
Competitive Programming

Frank Takes

LIACS, Leiden University

https://liacs.leidenuniv.nl/~takesfw/CP

Lecture 1 — Introduction to Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 1 / 30

https://liacs.leidenuniv.nl/~takesfw/CP

About this course

Competitive Programming

: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, . . .

. . . in a competitive context, i.e., with

limited CPU time
limited memory consumption
a fixed amount of problem solving time (optional)
others competing with you (more optional)

This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 / 30

About this course

Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, . . .

. . . in a competitive context, i.e., with

limited CPU time
limited memory consumption
a fixed amount of problem solving time (optional)
others competing with you (more optional)

This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 / 30

About this course

Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, . . .

. . . in a competitive context

, i.e., with

limited CPU time
limited memory consumption
a fixed amount of problem solving time (optional)
others competing with you (more optional)

This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 / 30

About this course

Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, . . .

. . . in a competitive context, i.e., with

limited CPU time
limited memory consumption
a fixed amount of problem solving time (optional)
others competing with you (more optional)

This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 / 30

About this course

Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, . . .

. . . in a competitive context, i.e., with

limited CPU time
limited memory consumption
a fixed amount of problem solving time (optional)
others competing with you (more optional)

This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 / 30

Course information

Lectures: Thursdays, 9:15 to 11:00 in Snellius room 408

Sometimes including a lab session in room 302-304

Period: February 6 — April 30, 2020; not on April 23

Prerequisites: Algorithms, Datastructures (bachelor)

Required skills: C++ (or Java)

Course website:
https://liacs.leidenuniv.nl/~takesfw/CP

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 3 / 30

https://liacs.leidenuniv.nl/~takesfw/CP

Course format

13 weeks: presentations by lecturer and students

No exam

Books as reference material

Grade composition

one individual assignment 20%
a presentation and report 35%
three programming contests 3 × 15 = 45%

All five grades have to be > 5

Final grades are rounded to nearest element in
{1, 2, 3, 4, 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10}
6 ECTS

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 4 / 30

Course team

Lecturer: dr. Frank Takes
f.w.takes@liacs.leidenuniv.nl, room 157b

Assistant: Ludo Pulles BSc
l.n.pulles@umail.leidenuniv.nl

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 5 / 30

f.w.takes@liacs.leidenuniv.nl
l.n.pulles@umail.leidenuniv.nl

Books

Antti Laaksonen, Guide to
Competitive Programming,
Springer, 2017.

Steven Halim and Felix Halim,
Competitive Programming 3,
Lulu.com, 2013.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 6 / 30

Before we start . . .

Deadlines and assignment (retake) deadlines are hard set as of next
week

Individual assignments must be made alone

Team work should be balanced

Plagiarism = instant removal from course

This is a brand new course taught for the first time in Spring 2020;
there will be errors, hickups, etc.

Please contribute! Feedback is very welcome

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 7 / 30

To be announced (before) next week

Individual assignment

Degree of individual vs. teamwork in contests

List of topics for presentation and report

Deadlines for individual assignment and programming contests

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 8 / 30

Competitive programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 9 / 30

Why competive programming?

Problem solving using algorithms

Think conceptually and practically about

Time complexity
Space complexity
Data structures

Recognize different problem types

Increase available knowledge of algorithms and programming skills

Learn to think, communicate and discuss about

algorithmic problems
specific solutions to these problems
generic types of solutions

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 10 / 30

Example problem

Consider an algorithm that takes as input a positive integer n. Then,
repeatedly, if n is even, it is divided by 2, and if n is odd, the algorithm
multiplies it by 3 and adds 1. It stops after n has become equal to 1. For
example, the sequence for n = 3 is:

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1

Input: The only input line contains an integer n with 1 ≤ n ≤ 1, 000, 000.
Output: One line, containing the subsequent values of n during the
execution of this algorithm, separated by a space.
Example input:
3

Example output:
3 10 5 16 8 4 2 1

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 11 / 30

Problem structure

Problem description; a little story

Usually at least one example

Constraints on the variables

Example input

Example output

Usually, many more testcases than the examples are used to test a
submitted solution.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

Problem structure

Problem description; a little story

Usually at least one example

Constraints on the variables

Example input

Example output

Usually, many more testcases than the examples are used to test a
submitted solution.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

Example solution

#include <iostream>

using namespace std;

int main() {

int n;

cin >> n;

cout << n;

while (n != 1) {

if (n % 2 == 0)

n /= 2;

else

n = n * 3 + 1;

cout << " " << n;

} // while

cout << "\n";

return 0;

} // main

What is wrong? int n should be long long n, as possibly n > INT MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Example solution

#include <iostream>

using namespace std;

int main() {

int n;

cin >> n;

cout << n;

while (n != 1) {

if (n % 2 == 0)

n /= 2;

else

n = n * 3 + 1;

cout << " " << n;

} // while

cout << "\n";

return 0;

} // main

What is wrong?

int n should be long long n, as possibly n > INT MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Example solution

#include <iostream>

using namespace std;

int main() {

int n;

cin >> n;

cout << n;

while (n != 1) {

if (n % 2 == 0)

n /= 2;

else

n = n * 3 + 1;

cout << " " << n;

