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Chapter 1

Introduction

Embedded systems nowadays need to support ever-increasing functionality and
high flexibility, which calls for the emergence of multiprocessor systems, in place
of single processor systems, for the embedded System-on-Chip platforms. The
multiprocessor Systems-on-Chips (MPSoCs) are much more efficient than uniproces-
sor systems because they can exploit parallelism between tasks.

Because of the complexity and parallel nature of MPSoCs, the multiprocessor
system brings us several problems to consider:

• How to partition an application into concurrent processes to match the par-
allel nature of MPSoCs. That means in case of sequential languages, such
as C or Matlab, we need to convert sequential specifications into parallel
specifications.

• How to map these application processes to the multiprocessor platform ef-
ficiently and systematically.

• How to specify the platform at a high level of abstraction instead of the
current register transfer level (RTL). The RTL level is clearly too low for
complex multiprocessor platform design.

• How to make MPSoCs flexible and re-usable, so that they can easily be
modified in response to bugs, user requirements or adapted to different ap-
plications.

Bearing these aspects in mind, the Embedded System-Level Platform Synthe-
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sis and Application Mapping (ESPAM) tool [1] [2] is being developed to con-
vert systematically and automatically a System-level specification to a RTL-level
specification. Previous work on ESPAM has already implemented this automatic
conversion for homogeneous multiprocessor systems, which consist of only pro-
grammable processors as processing components. The processing components are
connected to communicate with each other by communication components such
as FIFO component, crossbar component, and bus component. This thesis focuses
on further improving ESPAM by achieving automatic conversion for heteroge-
neous multiprocessor systems which supports both programmable processors and
fixed hardware modules (dedicated hardware IP cores) as processing components.

This chapter is organized as follows. In Section 1.1, an introduction to ESPAM
and its previous work is given. In Section 1.2 the motivation for this thesis project
is explained. Section 1.3 presents other related work and section 1.5 describes the
organization of this thesis.

1.1 ESPAM Introduction

With the applications demanding higher and higher processing performance on
the embedded systems, multiprocessor systems have to be used to exploit paral-
lelism. This requires the mapping of applications onto multiprocessor systems.
However, traditionally the mapping is done manually and depends very much on
the expertise of the hardware designer, who has to possess an accurate knowledge
of both the underlying hardware systems and the applications.

Thus, ESPAM is developed to allow system designers to specify a system and
its related applications at a higher level of abstraction called System-Level to save
much design effort and time. ESPAM can convert this specification into a RTL-
Level specification which can be used as input for current commercial synthesis
tools. Figure 1.1 shows the system design flow of ESPAM.

The system design flow shows that two levels of specifications are involved
with our ESPAM tool: System-Level specification and RTL-Level specification.
The input of ESPAM is System-Level specification, which consists of three parts:

• Platform Specification: It specifies the topology of a platform using generic
parameterized system components. Two types of components, processing
components and communication components, are involved.
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Figure 1.1: System design flow

• Application Specification: It specifies an application as a Kahn Process Net-
work (KPN) where a number of concurrent processes are connected in a
network and they communicate data via FIFO channels.

• Mapping Specification: It specifies the corresponding relations between all
processes and FIFO channels of Application Specification and all compo-
nents of Platform Specification.

For mapping applications onto multiprocessor systems, the parallelism avail-
able in an application must be revealed and exploited first. Because most of the
applications are typically specified as sequential programs using a high-level pro-
gramming language such as C/C++ or Matlab, an abstract concurrent model is
needed to reveal the implicit concurrency of the applications. In our design flow
shown in Figure 1.1, COMPAAN [3] [4] [5] [6] is used to convert a sequential ap-
plication into Kahn Process Network (KPN) [7] specifications. The applications
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COMPAAN can handle are parameterized static affine nested loop programs, which
can be described using a subset of the Matlab language.

The KPN specification represents an application in terms of distributed control
and distributed memory, which can lead to efficient implementations on FPGAs
for stream oriented applications. The KPN model of computation assumes a net-
work of concurrent autonomous processes that communicate in a point-to-point
fashion over unbounded FIFO channels (buffers), using a blocking-read synchro-
nization primitive. Each process in the network is specified as a sequential pro-
gram that executes concurrently with other processes.

After getting the KPN Application Specification, users can specify their Plat-
form Specification and Mapping Specification. ESPAM takes these three specifica-
tions as input and finds out the correspinding relations between the KPN processes
and target platform components according to the Mapping Specification. Then
ESPAM generates the target physical platform by instantiating the platform com-
ponents which are given in the Platform Specification as well as the components
which function as an interface [8] for communication between the generated em-
bedded system and outside host processors. Finally, program code files for each
processor in the target platform are generated by the ESPAM tool.

The specification generated by the ESPAM tool is at RTL level. It includes
Platform topology description which describes the platform topology in great de-
tail; Hardware descriptions of IP cores which contains all used predefined IP cores
from Library IP Cores as well as reconfigurable IP cores which are generated ac-
cording to the KPN specification of an application; Program codes for processors
which are program source code files in C for each processor component according
to the behavior of the corresponding process in the KPN; Auxiliary information
which contains supply files for giving tight control of the overall specifications.
Also the generated specification includes an interface which enables the commu-
nication between the target embedded system and the host processor via several
memories.

These generated descriptions by ESPAM can be accepted by a commercial syn-
thesizer as input for conversion into a Gate-Level specification. This Gate-Level
specification is the final detailed implementation of the system which conforms to
the user’s highly abstract specifications.

