
various algorithms [4]. Some algorithms introduce additional
constraints, next to the force model previously described
to improve the quality of the resulting visualization [23].
Early force-directed algorithms suffered from sub-optimal
layouts given large graphs as input [3]. This was caused
by the fact that increasing the size of the graph introduces
many local minima in which the layout algorithm can get
stuck. Therefore, usually a ‘speed’ or ‘temperature’ scales
the displacement of nodes during the layout process, as
discussed in Section IV-B. Since force-directed algorithms
involve computing repulsive forces between all node pairs,
time complexity is O(n2). Fruchterman et. al [21] made an
effort to overcome this quadratic complexity by proposing
a ‘grid-based’ algorithm in which the layout space is parti-
tioned using a grid and repulsive forces are only calculated
between nodes in neighboring grid cells. Other approaches
include the Fast Multipole Method (FMM) [24], [25] and the
use of Barnes-Huts approximation [26] as further discussed
in Section IV-B.

Other types of algorithms including multilevel approaches
have been implemented on the GPU [9], [10], [11]. However
in this paper the main focus is on the use of GPUs for
force-directed visualization of non-artificial, real-world data.
Our main goal is to create a fast parallel implementation
of the high quality force-directed visualization algorithm
ForceAtlas2 [4], exploiting the parallel aspect of GPUs, such
that networks with millions of nodes can be visualized.

IV. PROPOSED GPU FRAMEWORK

This section proposes our framework for the implemen-
tation of force-directed network visualization algorithms
on the GPU. Within this framework the different steps of
graph visualization algorithms are broken down into separate
components. Together, a sequence of components forms a
pipeline. This allows new visualization algorithms to be
swiftly implemented by creating a new pipeline, re-using
existing components and only writing a minimal amount of
new code. Additionally, it is straightforward to interchange
individual components with other components that achieve
the same goal, for example using a faster algorithm or an
algorithm optimized for particular graph properties. In this
paper, the focus is on the implementation of the framework’s
components used by force-directed approaches to graph lay-
out. In Section IV-A we introduce the different components
that are distinguished within the framework. Section IV-B
discusses how the popular ForceAtlas2 algorithm [4] is
implemented on the GPU using this framework, specifically
taking into account architectural characteristics of GPUs.

A. Components

The components within the framework have been devel-
oped to accommodate the swift implementation of force-
directed graph layout algorithms. As discussed, force-
directed approaches to graph layout consider the problem of
graph layout as an n-body problem, in which nodes impose
forces on each other causing them to displace. Initially, all
nodes are randomly positioned in a rectangular area of the
Euclidean plane. Subsequently, the graph layout process is
performed using the following five framework components:

1) Gravity: a component that applies a gravitational
force, towards the origin of the layout space, on each
node. This force ensures that disconnected compo-
nents or remote node groups do not ‘drift’ to the
periphery of the drawing.

2) AttractiveForce: this component computes attractive
forces that are induced between neighboring nodes.
This enforces that related nodes are positioned in
proximity of each other, whilst unrelated nodes are
positioned at a distance.

3) BodyRepulsion: computes the repulsive forces exerted
between every pair of nodes. As outlined in the preced-
ing section, different algorithms can be employed to
do so, which can be implemented as different variants
of this component.

4) UpdateSpeed : after force computation, there is the
possibility to update parameters that depend on these
results. This component can be optionally introduced
in the pipeline to compute and update global speed.

5) Displacement : displaces the nodes based on the net
forces exerted on them. The displacement is typically
scaled using a ‘speed’ or ‘temperature’ parameter to

Figure 1. Illustration of the different components, together forming a graph visualization pipeline that is executed on the GPU. The top-right of each
illustration indicates whether each thread (concurrently) executing the component operates on nodes or edges. After initialization, execution starts at the
Gravity component. The gray boxes on the bottom indicate the correspondence of the components with the lines in Algorithm 1.

enable convergence to a (locally) optimal configura-
tion and to account for certain graph properties.

All steps are repeated until a given maximum number of
iterations is reached, or a stopping criterion is met, at which
time the algorithm is terminated. The different steps are sum-
marized in Figure 1. The main strength of this framework
approach is the ability to re-use and interchange components,
which allows rapid and dynamic implementation of graph
visualization algorithms. While some components perform
all computations per node, other components iterate over
edges or node pairs (see top right corner of components in
Figure 1). Without affecting the final result, a component
may be interchanged with another component performing
the same computation but using a different iteration pattern,
beneficial and optimized for a certain class of graphs.
Furthermore, apart from tuning the iteration pattern, different
variants of the BodyRepulsion component may be provided
that implement different algorithms.