} // while

cout << "\n";

return 0;

} // main

What is wrong? int n should be long long n, as possibly n > INT MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Solution structure

Usually, the first variable is the number of testcases t

Then for each test case, read one or more variables

You may need to store the input data

Output typically goes on a new line for each testcase

Be careful with extra whitespace . . .

int main() {

int t, n, m;

cin >> t;

while(t--) { // for each of the t testcases...

cin >> n >> m; // read dimensions of the problem

// do some computation here

cout << "Your solution, however complex or simple." << endl;

} // while

return 0;

} // main

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 14 / 30

Realistic solution
#include <iostream>

using namespace std;

int main() {

int t;

long long n;

cin >> t;

while(t--) {

cin >> n;

cout << n;

while (n != 1) {

if (n % 2 == 0)

n /= 2;

else

n = n * 3 + 1;

cout << " " << n;

} // while

cout << "\n";

} // while

return 0;

} // mainFrank Takes — CP — Lecture 1 — Introduction to Competitive Programming 15 / 30

Testing (1)

in.txt

3

8

42

15

out.txt

8 4 2 1

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 16 / 30

Testing (2)

takesfw@takes$ g++ -Wall -O2 mysolution.cpp

takesfw@takes$./a.out < in.txt

8 4 2 1

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

takesfw@takes$

takesfw@takes$./a.out < in.txt > myout.txt

takesfw@takes$ diff myout.txt out.txt

takesfw@takes$

(no output = no difference = correct on testcase)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Testing (2)

takesfw@takes$ g++ -Wall -O2 mysolution.cpp

takesfw@takes$./a.out < in.txt

8 4 2 1

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

takesfw@takes$

takesfw@takes$./a.out < in.txt > myout.txt

takesfw@takes$ diff myout.txt out.txt

takesfw@takes$

(no output = no difference = correct on testcase)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Understanding contraints

Input size is given
e.g., a puzzle on an array of length n where the goal is to find some
element.
What can you do if:

n = 8
n = 100
n = 100, 000
n = 10, 000, 000

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 18 / 30

Source: http://bigocheatsheet.com

http://bigocheatsheet.com

Sorting algorithms

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 20 / 30

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Problem types

Straightforward

Simulation

Greedy

Brute-force

Divide and conquer

Searching

Sorting

Graph, network flow

Dynamic programming

String processing

Geometry

Mathematics

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 21 / 30

DOMjudge

DOMjudge: software for running a programming contest

Users are members of teams

Teams can compete in contests

Contests have an associated problemset

A problemset contains multiple problems

Each problem is of the form as discussed before

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 22 / 30

Possible results

CORRECT: the submission passed all tests, problem solved!

COMPILER-ERROR: you can catch this before submitting

TIMELIMIT: use a less complex approach, check for infinite loops

RUN-ERROR: seg-faults, divide by 0, tried to allocate too much
memory, no “return 0;”” at the end, etc.

NO-OUTPUT: your program did not generate any output or did not
use the standard input/output

OUTPUT-LIMIT: your program generated more output than the
allowed limit (and was thus wrong)

WRONG-ANSWER: go find the bug in your code . . .

TOO-LATE: you submitted when contest had ended

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 23 / 30

Contest element

Fixed amount of time; 5 hours

Work in teams; 2 or 3 people

Solve as many of the ca. 12 problems in the problemset as possible

Work in teams, on one computer

More problems solved is better

Ties are determined by sum of time to CORRECT over all solved
problems; penalty for WRONG ANSWER

Nice: be the first to solve a problem

Scoreboard of all teams

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 24 / 30

Programming contests

Leids Kampioenschap Programmeren (LKP)

Benelux Algorithm Programming Contest (BAPC)

North-Western European Regional Contest (NWERC)

International Collegiate Programming Contest (ICPC)

Online: Topcoder, HackerRank, Codeforces, AtCoder, CodeChef,
USACO, ICPC Live Archives . . .

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 26 / 30

Lab session: Domjudge introduction

From 10.15 to 11:00 in Snellius room 302/304

Navigate to http://domjudge.liacs.nl

Register an account

Familiarize yourself with the domjudge team manual at
https://www.domjudge.org/docs/team-manual.pdf

Submit solutions to the three (toy example) assignments in C++

Try to at least once get WRONG ANSWER and TIMELIMIT

Finish by submitting a CORRECT solution to all three assignments
(at least before next week’s lecture)

Sign up and play around with real problems at “ICPC Live Archive”:
https://icpcarchive.ecs.baylor.edu

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 29 / 30

http://domjudge.liacs.nl
https://www.domjudge.org/docs/team-manual.pdf
https://icpcarchive.ecs.baylor.edu

Credits

This course, in particular these slides, are largely based on:

Antti Laaksonen, Guide to Competitive Programming, Springer, 2017.

Steven Halim and Felix Halim, Competitive Programming 3,
Lulu.com, 2013.

Where applicable, full credit for text, images, examples, etc. goes to the
authors of these books.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 30 / 30