Thus, the previous work on ESPAM, together with the COMPAAN compiler, al-
lows a fully automated system design flow that maps sequential applications writ-
ten in Matlab onto homogeneous multiprocessor platforms with manually speci-



1.2 Motivation 5

fied mapping between processes and processors. Both one-to-one and many-to-
one mappings are supported. Many-to-one mapping means more than one process
in the Application Specification can be mapped onto one processor in the Plat-
form Specification. However, one channel in the Application Specification is still
mapped onto one FIFO channel in the Platform Specification. This many-to-one
mapping is useful when the rescource on the Xilinx field programmable gate ar-
rays (FPGAs) board are not enough for one-to-one mapping. The generated sys-
tem on an FPGA chip is able to communicate with outside host processors by
exchanging data with off-chip ZBT SSRAM memories through an interface.

1.2 Motivation

In the previous work on ESPAM, generated embedded systems are still homo-
geneous multiprocessor embedded systems in which, the processing components
are only programmable processors. In many cases, a homogeneous system can no
longer meet the application requirements because for different types of processes
different types of processing components are needed for efficiency. It is a common
knowledge that a dedicated hardware IP core can work more efficiently than a gen-
eral processor which has to compile and execute software programs for the same
function. Thus, we find it necessary to extend our ESPAM tool with support for
automatic generation of heterogeneous embedded systems where both processor
components and dedicated hardware IP cores are used as processing components.
The configurable MicroBlaze embedded soft processor core [9] [10], which is
used in our ESPAM generated projects, can integrate customized user Intellectual
Property (IP) cores [11]. This integration can result in a dramatic acceleration in
execution time due to algorithms being executed in parallel in hardware and not
sequentially in software.

For proving the correctness and feasibility of this idea in ESPAM, in [12] ES-
PAM was used to generate a homogeneous embedded system for an MJPEG ap-
plication with MicroBlaze processors. One processor component was replaced
manually by a dedicated hardware module, which contains the hardware IP core
for implementing a certain function, to test the efficiency of this replacement.
The hardware module should have FIFO interfaces to communicate with other
processing components. Since the hardware modules which are generated by the
LAURA tool [13] meet this requirement and the generation is quicker and less
error-prone compared to manual hardware module generation, LAURA was used
to generate the hardware module for executing the most computationally inten-
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sive process of the application. After replacing the corresponding processor with
this hardware module, the total time performance of the application execution was
greatly improved. By analyzing the execution time of seperate processing compo-
nents, the reason lies in that the total execution time performance of an application
depends mostly on the most computationally intensive process, which is also the
most time-consuming one. Once the execution time of this process is decreased
by implementing it with a hardware module, the total time performance is also
improved.

From the experiment results in [12], we can see the advantage and necessity
to implement automatic generation in ESPAM of heterogeneous systems which
integrate dedicated hardware IP cores. But instead of integrating the hardware
modules generated by the LAURA tool, we generate our own hardware modules
because we want some properties which the LAURA generated hardware module
networks do not currently support:

• First, we want the hardware modules to be clearly structured and better
modularized. A hardware module generated by our ESPAM tool contains
a hardware IP core and a wrapper around the IP core. Several predefined
and parameterized components with a clearly defined interface compose
a hardware module. For generating a hardware module, we only have to
instantiate these components stored in a library and set the corresponding
parameters.

• Second, as a result of making the hardware modules more structured and
modularized, every component/part of the hardware modules becomes more
independent and loosely coupled. Therefore, we can debug and optimize
each component separately. This brings much convenience for efficient and
effective optimization, which makes the performance of the generated sys-
tems better. The small hardware overhead that the modularization initially
brings is canceled, in our case, by the hardware optimizations (possible due
to the modularization) in the individual components. See the experimental
section.

• Third, the systems LAURA generates are networks of only hardware mod-
ules. The LAURA networks have never been designed to support integration
with multiple programmable processors. To integrate certain hardware IP
cores into our ESPAM generated systems using LAURA generated hardware
modules, we need to manually add some additional hardware to reset, in
a specific way, the LAURA generated hardware module network [12]. To
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avoid this inconvenience and make our ESPAM being more flexible by sup-
porting both programmable processors and hardware IP cores, we need to
extend the ESPAM to support hardware IP core integration.

By analyzing the structure and models ESPAM uses, we find it possible to
get enough information for the dedicated hardware IP core integration from the
current models. We will explain how to extract information from and integrate
with our current ESPAM in detail in Chapter 2. With the extracted information,
a wrapper can be generated around a hardware IP core which implements the
functionality of a process in a hardware language. The wrapper thus makes the
hardware IP core be able to communicate with other processing components via
FIFO interface. The wrapper together with the hardware IP core is regarded as
a hardware module. The IP core is not generated by ESPAM. It should be in the
library.

Thus, the main task of this thesis project is to support automatic heterogeneous
embedded systems generation according to the platform and mapping specifica-
tions which are given by the users. The generated hardware modules, which con-
sist of hardware IP cores and wrappers, are in the format which can be synthesized
by Xilinx Platform Studio(XPS) [9]. These hardware modules can be integrated
into our ESPAM through communicating and cooperating with other processing
components for execution of applications. Also for supporting reuse of design
components, we decide to generate the necessary files for hardware modules in a
parameterized form.

1.3 Related Work

Mapping applications to embedded system platforms systematically and automat-
ically has been widely studied in the research community. The closest work to
our work is the LAURA tool which has been developed at the Leiden Embedded
Research Center (LERC). It generates embedded systems composed of hardware
modules which have similar structure to our ESPAM generated hardware modules.
Comparing to the LAURA tool, our ESPAM makes the parameterized nature of
KPN clearer because every component of our generated hardware modules are
well parameterized and the global parameters can be loaded from a Parameter
Bus from the outside host processor conveniently. Also, our ESPAM makes the
automatically generated hardware modules for XPS projects more modularized
and structured than the ones generated by LAURA. Each hardware module is
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composed of several parameterized components which are loosely coupled. The
hardware modules are faster and more area efficient. Lastly the LAURA tool maps
the KPN for an application only to hardware IP cores while our ESPAM can sup-
port both programmable processor cores and IP cores, which brings much more
flexibility in the system implementation.

