
Determining the Diameter of Small World Networks

Frank W. Takes
Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands
ftakes@liacs.nl

Walter A. Kosters
Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands
kosters@liacs.nl

ABSTRACT
In this paper we present a novel approach to determine
the exact diameter (longest shortest path length) of large
graphs, in particular of the nowadays frequently studied
small world networks. Typical examples include social net-
works, gene networks, web graphs and internet topology net-
works. Due to complexity issues, the diameter is often calcu-
lated based on a sample of only a fraction of the nodes in the
graph, or some approximation algorithm is applied. We in-
stead propose an exact algorithm that uses various lower and
upper bounds as well as effective node selection and pruning
strategies in order to evaluate only the critical nodes which
ultimately determine the diameter. We will show that our
algorithm is able to quickly determine the exact diameter of
various large datasets of small world networks with millions
of nodes and hundreds of millions of links, whereas before
only approximations could be given.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory;
J.4 [Computer Applications]: Social and Behavorial Sci-
ences

General Terms
Algorithms, Experimentation, Measurement

Keywords
diameter, small world networks, social networks

1. INTRODUCTION
The diameter of a graph is defined as the length of the

longest shortest path between any two nodes in the graph.
Exact algorithms for calculating this diameter traditionally
require running an All Pairs Shortest Path (APSP) algo-
rithm for each node in the network, ultimately returning
the length of one of the longest shortest paths that was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

found. While this will indeed return the exact diameter
of the graph, complexity is in the order O(n3) for general
weighted graphs and O(mn) for sparse unweighted graphs
(with n vertices and m edges). This naive solution for ob-
taining the diameter is clearly not feasible in extremely large
graphs with for example millions of vertices and a billion
edges.

We will study the diameter of small world networks: sparse
networks that are most typically characterized by an average
distance between two random nodes that grows only pro-
portionally to the logarithm of the total number of nodes in
the network [8]. Examples of small world networks that are
frequently studied are web graphs [3], internet topology net-
works [7] and gene networks [2], but perhaps nowadays most
well-known are the social networks [17]. A common type of
social network is the (explicit) online social network [15],
with Facebook, LinkedIn and Twitter as well-known exam-
ples. Implicit social networks include telephone call graphs,
e-mail graphs [9] and scientific collaboration networks [4].

The diameter is a relevant property of a network for many
reasons. For example in social networks, the diameter could
be an indication of how quickly information reaches every-
one in the network in the worst-case. Within a scientific
collaboration network, a high diameter may indicate that
there are groups of researchers that are not working together
very closely. In an internet routing network, the diameter
could reveal something about the worst-case response time
between any two machines in the network.

An advantage of studying the exact diameter is that we
can observe the actual path that realizes the diameter, a
piece of information that we do not get when for example
an approximation algorithm is used, or when the diameter
is estimated by looking at only a sample of the network.

The main contribution of this paper consists of a new algo-
rithm for determining the exact diameter of small world net-
works. Based on various lower and upper bounds and critical
node selection strategies, we improve upon the straightfor-
ward APSP algorithm as well as upon existing approxima-
tion algorithms, obtaining the exact diameter of networks
with millions of nodes in a matter of seconds or minutes. The
performance is empirically verified on various large datasets
of small world networks.

The rest of the paper is structured as follows. Section 2
introduces some definitions and an analysis of our problem’s
complexity, after which we will discuss related work in Sec-
tion 3. We will use Section 4 to outline our algorithm for
deriving the diameter of a graph, and discuss performance
results in Section 5. Finally, Section 6 concludes.

2. PRELIMINARIES
In this section we will first consider some basic defini-

tions related to graphs, distances, eccentricity, graph diam-
eter and shortest path problems, and then give some insight
in the complexity of determining these measures. After that
we will briefly discuss small world networks.