The framework also allows for flexibility in implementing
graph layout algorithms. For instance, not all algorithms
apply a gravitational force, so this step can sometimes be
skipped. The Displacement kernel can be made to work
with single or multiple speeds. In general, a decreasing
speed causes the layout to converge to a (locally) optimal
configuration. Commonly, global speeds, affecting the entire

layout, as well as local speeds, affecting groups of nodes
or individual nodes, are used. Local speeds are beneficial
because they can be used to prevent individual nodes, or
groups of nodes, from oscillating around the same posi-
tion [4]. Furthermore, new components can be introduced
to the pipeline, for example to introduce forces exerted
on nodes or edges that are dependent on particular graph
properties. This flexibility persists as long as these routines
allow the force for all nodes or edges to be computed in
parallel.

Our framework reads the input graphs using the common
and widely used edge list file format. This allows for
effortless integration of the framework into existing network
analysis software. The output of the framework consists of
a node list with coordinate pairs, which can be re-used in
visualization tools to draw the graph on screen or to write a
vector graphics file (such as SVG) to disk. For OpenGL
applications, there exists the possibility to directly store
the results of the CUDA computations in OpenGL buffers,
without incurring the CPU-GPU data transfer penalty, al-
lowing the graph visualization process to be displayed in an
interactive real-time environment.

B. Implementation of ForceAtlas2
To illustrate how our framework can be used to implement

graph visualization algorithms, we consider the ForceAtlas2

algorithm [4]. ForceAtlas2 is a force-directed layout algo-
rithm developed for Gephi [5], an open-source tool for social
network analysis. The main contribution of ForceAtlas2 to
research on force-directed algorithms is its force model and
its implementation of adaptive speed. We have chosen this
particular algorithm since its operation is characteristic of
force-directed layout algorithms and because the choice of
force model makes ForceAtlas2 well suited to visualize real-
world networks, which is our primary topic of interest.

The ForceAtlas2 algorithm is described in the pseudo-
code in Algorithm 1. For more details, the reader is referred
to [4]. Note that in each layout iteration the same operation,
force computation, is performed on the nodes which are
independent data elements. It is this kind of data-parallel
problems for which the architecture of GPUs is specifically
suited, typically leading to significant performance improve-
ments for these kinds of problems [6]. The relationship of
the sequential ForceAtlas2 algorithm and the components of
our framework can be seen by comparing the line numbers
in pseudo-code with the line numbers seen in the component
labels of Figure 1. An example visualization created using
ForceAtlas2 is given in Figure 2.

The components of the framework have been implemented
using the CUDA C environment [27], an extension of the
C programming language. Each component consists of one
or more CUDA kernels (for details, see Section II-B). The
different CUDA kernels are launched one after the other, in
thread blocks consisting of many (> 1000) threads. Each
thread will process a small subset of the data. This data can
be either nodes or edges, depending on the kernel that is
considered (see Figure 1). We launch at least one block per
multiprocessor, but usually more. All data to be processed
by each kernel is present in global memory of the GPU,
such that no transfers between CPU memory and GPU
memory, and associated delays, occur as the components
are executed. All data is stored in global memory to allow
for fully coalesced memory accesses: aligned to 32-byte
boundaries and stored at consecutive memory addresses.
Structure types, e.g. node positions in the plane with an x
and a y component, are flattened from arrays of structures to
structures of arrays storage. This way, structure members are
not stored interleaved but consecutively, allowing for fully
coalesced memory access when all threads access the same
component of consecutive nodes. We now detail for each of
the framework components mentioned in Section IV-A how
these have been tailored for execution on the GPU.

1) Gravity Component: The gravity component applies
a gravitational force to each node, which is proportional
to its distance to the center of the layout, as detailed in
[4]. Each thread processes a group of nodes and due to
the aforementioned data structure of the positional data, all
memory accesses are fully coalesced.

2) AttractiveForce Component: The attraction kernel ap-
plies an attractive force between all nodes connected by

Algorithm 1 ForceAtlas2 [4]
Input: Undirected graph G = (V,E), iterations , grav-
itational and repulsive force scalars fg and fr.
Output: A position pv ∈ R2 for each v ∈ V .