Another similar work is presented in [14]. It introduces a design flow for the
generation of application-specific multiprocessor architectures. In this work the
architecture generation is based on instantiation of generic multiprocessor archi-
tecture templates and on the automatic generation of communication coproces-
sors. This is similar to our ESPAM design flow because for our multiprocessor
system and IP wrapper components generation, instantiation of generic parame-
terized architecture components is also used. However, the design flow in [14] is
not as fully automated as our ESPAM tool. Many steps still need to be done man-
ually. This makes a full implementation of a system with this design flow slower
than that of our ESPAM tool.

In [15] a top-down design methodology with various abstraction levels called
C-HEAP is introduced. It starts with a high-level executable specification and
converges towards a silicon implementation. The methodology proposes a hetero-
geneous multi-processor architecture template based on distributed shared mem-
ory and presents an efficient and transparent protocol for communication and
(re)configuration. C-HEAP is similar to our ESPAM design flow because for
both methodologies several abstraction levels are traversed throughout the design
process. One major difference is that our ESPAM platform model uses distributed
memory while C-HEAP uses shared memory.

Companies such as Xilinx, Altera, etc. provide approaches and design tools
attempting to facilitate efficient implementations of single or multiprocessor sys-
tems on an FPGA. However, the required input specifications are still very de-
tailed. In contrast, our design methodology raises the design focus to a higher
system level of abstraction that reduces the design time significantly.

1.4 Research Contributions

In this thesis, we present extensions to the ESPAM tool that implement our method-
ology to map KPNs generated by the COMPAAN tool onto a heterogeneous em-
bedded system which consists of multiple processors and hardware modules. The
main contributions are:
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• Further improvement of ESPAM, in comparison to [12], to allow mapping of
a Kahn Process Network specification onto heterogeneous embedded sys-
tem which consists of multiple processors and hardware IP cores in a sys-
tematic and automated way;

• Generation of very clearly structured and modularized hardware IP core
wrappers which leads to easy and efficient IP core integration in ESPAM;

• Comparison between LAURA and ESPAM in generating homogeneous sys-
tems consisting of only hardware modules.

• Validation of the presented approach with stream-oriented application ex-
periments.

• Full implementation and integration of the presented approach in the ES-
PAM software is available on the CVS repository of the LERC group of
LIACS.

1.5 Thesis Organization

The remaining part of this thesis is organized as follows.

Chapter 2 gives detailed description of the approach to generate heterogeneous
embedded systems. The general structure of the generated IP core wrappers is
presented. Also the information extraction from the related ESPAM models is
depicted as well as the visitor pattern which is used to generate the hardware
module part of the final system.

In Chapter 3 we present case studies that we conducted in order to validate and
evaluate our generation approach presented in Chapter 2 on real-life applications.
The results obtained from the experiments performed in these case studies are
analyzed and compared to hardware systems generated by LAURA.

In Chapter 4 we give a detailed tutorial showing how to build a heterogeneous
multiprocessor embedded system using our COMPAAN/ESPAM tool chain and the
commercial synthesis tool Xilinx Platform Studio.

In the final chapter we give conclusions and limitations of the current work as
well as some ideas for improvements in future work.
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Chapter 2

Heterogeneous Multiprocessor
System Generation

In Chapter 1 we discussed our motivation to make ESPAM support automatic het-
erogeneous embedded system generation. In this Chapter we elaborate in more
details the approach and techniques for the generation. With these techniques,
ESPAM supports soft/hard processor cores and dedicated hardware modules as
processing platform components. The hardware modules can communicate with
each other or MicroBlaze processor components via FIFOs. In Section 2.1 the
basic concept for the IP core integration in ESPAM is introduced. In Section 2.2
the internal structure of the wrappers for hardware IP cores is given and explained
in detail. In Section 2.3 we discuss how to extract relevant information from the
ESPAM models and how to generate the wrappers in XPS format. Finally, in Sec-
tion 2.4 we present the concept of visitor pattern and how we use it to implement
the generation of the IP core wrappers.

2.1 IP Core Integration in ESPAM– Basic Concept
and Structure

We already explained that the application is specified as a KPN which consists
of concurrent processes and communication channels. For flexibility, we want
to be able to map these processes to heterogeneous processing components. For
clarity, we first show a simple example to illustrate the mapping procedure. In
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%parameter N 2 10;

for i = 1 : 1 : 1,
[ a(i) ] = Init;

end

for i = 2 : 1: N,
[a(i)] = Compute (a(i-1));

end

for i =N : 1 : N,
[] = Pass(a(i));

end

Figure 2.1: Simple example in Matlab Figure 2.2: Code for Process P2

Figure 2.1 a simple MATLAB program is shown. The corresponding KPN of this
very simple MATLAB code is shown in the upper part of Figure 2.3. It contains
three processes and is mapped onto a heterogeneous system. Processes P1 and
P2 are mapped onto MicroBlaze processors and the middle process P3 is mapped
onto a hardware module. The KPN unbounded FIFO channels Ch1, Ch2, and
Ch3 are mapped onto the bounded hardware FIFOs FIFO1, FIFO2, and FIFO3,
respectively.

