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Abstract

The complexity of modern embedded systems, which are increasingly based on
heterogeneous multiprocessor system-on-chip (MPSoC) architectures, has led
to the emergence of system-level design. To cope with this design complexity,
system-level design aims at raising the abstraction level of the design process
from the register-transfer level (RTL) to the so-called electronic system level
(ESL). However, this opens a large gap between deployed ESL models and RTL
implementations of the MPSoC under design, known as the implementation gap.
Therefore, in this chapter, we present the DAEDALUS methodology which the
main objective is to bridge this implementation gap for the design of streaming
embedded MPSoCs. DAEDALUS does so by providing an integrated and highly
automated environment for application parallelization, system-level design space
exploration, and system-level hardware/software synthesis and code generation.
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1 Introduction

The complexity of modern embedded systems, which are increasingly based on
heterogeneous multiprocessor system-on-chip (MPSoC) architectures, has led to the
emergence of system-level design. To cope with this design complexity, system-
level design aims at raising the abstraction level of the design process to the
so-called electronic system level (ESL) [18]. Key enablers to this end are, for
example, the use of architectural platforms to facilitate reuse of IP components and
the notion of high-level system modeling and simulation [21]. The latter allows
for capturing the behavior of platform components and their interactions at a high
level of abstraction. As such, these high-level models minimize the modeling effort
and are optimized for execution speed and can therefore be applied during the very
early design stages to perform, for example, architectural design space exploration
(DSE). Such early DSE is of paramount importance as early design choices heavily
influence the success or failure of the final product.

System-level design for MPSoC-based embedded systems typically involves a
number of challenging tasks. For example, applications need to be decomposed into
parallel specifications so that they can be mapped onto an MPSoC architecture [29].
Subsequently, applications need to be partitioned into hardware (HW) and software
(SW) parts because MPSoC architectures often are heterogeneous in nature. To
this end, MPSoC platform architectures need to be modeled and simulated at ESL
level of abstraction to study system behavior and to evaluate a variety of different
design options. Once a good candidate architecture has been found, it needs to be
synthesized. This involves the refinement/conversion of its architectural components
from ESL to RTL level of abstraction as well as the mapping of applications onto
the architecture. To accomplish all of these tasks, a range of different tools and tool-
flows is often needed, potentially leaving designers with all kinds of interoperability
problems. Moreover, there typically exists a large gap between the deployed ESL
models and the RTL implementations of the system under study, known as the
implementation gap [32, 37]. Therefore, designers need mature methodologies,
techniques, and tools to effectively and efficiently convert ESL system specifications
to RTL specifications.

In this chapter, we present the DAEDALUS methodology [27, 37, 38, 40, 51]
and its techniques and tools which address the system-level design challenges
mentioned above. The DAEDALUS main objective is to bridge the aforementioned
implementation gap for the design of streaming embedded MPSoCs. The main
idea is, starting with a functional specification of an application and a library of
predefined and pre-verified IP components, to derive an ESL specification of an
MPSoC and to refine and translate it to a lower RTL specification in a systematic
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and automated way. DAEDALUS does so by providing an integrated and highly
automated environment for application parallelization (Sect. 4), system-level DSE
(Sect. 5), and system-level HW/SW synthesis and code generation (Sect. 6).

2 The DAEDALUS Methodology

In this section, we give an overview of the DAEDALUS methodology [27, 37,
38, 40, 51]. It is depicted in Fig. 1 as a design flow. The flow consists of three
main design phases and uses specifications at four levels of abstraction, namely,
at FUNCTIONAL-LEVEL, ESL, RTL, and GATE-LEVEL. A typical MPSoC design
with DAEDALUS starts at the most abstract level, i.e., with a FUNCTIONAL-
LEVEL specification which is an application written as a sequential C program
representing the required MPSoC behavior. Then, in the first design phase, an
ESL specification of the MPSoC is derived from this functional specification
by (automated) application parallelization and automated system-level DSE. The
derived ESL specification consists of three parts represented in XML format:

1. Application specification, describing the initial application in a parallel form as a
set of communicating application tasks. For this purpose, we use the polyhedral
process network (PPN) model of computation, i.e., a network of concurrent
processes communicating via FIFO channels. More details about the PPN model
are provided in Sect. 3;

2. Platform specification, describing the topology of the multiprocessor platform;
3. Mapping specification, describing the relation between all application tasks in

application specification and all components in platform specification.

For applications written as parameterized static affine nested loop programs
(SANLP) in C , a class of programs discussed in Sect. 4, PPN descriptions can be
derived automatically by using the PNGEN tool [26, 56], see the top-right part in
Fig. 1. Details about PNGEN are given in Sect. 4. By means of automated (poly-
hedral) transformations [49, 59], PNGEN is also capable of producing alternative
input-output equivalent PPNs, in which, for example, the degree of parallelism can
be varied. Such transformations enable functional-level design space exploration. In
case the application does not fit in the class of programs, mentioned above, the PPN
application specification at ESL needs to be derived by hand.

The platform and mapping specifications at ESL are generated automatically as
a result of a system-level DSE by using the SESAME tool [8, 39, 42, 53], see the
top-left part of Fig. 1. Details about SESAME are given in Sect. 5. The components
in the platform specification are taken from a library of (generic) parameterized
and predefined/verified IP components which constitute the platform model in the
DAEDALUS methodology. Details about the platform model are given in Sect. 6.2.
The platform model is a key part of the methodology because it allows alternative
MPSoCs to be easily built by instantiating components, connecting them, and
setting their parameters in an automated way. The components in the library are
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Fig. 1 The DAEDALUS design flow

represented at two levels of abstraction: high-level models are used for constructing
and modeling multiprocessor platforms at ESL; low-level models of the components
are used in the translation of the multiprocessor platforms to RTL specifications
ready for final implementation. As input, SESAME uses the application specification
at ESL (i.e., the PPN) and the high-level models of the components from the library.
The output is a set of pairs, i.e., a platform specification and a mapping specification
at ESL, where each pair represents a non-dominated mapping of the application onto
a particular MPSoC in terms of performance, power, cost, etc.

In the second design phase, the ESL specification of the MPSoC is systematically
refined and translated into an RTL specification by automated system-level HW/SW
synthesis and code generation, see the middle part of Fig. 1. This is done in several
steps by the ESPAM tool [25, 34, 36, 37]. Details about ESPAM are given in Sect. 6.
As output, ESPAM delivers a hardware (e.g., synthesizable VHDL code) description
of the MPSoC and software (e.g., C/CCC) code to program each processor in
the MPSoC. The hardware description, namely, an RTL specification of a multi-
processor system, is a model that can adequately abstract and exploit the key features
of a target physical platform at the register-transfer level of abstraction. It consists
of two parts: (1) platform topology, a netlist description defining in greater detail the
MPSoC topology and (2) hardware descriptions of IP cores, containing predefined
and custom IP cores (processors, memories, etc.) used in platform topology and
selected from the library of IP components. Also, ESPAM generates custom IP
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cores needed as a glue/interface logic between components in the MPSoC. ESPAM

converts the application specification at ESL to efficient C/CCC code including
code implementing the functional behavior together with code for synchronization
of the communication between the processors. This synchronization code contains
a memory map of the MPSoC and read/write synchronization primitives. The
generated program C/CCC code for each processor in the MPSoC is given to a
standard GCC compiler to generate executable code.

In the third and last design phase, a commercial synthesizer converts the
generated hardware RTL specification to a GATE-LEVEL specification, thereby
generating the target platform gate-level netlist, see the bottom part of Fig. 1. This
GATE-LEVEL specification is actually the system implementation. In addition, the
system implementation is used for validation/calibration of the high-level models in
order to improve the accuracy of the design space exploration process at ESL.

Finally, a specific characteristic of the DAEDALUS design flow is that the
mapping specification generated by SESAME gives explicitly only the relation
between the processes (tasks) in application specification and the processing
components in platform specification. The mapping of FIFO channels to memories
is not given explicitly in the mapping specification because, in MPSoCs designed
with DAEDALUS, this mapping strictly depends on the mapping of processes to
processing components by obeying the following rule. FIFO channel X is always
mapped to a local memory of processing component Y if the process that writes to
X is mapped on processing component Y. This mapping rule is used by SESAME

during the system-level DSE where alternative platform and mapping decisions are
explored. The same rule is used by ESPAM (the elaborate mapping step in Fig. 7) to
explicitly derive the mapping of FIFO channels to memories which is implicit (not
explicitly given) in the mapping specification generated by SESAME and forwarded
to ESPAM.