1: global speed← 1.0
2: for all v ∈ V do . Initialize variables
3: pv = random()
4: fv = (0.0, 0.0)> . Net force on node v
5: f ′v = (0.0, 0.0)> . f ′v is fv of preceding iteration
6: end for
7: for i = 1→ iterations do
8: BH.rebuild() . (Re)build Barnes-Hut tree
9: for all a ∈ V do

10: fv ← fv − pv . (Strong) Gravity
11: fv ← fv + kr ·BH.force at(pv) . Repulsion
12: for all w ∈ neighbors(v) do
13: fv ← fv +

pv−pw

|pv−pw| . Attraction
14: end for
15: end for
16: UpdateGlobalSpeed()
17: for all v ∈ V do
18: pv ← local speed(v) ∗ fv . Displacement
19: f ′v ← fv
20: fv ← (0.0, 0.0)
21: end for
22: end for

23: function LOCAL SPEED(v) . for a node v
24: return global speed

1.0+
√

global speed+swing(v)

25: end function

26: function SWING(v) . for a node v
27: return |fn − f ′n|
28: end function

an edge. To avoid thread divergence, each thread processes
edges, instead of nodes. As nodes in real-world networks
typically have different degrees, a node-parallel implemen-
tation would imply different workloads for each thread.
Still, in order to prevent race conditions, an edge-parallel
implementation does imply we need to use atomic operations
to update forces on the nodes comprising an edge. The
edges have been stored as a structure of arrays, such that
there is an array containing all sources and a separate array
containing all targets. The order of the nodes in the sources
array matches that of the position and force arrays, making
all memory accesses for the source node coalesced, but all
memory accesses for the target node not coalesced.

3) BodyRepulsion Component: ForceAtlas2 uses Barnes-
Hut approximation [26] to determine repulsive forces be-
tween all node-pairs in O(n log n) instead of O(n2) time.

In a nutshell, the Barnes-Hut algorithm divides the space
into cubic cells. The root cell, comprising the entire space,
is recursively divided into subcells (of equal size) until no
cell holds more than one body. The tree that describes this
recursive structure is then used to approximate the forces
induced on the different bodies. For details, see [26].

We used the CUDA C implementation of the Barnes-
Hut algorithm described (and provided) by Burtscher and
Pingali [28], which consists of multiple CUDA kernels to
implement this algorithm. The implementation has been
slightly modified by simplifying the implementation from
a three-dimensional to a two-dimensional one, given that
we use a two-dimensional layout space for our graph layout.
Note that in this case this component consists of two kernels:
one to build the tree and one to approximate the forces.

4) UpdateSpeed Component: The majority of work in up-
dating the global speed is summing swing and traction values
over all nodes (see [4] for a more detailed description). To
do so, each thread processes a single node, and computes its
swing values and traction value. We use a reduction in the
shared memory of the GPU multiprocessors, as exemplified
in Section B.5 of the CUDA C guide [27], to combine these
values into global swing and traction values.

5) Displacement Component: This component displaces
all nodes, depending on the force induced on them. Each
thread processes a single node, and all memory accesses are
fully coalesced. No thread divergence occurs.

V. EXPERIMENTS

In this section, we evaluate the performance of our
GPU framework. First, the experimental setup is described
in Section V-A. The diverse set of large-scale real-world
networks described in Section V-B is then used to conduct
experiments, of which the results are reported in Section V-C
and discussed in Section V-D.

A. Experimental setup

For our experiments we used an NVIDIA GTX Titan X
graphics card, containing the NVIDIA GM200 GPU clocked
at 1 GHz. It is based on the Maxwell architecture, and
contains 24 Streaming Multiprocessors of 128 cores each,
summing to a total of 3,072 available CUDA cores. The CPU
implementation was executed on an Intel Xeon E5-2650 v3
CPU clocked at 2.3 GHz. All datasets fit in main memory of
the GPU and CPU, thus RAM or disk usage is not relevant.
All code was compiled using the -O3 optimization flag,
using GCC (v. 4.8.5) and NVCC (v. 7.5.17).