In the lower part of Figure 2.3 we can see that each generated hardware module
contains mainly four blocks: a Read Block, an Execute Block, a Write Block and
a Control Block. Hardware modules communicate with each other or processors
through FIFO interfaces. We divide the hardware module into these four blocks
for the following reasons:

Firstly, the hardware modules are regarded as components of the systems gen-
erated by ESPAM. They should have a general structure as required for component
based systems generated by ESPAM. To make it general enough, we should bear
in mind the features of ESPAM based systems. Such as components should be
semantically independent of one another and impose no restrictions on the other
components they cope with. Each component has its own control. Components
in ESPAM communicate with each other using point-to point channels through
which no transfer of control information takes place. From this, we conclude that
the hardware modules should at least have a control block and blocks for commu-
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Figure 2.3: An example of mapping KPN onto Heterogeneous System

nication and execution.

Secondly, the sequential program for a process of a KPN produced by COM-
PAAN always follows a particular sequence of events. Let us consider the P2
process as it is specified by the sequential code given in Figure 2.2. First, the data
is read from the input ports. Second, the actual computation takes place to perform
the corresponding function Compute from the original Matlab program. Last the
data is written to output ports. The three events are enclosed by a for-loop, indicat-
ing that the sequence of events needs to be repeated for a given number of times.
This kind of process is suitable to operate in a stream based fashion, an opera-
tion model which is very applicable to multi-media and digital signal processing
applications.

Thus it is reasonable to construct the hardware modules with four blocks re-



14 Heterogeneous Multiprocessor System Generation

lated to communication with other components and their own control: Read Block,
Write Block, Execute Block and Control Block. The Read Block is responsible to
read data from other components according to the application specification. Sim-
ilarly, as the name implies, the Write Block is responsible to write data into other
components according to the specific applicatoin. The Execute Block contains the
VHDL file(s) for function execution (the IP core). The Control Block contains a
control unit which controls and synchronizes the execution of the function. It also
contains a parameter loading component which loads global parameters.

Our hardware module structure is the same as that of the hardware virtual
processors [13] generated by the LAURA tool because we find this structure matches
the KPN process behaviour well. However, our implementation of the hardware
blocks in this structure is different in order to make it more modularized.

Figure 2.4 shows an example of hardware module for the process P2 in Figure
2.3. The code for this process is shown in Figure 2.2. We first analyze the code to
help understanding the corresponding hardware module structure:

The function in process P2 has one input argument in 0 and one output argu-
ment out 0. The process P2 has two input ports IP1, IP2 and two output ports
OP1, OP2. The I/O arguments take data from one of the I/O ports according to
the control expressions. For example, when the control expression i-2==0 is true,
the input argument in 0 reads data from the input port IP1. The iterator i is the
loop iterator for the whole process. It goes from 2 to N. Here N is a global para-
meter of the application which can be set statically at design time or dynamically
at run-time.

In the Read Block of Figure 2.4, a multiplexer is used to select data from input
ports IP1 or IP2 for the input argument in 0. The control expressions for read-
ing (i-2 == 0 and i-3 >= 0) are evaluated in the component EVAL LOGIC RD
with the current iterator value taken from the counter component which counts
from 2 to N. The generated control signals are sent to the multiplexer to tell it
which input port to read data from. Similarly, in the Write Block there is a de-
multiplexer to propagate data from the output argument out 0 to the output ports
OP1 or OP2 according to the control signals generated by EVAL LOGIC WR.
The EVAL LOGIC WR component evaluates the control expressions for writing.
The Write Block has its own counter so that reading and writing can be indepen-
dent of each other. The Execute Block contains the IP core which implements the
functionality of the function Compute. The Control Block communicates with the
other three blocks to synchronize these blocks. Also, this block is used to set the
global parameter N in process P2.
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Figure 2.4: Hardware Module for P2

2.2 Structure of the IP core wrapper

We already explained the basic concept and main structure of the hardware mod-
ules. The next step is to figure out how to make the wrapper conforming to this
structure. Since the main task is to generate wrappers around IP cores, there are
two issues under consideration. The first one is how to organize the structure of
the wrapper clearly. The second one is how to construct the communication in-
terface of the wrapper so that it can conform to ESPAM’s previous work. In this
section, the wrapper structure generated by ESPAM is explained in detail as well
as the communication interface.

2.2.1 Main structure and communication interface

The hardware modules we want to generate automatically are hardware compo-
nents which can execute certain functionality and can communicate with other
processing components in embedded systems. The IP core for implementing the
functionality has to be taken from a library. To make sure the hardware modules
can cooperate with other processing components, we generate a wrapper around
the IP core according to the application specification, mapping specification and
platform specification. Also, regarding communication with other components,
we need to make the communication interface able to communicate using FIFO in-
terface because ESPAM mainly supports data communication through FIFO chan-
nels. Below, we give more information about the structure of the wrapper we
generate and the FIFO interface.
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Since a hardware module has four blocks, our generated wrapper should also
have the same structure – Read Block, Execute Block, Write Block and Control
Block. In the previous section, the analysis of process P2 code and its correspond-
ing hardware module are given. Here, we give a more detailed and general de-
scription of a wrapper for a hardware IP core. Figure 2.5 shows the main structure
of our wrapper for a hardware IP core. The ports left-most and right-most corre-
spond to I/O ports of an KPN process/node (IP1,IP2,OP1, and OP2 for process
P2). The inputs and outputs to the Execution Unit are corresponding to the In-
put/Output Arguments of the function for the KPN process/node (in 0 and out 0
for process P2). Each I/O Argument can be connected to one or more I/O ports as
shown in the figure and chooses the input/output from a certain I/O port according
to the control conditions at a certain time. Thus, for each input argument of the
function, one multiplexer is needed to select from input data ports. It is possible
that an KPN process has no input ports or no output ports if it is a source node or
a sink node.