3 The Polyhedral Process Network Model of Computation
for MPSoC Codesign and Programming

In order to facilitate systematic and automated MPSoC codesign and programming,
a parallel model of computation (MoC) is required for the application specification
at ESL. This is because the MPSoC platforms contain processing components that
run in parallel and a parallel MoC represents an application as a composition of
concurrent tasks with a well-defined mechanism for inter-task communication and
synchronization. Thus, the operational semantics of a parallel MoC match very well
the parallel operation of the processing components in an MPSoC. Many parallel
MoCs exist [24], and each of them has its own specific characteristics. Evidently, to
make the right choice of a parallel MoC, we need to take into account the application
domain that is targeted. The DAEDALUS methodology targets streaming (data-flow-
dominated) applications in the realm of multimedia, imaging, and signal processing
that naturally contain tasks communicating via streams of data. Such applications
are very well modeled by using the parallel data-flow MoC called polyhedral process
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network (PPN) [30, 31, 54]. Therefore, DAEDALUS uses the PPN model as an
application specification at ESL as shown in Fig. 1.

A PPN is a network of concurrent processes that communicate through bounded
first-in first-out (FIFO) channels carrying streams of data tokens. A process
produces tokens of data and sends them along a FIFO communication channel where
they are stored until a destination process consumes them. FIFO communication
channels are the only method which processes may use to exchange data. For each
channel there is a single process that produces tokens and a single process that
consumes tokens. Multiple producers or multiple consumers connected to the same
channel are not allowed. The synchronization between processes is done by blocking
on an empty/full FIFO channel. Blocking on an empty FIFO channel means that a
process is suspended when it attempts to consume data from an empty input channel
until there is data in the channel. Blocking on a full FIFO channel means that a
process is suspended when it attempts to send data to a full output channel until there
is room in the channel. At any given point in time, a process either performs some
computation or it is blocked on only one of its channels. A process may access only
one channel at a time and when blocked on a channel, a process may not access other
channels. An example of a PPN is shown in Fig. 2a. It consists of three processes
(P1, P2, and P3) that are connected through four FIFO channels (CH1, CH2,
CH3, and CH4).

The PPN MoC is a special case of the more general Kahn process network
(KPN) MoC [20] in the following sense. First, the processes in a PPN are uniformly
structured and execute in a particular way. That is, a process first reads data from
FIFO channels, then executes some computation on the data, and finally writes
results of the computation to FIFO channels. For example, consider the PPN shown

CH4

IP1
IP2

OP1
OP2P2

CH2

P1
CH1

IP1
OP1 CH3 IP1

OP1
P3

a

void main( ) {

read( IP1, in_0, size );
execute( in_0, out_0 );
write( OP1, out_0, size );

1
2
3
4
5
6
7

// Process P1

} }

b

void main( ) {
// Process P21

2

} // for j14
} // main15

if ( i−2 == 0 )
read( IP1, in_0, size );

if ( i−3 >= 0 )
read( IP2, in_0, size );

if ( −i+N−1 >= 0 )
write( OP1, out_0, size );

if ( i−N == 0 )
write( OP2, out_0, size );

for ( int i=2; i<=N; i++ )3
4 for ( int j=1; j<=M+i; j++ ) { CONTROL

5
6
7
8

READ

execute( in_0, out_0 );9 EXECUTE

10
11
12
13

WRITE

c

for ( int k=1; k<=L; k++ ) {

Fig. 2 Example of a polyhedral process network and program code of its processes. (a) Polyhedral
Process Network example. (b) Program code for process P1. (c) Program code for process P2
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in Fig. 2a. The program code structure of processes P1 and P2 are shown in
Fig. 2b, c, respectively. The structure of the code for both process is the same and
consists of a CONTROL part, a READ part, an EXECUTE part, and a WRITE part.
The difference betweenP1 andP2, however, is in the specific code in each part. For
example, the CONTROL part ofP1 has only one for loop whereas the CONTROL
part of P2 has two for loops. The blocking synchronization mechanism, explained
above, is implemented by read/write synchronization primitives. They are the
same for each process. The READ part of P1 has one read primitive executed
unconditionally, whereas the READ part of P2 has two read primitives and if
conditions specifying when to execute these primitives.

Second, the behavior of a process in a PPN can be expressed in terms of
parameterized polyhedral descriptions using the polytope model [16], i.e., using
formal descriptions of the following form: D.p/ D fx 2 Z

d j A � x � B � pC bg,
where D.p/ is a parameterized polytope affinely depending on parameter vector p.
For example, consider process P2 in Fig. 2c. The process iterations for which the
computational code at line 9 is executed can be expressed as the following two-
dimensional polytope: D9.N;M/ D f.i; j / 2 Z

2 j 2 � i � N ^ 1 � j �

M C ig. The process iterations for which the read synchronization primitive at
line 8 is executed can be expressed as the following two-dimensional polytope:
D8.N;M/ D f.i; j / 2 Z

2 j 3 � i � N^1 � j �MCig. The process iterations for
which the other read/write synchronization primitive are executed can be expressed
by similar polytopes. All polytopes together capture the behavior of process P2,
i.e., the code in Fig. 2c can be completely constructed from the polytopes and vice
versa.

Since PPNs expose task-level parallelism, captured in processes, and make the
communication between processes explicit, they are suitable for efficient mapping
onto MPSoC platforms. In addition, we motivate our choice of using the PPN MoC
in DAEDALUS by observing that the following characteristics of a PPN can take
advantage of the parallel resources available in MPSoC platforms:

• The PPN model is design-time analyzable: By using the polyhedral descrip-
tions of the processes in a PPN, capacities of the FIFO channels in a PPN, that
guarantee deadlock-free execution of the PPN, can be determined at design time;

• Formal algebraic transformations can be performed on a PPN: By applying
mathematical manipulations on the polyhedral descriptions of the processes in a
PPN, the initial PPN can be transformed to an input-output equivalent PPN in
order to exploit more efficiently the parallel resources available in an MPSoC
platform;

• The PPN model is determinate: Irrespective of the schedule chosen to evaluate
the network, the same input-output relation always exists. This gives a lot of
scheduling freedom that can be exploited when mapping PPNs onto MPSoCs;

• Distributed Control: The control is completely distributed to the individual
processes and there is no global scheduler present. As a consequence, distributing
a PPN for execution on a number of processing components is a relatively simple
task;
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• Distributed Memory: The exchange of data is distributed over FIFO channels.
There is no notion of a global memory that has to be accessed by multiple
processes. Therefore, resource contention is greatly reduced if MPSoCs with
distributed memory are considered;

• Simple synchronization: The synchronization between the processes in a PPN
is done by a blocking read/write mechanism on FIFO channels. Such synchro-
nization can be realized easily and efficiently in both hardware and software.

Finally, please note that the first and the second bullet, mentioned above, describe
characteristics that are specific and valid only for the PPN model. These specific
characteristics clearly distinguish the PPN model from the more general KPN
model which is used, for example, as an application model in chapter � “MAPS:
A Software Development Environment for Embedded Multi-Core Applications”.
The last four bullets above describe characteristics valid for both the PPN and the
KPN models.

4 Automated Application Parallelization: PNGEN

In this section, we provide an overview of the techniques, we have developed,
for automated derivation of PPNs. These techniques are implemented in the
PNGEN tool [26, 56] which is part of the DAEDALUS design flow. The input to
PNGEN is a SANLP written in C and the output is a PPN specification in XML
format – see Fig. 1. Below, in Sect. 4.1, we introduce the SANLPs with their
characteristics/limitations and explain how a PPN is derived based on a modified
data-flow analysis. We have modified the standard data-flow analysis in order to
derive PPNs that have less inter-process FIFO communication channels compared
to the PPNs derived by using previous works [23,52]. Then, in Sect. 4.2, we explain
the techniques to compute the sizes of FIFO channels that guarantee deadlock-free
execution of PPNs onto MPSoCs.

4.1 SANLPs and Modified Data-Flow Analysis

A SANLP is a sequential program that consists of a set of statements and function
calls (the code inside function calls is not limited), where each statement and/or
function call is possibly enclosed by one or more loops and/or if statements with
the following code limitations: (1) loops must have a constant step size; (2) loops
must have bounds that are affine expressions of the enclosing loop iterators, static
program parameters, and constants; (3) if statements must have affine conditions in
terms of the loop iterators, static program parameters, and constants; (4) the static
parameters are symbolic constants, i.e., their values may not change during the
execution of the program; (5) the function calls must communicate data between
each other explicitly, i.e., using only scalar variables and/or array elements of an
arbitrary type that are passed as arguments by value or by reference in function

http://link.springer.com/``MAPS: A Software Development Environment for Embedded Multi-Core Applications''
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Fig. 3 SANLP fragment and
its corresponding PPN. (a)
Example of a SANLP. (b)
Corresponding PPN

c

for ( int i=0; i<N; i++ )
b[i] = F1( );

for ( int i=0; i<N; i++ ) {
if ( i>0 ) tmp = b[i−1];

tmp = b[i];else
F2( b[i], tmp, &c[i] );

3
4
5
6

2
1

7 }

F1
b

F2

b_1b
a

calls; (6) array elements must be indexed with affine expressions of the enclosing
loop iterators, static program parameters, and constants. An example of a SANLP
that conforms to the abovementioned code limitations is shown in Fig. 3a. Other
examples can be found in [56]. Although the abovementioned code limitations
restrict the expressiveness of a SANLP, in many application domains this is
not a problem because it is natural to express an application in the form of a
SANLP. Examples are digital signal/image processing and audio/video stream-
based applications in consumer electronics, medical imaging, radio astronomy, etc.
Some specific application examples are mentioned in Sect. 7.