The main goal of the experiments is to assess whether the
computation time of visualizing large-scale networks can be
reduced using the GPU. Given that the Java implementation
of the original ForceAtlas2 algorithm in the Gephi toolkit
was not capable of visualizing networks of this size, a C++
implementation was developed by a direct translation of the
Java algorithm to C++. This CPU implementation always

Figure 2. Visualization of a sample of the CORPNET3 dataset (see Sec-
tion V-B) with 10, 000 nodes and 27, 000 edges. Created using ForceAtlas2
(with stronger gravity, fg = 1, fr = 80).

performs on par with (but often a lot better than) the imple-
mentation in the Gephi toolkit in terms of computation time.
It was therefore also directly used as the basis for the CUDA
GPU implementation. As to our knowledge no other high-
performance implementations of the ForceAtlas2 algorithm
exist, we used our sequential C++ implementation as the
baseline for the performance of the GPU implementation.
All code used to (re)produce the results presented in this
paper can be found at https://liacs.leidenuniv.nl/∼takesfw/
GPUNetworkVis.

Finally we recall that the quality of the visualization is not
relevant in these experiments, as exactly the same algorithm
is used in both the CPU and GPU implementation. Although
in theory the concurrent updates on node coordinates in the
GPU implementation could cause small layout divergences
compared to the sequential implementation, this effect is
insignificant considering the random initialization of the
layout at the start of the algorithm.

For our implementation of ForceAtlas2, we have chosen
to apply ‘strong gravity’ to nodes. This, in contrast to the
regular gravity model, is not proportional to the distance
between the considered node and the the origin. Of course,
the regular gravity model can be used by replacing the
gravity component. We used the default attractive force,
which is proportional to the distance between nodes (in
the layout). Gravitational force was not scaled (fg = 1).
Repulsive force was scaled by a factor 80 (fr = 80) to
compensate for the overlap between nodes that resulted from

the use of ‘strong gravity’. Note that this parameter is mainly
to tune the aesthetics of the final visualization, and has no
significant effect on the performance of the algorithm.

B. Data

To ensure that our implementation is generic and not bi-
ased towards certain types of networks, we used a number of
real-world network datasets, gathered from KONECT [29],
a large repository of real-world network datasets. The
selection contains social networks, information networks,
webgraphs, physical router networks, e-mail communication
networks, movie actor co-occurrence networks, webgraphs
and scientific collaboration and citation networks. In ad-
dition, three large-scale networks consisting of millions of
nodes and edges were especially created for this study.

The GITHUB dataset was created from the online platform
GitHub that allows programmers to collaborate on the de-
velopment of software. Users can contribute to ‘repositories’
containing the code and other resources related to a software
project. Using data from the GitHub Archive, we constructed
a ‘collaboration graph’ in which distinct repositories are
connected if they share contributors (users). The resulting
network gives us insight in how projects on GitHub are
related, based on whether they share developers.

Datasets CORPNET3 and CORPNET4 represent a cor-
porate network. Corporations around the world interact
with each other in many different ways, including trade,
ownership and by means of interlocking the directorates.
The latter so-called board interlock networks capture inter-
action between companies at the governance level: nodes
are companies and edges represent shared board members
or directors between companies. For more information on
the analysis of these types of networks, see [30]. Two ver-
sions of this data are used: CORPNET3 and CORPNET4,
consisting of 3.1 million and 4.5 million nodes, respectively.

The first seven columns of Table I list the names as well
as a number of basic network properties (see Section II-A
for definitions) of the giant components of each of the in
total 38 considered networks datasets.

C. Results

In addition to the structural properties of the considered
network datasets, Table I lists the speedup achieved by
the GPU implementation compared to sequential baseline
CPU execution for each of the six kernels, followed by
the overall speedup in bold in the column entitled “To-
tal”. Recall from Section IV-B that although we have five
components, the BodyRepulsion component is split over
two kernels. The second to last column indicates the (wall-
clock) execution time to execute 500 iterations of all of the
CUDA kernels in minutes (which is typically more than
enough for convergence to a readable layout, see [4]). The
time necessary to transfer data to and from the GPU has
not been included, as this is negligible compared to the

Figure 3. Resulting layout for the CORPNET4 network with 4, 602, 225
nodes and 123, 329, 543 edges.

computational time used. In the last column of Table I we
also list the average execution time of the equivalent CPU
implementation, to serve as a reference of the performance
of existing implementations of force-directed algorithms.

To evaluate the performance of the six individual com-
ponents, execution times were determined over the first ten
iterations of the algorithm. All execution times are averaged
over ten runs. The standard deviation was below 4% of
the average execution time for all kernels except for the
Barnes-Hut tree-building and force-approximation kernels,
for which the standard deviation was approximately 10% of
the mean running time. This is a direct result of significant
changes in the graph layout during the first few iterations that
the algorithm runs. This affects Barnes-Hut tree structure,
and as such the depth and structure of subsequent Barnes-
Hut tree-traversal patterns during force approximation and
tree insertions.