The Read Block is the left most part in Figure 2.5 which is composed of sev-
eral multiplexers (RD MUX), a reading logic component (EVAL LOGIC RD) and
a counter component (GEN COUNTER). The Write Block is the right most part
which is composed of one demultiplexer (WR DEMUX), one writing logic compo-
nent (EVAL LOGIC WR) and a counter component (GEN COUNTER). The mid-
dle upper component Execution Unit belongs to the Execute Block. The middle
lower components Control Unit and Parameters component constitute the Control
Block. We explain the components in these four blocks separately in Subsections
2.2.2, 2.2.3, 2.2.4 and 2.2.5.

In ESPAM, we support FIFO based connection between a hardware module
and a MicroBlaze soft processor. This is because all the communication chan-
nels/edges in the KPN are mapped onto hardware FIFO buffer components in the
Platform Model. From Figure 2.5 we see that for every port (see port 1,2,3,4,5,6)
of a hardware module, a bus interface which consists of ports corresponding to
FIFO interface ports is created. This interface conforms to a common FIFO com-
munication interface which we introduce below.

Figure 2.6 shows the ports of the common FIFO communication interface.
The left side ports are used by a write master to write data into a FIFO buffer.
The right side ports are used by a read master to read data from a FIFO buffer. A
write master provides W Clk, W Data and W Write signals to a FIFO. W Clk is
the master clock signal to asynchronously control the master writes to the FIFO.
W Data is the data bus to write data to the FIFO. W Write is the signal that controls
the write enable signal of the FIFO. The FIFO buffer gives back a W Full signal



2.2 Structure of the IP core wrapper 17

Figure 2.5: Main Structure of Harware IP Core Wrapper

as a feedback for the master to indicate whether the FIFO is full.

Figure 2.6: FIFO Communication Interface

In the right side of Figure 2.6, a read master provides R Clk and R Read sig-
nals to the FIFO. R Clk is the slave read clock to asynchronously read the FIFO.
R Read is the signal that controls the read enable signal of the FIFO.S Data is the
data bus to read data from the FIFO. R Exists is the signal indicating when the
FIFO contains valid data to read.
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2.2.2 Read Block

The Read Block fetches data from communication channels and assigns all input
arguments of the Execute Block with corresponding data. Since there are normally
more input ports than input arguments, the Read Block has to select from which
port to fetch the data using the control information derived from the KPN.

As Figure 2.5 shows, the Read Block of our hardware IP core wrapper im-
plementation consists of reading multiplexers, a reading logic component and a
counter component. We explain the function and implementation of these compo-
nents one by one in detail in the following subsections.

Reading Multiplexer

As the name implies, a reading multiplexer is used to select data from one of its
inputs and deliver the data to its output. Figure 2.7 shows the interface definition
of the reading multiplexer in VHDL:

entity read_mux is
generic(

N_PORTS : natural := 1;
PORT_WIDTH : natural := 32

);
port(
IN_PORTS : in std_logic_vector(N_PORTS*PORT_WIDTH-1 downto 0);
EXISTS : in std_logic_vector(N_PORTS-1 downto 0);
READS : out std_logic_vector(N_PORTS-1 downto 0);

OUT_PORT : out std_logic_vector(PORT_WIDTH-1 downto 0);
EXIST : out std_logic;
READ : in std_logic;

CONTROL : in std_logic_vector(N_PORTS-1 downto 0)
);
end read_mux;

Figure 2.7: Reading Multiplexer Interface

In the figure we can see that input interface of the multiplexer consists of ports
IN PORTS, EXISTS and READS. They are used for input data, existence signal
of input data and read signal to the input source separately. Similarly for the
output interface, OUT PORT is for output data; EXIST is for existence signal of
output data; READ is reading signal from the Control Unit. The CONTROL port
is connected with control signals to decide from which input source will the data
be delivered to the output. Only one input source is selected at a specific time for
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output. The multiplexer entity has two parameters: N PORTS and PORT WIDTH.
These parameters are set according to the specific multiplexer instance in the top
level VHDL file for the hardware IP. The value for N PORTS is the number of
input ports for the multiplexer. PORT WIDTH is the width of the ports.

In Figure 2.8, the implementation of the reading multiplexer is shown. Lines
3-5 determine whether to read from a certain input by checking the corresponding
bit of the CONTROL and the READ signal from the Control Unit. The process
in lines 7-16 assigns the OUT PORT data with the correct input data and set the
EXIST signal with the correct value which is the same as the input port exist
value. What need to be mentioned is that in line 10 the EXIST value is set to be 1
by default. That is because it is possible that sometimes not every input argument
needs data input, but we still want the Control Unit to be told that all the data for
the execution exists to enable the function execution.

1 architecture RTL of read_mux is
begin

DEMUX_GEN : for i in 0 to N_PORTS-1 generate
READS(i) <= CONTROL(i) and READ;

5 end generate;

MUX_PRCSS : process(EXISTS, CONTROL, IN_PORTS)
begin
OUT_PORT <= (others=>’0’);

10 EXIST <= ’1’;
for i in 0 to N_PORTS-1 loop

if( CONTROL(i) = ’1’ ) then
OUT_PORT <= IN_PORTS((i+1)*PORT_WIDTH-1 downto (i)*PORT_WIDTH);

EXIST <= EXISTS(i);
15 end if;

end loop;
end process;

end RTL;

Figure 2.8: Reading Multiplexer Implementation

Reading Logic Component

The reading multiplexers in Figure 2.5 are controlled by the reading logic compo-
nent which is denoted as EVAL LOGIC RD in the figure. Its interface definition
in VHDL is shown in Figure 2.9.