Because of the code limitations, mentioned above, SANLPs can be represented
in the well-known polytope model [16], i.e., a compact mathematical representation
of a SANLP through sets and relations of integral vectors defined by linear
(in)equalities, existential quantification, and the union operation. In particular, the
set of iterator vectors for which a function call is executed is an integer set
called the iteration domain. The linear inequalities of this set correspond to the
lower and upper bounds of the loops enclosing the function call. For example, the
iteration domain of function F1 in Fig. 3a is fi j 0 � i � N � 1g. Iteration
domains form the basis of the description of the processes in the PPN model, as
each process corresponds to a particular function call. For example, there are two
function calls in the program fragment in Fig. 3a representing two application tasks,
namely, F1 and F2. Therefore, there are two processes in the corresponding PPN
as shown in Fig. 3b. The granularity of F1 and F2 determines the granularity of
the corresponding processes. The FIFO channels are determined by the array (or
scalar) accesses in the corresponding function call. All accesses that appear on the
left-hand side or in an address of (&) expression for an argument of a function call
are considered to be write accesses. All other accesses are considered to be read
accesses.

To determine the FIFO channels between the processes, we may perform
standard array data-flow analysis [15]. That is, for each execution of a read operation
of a given data element in a function call, we need to find the source of the data,
i.e., the corresponding write operation that wrote the data element. However, to
reduce communication FIFO channels between different processes, in contrast to the
standard data-flow analysis and in contrast to [23,52], we also consider all previous
read operations from the same function call as possible sources of the data. That is
why we call our approach a modified array data-flow analysis [54,56]. The problem
to be solved is then: given a read from an array element, what was the last write to
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or read from that array element? The last iteration of a function call satisfying some
constraints can be obtained by using parametric integer programming (PIP) [14],
where we compute the lexicographical maximum of the write (or read) source
operations in terms of the iterators of the “sink” read operation. Since there may
be multiple function calls that are potential sources of the data, and since we also
need to express that the source operation is executed before the read (which is not
a linear constraint but rather a disjunction of n linear constraints, where n is the
shared nesting level), we actually need to perform a number of PIP invocations.

For example, the first read access in function call F2 of the program fragment in
Fig. 3a reads data written by function call F1, which results in a FIFO channel from
process F1 to process F2, i.e., channel b in Fig. 3b. In particular, data flows from
iteration iw of function F1 to iteration ir D iw of function F2. This information is
captured by the integer relation DF1!F2 D f.iw; ir/ j ir D iw ^ 0 � ir � N � 1g.
For the second read access in function call F2, after elimination of the temporary
variable tmp, the data has already been read by the same function call after it
was written. This results in a self-loop channel b_1 from F2 to itself described as
DF2!F2 D f.iw; ir/ j iw D ir � 1 ^ 1 � ir � N � 1g [ f.iw; ir/ j iw D ir D 0g. In
general, we obtain pairs of write/read and read operations such that some data flows
from the write/read operation to the (other) read operation. These pairs correspond
to the channels in our process network. For each of these pairs, we further obtain
a union of integer relations

Sm
jD1 Dj .iw; ir/ � Z

n1 � Z
n2 , with n1 and n2 the

number of loops enclosing the write and read operation, respectively, that connect
the specific iterations of the write/read and read operations such that the first is the
source of the second. As such, each iteration of a given read operation is uniquely
paired off to some write or read operation iteration.

4.2 Computing FIFO Channel Sizes

Computing minimal deadlock-free FIFO channel sizes is a nontrivial global opti-
mization problem. This problem becomes easier if we first compute a deadlock-free
schedule and then compute the sizes for each channel individually. Note that this
schedule is only computed for the purpose of computing the FIFO channel sizes
and is discarded afterward because the processes in PPNs are self-scheduled due
to the blocking read/write synchronization mechanism. The schedule we compute
may not be optimal; however, our computations do ensure that a valid schedule
exists for the computed buffer sizes. The schedule is computed using a greedy
approach. This approach may not work for process networks in general, but since
we consider only static affine nested loop programs (SANLPs), it does work for any
PPN derived from a SANLP. The basic idea is to place all iteration domains in a
common iteration space at an offset that is computed by the scheduling algorithm.
As in the individual iteration spaces, the execution order in this common iteration
space is the lexicographical order. By fixing the offsets of the iteration domain in
the common space, we have therefore fixed the relative order between any pair of
iterations from any pair of iteration domains. The algorithm starts by computing for



12 T. Stefanov et al.

any pair of connected processes, the minimal dependence distance vector, a distance
vector being the difference between a read operation and the corresponding write
operation. Then, the processes are greedily combined, ensuring that all minimal
distance vectors are (lexicographically) positive. The end result is a schedule that
ensures that every data element is written before it is read. For more information
on this algorithm, we refer to [55], where it is applied to perform loop fusion on
SANLPs.

After the scheduling, we may consider all FIFO channels to be self-loops of the
common iteration space, and we can compute the channel sizes with the following
qualification: we will not be able to compute the absolute minimum channel sizes
but at best the minimum channel sizes for the computed schedule. To compute the
channel sizes, we compute the number of read iterations R.i/ that are executed
before a given read operation i and subtract the resulting expression from the
number of write iterations W .i/ that are executed before the given read operation,
so the number of elements in FIFO at operation i D W .i/ � R.i/.
This computation can be performed entirely symbolically using the barvinok
library [57] that efficiently computes the number of integer points in a parametric
polytope. The result is a piecewise (quasi-)polynomial in the read iterators and the
parameters. The required channel size is the maximum of this expression over all
read iterations: FIFO size D max. W .i/ � R.i/ /. To compute the maximum
symbolically, we apply Bernstein expansion [7] to obtain a parametric upper bound
on the expression.

5 Automated System-Level Design Space Exploration:
SESAME

In this section, we provide an overview of the methods and techniques we have
developed to facilitate automated design space exploration (DSE) for MPSoCs at
the electronic system level (ESL). These methods and techniques are implemented
in the SESAME tool [8, 11, 39, 42, 53] which is part of the DAEDALUS design
flow illustrated in Fig. 1. In Sect. 5.1, we highlight the basic concept, deployed in
SESAME, for system-level DSE of MPSoC platforms. Then, in Sect. 5.2, we explain
the system-level performance modeling methods and simulation techniques that
facilitate the automation of the DSE.

5.1 Basic DSE Concept

Nowadays, it is widely recognized that the separation-of-concerns concept [21]
is key to achieving efficient system-level design space exploration of complex
embedded systems. In this respect, we advocate the use of the popular Y-chart
design approach [22] as a basis for (early) system-level design space exploration.
This implies that in SESAME, we separate application models and architecture
(performance) models while also recognizing an explicit mapping step to map
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application tasks onto architecture resources. In this approach, an application
model – derived from a specific application domain – describes the functional
behavior of an application in a timing and architecture independent manner.
A (platform) architecture model – which has been defined with the application
domain in mind – defines architecture resources and captures their performance
constraints. To perform quantitative performance analysis, application models are
first mapped onto and then cosimulated with the architecture model under investi-
gation, after which the performance of each application-architecture combination
can be evaluated. Subsequently, the resulting performance numbers may inspire
the designer to improve the architecture, restructure/adapt the application(s), or
modify the mapping of the application(s). Essential in this approach is that an
application model is independent from architectural specifics, assumptions on
hardware/software partitioning, and timing characteristics. As a result, application
models can be reused in the exploration cycle. For example, a single application
model can be used to exercise different hardware/software partitionings and can
be mapped onto a range of architecture models, possibly representing different
architecture designs.

5.2 System-Level Performance Modeling and Simulation

The SESAME system-level modeling and simulation environment [8, 11, 39, 42, 53]
facilitates automated performance analysis of MPSoCs according to the Y-chart
design approach as discussed in Sect. 5.1, recognizing separate application and
architecture models. SESAME has also been extended to allow for capturing power
consumption behavior and reliability behavior of MPSoC platforms [44, 45, 50].

The layered infrastructure of SESAME’s modeling and simulation environment
is shown in Fig. 4. SESAME maps application models onto architecture models
for cosimulation by means of trace-driven simulation while using an intermediate
mapping layer for scheduling and event-refinement purposes. This trace-driven
simulation approach allows for maximum flexibility and model reuse in the process
of exploring different MPSoC configurations and mappings of applications to these
MPSoC platforms [8, 11]. To actually explore the design space to find good system
implementation candidates, SESAME typically deploys a genetic algorithm (GA).
For example, to explore different mappings of applications onto the underlying
platform architecture, the mapping of application tasks and inter-task communica-
tions can be encoded in a chromosome, which is subsequently manipulated by the
genetic operators of the GA [9] (see also chapter � “Scenario-Based Design Space
Exploration”). The remainder of this section provides an overview of each of the
SESAME layers as shown in Fig. 4.