Apart from assessing the computation time as we will
do in the subsection below, it may be interesting to look
at the actual visualizations produced by the algorithms, in
particular for the newly created network datasets. Figure 3
shows a visualization of the corporate network CORPNET4,
in which some smaller near-clique clusters are visible. These
clusters appear to be groups of firms bound together by
administrative ties, for example as a result of shared board
members between entities of the same firm in different coun-
tries. The GitHub collaboration network in Figure 4 shows
how there are a number of extremely densely connected
groups of repositories. These are likely repositories that are

Table I
PROPERTIES OF THE GIANT COMPONENTS OF THE CONSIDERED NETWORKS (NUMBER OF NODES, EDGES, AVERAGE DEGREE deg , DENSITY,

CLUSTERING COEFFICIENT AND AVERAGE DISTANCE d̄), FOLLOWED BY SPEEDUPS FOR THE SIX KERNELS DISCUSSED IN SECTION IV-B. LAST THREE
COLUMNS INDICATE THE OVERALL SPEEDUP AND COMPUTATION TIME IN MINUTES ON GPU AND CPU.

Network Nodes Edges deg Dens. Clus. d Grav. Attr. BH-B BH-F Speed Disp. Total GPU CPU
ca-AstroPh 17,903 196,972 11.0 0.615 0.633 4.35 32× 134× 34× 54× 45× 86× 50× 0.015 0.75
ca-CondMat 21,363 91,286 4.3 0.200 0.642 5.51 48× 158× 43× 65× 55× 109× 58× 0.016 0.91
cit-HepTh 27,400 352,059 13.0 0.469 0.314 4.44 43× 120× 36× 67× 60× 95× 61× 0.020 1.19
email-Enron 33,696 180,811 5.4 0.159 0.509 4.13 52× 121× 42× 48× 67× 110× 47× 0.025 1.19
cit-HepPh 34,401 420,828 12.0 0.356 0.286 4.45 48× 131× 47× 55× 66× 102× 55× 0.027 1.49
ppi-gcc 37,333 135,618 3.6 0.097 0.075 8.01 67× 110× 44× 52× 77× 124× 50× 0.027 1.36
brightkite-edges 56,739 212,945 3.8 0.066 0.173 5.11 88× 146× 72× 73× 111× 154× 72× 0.033 2.35
p2p-Gnutella31 62,561 147,877 2.4 0.038 0.005 6.13 117× 205× 105× 89× 145× 195× 90× 0.036 3.27
soc-Epinions1 75,877 405,738 5.3 0.070 0.138 4.46 102× 123× 87× 73× 137× 175× 75× 0.045 3.41
soc-Slashdot0902 82,168 582,532 7.1 0.086 0.060 4.21 125× 101× 92× 79× 143× 189× 80× 0.049 3.97
wave 156,317 1,059,331 6.8 0.043 0.423 23.9 160× 213× 154× 107× 225× 245× 115× 0.089 10.28
itdk0304 190,914 607,610 3.2 0.017 0.158 7.45 187× 212× 168× 105× 281× 267× 113× 0.109 12.33
gowalla-edges 196,591 950,327 4.8 0.025 0.237 4.87 194× 142× 171× 108× 305× 271× 115× 0.116 13.30
m14b 214,765 1,679,018 7.8 0.036 0.425 25.0 187× 213× 175× 113× 310× 275× 123× 0.116 14.29
citeseer 220,997 505,327 2.3 0.010 0.101 8.31 178× 221× 154× 91× 294× 248× 98× 0.124 12.18
email-EuAll 224,832 340,794 1.5 0.007 0.079 4.27 201× 101× 174× 107× 312× 279× 114× 0.127 14.42
web-Stanford 255,265 1,941,926 7.6 0.030 0.619 7.69 160× 101× 158× 92× 270× 237× 98× 0.163 16.06
amazon0302 262,111 899,792 3.4 0.013 0.420 9.15 178× 193× 165× 99× 280× 255× 107× 0.151 16.18
com-dblp 317,080 1,049,866 3.3 0.010 0.632 7.06 189× 189× 177× 93× 308× 270× 102× 0.208 21.16
cnr-2000 325,557 2,738,969 8.4 0.026 0.453 11.0 193× 86× 176× 89× 289× 267× 96× 0.233 22.28
web-NotreDame 325,729 1,090,108 3.3 0.010 0.235 7.75 222× 170× 199× 98× 373× 293× 109× 0.216 23.43
mathSciNet 332,689 820,644 2.5 0.007 0.410 7.56 208× 266× 195× 103× 328× 292× 113× 0.219 24.60
com-amazon 334,863 925,872 2.8 0.008 0.397 12.3 192× 154× 175× 86× 289× 269× 95× 0.218 20.75
auto 448,695 3,314,611 7.4 0.016 0.415 37.7 190× 203× 186× 65× 337× 265× 76× 0.393 29.80
dblp20080824 511,163 1,871,070 3.7 0.007 0.639 6.66 230× 173× 207× 69× 495× 319× 79× 0.517 40.76
web-BerkStan 654,782 6,581,871 10.0 0.015 0.007 7.21 234× 161× 206× 58× 479× 320× 68× 0.846 57.37
web-Google 855,802 4,291,352 5.0 0.006 0.055 6.37 240× 252× 203× 48× 480× 312× 56× 1.283 72.07
eu-2005 862,664 16,138,468 19.0 0.022 0.602 4.90 239× 156× 207× 56× 520× 320× 68× 1.242 84.09
imdb 880,455 37,494,636 43.0 0.048 0.806 4.10 248× 162× 186× 45× 528× 322× 61× 1.479 90.04
youTube 1,134,890 2,987,624 2.6 0.002 0.006 4.70 262× 164× 231× 45× 619× 276× 53× 1.925 101.7
GitHub 1,271,422 13,045,696 10.0 0.008 0.640 11.7 275× 160× 234× 42× 677× 331× 52× 2.342 120.8
in-2004 1,353,703 13,126,172 9.7 0.007 0.574 8.70 257× 166× 198× 42× 589× 327× 50× 2.603 129.7
flickr-links 1,624,992 15,476,836 9.5 0.006 0.112 5.19 265× 186× 200× 34× 625× 322× 40× 3.901 157.9
as-skitter 1,694,616 11,094,209 6.5 0.004 0.005 5.04 265× 225× 194× 34× 606× 320× 41× 3.872 157.7
enwiki-20071018 2,070,367 42,336,614 20.0 0.010 0.104 3.20 266× 85× 199× 34× 603× 322× 42× 5.529 232.7
wikipedia 2,388,953 4,656,682 1.9 0.001 0.002 3.50 261× 165× 218× 36× 652× 272× 42× 5.417 226.7
CORPNET-3 3,174,496 53,879,276 17.0 0.005 0.533 6.54 255× 120× 232× 37× 662× 272× 46× 8.067 368.3
CORPNET-4 4,602,225 123,329,543 27.0 0.006 0.713 6.90 246× 55× 224× 33× 637× 250× 40× 13.83 545.8