This component mainly evaluates logic conditions for input selection and then
sends the corresponding CONTROL signal to the reading multiplexers. That means
every logic condition for a certain input port of the process is evaluated and used
to determine corresponding bits of the CONTROL output signal in Figure 2.9.
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entity EVAL_LOGIC_RD is
generic (

N_IN_PORTS : natural := 1;
N_CNTRS : natural := 1;

KWANT : natural := 32;
CNTR_WIDTH : t_counter_width := ( 0=>10, 1=>10, 2=>9, others=>10 );
N_PAR : natural;
PAR_WIDTH : natural

);
port (

RST : in std_logic;
CLK : in std_logic;

PARAMETERS : in std_logic_vector(N_PAR*PAR_WIDTH-1 downto 0);

LOWER_BND_OUT : out std_logic_vector(N_CNTRS*KWANT-1 downto 0);
UPPER_BND_OUT : out std_logic_vector(N_CNTRS*KWANT-1 downto 0);
ITERATORS : in std_logic_vector(N_CNTRS*KWANT-1 downto 0);
REG_CNTRS : in std_logic_vector(N_CNTRS*KWANT-1 downto 0);

CONTROL : out std_logic_vector(N_IN_PORTS-1 downto 0)
);

end EVAL_LOGIC_RD;

Figure 2.9: Reading Logic Component Interface

We evaluate the control predicates as they appear in the original program of the
processes of the KPN. By doing this the control is parameterized by the original
parameters of the application because of the class of nested-loop program that
COMPAAN accepts. For the generation of this component, we need to get the
control information of every input port which will be explained later in Section
2.3.1. Also for improving the efficiency of the control information evaluation, if
there are several same control expressions, we only keep one declaration for the
expression in the VHDL file for this component.

Besides, this component also gets information of the loop iterators and de-
termines their corresponding upper and lower bounds with the global parameter
values taken from the PARAMETERS port in Figure 2.9. Then these bounds in-
formation is sent as output LOWER BND OUT and UPPER BND OUT in Figure
2.9 to the counter component for reference. For synchronization, this reading
logic component also gets the loop iterator values ITERATORS and REG CNTRS
from the counter component for logic evaluation. Till now we only use the data
in REG CNTRS because it represents the regular incremented values of the coun-
ters’ output. ITERATORS changes value as the value is incremented inside the
counter before going through the register of the counter. This value is useful for
computing the lower bound expressions of iterators.

The parameters for this component are defined inside the generic block from
the second line in Figure 2.9. Their values are set in the top-level file of the
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hardware module. N IN PORTS is the number of input ports of a hardware mod-
ule. N CNTRS is the number of counters. KWANT defines the width of data.
CNTR WIDTH lists the counter widths of the counters. N PAR and PAR WIDTH
are the number and width of the run time loaded global parameters.

If the corresponding process of a hardware module has no input port, namely
a source node, there will be no Read Block in the implementation of this hardware
module. Also no input arguments for the corresponding Execution Unit.

Counter Component

The last component in our Read Block is the counter component. It consists of sev-
eral counters. Each counter corresponds to a for-loop in the process implemented
by a hardware module. In Figure 2.10 the input port ENABLE is used to enable
the counting of the counters. LOWER BND IN and UPPER BND IN are ports for
lower and upper bounds for the counters. All the counter lower/upper bounds are
combined together to form a long vector for transfer. The corresponding upper
and lower bound expressions are sent from the EVAL LOGIC RD component to
the counters. The meaning of ITERATOR and REG CNTRS was explained in the
subsection for EVAL LOGIC RD component. Output port DONE is to indicate
whether all the counters are done with counting. The first parameter N CNTRS
is used to indicate the number of the counters. CNTR WIDTH is the widths of
counters. KWANT is the width of input data.

entity gen_counter is
generic (

N_CNTRS : natural := 1;
KWANT : natural := 32;
CNTR_WIDTH : t_counter_width := ( 0=>10, 1=>10, 2=>9, others=>10 )

);
port (

RST : in std_logic;
CLK : in std_logic;

ENABLE : in std_logic;

LOWER_BND_IN : in std_logic_vector(N_CNTRS*KWANT-1 downto 0);
UPPER_BND_IN : in std_logic_vector(N_CNTRS*KWANT-1 downto 0);
ITERATORS : out std_logic_vector(N_CNTRS*KWANT-1 downto 0);

REG_CNTRS : out std_logic_vector(N_CNTRS*KWANT-1 downto 0);
DONE : out std_logic

);
end gen_counter;

Figure 2.10: Counter Component Interface
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When the ENABLE signal is set to 1 by the Control Unit, the counter corre-
sponding to the inner most loop will be enabled and begin to count from its cor-
responding lower bound. When it reaches its upper bound, it enables the counter
for outer loop and continues counting from the lower bound as long as the EN-
ABLE value is 1. This procedure will go on similarly till the counter for the outer
most loop reaches its upper bound. Then the DONE signal of the whole counter
component is set to 1 and reports to the Control Unit.

2.2.3 Execute Block

The Execute Block is the computational part of our hardware module. It can be
seen as a sub-wrapper of the IP core which implements the functionality of the
process associated to the hardware module. From Figure 2.5 we can see that the
Execute Block consists of only one component–Execution Unit.

Execution Unit

As a sub-wrapper for the IP core, the Execution Unit contains a IP core as its
component and defines some ports as an interface for data communication and
execution control between the IP core and the other parts of the hardware module.