2.1 Definitions
A graph G(V,E) consists of a set V = {1, 2, . . . , n} of ver-

tices and a set of edges E ⊆ V ×V . We will call them nodes
and links, respectively. Throughout the paper we will use n
to denote the number of nodes |V |, and for the number of
links |E| we use m. The distance d(v, w) between two nodes
v, w ∈ V is defined as the length of the shortest path from
v to w. This paper deals with unweighted graphs, and we
will assume that our graphs are undirected, meaning that
(v, w) ∈ E iff (w, v) ∈ E and thus d(v, w) = d(w, v). The
degree of a node v in an undirected graph is simply defined
as the number of links connecting to that node. Finally,
we assume our graph is connected, implying that for each
v, w ∈ V , d(v, w) is a finite number. We are now ready to
define the two most important concepts used in this paper,
node eccentricity and graph diameter :

Definition 1. The eccentricity of a node v ∈ V is denoted
by ε(v) and defined as maxw∈V d(v, w): the longest shortest
path starting at node v.

Definition 2. The diameter of a graph G is denoted by
∆(G) and defined as maxv,w∈V d(v, w), or equivalently as
the maximum eccentricity over all nodes: maxv∈V ε(v). It
is the longest shortest path length between any pair of nodes.

For convenience, we define two combinatorial problems
that are frequently addressed in this paper and are tightly
related to eccentricity. First, the Single-source Shortest Path
(SSP) problem is the problem that deals with finding all
shortest paths from a single source vertex v ∈ V to all other
nodes in the graph. For non-sparse graphs this problem has
the traditional time complexity of O(n2) (Dijkstra’s shortest
path algorithm). When the graph is sparse and therefore
more easily stored using an adjacency list, time complexity
is bounded by O(m logn). In our unweighted case this can
even be reduced to O(m), as a Breadth First Search (BFS)
from the starting node is sufficient to find all shortest paths.
In essence, solving the SSP problem for a node means that
we have found the eccentricity of that particular node.

Next, we can define the All Pairs Shortest Paths (APSP)
problem as the problem of finding the shortest paths be-
tween all pairs of nodes of the graph, which increases the
previous time complexity by a factor n to O(n3) for gen-
eral weighted graphs, and O(mn) for our sparse unweighted
graphs. In essence, the maximum distance value that the
APSP algorithm obtains, is the maximum eccentricity over
all nodes and thus equal to the diameter of the graph. So if
we solve the APSP problem, we have found the diameter.

2.2 Small World Networks
In this paper we will specifically look at the diameter of

small world networks. A good overview of algorithmic prop-
erties of these networks, of which we will discuss a few, is
given in [8]. First of all, small world networks are generally
sparse: the total number of links m is very small compared
to the maximum number of links n(n−1)/2. This may cause

the reader to believe that nodes typically have very long
shortest paths between them, as there are very few links in
general. However, a second interesting characteristic is that
even though the network is very sparse, the average distance
between two nodes is very small. More specifically, this dis-
tance grows only proportionally to the logarithm of the total
number of nodes. Typically, the node degree distribution of
a small world network follows a power law: there are only
a few nodes with a very large amount of connections, the
so-called hubs, and there are many nodes with relatively few
connections. In essence, hubs are functioning as bridges to
realize a low average shortest path length. Lastly, small
world networks generally contain one very large connected
component which contains the vast majority of the nodes.

3. RELATED WORK
Most exact algorithms for finding the diameter are actu-

ally implementations of matrix multiplication that solve the
APSP problem and thus also find the diameter. While these
algorithms work well and have time complexity O(n2.376)
[18], they usually suffer from large hidden constants, and
are often very unpractical. A lot of work has been done
on the estimation of the diameter [1, 6]. Such estimation
algorithms typically determine the diameter of any type of
graph with some very small additive error, using significantly
less computation time than the APSP algorithm. A method
which is claimed to be leading in approximating the diam-
eter, is the Approximate Neighborhood Function (ANF) by
Palmer et al. [16], which claims to have an empirically veri-
fied accuracy of 7%.

In work which does not focus on actually determining the
diameter, but where it is found only as a static property
of the dataset, a sample of the network is frequently used
to determine the diameter [10, 15]. A heuristic algorithm
to estimate the diameter is described in [13] by Leskovec et
al. In this work, the diameter is determined by, starting
from a random node, repeatedly selecting the farthest node,
meanwhile keeping track of the highest distance so far. If
this value no longer increases after a certain number of iter-
ations, a lower bound on the diameter has been found.

Work has also been done on variants of the diameter,
such as the effective diameter, which is defined as the 90-
th percentile of the cumulative distribution of shortest path
lengths. Though this measure may appear more robust, it is
claimed that the diameter and the effective diameter tend to
exhibit qualitatively similar behavior [11]. We believe that
the exact diameter is an elementary graph property worth
computing, and will therefore focus solely on an exact ap-
proach to determine the precise diameter.