5.2.1 Application Modeling
For application modeling within the DAEDALUS design flow, SESAME uses the
polyhedral process network (PPN) model of computation, as discussed in Sect. 3, in
which parallel processes communicate with each other via bounded FIFO channels.

http://link.springer.com/``Scenario-Based Design Space Exploration''
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Fig. 4 The SESAME’s application model layer, architecture model layer, and mapping layer which
interfaces between application and architecture models

The PPN application models used in SESAME are either generated by the PNGEN

tool presented in Sect. 4 or are derived by hand from sequential C/C++ code. The
workload of an application is captured by manually instrumenting the code of each
PPN process with annotations that describe the application’s computational and
communication actions, as explained in detail in [8, 11]. By executing the PPN
model, these annotations cause the PPN processes to generate traces of application
events which subsequently drive the underlying architecture model. There are three
types of application events: the communication events read and write and the
computational event execute. These application events typically are coarse grained,
such as execute(DCT) or read(pixel-block,channel_id).

To execute PPN application models, and thereby generating the application
events that represent the workload imposed on the architecture, SESAME features a
process network execution engine supporting the PPN semantics (see Sect. 3). This
execution engine runs the PPN processes, which are written in C++, as separate
threads using the Pthreads package. To allow for rapid creation and modification
of models, the structure of the application models (i.e., which processes are used
in the model and how they are connected to each other) is not hard-coded in the
C++ implementation of the processes. Instead, it is described in a language called
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YML (Y-chart modeling language) [8], which is an XML-based language. It also
facilitates the creation of libraries of parameterized YML component descriptions
that can be instantiated with the appropriate parameters, thereby fostering reuse of
(application) component descriptions. To simplify the use of YML even further, a
YML editor has also been developed to compose model descriptions using a GUI.

5.2.2 Architecture Modeling
The architecture models in SESAME, which typically operate at the so-called
transaction level [6,19], simulate the performance consequences of the computation
and communication events generated by an application model. These architecture
models solely account for architectural performance constraints and do not need
to model functional behavior. This is possible because the functional behavior is
already captured in the application models, which subsequently drive the architec-
ture simulation. An architecture model is constructed from generic building blocks
provided by a library, see Fig. 1, which contains template performance models for
processing components (like processors and IP cores), communication components
(like busses, crossbar switches, etc.), and various types of memory. The performance
parameter values for these models are typically derived from datasheets or from
measurements with lower-level simulators or real hardware platforms [43]. The
structure of an architecture model – specifying which building blocks are used
from the library and the way they are connected – is also described in YML within
SESAME.

SESAME’s architecture models are implemented using either Pearl [33] or
SystemC [19]. Pearl is a small but powerful discrete-event simulation language
which provides easy construction of the models and fast simulation [42].

5.2.3 Mapping
To map PPN processes (i.e., their event traces) from an application model onto
architecture model components, SESAME provides an intermediate mapping layer.
Besides this mapping function, the mapping layer has two additional functions as
will be explained later on: Scheduling of application events when multiple PPN
processes are mapped onto a single architecture component (e.g., a programmable
processor) and facilitating gradual model refinement by means of trace event
refinement.

The mapping layer consists of virtual processor components and FIFO buffers for
communication between the virtual processors. There is a one-to-one relationship
between the PPN processes in the application model and the virtual processors in
the mapping layer. This is also true for the PPN channels and the FIFO buffers in
the mapping layer. The only difference is that the buffers in the mapping layer are
limited in size, and their size depends on the modeled architecture. As the structure
of the mapping layer is equivalent to the structure of the application model under
investigation, SESAME provides a tool that is able to automatically generate the
mapping layer from the YML description of an application model.

A virtual processor in the mapping layer reads in an application trace from a
PPN process via a trace event queue and dispatches the events to a processing
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component in the architecture model. The mapping of a virtual processor onto a
processing component in the architecture model is freely adjustable (i.e., virtual
processors can dispatch trace events to any specified processing component in
the architecture model), and this mapping is explicitly described in a YML-based
specification. Clearly, this YML mapping description can easily be manipulated by
design space exploration engines to, e.g., facilitate efficient mapping exploration.
Communication channels, i.e., the buffers in the mapping layer, are also explicitly
mapped onto the architecture model. In Fig. 4, for example, one buffer is placed in
shared memory, while the other buffer is mapped onto a point-to-point FIFO channel
between processors 1 and 2.

The mechanism used to dispatch application events from a virtual processor
to an architecture model component guarantees deadlock-free scheduling of the
application events from different event traces [42]. Please note that, here, we refer
to communication deadlocks caused by mapping multiple PPN processes to a single
processor and the fact that these processes are not preempted when blocked on,
e.g., reading from an empty FIFO buffer (see [42] for a detailed discussion of these
deadlock situations). In this event dispatching mechanism, computation events are
always directly dispatched by a virtual processor to the architecture component
onto which it is mapped. The latter schedules incoming events that originate
from different event queues according to a given policy (FCFS, round-robin, or
customized) and subsequently models their timing consequences. Communication
events, however, are not directly dispatched to the underlying architecture model.
Instead, a virtual processor that receives a communication event first consults the
appropriate buffer at the mapping layer to check whether or not the communication
is safe to take place so that no deadlock can occur. Only if it is found to be safe
(i.e., for read events the data should be available and for write events there should
be room in the target buffer), then communication events may be dispatched. As
long as a communication event cannot be dispatched, the virtual processor blocks.
This is possible because the mapping layer executes in the same simulation as the
architecture model. Therefore, both the mapping layer and the architecture model
share the same simulation-time domain. This also implies that each time a virtual
processor dispatches an application event (either computation or communication) to
a component in the architecture model, the virtual processor is blocked in simulated
time until the event’s latency has been simulated by the architecture model. In other
words, the individual virtual processors can be seen as abstract representations of
application processes at the system architecture level, while the mapping layer can
be seen as an abstract OS model.

When architecture model components need to be gradually refined to dis-
close more implementation details (such as pipelined processing in processor
components), this typically implies that the applications events consumed by the
architecture model also need to be refined. In SESAME, this is established by an
approach in which the virtual processors at the mapping layer are also refined.
The latter is done by incorporating data-flow graphs in virtual processors such that
it allows us to perform architectural simulation at multiple levels of abstraction
without modifying the application model. Fig. 4 illustrates this data-flow-based
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refinement by refining the virtual processor for process B with a fictive data-flow
graph. In this approach, the application event traces specify what a virtual processor
executes and with whom it communicates, while the internal data-flow graph of a
virtual processor specifies how the computations and communications take place at
the architecture level. For more details on how this refinement approach works, we
refer the reader to [10,12,41] where the relation between event trace transformations
for refinement and data-flow actors at the mapping layer is explained.

6 Automated System-Level HW/SW Synthesis and Code
Generation: ESPAM

In this section, we present the methods and techniques, we have developed, for
systematic and automated system-level HW/SW synthesis and code generation
for MPSoC design and programming. These methods and techniques bridge, in a
particular way, the implementation gap between the electronic system level (ESL)
and the register transfer level (RTL) of design abstraction introduced in Sect. 1.
The methods and techniques are implemented in the ESPAM tool [25, 34, 36, 37]
which is part of the DAEDALUS design flow illustrated in Fig. 1 and explained
in Sect. 2. First, in Sect. 6.1, we show an example of the ESL input specification
for ESPAM that describes an MPSoC. Second, in Sect. 6.2, we introduce the system-
level platform model used in ESPAM to construct MPSoC platform instances at ESL.
Then, in Sect. 6.3, we present how an MPSoC platform instance at ESL is refined
and translated systematically and automatically to an MPSoC instance at RTL. This
is followed by a discussion in Sect. 6.4 about the automated programming of the
MPSoCs, i.e., the automated code generation done by ESPAM. It includes details on
how ESPAM converts processes in a PPN application specification to software code
for every programmable processor in an MPSoC. Finally, in Sect. 6.5, we present our
approach for building heterogeneous MPSoCs where both programmable processors
and dedicated IP cores are used as processing components.

6.1 ESL Input Specification for ESPAM

Recall from Sect. 2 that ESPAM requires as input an ESL specification of an MPSoC
that consists of three parts: platform, application, and mapping specifications. In
this section, we give examples of these three parts (specifications). We will use
these examples in our discussion about the system-level HW/SW synthesis and code
generation in ESPAM given in Sects. 6.3 and 6.4.