edited by bots or automated editors, as it is highly unlikely
that developers contribute to so many different repositories.
Indeed, the visualizations attain the goal of visualization:
observing patterns and outliers in the data.

D. Discussion

Table I lists how most components of the force-directed
layout algorithm are able to attain speedups of 200× or
more, which is in line with theoretical expectations with
respect to the parallelizable aspects of these algorithms and
the parallel capabilities of GPUs in general. Furthermore,
the overall speedups between 40× and 123× indicate that
running graph layout algorithms on the GPU can truly
help overcome the computational challenges of large-scale
network visualization. In particular, consider that for the
largest datasets containing millions of nodes, at the bottom
of the table, the execution time is reduced from hundreds
of minutes (i.e., hours) to at most 14 minutes. So, by
means of a relatively straightforward implementation of the

algorithm on the GPU, work on the visualization of large-
scale networks can be made practically possible.

Real-world networks share a number of interesting prop-
erties, as discussed in Section II-A. Interesting to note is
that regardless of the size of the network, large speedups are
attained. Note that the speedup also does not appear to be
affected by core network characteristics such as the average
degree, distance and clustering coefficient, indicating that
the method is suitable for a diverse range of real-world
networks. Furthermore, the components handling gravity,
speed and displacement show higher speedups for larger
networks, indicating that full advantage of the GPU is being
taken as more data is used.