4. ALGORITHM
We will start with some observations about the eccentric-

ity of neighboring nodes and how they influence the diame-
ter. Then we describe our actual algorithm called Bound-
ingDiameters, which makes use of these observations to
improve upon the APSP algorithm. Next we discuss the
algorithm’s complexity and some optimization techniques.

4.1 Observations
If we calculate the eccentricity ε(v) for some node v, we

know that for all nodes w with d(v, w) = k, their eccentricity
ε(w) lies between ε(v) − k and ε(v) + k. The upper bound

follows because any node w at distance k of v can get to v
in exactly k steps, and then reach any other node in at most
ε(v) steps. The lower bound can be derived in the same way,
by interchanging v and w in the previous statement. In the
“best” case, w is on some path that realizes the eccentricity
of v, and has an eccentricity ε(w) of only ε(v) − k. This
lower bound can of course never be less than k itself: if the
shortest path between v and w is equal to k, then ε(w) is at
least equal to k. More formally:

Observation 1. Node eccentricity bounds
If a node v ∈ V has eccentricity ε(v), then for all nodes w we
have max(ε(v)− d(v, w), d(v, w)) ≤ ε(w) ≤ ε(v) + d(v, w).

We know that the diameter of a graph is equal to the
maximum eccentricity over all nodes. Therefore, the maxi-
mum lower bound on the eccentricity over all nodes, is also a
lower bound for the diameter. Similarly, the maximum up-
per bound on the eccentricity over all nodes can be seen as
an upper bound on the diameter. The upper bound can even
be made more tight by observing that this bound can be at
most twice as big as the smallest eccentricity upper bound
over all nodes, as observed in [14]. These observations can
be formalized as follows:

Observation 2. Diameter bounds
Let εL(v) and εU (v) denote currently known lower and upper
bounds for the eccentricity of node v ∈ V . For the diameter
∆(G) of a graph G it holds that maxv∈V εL(v) ≤ ∆(G) ≤
min(maxv∈V εU (v), 2 ∗minv∈V εU (v)).

We will denote the above lower and upper bounds on the
diameter by ∆L and ∆U , respectively.

4.2 Algorithm
The bounds mentioned above can be used to refine the

original APSP algorithm by reducing the number of eccen-
tricity calculations, as only nodes that can actually con-
tribute to the diameter bounds are considered. Pseudo-code
for our algorithm is given in Algorithm 1.

After setting some initial values (lines 3–7), in the main
while-loop, our algorithm repeatedly selects a node v (line
9) from the candidate set W , which initially contains all the
nodes. The various mechanisms for selecting the next node
to be examined are outlined in Section 4.4. The algorithm
then calculates the eccentricity of that node v (line 10), and
uses the result to update the lower and upper bound of the
graph diameter (∆L and ∆U , lines 11–12), cf. Observa-
tion 2. Next, the eccentricity bounds of all nodes in the
candidate set W are updated (line 14–15) according to Ob-
servation 1. Then we determine which nodes (including v)
can be removed from the set of candidates (line 17). This
can happen either because a node’s eccentricity is already
known since the lower and upper bounds are identical (which
is always the case for the current node v), or because a node
can no longer “contribute” to the diameter of the graph by
increasing the lower bound or decreasing the upper bound
(line 16). Note that because we calculated the eccentricity
of v, we know for each node w the distance d(v, w). Finally,
the algorithm stops when all nodes have been examined, or
when the lower bound is equal to the upper bound (line 8).
It then returns the lower bound of the diameter, which at
that point contains the real value of the diameter (line 21).