In Figure 2.11 the interface definition in VHDL of Execution Unit is given.
The ports IN PORTS and OUT PORTS are for reading data from the input source
and for writing output data. The input/output data of several ports are combined
as a long vector for these two ports. The execution of the function component is
enabled if the signal coming from ENABLE port in Figure 2.11 is set to 1. Thus the
execution of our Execution Unit can be enabled or disabled by our Control Unit.
Ports IP WRITE and IP READ are output ports which send signals to the Control
Unit to indicate whether reading or writing can be performed. The parameters
N INPORTS and N OUTPORTS are numbers of input arguments and output ar-
guments of the corresponding function. The parameter IP RESET is to indicate
whether the reset for this component is active-high or active-low. The meaning of
the parameter KWANT is the same as explained in the EVAL LOGIC RD compo-
nent part.
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entity EXECUTION_UNIT is
generic(
N_INPORTS : natural := 1;
N_OUTPORTS : natural := 1;

IP_RESET : natural := 1;
KWANT : natural := 32
);
port (
RST : in std_logic;
CLK : in std_logic;

IN_PORTS : in std_logic_vector(N_INPORTS*KWANT-1 downto 0);
OUT_PORTS : out std_logic_vector(N_OUTPORTS*KWANT-1 downto 0);

ENABLE : in std_logic;
IP_WRITE : out std_logic;
IP_READ : out std_logic

);
end EXECUTION_UNIT;

Figure 2.11: Execution Unit

2.2.4 Control Block

The Control Block of hardware IP wrapper contains two components: a Con-
trol Unit and a Parameters component. These two components synchronize and
control the reading, execution and writing of the whole hardware module. We
introduce these two components in detail in the following subsections.

Control Unit

The most important part for our hardware module is the Control Unit. It serves as
central control for the whole hardware module for internal synchronization. For
every hardware module this Control Unit is the same because it mainly enables
or disables the execution, reading and writing depending on its input signals. So,
this component should be general enough so that it can generate correct control
signals for any value combination of its input signals.

From Figure 2.5 we can see that the Control Unit sends signals through READ,
WRITE and ENABLE EX ports to enable the reading, writing and execution sepa-
rately. Port EXIST is connected with a signal from reading multiplexers to indicate
whether the data is available for reading. Port FULL is connected with a signal
to indicate whether any of the FIFO buffers at the writing side is full. The two
DONE ports which connect with signals from the Read Block and Write Block are
to indicate whether reading/writing is done. The two input signals from Execution
Unit are IP READ and IP WRITE. They are used to indicate whether Execution
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Unit is ready to read or write at the moment.

In Figure 2.12 the implementation and logic of the Control Unit are shown. In
line 15 the logic for enabling read is shown. When the reading data is available, all
the FIFOs are not full, reading is not done and RESET is not enabled, READ can
be set to 1 to enable the reading. Line 16 is the logic for enabling write. Writing
enabling depends on the pipeline stages of the specific function implementation
and the ENABLE EX value. So in our Control Unit VHDL file there is also a
process for calculating the pipeline delay in lines 1-13. The function execution
enabling signal value depends on all the other input signals.

1 Pipe_Fill: process( CLK, RST )
begin

if( RST = ’1’ ) then
delay_pipe <= (others => ’0’);

5 elsif( rising_edge(CLK) ) then

if( sl_execute = ’1’ ) then
delay_pipe(0) <= sl_read;
delay_pipe(N_STAGES downto 1) <= delay_pipe(N_STAGES-1 downto 0);

10 end if;

end if;
end process Pipe_Fill;

15 sl_read <= EXIST and not( FULL ) and not( DONE_RD ) and not( RST );
sl_write <= delay_pipe(N_STAGES-1) and sl_execute;
sl_execute <= sl_read when (DONE_RD=’0’ and BLOCKING > 0)

else FULL nor DONE_WR;

20 WRITE <= sl_write and IP_WRITE;
READ <= sl_read and IP_READ;
ENABLE_EX <= sl_execute;

Figure 2.12: Control Unit

Parameters Component

The Parameters component in the Execute block is used to load run-time global
parameters for the hardware module and transfer the parameters to the reading or
writing logic component. These parameters can be set at run-time to change the
iterator bounds and control expressions. They are defined in the original Matlab
code as in the first line of Figure 2.1. Figure 2.13 is the VHDL interface definition
for this component.

The port PARAM DT is to transfer one parameter value from the outside host
processor through a parameter bus. The port PARAM LD connects with a signal
which enables the loading of the parameter values. The port PARAMETERS is
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entity PARAMETERS is
generic (

PAR_WIDTH : natural;
N_PAR : natural;

PAR_VALUES : t_par_values
);
port (

RST : in std_logic;
CLK : in std_logic;

PARAM_DT : in std_logic_vector(PAR_WIDTH-1 downto 0);
PARAM_LD : in std_logic;

PARAMETERS : out std_logic_vector(N_PAR*PAR_WIDTH-1 downto 0)
);

end PARAMETERS;

Figure 2.13: Parameters Component

the output port for transferring all the parameter values to the em Read Block and
Write Block. PAR VALUES in Figure 2.13 are for the default parameter values
when no parameter values are loaded from the host processor. PAR WIDTH and
N PAR are parameter width and number of parameters, respectively.

The parameter values are loaded one by one through the port PARAM DT.
A temporary buffer is used to store all the parameter values. The first parame-
ter value is loaded to the right most part (least significant part) of the temporary
buffer. If there are more than one parameter, the loaded values will be shifted left
so that the left parameter value can be loaded to the right most part of the tempo-
rary buffer. At the end, the values in the temporary buffer are transferred to the
PARAMETERS port as output. PARAM LD is to enable the parameter loading of
this component. Since the PARAM LD may be enabled more than one clock cycle
and the data shifting depend on its signal, we have to make sure the data only shift
once at each rising edge of the signal connected with PARAM LD . Otherwise the
data in the temporary buffer will be shifted left more than it should be. In this
component, rising edge detection is used to achieve this.

2.2.5 Write Block

The Write Block writes back the results from the execution to the network com-
munication channels. Similar to the Read Block, several output ports may share
the same Execute Block output argument and the Write Block has to select the
output ports to receive the corresponding data. The Write Block of our hardware
IP core wrapper is very similar to the Read Block. From Figure 2.5 we can see
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that it consists of a writing demultiplexer WR DEMUX, a writing logic component
EVAL LOGIC WR and a counter component GEN COUNTER.