6.1.1 Platform Specification
Consider an MPSoC platform containing four processing components. An example
of the ESL platform specification of this MPSoC is depicted in Fig. 5a. This
specification, in XML format, consists of three parts which define processing
components (four processors, lines 2–5), communication component (crossbar, lines
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<platform "myPlatform" >
<processor

name =
name = "uP1" > <port

<processor name = "uP2" > <port
<processor
<processor <port

<port>  name = "uP3"
>  name = "uP4"

name = "IO1"
name = "IO1"
name = "IO1"
name = "IO1"

/>
/>
/>
/>

</processor>
</processor>
</processor>
</processor>

12 </network>
<port11 name = "IO4" />
<port name = "IO3" />
<port name = "IO2" />
<port name = "IO1" />

10
9
8

<network7 name = "CB" type = "Crossbar" >
6
5
4
3
2
1

13

</platform>30
29
28
27
26

</link>
<resource name = "uP4" <port name = "IO1" />
<resource name = "CB" <port name = "IO4" />

<link name = "BUS4"
</link>

<resource
<resource name = "CB"

name = "uP3" <port name = "IO1" />
<port name = "IO3" />

<link

25
24
23
22 name = "BUS3" >
21 </link>

<resource name = "uP2"
<resource name = "CB"

<port name = "IO1" />
<port name = "IO2" />

20
19
18 <link name = "BUS2" >

</link>17
<resource
<resource

name = "uP1"
name = "CB"

<port name = "IO1" />
<port name = "IO1" />

16
15
14 <link name = "BUS1" >

>
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Fig. 5 Example of a multiprocessor platform. (a) Platform specification. (b) Elaborated platform

7–12), and links (lines 14–29). The links specify the connections of the processors
to the communication component. Every component has an instance name and
different parameters characterizing the component. The components’ parameters
are not shown in Fig. 5a for the sake of brevity. Note that in the specification,
there are no memory structures and interface controllers instantiated. The ESPAM

tool takes care of this during the platform synthesis described in Sect. 6.3. In this
way, unnecessary details are hidden at the beginning of the design, keeping the
abstraction of the input platform specification very high.

6.1.2 Application Specification
Consider an application specified as a PPN consisting of five processes communi-
cating through seven FIFO channels. A graphical representation of the application
is shown in Fig. 9a. Part of the corresponding XML application specification for
this PPN is shown in Fig. 6a. Recall that this PPN in XML format is generated
automatically by the PNGEN tool using the techniques presented in Sect. 4. For the
sake of clarity, we show only the description of process P1 and channel FIFO1
in the XML code. The other processes and channels of the PPN are specified
in an identical way. P1 has one input port and one output port defined in lines
3–8. P1 executes a function called compute (line 9). The function has one input
argument (line 10) and one output argument (line 11). There is a strong relation
between the function arguments and the ports of a process given at lines 4 and 7. The
information how many times function compute has to be fired during the execution
of the application is determined by a parameterized iteration domain (see Sect. 4.1)
which is captured in a compact (matrix) form at lines 12–15. There are two matrices
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</application>

1

index = "k"

name =

<var

<application name = "myPPN"
<process "P1"

<port name = "p2" direction = "in"
<var name = "in_0" type = "myType"

</port>
<port name = "p1" direction = "out"

</port>
name = "out_0" type = "myType"

<process_code name = "compute"
<arg name = "in_0" type = "input"
<arg name = "out_0" type = "output"
<loop parameter = "N"

<channel
<fromPort name = "p1"
<fromProcess name = "P1"
<toPort name = "p4"

name = "P3"
</channel>

<!−− other channels omitted −−>

<toProcess

26

3
4
5
6
7
8
9

10
11
12

19
20
21
22
23

25
24

<loop_bounds matrix = "[1,  1,0,−2; 1,−1,2,−1]"
<par_bounds

</loop>
</process_code>

<!−− other processes omitted −−>

13
14
15
16

18

</process>17

2 >

/>

/>

>
/>

/>
>

/>
/>matrix = "[1,0,−1,384; 1,0,1,−3]"

>

>

>

/>

/>
/>

name = FIFO1 size = "1" >

/>

a b

<processor name = "uP1" >
name = "P4" />

<processor name = "uP2" >
<process name = "P2" />
<process name = "P5" />

</processor>

<process
</processor>

<processor name = "uP3" >
<proces name = "P3" />

</processor>

<processor name = "uP4" >
<process name = "P1" />

</processor>

10
11
12
13
14

16
17
18
19

15

20 </mapping>

9

5
6

4
3
2
1 <mapping name = "myMapping" >

7
8

Fig. 6 Example of application and mapping specifications. (a) Application specification.
(b) Mapping specification

representing the iteration domain which corresponds to a nested for-loop structure.
It originates from the structure of the initial (static and affine) nested loop program.
In this particular example, there is only one for loop with index k and parameter
N . The parameter is used in determining the upper bound of the loop. The range of
the loop index k is determined at line 13. This matrix represents the following two
inequalities, k � 2 � 0 and �k C 2N � 1 � 0 and, therefore, 2 � k � 2N � 1.
In the same way, the matrix at line 14 determines the range of parameter N , i.e.,
3 � N � 384. Similar information for each port is used to determine at which
iterations an input port has to be read and consequently, at which iterations, an
output port has to be written. However, for brevity, this information is omitted in
Fig. 6a. Lines 19–24 show an example of how the topology of a PPN is specified:
FIFO1 connects processes P1 and P3 through ports p1 and p4.

6.1.3 Mapping Specification
An example of a mapping specification is shown in Fig. 6b. It assumes an MPSoC
with four processing components, namely, uP1, uP2, uP3, and uP4, and five PPN
processes: P1, P2, P3, P4, and P5. The XML format of the mapping specification
is very simple. Process P4 is mapped onto processor uP1 (see lines 3-5), processes
P2 and P5 are mapped onto processor uP2 (lines 7-10), process P3 is mapped
for execution on processor uP3, and, finally, process P1 is mapped on processor
uP4. In the mapping specification, the mapping of FIFO channels to communication
memories is not specified. This mapping is related to the way processes are mapped
to processors, and, therefore, the mapping of FIFO channels to communication



20 T. Stefanov et al.

memories cannot be arbitrary. The mapping of channels is performed by ESPAM

automatically which is discussed in Sect. 6.3.

6.2 System-Level Platform Model

The platform model consists of a library of generic parameterized components and
defines the way the components can be assembled. To enable efficient execution
of PPNs with low overhead, the platform model allows for building MPSoCs that
strictly follow the PPN operational semantics. Moreover, the platform model allows
easily to construct platform instances at ESL. To support systematic and automated
synthesis of MPSoCs, we have carefully identified a set of components which
comprise the MPSoC platforms we consider. It contains the following components.
Processing Components. The processing components implement the functional
behavior of an MPSoC. The platform model supports two types of processing
components, namely, programmable (ISA) processors and non-programmable,
dedicated IP cores. The processing components have several parameters such as
type, number of I/O ports, program and data memory size, etc.
Memory Components. Memory components are used to specify the local program
and data memories of the programmable processors and to specify data com-
munication storage (buffers) between the processing components (communication
memories). In addition, the platform model supports dedicated FIFO components
used as communication memories in MPSoCs with a point-to-point topology.
Important memory component parameters are type, size, and number of I/O ports.
Communication Components. A communication component determines the inter-
connection topology of an MPSoC platform instance. Some of the parameters of a
communication component are type and number of I/O ports.
Communication Controller. Compliant with our approach to build MPSoCs
executing PPNs, communication controllers are used as glue logic realizing the
synchronization of the data communication between the processors at hardware
level. A communication controller (CC) implements an interface between process-
ing, memory, and communication components. There are two types of CCs in our
library. In case of a point-to-point topology, a CC implements only an interface to
the dedicated FIFO components used as communication memories. If an MPSoC
utilizes a communication component, then the communication controller realizes a
multi-FIFO organization of the communication memories. Important CC parameters
are number of FIFOs and the size of each FIFO.
Memory Controllers. Memory controllers are used to connect the local program
and data memories to the ISA processors. Every memory controller has a parameter
size which determines the amount of memory that can be accessed by a processor
through the memory controller.
Peripheral Components and Controllers. They allow data to be transferred in
and out of the MPSoC platform, e.g., a universal asynchronous receive-transmit
(UART). We have also developed a multi-port interface controller allowing for
efficient (DMA-like) data communication between the processing cores by sharing
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an off-chip memory organized as multiple FIFO channels [35]. General off-chip
memory controller is also part of this group of library components. In addition,
Timers can be used for profiling and debugging purposes, e.g., for measuring
execution delays of the processing components.
Links. Links are used to connect the components in our system-level platform
model. A link is transparent, i.e., it does not have any type, and connects ports of
two or more components together.

In DAEDALUS we do not consider the design of processing components.
Instead, we use IP cores (programmable processors and dedicated IPs) developed
by third parties and propose a communication mechanism that allows efficient
data communication (low latency) between these processing components. The
devised communication mechanism is independent of the types of processing and
communication components used in the platform instance. This results in a platform
model that easily can be extended with additional (processing, communication, etc.)
components.

6.3 Automated System-Level HW Synthesis and Code Generation

The automated translation of an ESL specification of an MPSoC (see Sect. 6.1 for
an example of such specification) to RTL descriptions goes in three main steps
illustrated in Fig. 7:

1. Model initialization. Using the platform specification, an MPSoC instance is
created by initializing an abstract platform model in ESPAM. Based on the
application and the mapping specifications, three additional abstract models are
initialized: application (ADG), schedule (STree), and mapping models;

2. System synthesis. ESPAM elaborates and refines the abstract platform model to a
detailed parameterized platform model. Based on the application, schedule, and
mapping models, a parameterized process network (PN) model is created as well;

3. System generation. Parameters are set and ESPAM generates a platform instance
implementation using the RTL version of the components in the library. In
addition, ESPAM generates program code for each programmable processor.