Algorithm 1 BoundingDiameters

1: Input: Graph G(V,E)
2: Output: Diameter of G

3: W ← V ; ∆L ← −∞; ∆U ← +∞;
4: for w ∈W do
5: εL[w]← −∞;
6: εU [w]← +∞;
7: end for

8: while ∆L 6= ∆U and W 6= ∅ do
9: v ← selectFrom(W); // cf. Section 4.4

10: ε[v] = eccentricity(v);

11: ∆L = max(∆L, ε[v]);
12: ∆U = min(∆U , 2 ∗ ε[v]);

13: for w ∈W do
14: εL[w] = max(εL[w],max(ε[v]− d(v, w), d(v, w)));
15: εU [w] = min(εU [w], ε[v] + d(v, w));
16: if (εU [w] ≤ ∆L and εL[w] ≥ ∆U/2) or

(εL[w] = εU [w]) then
17: W ←W − {w};
18: end if
19: end for
20: end while

21: return ∆L;

4.3 Complexity
Calculating the eccentricity of a node using the eccen-

tricity() function (line 14) is the critical operation of our
algorithm, as this requires running the previously mentioned
O(m) SSP algorithm. In the best case, we only have to cal-
culate the eccentricity of two nodes v and w, only to find
that ε(w) = 2 ∗ ε(v) (or vice versa), which means that the
diameter is equal to ε(w). In the worst case our algorithm
needs to investigate the eccentricity of every single node, not
improving the traditional APSP time complexity of O(mn).
An example of a graph in which all nodes have to be inves-
tigated in order to determine the diameter, is a graph where
the nodes are connected through exactly one circle of edges,
and will therefore all have identical eccentricity. In general,
the eccentricity values of nodes in a network differ, and how
much they differ will essentially determine the algorithm’s
performance, as larger differences in eccentricity values will
result in tighter eccentricity bounds on surrounding nodes.

We claim that our algorithm specifically works well on
small world networks, which we believe is due to power law
degree distribution within such networks, as discussed in
Section 2.2. A small world network has relatively few nodes
with a very high degree (hubs), that will often (but not al-
ways) have a relatively low eccentricity value. The remain-
der of the nodes typically have a much lower degree, often
(again, not always) resulting in a relatively high eccentric-
ity value. Thus, due to the expected existence of a large
diversity in eccentricity values of the nodes in a small world
network, the bounds on the diameter will typically converge
very quickly. Later on we will verify these claims empirically.

4.4 Selection Strategies
We will describe the different strategies that can be used

to select the next node for which we want to calculate the ec-
centricity, essentially outlining the possible functionality of

AA

BB

CC

DD HH KK

F JJ LL

NN QQ

SS
PP

RR

GGEE

MM TT

II

5

5

6

4

6

4

6

4

6

4

7

3

8

3

9

4

10

5

10

5

7

3

6

4

7

3

6

4

7

3

7

3

8

3

8

3

9

4
A

B

C

D H K

F JJ LL

NN QQ

SS
PP

RR

GGE

MM T

II

5

5

6

6

6

6

6

4

6

6

7

4

8

5

9

4

10

5

7

7

7

7

6

5

7

7

6

6

7

7

7

6

8

4

8

4

8

6

Figure 1: The path B-T realizes a diameter of length 7. Numbers beneath and above nodes denote lower and
upper eccentricity bounds after first calculating the eccentricity of node F (left) and then node T (right).

the selectFrom() function that is called in line 12 of Al-
gorithm 1. First notice how enumerating the nodes in some
order, or selecting them at random, will in essence mean that
we are executing the APSP algorithm, only now we discard
nodes that can no longer contribute to the diameter bounds.
While this will already improve upon the APSP algorithm,
our main objective is to tighten the bounds of the diameter
as quickly as possible in order to efficiently reduce the size
of the set of candidate nodes. The strategy has to be easy to
compute so that it does not influence the overall complexity.

The simplest strategy would be to select nodes based on
their degree. This measure, known as degree centrality, is
often suggested as a simple measure of the centrality of a
node within a network, but is far from perfect with respect
to eccentricity. For example, in Figure 1, node F has the
highest degree (6 links) and eccentricity ε(F) = 5, whereas
node J with lower degree 3 has eccentricity ε(J) = 4. The
problem here is that degree centrality is merely a local mea-
sure. Therefore we suggest using the degree as a secondary
selection mechanism only, for example to break ties in other
methods, or to select the very first node to be examined.

4.4.1 Eccentricity bound difference
The difference between the lower and upper eccentricity

bound could be an interesting feature, as it basically tells us
how much we already know about the eccentricity of that
node and its neighborhood. If for a certain node this dif-
ference is very big, determining its eccentricity may tighten
the bounds of many nearby nodes.