Attractive force calculation (column “Attr” in Table I), de-
spite avoiding thread-divergence, requires the use of atomic
operations to update force attributes of neighboring nodes.
Since we sort edges by source node for coalesced access
(see Section IV-B), multiple edges for the same source node
are processed concurrently on a single multiprocessor. This

Figure 4. Resulting layout of the GITHUB network with 1, 271, 422 nodes
and 13, 045, 969 edges.

allows for coalesced memory reads from nodes’ properties,
but it will also cause threads to face blocking memory writes
as they try to atomically update force values for identical
nodes. An increased average node degree appears to affect
this conflict, as can for example be seen from the results
for the CORPNET3 and CORPNET4 datasets. The latter
has a larger average node degree, resulting in a significantly
lower speedup. Similarly, for datasets enwiki-20071018 and
cnr-2000 the speedups are limited, which may again be a
result of the relatively large size of the network combined
with relatively high average node degree values.

Whereas the gravity, speed and displacement components
show speedups well beyond a factor 200 for the larger
datasets, the overall speedup is clearly lower. This appears to
be caused by the performance of the two Barnes-Hut kernels
in the BodyRepulsion component, denoted by columns “BH-
B” (tree building) and “BH-F” (repulsive force approxi-
mation). The force approximation in particular appears to
be constrained to a speedup of approximately a factor 45,
which is relatively low compared to most other kernels that
show speedups at least four times as large. This discrepancy
in speedup likely results from the irregular memory access
patterns associated with the tree traversals made both during
force approximation and tree construction. Considering that
the body repulsion kernels constitute approximately 80% of
the execution time, repulsive force computation is currently
the bottleneck in the pipeline and constrains the overall
speedup of the computation. Yet, it should be noted that this
constraint on overall speedup does not appear to be directly

related to the size of the network, which indicates that the
proposed implementation is more than sufficiently scalable.

VI. CONCLUSION

In this paper, we have proposed a framework to im-
plement graph visualization algorithms on the GPU. We
have demonstrated how the popular ForceAtlas2 algorithm is
implemented within this framework by means of a number of
specific components. Evaluation of the performance of the
resulting implementation showed that significant speedups
are attained. This is the case for the different components
as well as the GPU algorithm as a whole. For the largest
networks, the computation time to produce a high-quality
visualization is reduced from 9 hours to only 14 minutes.
Given the similarity between force-directed algorithms, in
that they mostly differ in their force-model and choice of
adaptive speed, we expect our findings to generalize to other
force-directed algorithms as well.

The speedups attained as a result of this research are
of significance to the network analysis community, where
visualization and manual inspection of patterns and outliers
in networks is a common activity. A particularly interesting
outcome is the fact that the algorithm performs well across
a range of diverse datasets of different origins. This suggests
that the proposed implementation is sufficiently generic to
handle visualization of virtually any type of real-world net-
work. Furthermore, the performance (as expected) appears to
scale linearly with the number of nodes, which is important
given the sheer size of typically considered network data.

The framework component to compute repulsive forces
between nodes was found to be the main limitation from
achieving better overall performance. Indeed, the Barnes-Hut
implementation used in this work limits the overall speedup
we can achieve, which is why evaluating alternatives for this
step would be a logical step for future research. Furthermore,
the performance of both the baseline CPU code and the
GPU code can be further improved, resulting in in-depth
performance analyses of optimized and tuned implemen-
tations. Considering that force approximation constitutes a
significant share of the execution time of the graph layout
algorithm, performance improvements to this component
will also directly result in higher overall speedups.

Furthermore, the performance improvements reported in
this paper pave the way towards interactive representations
of the graph layouts. For graphs with a few hundred thou-
sand nodes, the time needed to produce a layout has been
reduced from tens of minutes to a fraction of a minute. All
in all, this means that using GPUs, it is feasible to fully
re-layout a graph in response to interactive user input.

ACKNOWLEDGMENTS

The third author was supported by funding from the
European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme
(grant agreement number 638946).

REFERENCES

[1] H. Gibson, J. Faith, and P. Vickers, “A survey of two-
dimensional graph layout techniques for information visuali-
sation,” Information Visualization, vol. 12, no. 3-4, pp. 324–
357, 2013.

[2] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis,
“Algorithms for drawing graphs: An annotated bibliography,”
Computational Geometry, vol. 4, no. 5, pp. 235 – 282, 1994.

[3] Y. Hu and L. Shi, “Visualizing large graphs,” Wiley Interdis-
ciplinary Reviews: Computational Statistics, vol. 7, no. 2, pp.
115–136, 2015.

[4] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian,
“Forceatlas2, a continuous graph layout algorithm for handy
network visualization designed for the Gephi software,” PLoS
ONE, vol. 9, no. 6, pp. 1–12, 2014.