6.3.1 Model Initialization
In this first step, ESPAM constructs a platform instance from the input platform
specification by initializing an abstract platform model. This is done by instantiating
and connecting the components in the specification using abstract components
from the library. The abstract model represents an MPSoC instance without taking
target execution platform details into account. The model includes key system
components and their attributes as defined in the platform specification. There are
three additional abstract models in ESPAM which are also created and initialized,
i.e., an application model, a schedule model, and a mapping model, see the top
part of Fig. 7. The application specification consists of two annotated graphs, i.e.,
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Fig. 7 ESL to RTL MPSoC synthesis steps performed by ESPAM

a PPN represented by an approximated dependence graph (ADG) and a schedule
tree (STree) representing one valid global schedule of the PPN. Consequently, the
ADG and the STree models in ESPAM are initialized, capturing in a formal way all
the information that is present in the application specification. Note that, in addition
to a standard dependence graph, the ADG is a graph structure that also can capture
some data dependencies in an application that are not completely known at design
time because the exact application behavior may depend on the data that is processed
by the application at run time. If such application is given to ESPAM where some
of the data dependencies cannot be exactly determined at design time, then these
dependencies are approximated in the ADG. That is, these dependencies are always
conservatively put in the ADG, although they may exist only for specific data values
processed by the application at run time.
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The mapping model is constructed and initialized from the mapping specifi-
cation. The objective of the mapping model in ESPAM is to capture the relation
between the PPN processes in an application and the processing components in
an MPSoC instance on the one hand and the relation between FIFO channels and
communication memories on the other. The mapping model in ESPAM contains
important information which enables the generation of the memory map of the
system in an automated way – see Sect. 6.4.

6.3.2 System Synthesis
The system synthesis step is comprised of several sub-steps. These are platform
and mapping model elaboration, process network (PN) synthesis, and platform
instance refinement sub-steps. As a result of the platform elaboration, ESPAM

creates a detailed parameterized model of a platform instance – see an example
of such elaborated platform instance in Fig. 5b. The details in this model come
from additional components added by ESPAM in order to construct a complete
system. In addition, based on the type of the processors instantiated in the first
step, the tool automatically synthesizes, instantiates, and connects all necessary
communication controllers (CC s) and communication memories (CM s). After
the elaboration, a refinement (optimization) step is applied by ESPAM in order to
improve resource utilization and efficiency. The refinement step includes program
and data memory refinement and compaction in case of processing components with
RISC architecture, memory partitioning, and building the communication topology
in case of point-to-point MPSoCs. As explained at the end of Sect. 2, the mapping
specification generated by SESAME contains the relation between PPN processes
and processing components only. The mapping of FIFO channels to memories
is not given explicitly in the mapping specification. Therefore, ESPAM derives
automatically the mapping of FIFO channels to communication memories. This
is done in the mapping elaboration step, in which the mapping model is analyzed
and augmented with the mapping of FIFO channels to communication memories
following the mapping rule described in Sect. 2. The PN synthesis is a translation of
the approximated dependence graph (ADG) model and the schedule tree (STree)
model into a (parameterized) process network model. This model is used for
automated SW synthesis and SW code generation discussed in Sect. 6.4.

6.3.3 System Generation
This final step consists of a setting parameters sub-step which completely deter-
mines a platform instance and a code generation sub-step which generates hardware
and software descriptions of an MPSoC. In ESPAM, a software engineering tech-
nique called Visitor [17] is used to visit the PN and platform model structures and
to generate code. For example, ESPAM generates VHDL code for the HW part, i.e.,
the HW components present in the platform model by instantiating components’
templates written in VHDL which are part of the library of IP components. Also,
ESPAM generates C/CCC code for the SW part captured in the PN model. The
automated SW code generation is discussed in Sect. 6.4. The HW description
generated by ESPAM consists of two parts: (1) Platform topology. This is a netlist
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description defining the MPSoC topology that corresponds to the platform instance
synthesized by ESPAM. This description contains the components of the platform
instance with the appropriate values of their parameters and the connections
between the components in the form compliant with the input requirements of the
commercial tool used for low-level synthesis. (2) Hardware descriptions of the
MPSoC components. To every component in the platform instance corresponds
a detailed description at RTL. Some of the descriptions are predefined (e.g.,
processors, memories, etc.), and ESPAM selects them from the library of components
and sets their parameters in the platform netlist. However, some descriptions are
generated by ESPAM, e.g., an IP Module used for integrating a third-party IP core
as a processing component in an MPSoC (discussed in Sect. 6.5).

6.4 Automated System-Level SW Synthesis and Code Generation

In this section, we present in detail our approach for systematic and automated
programming of MPSoCs synthesized with ESPAM. For the sake of clarity, we
explain the main steps in the ESPAM programming approach by going through
an illustrative example considering the input platform, application, and mapping
specifications described in Sect. 6.1. For these example specifications, we show how
the SW code for each processor in an MPSoC platform is generated and present our
SW synchronization and communication primitives inserted in the code. Finally, we
explain how the memory map of the MPSoC is generated.

6.4.1 SW Code Generation for Processors
ESPAM uses the initial sequential application program, the corresponding PPN
application specification, and the mapping specification to generate automatically
software (C/CCC) code for each processor in the platform specification. The code
for a processor contains control code and computat ion code. The computat ion
code transforms the data that has to be processed by a processor, and it is grouped
into function calls in the initial sequential program. ESPAM extracts this code
directly from the sequential program. The control code (for loops, if statements,
etc.) determines the control flow, i.e., when and how many times data reading and
data writing have to be performed by a processor as well as when and how many
times the computat ion code has to be executed in a processor. The control code
of a processor is generated by ESPAM according to the PPN application specification
and the mapping specification as we explain below.

According to the mapping specification in Fig. 6b, process P1 is mapped onto
processor uP4 (see lines 16–18). Therefore, ESPAM uses the XML specification of
process P1 shown in Fig. 6a to generate the control C code for processor uP4.
The code is depicted in Fig. 8a. At lines 4–7, the type of the data transferred through
the FIFO channels is declared. The data type can be a scalar or more complex
type. In this example, it is a structure of 1 Boolean variable and a 64-element
array of integers, a data type found in the initial sequential program. There is one
parameter (N ) that has to be declared as well. This is done at line 8 in Fig. 8a.
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12

14
13

#include "primitives.h"1
#include "memoryMap.h"2

3
4 struct myType {
5 bool flag;

int data[64];6
7 };

10 void main( ) {
11

15
16
17
18
19

myType in_0;
myType out_0;

for ( int k=2; k<=2*N−1; k++ )
read( p2, &in_0, sizeof(myType) );
compute( in_0, &out_0 );
write( p1, &out_0, sizeof(myType) );

}
}

{

int N = 384;
9
8

}
*port = (byte* data)[i]; // write to a FIFO
while ( *isFull )
// writing is blocked if a FIFO is full

for
*isFull = port + 1;int

void13
14
15
16
17
18
19
20 }

{  }

write( int* port, void* data, int length ) {
12

1 void read( int* port, void* data, int length )

a b

9 }

11 }
10 *req_&_rd = 0x7FFFFFFF&(inPort);

8
while ( *isEmpty ) {  }
// reading is blocked if a FIFO is empty

7
6

for

int2
3 int *isEmpty = req_&_rd + 1;
4 *req_&_rd = 0x80000000 | (port); // Write a request

5

{

{

{

*req_&_rd = 0xE0000000; // Address in a CC

(byte* data)[i] = *req_&_rd; // read from a FIFO

( int i=0; i<length; i++ )

( int i=0; i<length; i++ )

Fig. 8 Source code generated by ESPAM. (a) Control code for processor uP4. (b) Read and write
communication primitives

Then, at lines 10–19 in the same figure, the behavior of processor uP4 is described.
In accordance with the XML specification of process P1 in Fig. 6a, the function
compute is executed 2 � N � 2 times. Therefore, a for loop is generated in the
main routine for processor uP4 in lines 14-18 in Fig. 8a. The computat ion code
in function compute is extracted from the initial sequential program. This code is
not important for our example; hence, it is not given here for the sake of brevity.
The function compute uses local variables in_0 and out_0 declared in lines 11 and
12 in Fig. 8a. The input data comes from FIFO2 through port p2, and the results
are written to FIFO1 through port p1 – see Fig. 9a. Therefore, before the function
call, ESPAM inserts a read primitive to read from FIFO2 initializing variable in_0
and after the function call, ESPAM inserts a write primitive to send the results (the
value of variable out_0) to FIFO1 as shown in Fig. 8a at lines 15 and 17. When
several processes are mapped onto one processor, a schedule is required in order
to guarantee a proper execution order of these processes onto one processor. The
ESPAM tool automatically finds a local static schedule from the STree model (see
Sect. 6.3) based on the grouping technique for processes presented in [48].