4.4.2 Interchanging eccentricity bounds
Inspired by traditional branch-and-bound algorithms, we

could choose to select nodes from the candidate set based
on their their eccentricity lower bound or upper bound. To
find nodes with high eccentricity, we select the node with
the largest upper bound, and similarly we choose a node
with a small lower bound to find nodes with a low eccen-
tricity value. As our goal is to increase the lower bound and
decrease the upper bound, we propose to interchange the
selection of the node with the smallest lower bound and the
node with the largest upper bound.

4.4.3 Repeated Farthest Distance
Another option is to select a node based on its distance

to the previously investigated node, and then select a node
with the highest distance. So essentially, starting from some
initial node, we repeatedly select the farthest possible node.
This is a variation of the heuristic presented in [13].

4.5 Example
We will give an example of how BoundingDiameters

would determine the diameter of the graph depicted in Fig-
ure 1. As a selection strategy we alternately choose the
largest upper bound and smallest lower bound, breaking ties
by choosing the nodes with the highest degree. Any remain-
ing ties are broken by choosing a random node. We will
denote the a lower bound L and upper bound U by [L;U].

The left situation of Figure 1 depicts the situation af-
ter the first iteration, where node F has been investigated.
The diameter lower and upper bounds are now equal to
∆L = ε(F) = 5 and ∆U = 2 ∗ ε(F) = 10, respectively. The
current eccentricity bounds do not yet require us to remove
any nodes from the candidate set. The eccentricity bounds
after the second iteration are depicted in the right situation
of Figure 1, where we have determined the eccentricity of
node T, which is 7. The graph diameter now lies between
∆L = 7 and ∆U = 10. We can now remove A, B, C, D, E, H
and K from the candidate list, as we have derived the exact
eccentricity of these nodes (but without having calculated
it explicitly). We can also remove node I and G, because
they can no longer contribute to raising the lower bound or
decreasing the upper bound.

For the third loop of our algorithm we calculate the ec-
centricity of node L, which is 4, lowering the diameter upper
bound to ∆U = 8 and allowing us to update the eccentricity
bounds to [4;5] for J, M and N, [5;5] for P, [4;6] for Q, [6;6]
for R, [5;7] for S and finally [7;8] for the diameter ∆. We can
now discard all nodes based on the same arguments as in the
previous iteration, resulting in all nodes being visited, termi-
nating the algorithm after only 3 eccentricity calculations,
and returning the final value of the diameter: 7.

4.6 Optimizations
The size of the graph can be reduced by applying the

following pruning strategy beforehand. For every node we
can determine if removing its edges would disconnect the
graph. If this is the case, and multiple identically struc-
tured small subgraphs remain, we can remove each but one
of them, and still obtain the correct diameter value, assum-
ing of course that a path that realizes the diameter of the
graph does not run from one subgraph to another (pruned)
subgraph. Therefore, the diameter of the pruned subgraph
has to be smaller than ∆/2. For example node C in Figure 1
is connected to two identical subtrees, namely nodes A and
B. We could prune one of these subtrees, as they will both
have identical eccentricity (bound) values. Similarly, P is
connected to identical subtrees Q-S and R-T.

Dataset Nodes Links Average Average ∆ Strategy Strategy Strategy Nodes
Degree Distance 1 2 3 Pruned

AstroPhys [12] 17,903 396K 21 4.15 14 18 9 63 185
Enron [9] 33,696 362K 10 4.07 13 12 11 61 8,715
Flickr [15] 1,624,992 30.9M 18 5.38 24 10 3 7 553,242

Hyves 8,057,981 871M 112 4.75 25 40 21 44 446,258
LiveJournal [15] 5,189,809 97.4M 19 5.48 23 6 3 14 318,378

Orkut [15] 3,072,441 234M 76 4.16 10 357 106 389 27,429
Skitter [11] 1,696,415 22.2M 13 5.08 31 10 4 19 114,803
YouTube [15] 1,134,890 5.98M 5.3 5.32 24 2 2 2 399,553

Web [13] 855,802 8.64M 10 6.30 24 20 4 28 91,965
Wikipedia [5] 2,213,236 23.5M 11 4.81 18 21 3 583 947,582

Table 1: Comparison of different node selection strategies on various small world datasets.

5. EXPERIMENTS
This section starts with a brief description of our datasets,

and then describes a measurement methodology for the dif-
ferent selection strategies described in Section 4.4. Next we
will present and discuss the results of applying these strate-
gies in our BoundingDiameters algorithm.