[5] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open
source software for exploring and manipulating networks.” in
Proceedings of International Conference on Web and Social
Media (ICWSM), 2009, pp. 361–362.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron, “A performance study of general-purpose
applications on graphics processors using CUDA,” Journal
of Parallel and Distributed Computing, vol. 68, no. 10, pp.
1370–1380, 2008.

[7] G. H. Dal, W. A. Kosters, and F. W. Takes, “Fast diameter
computation of large sparse graphs using GPUs,” in Pro-
ceedings of 22nd International Conference on Parallel and
Distributed Processing (PDP), 2014, pp. 632–639.

[8] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,
“Pannotia: Understanding irregular GPGPU graph applica-
tions,” in 2013 IEEE International Symposium on Workload
Characterization (IISWC), 2013, pp. 185–195.

[9] A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart, “Graph
drawing,” I. G. Tollis and M. Patrignani, Eds., 2009, ch. Rapid
Multipole Graph Drawing on the GPU, pp. 90–101.

[10] Y. Frishman and A. Tal, “Multi-level graph layout on the
GPU,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1310–1319, 2007.

[11] S. Ingram, T. Munzner, and M. Olano, “Glimmer: Multilevel
mds on the GPU,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 2, pp. 249–261, Mar. 2009.

[12] J. Kleinberg, “The small-world phenomenon: An algorithmic
perspective,” in Proceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing (STOC), 2000, pp. 163–170.

[13] The Khronos Group Inc., “The open standard for parallel pro-
gramming of heterogeneous systems,” https://www.khronos.
org/opencl/, accessed: 02-10-2016.

[14] NVIDIA, “CUDA Toolkit Documentation,” https://docs.
nvidia.com/cuda/, accessed: 02-10-2016.

[15] ——, “CUDA C Best Practices Guide,” http://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/index.html, 2015, ac-
cessed: 20-08-2016.

[16] D. E. Knuth, “Computer-drawn flowcharts,” Communications
of the ACM, vol. 6, no. 9, pp. 555–563, 1963.

[17] W. Tutte, “How to draw a graph,” Proceedings of the London
Mathematical Society, vol. 13, no. 1, pp. 743–767, 1963.

[18] S. G. Kobourov, Handbook of Graph Drawing and Visual-
ization. Chapman and Hall/CRC, 2013, ch. Force-Directed
Drawing Algorithms, pp. 383–408.

[19] R. Tamassia, Handbook of Graph Drawing and Visualization
(Discrete Mathematics and Its Applications). Chapman &
Hall/CRC, 2007.

[20] P. A. Eades, “A heuristic for graph drawing.” in Congressus
Numerantium, vol. 42, 1984, pp. 149–160.

[21] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing
by force-directed placement,” Software: Practice and Experi-
ence, vol. 21, no. 11, pp. 1129–1164, 1991.

[22] A. Frick, A. Ludwig, and H. Mehldau, “A fast adaptive
layout algorithm for undirected graphs,” in Proceedings of the
International Workshop on Graph Drawing, 1995, pp. 388–
403.

[23] R. Davidson and D. Harel, “Drawing graphs nicely using sim-
ulated annealing,” ACM Transactions on Graphics, vol. 15,
no. 4, pp. 301–331, 1996.

[24] S. Aluru, J. Gustafson, G. Prabhu, and F. E. Sevilgen,
“Distribution-independent hierarchical algorithms for the n-
body problem,” Journal of Supercomputing, vol. 12, no. 4,
pp. 303–323, 1998.

[25] S. Hachul and M. Jünger, “Drawing large graphs with a
potential-field-based multilevel algorithm,” in Proceedings of
the 12th International Symposium on Graph Drawing, 2005,
pp. 285–295.

[26] J. Barnes and P. Hut, “A hierarchical O(N log N) force-
calculation algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[27] NVIDIA, “CUDA C Programming Guide,” http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html, 2015, ac-
cessed: 20-08-2016.

[28] M. Burtscher and K. Pingali, “An efficient CUDA implemen-
tation of the tree-based Barnes Hut n-body algorithm,” in
GPU Computing Gems Emerald Edition, W. mei W. Hwu,
Ed., 2011, ch. 6, pp. 75–92.

[29] J. Kunegis, “KONECT – The Koblenz Network Collection,”
in Proceedings WWW, 2013, pp. 1343–1350.

[30] F. W. Takes and E. M. Heemskerk, “Centrality in the global
network of corporate control,” Social Network Analysis and
Mining, vol. 6, no. 1, pp. 1–18, 2016.