6.4.2 SW Communication and Synchronization Primitives
Recall from Sect. 6.2 that the FIFO channels are mapped onto the communication
memories of an MPSoC platform instances and the multi-FIFO organization of a
communication memory is realized by the corresponding communication controller
(CC). A FIFO channel is seen by a processor as two memory locations in its
communication memory address space. A processor uses the first location to read
the status of the FIFO. The status indicates whether a FIFO is full (data cannot
be written) or empty (data is not available). This information is used for the inter-
processor synchronization. The second location is used to read/write data from/to
the FIFO buffer, thereby, realizing inter-processor data transfer.
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The described behavior is realized by the SW communication and synchro-
nization primitives interacting with the HW communication controllers. The code
implementing the read and write primitives used in lines 15 and 17 in Fig. 8a is
shown in Fig. 8b. Both read and write primitives have three parameters: port , data,
and length. Parameter port is the address of the memory location through which
a processor can access a given FIFO channel for reading/writing. Parameter data
is a pointer to a local variable and length specifies the amount of data (in bytes)
to be moved from/to the local variable to/from the FIFO channel. The primitives
implement the blocking synchronization mechanism between the processors in the
following way. First, the status of a channel that has to be read/written is checked. A
channel status is accessed using the locations defined in lines 3 and 14. The blocking
is implemented by while loops with empty bodies (busy-polling mechanism) in lines
7 and 17. A loop iterates (does nothing) while a channel is full or empty. Then,
in lines 8 and 18 the actual data transfer is performed. Note that the busy-polling
mechanism, described above, to implement the blocking is sufficient because PPN
processes mapped onto a processor are statically scheduled, and the busy-polling
mechanism exactly follows/implements the blocking semantics of a PPN process,
discussed in the second paragraph of Sect. 3, thereby guaranteeing deterministic
execution of the PPN.

6.4.3 Memory Map Generation
Each FIFO channel in an MPSoCs has separate read and write ports. A processor
accesses a FIFO for read operations using the read synchronization primitive.
The parameter port specifies the address of the read port of the FIFO channel
to be accessed. In the same way, the processor writes to a FIFO using the write
synchronization primitive where the parameter port specifies the address of the
write port of this FIFO. The FIFO channels are implemented in the communication
memories (CMs); therefore, the addresses of the FIFO ports are located in the
processors’ address space where the communication memory segment is defined.
The memory map of an MPSoC generated by ESPAM contains the values defining
the read and the write addresses of each FIFO channel in the system.

The first step in the memory map generation is the mapping of the FIFO channels
in the PPN application specification onto the communication memories (CMs) in
the multiprocessor platform. This mapping cannot be arbitrary and should obey the
mapping rule described at the end of Sect. 2. That is, ESPAM maps FIFO channels
onto CMs of processors in the following automated way. First, for each process in
the application specification ESPAM finds all the channels this process writes to.
Then, from the mapping specification ESPAM finds which processor corresponds to
the current process and maps the found channels in the processor’s local CM. For
example, consider the mapping specification shown in Fig. 6b which defines only
the mapping of the processes of the PPN in Fig. 9a to the processors in the platform
shown in Fig. 9b. Based on this mapping specification, ESPAM maps automatically
FIFO2, FIFO3, and FIFO5 onto the CM of processor uP1 because process
P4 is mapped onto processor uP1 and process P4 writes to channels FIFO2,
FIFO3, and FIFO5. Similarly, FIFO4 is mapped onto the CM of processor
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Fig. 9 Mapping example. (a) Polyhedral process network. (b) Example platform

uP3, and FIFO1 is mapped onto the CM of uP4. Since both processes P2 and
P5 are mapped onto processor uP2, ESPAM maps FIFO6 and FIFO7 onto the
CM of this processor.

After the mapping of the channels onto the CMs, ESPAM generates the memory
map of the MPSoC, i.e., generates values for the FIFOs’ read and write addresses.
For the mapping example illustrated in Fig. 9b, the generated memory map is shown
in Fig. 10. Notice that FIFO1, FIFO2, FIFO4, and FIFO6 have equal write
addresses (see lines 4, 6, 10, and 14). This is not a problem because writing to
these FIFOs is done by different processors, and these FIFOs are located in the
local CMs of these different processors, i.e., these addresses are local processor
write addresses. The same applies for the write addresses of FIFO3 and FIFO7.
However, all processors can read from all FIFOs via a communication component.
Therefore, the read addresses have to be unique in the MPSoC memory map and
the read addresses have to specify precisely the CM in which a FIFO is located. To
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#define

#ifndef

#define p1    0xe0000008 //write addr. FIFO1
p4    0x00040001 //read addr. FIFO1#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

p7    0xe0000008 //write addr. FIFO2
p2    0x00010001 //read addr. FIFO2
p8    0xe0000010 //write addr. FIFO3 
p6    0x00010002 //read addr. FIFO3
p9    0xe0000008 //write addr. FIFO4
p12  0x00030001 //read addr. FIFO4
p10  0xe0000018 //write addr. FIFO5
p13  0x00010003 //read addr. FIFO5
p14  0xe0000008 //write addr. FIFO6
p11  0x00020001 //read addr. FIFO6
p3    0xe0000010 //write addr. FIFO7
p5    0x00020002 //read addr. FIFO7

5
6
7
8

10
9

4
3

_MEMORYMAP_H_
2
1

_MEMORYMAP_H_#define

11
12
13
14
15 #define
16
17

19 #endif
18

Fig. 10 The memory map of the MPSoC platform instance generated by ESPAM

accomplish this, a read address of a FIFO has two fields: a communication memory
(CM) number and a FIFO number within a CM.

Consider, for example, FIFO3 in Fig. 9b. It is the second FIFO in the CM of
processor uP1; thus this FIFO is numbered with 0002 in this CM. Also, the CM of
uP1 can be accessed for reading through port 1 of the communication component
INTERCONNECT as shown in Fig. 9b; thus this CM is uniquely numbered with
0001. As a consequence, the unique read address of FIFO3 is determined to be
0x00010002 – see line 9 in Fig. 10, where the first field 0001 is the CM number
and the second field 0002 is the FIFO number in this CM. In the same way, ESPAM

determines automatically the unique read addresses of the rest of the FIFOs that are
listed in Fig. 10.

6.5 Dedicated IP Core Integration with ESPAM

In Sects. 6.3 and 6.4 we presented our approach to system-level HW/SW synthesis
and code generation for MPSoCs that contain only programmable (ISA) processing
components. Based on that, in this section, we present an overview of our
approach to augment these MPSoCs with non-programmable dedicated IP cores
in a systematic and automated way. Such an approach is needed because, in some
cases, an MPSoC that contains only programmable processors may not meet the
performance requirements of an application. For better performance and efficiency,
in a multiprocessor system, some application tasks may have to be executed by
dedicated (customized and optimized) IP cores. Moreover, many companies already
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provide dedicated customizable IP cores optimized for a particular functionality that
aim at saving design time and increasing overall system performance and efficiency.
Therefore, we have developed techniques, implemented in ESPAM, for automated
generation of an IP Module which is a wrapper around a dedicated and predefined IP
core. The generated IP Module allows ESPAM to integrate an IP core into an MPSoC
in an automated way. The generation of IP Modules is based on the properties of the
PPN application model we use in DAEDALUS. Below, we present the basic idea in
our IP integration approach. It is followed by a discussion on the type of the IPs
supported by ESPAM and the interfaces these IPs have to provide in order to allow
automated integration. More details about our integration approach can be found
in [36].

6.5.1 IP Module: Basic Idea and Structure
As we explained earlier, in the multiprocessor platforms we consider, the proces-
sors execute code implementing PPN processes and communicate data between
each other through FIFO channels mapped onto communication memories. Using
communication controllers, the processors can be connected via a communication
component. We follow a similar approach to connect an IP Module to other IP
Modules or programmable processors in an MPSoCs. We illustrate our approach
with the example depicted in Fig. 11. We map the PPN in Fig. 2a onto the
heterogeneous platform shown in Fig. 11a. Assume that process P1 is executed by
processor uP1, P3 is executed by uP2, and the functionality of process P2 is
implemented as a dedicated (predefined) IP core embedded in an IP Module. Based
on this mapping and the PPN topology, ESPAM automatically maps FIFO channels
to communication memories (CMs) following the rule that a processing component
only writes to its local CM. For example, process P1 is mapped onto processing
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component uP1 and P1 writes to FIFO channel CH1. Therefore, CH1 is mapped
onto the local CM of uP1 – see Fig. 11a. In order to connect a dedicated IP core to
other processing components, ESPAM generates an IP Module (IPM) that contains
the IP core and a wrapper around it. Such an IPM is then connected to the system
using communication controllers (CCs) and communication memories (CMs), i.e.,
an IPM writes directly to its own local FIFOs and uses CCs (one CC for every input
of an IP core) to read data from FIFOs located in CMs of other processors. The IPM
that realizes process P2 is shown in Fig. 11b.