5.1 Datasets & Measurement Methodology
We will verify our algorithm on various datasets of small

world networks. Characteristics of these datasets, such as
the number of nodes, the number of directed links, the aver-
age degree, average node-to-node distance and the diameter
∆, are given in the first 6 columns of Table 1. Numbers
are based solely on the largest connected component of each
graph, therefore slight deviations from statistics presented in
the original papers may be observed. The datasets Flickr,
LiveJournal, YouTube, Web and Wikipedia are undi-
rected versions of the original respective directed graphs.

In our experiments we will compare the three different se-
lection strategies from Section 4.4, breaking ties as described
in Section 4.5. The critical operation is the number of nodes
for which we have to calculate the actual eccentricity, which
will serve as our basis for comparison of the three strategies
outlined in column 7 through 9 of Table 1. Note that the
number of comparisons that the traditional APSP algorithm
would perform, is equal to the second column, namely one
eccentricity calculation for each node. Due to complexity
issues (finding frequent subgraphs is NP-hard) we have cho-
sen to only implement the simple optimization strategy (see
Section 4.6) of pruning duplicate connected subgraphs con-
sisting of one node. The number of pruned nodes using this
technique is given in the last column of Table 1.

5.2 Results
The results in Table 1 clearly show that with only a few

eccentricity calculations, our algorithm is able to determine
the exact diameter of the datasets, with Strategy 2 as the
best-performing node selection strategy. We expect this to
be because interchanging the search for low and high eccen-
tricity nodes basically means that we are interchanging the
selection of a node in the dense and the peripheral part of
the small world network, quickly lowering the upper bound
and increasing the lower bound, respectively.

We believe the first strategy did not perform so well, be-
cause it only looked for unexplored areas of the graph, which
is likely to be less effective when looking for extreme bound
values that realize the diameter. The third method appeared

to perform worse because it did not appear to find any low-
eccentricity valued nodes that could lower the upper bound.

The last column shows how our optimization strategy is
able to significantly reduce the size of the problem. This
is not surprising; small world networks typically have many
low degree nodes, and it is quite likely that many them of
are linked to the same node, and can thus be pruned.

For the YouTube dataset, Strategy 2 only needs 2 eccen-
tricity calculations to determine the diameter, demonstrat-
ing the best-case performance of our algorithm. It turned
out that the node with the highest degree had eccentricity
12, causing nodes with bounds [12; 24] to exist, while an-
other node had eccentricity 24, realizing bounds of [24; 24].

For the orkut dataset, a relatively large number of eccen-
tricity calculations was needed to determine the diameter.
To further analyze this, it could be interesting to look at how
quickly the amount of candidate nodes decreases over time.
Therefore we show the number of unvisited nodes and the
lower and upper bounds on the diameter during the execu-
tion of our algorithm using Strategy 2 on the Orkut dataset
in Figure 2. After 16 calculations, another 90 calculations
were needed to decide whether the diameter was equal to 9 or
10, and the number of nodes to be examined only decreases
by 1 or 2 after each eccentricity calculation. Apparently
the remaining unvisited nodes are positioned in the graph
in such a way that the calculation of the actual eccentric-
ity of these nodes can not be avoided using the neighboring
bounds. Though it takes a while to find the exact diameter,
tight bounds on the diameter are actually quickly available.

Although not related to our performance measurement
methodology, we mention that one node eccentricity calcu-
lation takes only a few seconds in our C++ implementation
on a standard 3.2GHz machine with 10GB of memory. This
means that we are able to determine the exact diameter in
a matter of seconds (or a few minutes in case of the Orkut
dataset), which is very reasonable compared to for example
approximation algorithms such as ANF [16].

As an interesting side result it turned out that, very of-
ten, the actual eccentricity has been found for a large por-
tion of the nodes in the graph when the algorithm has ter-
minated, because these node’s eccentricity lower and upper
bounds had become equal. For example, for the Orkut
dataset, 777, 257 actual eccentricity values (25%) were ob-
tained, while only 106 values were explicity calculated. Also
interesting to note is that the exact diameter that we ob-
tain for the Enron and Skitter datasets deviates from the
previously approximated values of 12 and 24, respectively.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

C
a

n
d

id
a

te
 N

o
d

e
s

B
o

u
n

d
s

Time (# eccentricity calculations)

Candidate Nodes
Diameter Lower Bound
Diameter Upper Bound

Figure 2: Orkut dataset – candidate nodes (left ver-
tical axis; logarithmic) and lower and upper bounds
(right vertical axis) vs. time (horizontal axis).