As explained in Sect. 3, the processes in a PPN have always the same structure.
It reflects the PPN operational semantics, i.e, read-execute-write using blocking
read/write synchronization mechanism. Therefore, an IP Module realizing a process
of a PPN has the same structure, shown in Fig. 11b, consisting of READ, EXE-
CUTE, and WRITE components. A CONTROL component is added to capture
the process behavior, e.g., the number of process firings, and to synchronize
the operation of components READ, EXECUTE, and WRITE. The EXECUTE
component of an IPM is actually the dedicated IP core to be integrated. It is not
generated by ESPAM but it is taken from a library. The other components READ,
WRITE, and CONTROL constitute the wrapper around the IP core. The wrapper is
generated fully automatically by ESPAM based on the specification of a process to be
implemented by the given IPM. Each of the components in an IPM has a particular
structure which we illustrate with the example in Fig. 11c. Figure 2c shows the
specification of process P2 in the PPN of Fig. 2a if P2 would be executed on a
programmable processor. We use this code to show the relation with the structure of
each component in the IP Modules generated by ESPAM, shown in Fig. 11c, when
P2 is realized by an IP Module.

In Fig. 2c, the read part of the code is responsible for getting data from proper
FIFO channels at each firing of process P2. This is done by the code lines 5–8
which behave like a multiplexer, i.e., the internal variable in_0 is initialized with
data taken either from port IP1 or IP2. Therefore, the read part of P2 corresponds
to the multiplexer MUX in the READ component of the IP Module in Fig. 11c.
Selecting the proper channel at each firing is determined by the if conditions at
lines 5 and 7. These conditions are realized by the EVALUATION LOGIC READ
sub-component in component READ. The output of this sub-component controls
the MUX sub-component. To evaluate the if conditions at each firing, the iterators
of the for loops at lines 3 and 4 are used. Therefore, these for loops are implemented
by counters in the IP Module – see the COUNTERS sub-component in Fig. 11c.

The write part in Fig. 2c is similar to the read part. The only difference is
that the write part is responsible for writing the result to proper channels at each
firing of P2. This is done in code lines 10–13. This behavior is implemented by
the demultiplexer DeMUX sub-component in the WRITE component in Fig. 11c.
DeMUX is controlled by the EVALUATION LOGIC WRITE sub-component which
implements the if conditions at lines 10 and 12. Again, to implement the for loops,
ESPAM uses a COUNTERS sub-component. Although, the counters correspond to
the control part of process P2, ESPAM implements them in both the READ and
WRITE blocks, i.e., it duplicates the for-loops implementation in the IP Module.
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This allows the operation of components READ, EXECUTE, and WRITE to
overlap, i.e., they can operate in pipeline which leads to better performance of the
IP Module.

The execute part in Fig. 2c represents the main computation in P2 encapsulated
in the function call at code line 9. The behavior inside the function call is realized
by the dedicated IP core depicted in Fig. 11c. As explained above, this IP core is not
generated by ESPAM but it is taken from a library of predefined IP cores provided
by a designer. An IP core can be created by hand or it can be generated automatically
from C descriptions using high-level synthesis tools like, e.g., Xilinx Vivado [58].
In the IP Module, the output of sub-component MUX is connected to the input of
the IP core, and the output of the IP core is connected to the input of sub-component
DeMUX. In the example, the IP core has one input and one output. In general,
the number of inputs/outputs can be arbitrary. Therefore, every IP core input is
connected to one MUX and every IP core output is connected to one DeMUX.

Notice that the loop bounds at lines 3–4 in Fig. 2c are parameterized. The
CONTROL component in Fig. 11c allows the parameter values to be set/modified
from outside the IP Module at run time or to be fixed at design time. Another
function of component CONTROL is to synchronize the operation of the IP Module
components and to make them to work in pipeline. Also, CONTROL implements
the blocking read/write synchronization mechanism. Finally, it generates the status
of the IP Module, i.e., signal Done indicates that the IP Module has finished an
execution.

6.5.2 IP Core Types and Interfaces
In this section we describe the type of the IP cores that fit in our IP Module idea and
structure discussed above. Also, we define the minimum data and control interfaces
these IP cores have to provide in order to allow automated integration in MPSoC
platforms generated by ESPAM.

1. In the IP Module, an IP core implements the main computation of a PPN
process which in the initial sequential application specification is represented
by a function call. Therefore, an IP core has to behave like a function call as
well. This means that for each input data, read by the IP Module, the IP core is
executed and produces output data after an arbitrary delay;

2. In order to guarantee seamless integration within the data-flow of our heteroge-
neous systems, an IP core must have unidirectional data interfaces at the input
and the output that do not require random access to read and write data from/to
memory. Good examples of such IP cores are the multimedia cores at http://www.
cast-inc.com/cores/;

3. To synchronize an IP core with the other components in the IP Module, the IP
core has to provide Enable/Valid control interface signals. The Enable
signal is a control input to the IP core and is driven by the CONTROL component
in the IP Module to enable the operation of the IP core when input data is read
from input FIFO channels. If input data is not available, or there is no room to
store the output of the IP core to output FIFO channels, then Enable is used to

http://www.cast-inc.com/cores/
http://www.cast-inc.com/cores/
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suspend the operation of the IP core. The Valid signal is a control output signal
from the IP and is monitored by component CONTROL in order to ensure that
only valid data is written to output FIFO channels connected to the IP Module.

7 Summary of Experiments and Results

As a proof of concept, the DAEDALUS methodology/framework and its individual
tools (PNGEN, SESAME, and ESPAM) have been tested and evaluated in experi-
ments and case studies considering several streaming applications with different
complexity ranging from image processing kernels, e.g., Sobel filter and discrete
wavelet transform (DWT), to complete applications, e.g., Motion-JPEG encoder
(MJPEG), JPEG2000 codec, JPEG encoder, H.264 decoder, and medical image
registration (MIR). For the description of these experiments, case studies, and the
obtained results, we refer the reader to the following publications: [36,37] for Sobel
and DWT, [34, 36, 37, 51] for MJPEG, [1] for JPEG2000, [38] for JPEG, [46]
for H.264, and [13] for MIR. In this section, we summarize very briefly the
JPEG encoder case study [38] in order to highlight the improvements, in terms of
performance and design productivity, that can be achieved by using DAEDALUS

on an industry-relevant application. This case study, which we conducted in a
project together with an industrial partner, involves the design of a JPEG-based
image compression MPSoC for very high-resolution (in the order of gigapixels)
cameras targeting medical appliances. In this project, the DAEDALUS framework
was used for design space exploration (DSE) and MPSoC implementation, both at
the level of simulations and real MPSoC prototypes, in order to rapidly gain detailed
insight on the system performance. Our experience showed that all conducted
DSE experiments and the real implementation of 25 MPSoCs (13 of them were
heterogeneous MPSoCs) on an FPGA were performed in a short amount of time,
5 days in total, due to the highly automated DAEDALUS design flow. Around 70%
of this time was taken by the low-level commercial synthesis and place-and-route
FPGA tools. The obtained implementation results showed that the DAEDALUS high-
level MPSoC models were capable of accurately predicting the overall system
performance, i.e., the performance error was around 5%. By exploiting the data-
and task-level parallelism in the JPEG application, DAEDALUS was able to deliver
scalable MPSoC solutions in terms of performance and resource utilization. We
were able to achieve a performance speedup of up to 20x compared to a single
processor system. For example, a performance speedup of 19.7x was achieved
on a heterogeneous MPSoC which utilizes 24 parallel cores, i.e., 16 MicroBlaze
programmable processor cores and 8 dedicated hardware IP cores. The dedicated
hardware IP cores implement the Discrete Cosine Transform (DCT) within the
JPEG application. The MPSoC system performance was limited by the available
on-chip FPGA memory resources and the available dedicated hardware IP cores in
the DAEDALUS RTL library (we had only the dedicated DCT IP core available).
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8 Conclusions

In this chapter, we have presented our system design methods and techniques that
are implemented and integrated in the DAEDALUS design/tool flow for automated
system-level synthesis, implementation, and programming of streaming multipro-
cessor embedded systems on chips. DAEDALUS features automated application
parallelization (the PNGEN tool), automated system-level DSE (the SESAME tool),
and automated system-level HW/SW synthesis and code generation (the ESPAM

tool). This automation significantly reduces the design time starting from a func-
tional specification and going down to complete MPSoC implementation. Many
experiments and case studies have been conducted using DAEDALUS, and we could
conclude that DAEDALUS helps an MPSoC designer to reduce the design and
programming time from several months to only a few days as well as to obtain
high quality MPSoCs in terms of performance and resource utilization.

In addition to the well-established methods and techniques, presented in this
chapter, DAEDALUS has been extended with new advanced techniques and tools
for designing hard-real-time embedded streaming MPSoCs. This extended version
of DAEDALUS is called DAEDALUSRT [2–5,28,47]. Its extra features are (1) support
for multiple applications running simultaneously on an MPSoC; (2) very fast, yet
accurate, schedulability analysis to determine the minimum number of processors
needed to schedule the applications; and (3) usage of hard-real-time multiprocessor
scheduling algorithms providing temporal isolation to schedule the applications.
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