More information on the datasets used in this paper, the
obtained diameter paths, and an implementation can be
found at www.liacs.nl/~ftakes/diameter/.

6. CONCLUSION
We have shown that our algorithm, BoundingDiame-

ters, is able to efficiently determine the exact diameter of
small world networks, making use of lower and upper bounds
on the eccentricity of the nodes and on the diameter itself.
A proper selection strategy allows our algorithm to exploit
the characteristic properties of small world networks. More-
over, we have outlined a pruning strategy which reduces the
size of the problem. We have also shown that even when the
diameter is not found very quickly, very tight bounds on the
diameter are available after only a few iterations.

In future work we would like to investigate if our algo-
rithm can be used to obtain the eccentricity of all nodes in
the network, allowing us to study the exact eccentricity dis-
tribution of a graph. We also want to address the issue of
determining the diameter of the strongly connected compo-
nent of a directed graph. By using only the lower diameter
bounds, significant improvements over the APSP algorithm
are already observed. Last but not least, we hope to in-
vestigate how the exact diameter of small world networks
behaves over time, and how our algorithm can be adjusted
to adapt to changes in the network, i.e., the addition and
deletion of nodes and links.

7. ACKNOWLEDGMENTS
This research is part of the COMPASS project, financed

by NWO under grant number 612.065.926. We thank Hyves
for making their anonymized friendship graph available.

8. REFERENCES
[1] D. Aingworth, C. Chekuri, and R. Motwani. Fast

estimation of diameter and shortest paths (without
matrix multiplication). In Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 547–553, 1996.

[2] R. Albert. Scale-free networks in cell biology. Journal
of Cell Science, 118:4947–4957, 2005.

[3] R. Albert, H. Jeong, and A. Barabási. Internet:
Diameter of the world-wide web. Nature,
401(6749):130–131, 1999.

[4] A. Barabási, H. Jeong, Z. Néda, E. Ravasz,
A. Schubert, and T. Vicsek. Evolution of the social
network of scientific collaborations. Physica A:
Statistical Mechanics and its Applications,
311(3-4):590–614, 2002.

[5] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. DBpedia —
A crystallization point for the web of data. Web
Semantics: Science, Services and Agents on the World
Wide Web, 2009.

[6] D. Dor, S. Halperin, and U. Zwick. All pairs almost
shortest paths. SIAM Journal on Computing,
29(5):1740–1759, 2000.

[7] S. Jin and A. Bestavros. Small-world characteristics of
internet topologies and implications on multicast
scaling. Computer Networks, 50(5):648–666, 2006.

[8] J. Kleinberg. The small-world phenomenon: An
algorithm perspective. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing,
pages 163–170, 2000.

[9] B. Klimt and Y. Yang. The Enron corpus: A new
dataset for email classification research. Lecture notes
in computer science 3201, pages 217–226, 2004.

[10] J. Leskovec and C. Faloutsos. Sampling from large
graphs. In Proceedings of the 12th ACM International
Conference on Knowledge Discovery and Data Mining,
pages 631–636, 2006.

[11] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: Densification laws, shrinking diameters and
possible explanations. In Proceedings of the 11th ACM
International Conference on Knowledge Discovery and
Data Mining, pages 177–187, 2005.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from
Data, 1(1):2, 2007.

[13] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[14] C. Magnien, M. Latapy, and M. Habib. Fast
computation of empirically tight bounds for the
diameter of massive graphs. Journal of Experimental
Algorithmics (JEA), 13:1–10, 2009.

[15] A. Mislove, M. Marcon, K. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In Proceedings of the 7th ACM
Conference on Internet Measurement, pages 29–42,
2007.

[16] C. Palmer, P. Gibbons, and C. Faloutsos. ANF: A fast
and scalable tool for data mining in massive graphs. In
Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 81–90, 2002.

[17] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge Press, 1994.

[18] R. Yuster. Computing the diameter polynomially
faster than APSP. ArXiv e-prints, 1011.6181, 2010.