Writing Demultiplexer

The writing demultiplexer component is a component which functions as demulti-
plexer. Because the connections between the hardware module output arguments
and the output ports of the hardware module can be determined, this component
only has to enable the writing for each output port according to the control signals
from the logic component. In Figure 2.14 the interface definition of this compo-
nent is given.

entity write_demux is
generic(

N_PORTS : natural := 1
);
port(
WRITES : out std_logic_vector(N_PORTS-1 downto 0);
WRITE : in std_logic;

FULLS : in std_logic_vector(N_PORTS-1 downto 0);
FULL : out std_logic;

CONTROL : in std_logic_vector(N_PORTS-1 downto 0)
);
end write_demux;

Figure 2.14: Writing Demultiplexer

WRITES port connects with the signals for enabling writing for each output
port of the hardware module. WRITE port connects with the signal from the Con-
trol Unit to enable writing. FULLS port connects with the full signals of every
FIFO at the output side. FULL port tells the Control Unit whether any of the
FIFO is full. The parameter N PORTS is the number of output ports of the hard-
ware module.

If any of the FIFO buffers at the writing side is full, the demultiplexer compo-
nent can detect it from port FULLS and set the FULL signal to 1 for the Control
Unit. If the writing is enabled through the WRITE port by the Control Unit, the
demultiplexer component will enable the writing of corresponding output ports
according to the CONTROL signal sent by the writing logic component.
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Writing Logic Component

The writing logic component has the same function as the reading logic compo-
nent except that it gets the information from the writing part. It mainly evaluates
logic conditions for very output port of the hardware module and set the corre-
sponding control signal for the writing demultiplexer. For evaluating these logic
conditions, the current counter values are taken from the counter component as
input for this component. The counter component can get the upperbound and
lowerbound expressions for the iterators from the logic component.

Counter Component

The counter component at the writing part is exactly the same as that of the read-
ing part. It is for synchronizing the writing of the hardware module. Detailed
information about this component is in Section 2.2.2.

2.3 Generation of the IP Core Wrapper in the ES-
PAM

To make our ESPAM support heterogeneous system generation, we have to check
how to get all the information needed from the existing ESPAM models and how
to make the communication interface of the hardware modules conforming to ES-
PAM processor components. In this section we explain in detail the generation of
the IP core wrappers.

2.3.1 Information extraction from ESPAM models

As explained in Chapter 1, for the dedicated hardware IP core integration in ES-
PAM, we do not generate the hardware IP cores for implementing specific func-
tions. The IP cores can be taken from the library of ESPAM or other resources.
What our ESPAM tool is supposed to generate is a wrapper which makes the hard-
ware IP core be able to communicate and synchronize with other processing com-
ponents of the target system. To achieve this, our wrapper should provide FIFO
communication interfaces and contain information of the connection between the
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hardware module and other processing components. Also the logic of reading and
writing should be presented in the wrapper. These connection information and
logic are dependent on the application, the platform and the mapping. Thus they
can be taken from our existing ESPAM models’ instances.

To be more concrete, for the wrapper generation, we need parameter informa-
tion, iteration information for the function execution, ports to communicate with
other processing components, arguments of the function and the correspondence
between the arguments and the ports. Also the control expressions for each port
which specify when can the port read or write through the corresponding argument
for the function execution should be obtained.

Now let us first have an overview of the models of ESPAM to help us under-
stand the information extraction from them. Figure 2.15 below shows the infor-
mation structure and the models of our ESPAM.

On the top of Figure 2.15, the four input file types are shown. User spec-
ifications of mapping and platform are given in .map and .pla files. The Kahn
Process Network specification of the application which can be taken form COM-
PAAN tool is presented in .kpn file. And for .sch file we use the original Matlab
file for scheduling.

Again from Figure 2.15 we can see that the Kahn Process Network specifica-
tion is represented in Approximated Dependence Graph Model(ADG Model) [16]
of ESPAM. Every ADG is a graph composed of ADG Nodes and ADG Edges. The
AD Graph of an application has exactly the same structure and topology of the
KPN of the application. That means ADG nodes and KPN processes, ADG edges
and KPN channels are of one-to-one correspondence relations.

Each ADG Node corresponds to one process in KPN and thus has an ADG
Function relating to it. For every ADG Node there is also a node domain which
is presented as Linearly Bounded Set(LBS) [16]. The values and names of global
parameters, the name and upper/lower bounds of iterators/indexes for loops can
all be obtained from the node’s LBS domain. Each ADG Edge is corresponding
to one communication channel in KPN. The nodes have their own Input/Output
Ports to connect to edges for node communication. The Input/Output Ports also
have port’s LBS domain from which the control information for each port can
be obtained. Also the Input/Output Ports reflects the node’s communication with
other nodes, which, in our case, hardware module’s communication with other
processing components.

To clarify the information extraction stated above, we consider the process P2,
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Figure 2.15: ESPAM Structure and Models

which executes the function Compute(), in the example given in Figure 2.1. The
sequential code for process P2 is shown in Figure 2.16 and corresponding ADG
for process P2 is shown next to it in Figure 2.17.

We can see that the process P2 in KPN corresponds to the node ND 2 in the
ADG. This node name is assigned by ESPAM systematically. The information
we need for wrapper generation includes global parameter information, function
execution loop information and reading/writing control information. These in-
formation is stored in the node or port LBS domain, which contains a vector of
Polytopes as its linear bound.
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Figure 2.16: Process P2

1 <adg name="ex" levelUpNode="null">
<parameter name="N" lb="2" ub="10" value="2" />
...

<node name="ND_2" levelUpNode="ex">
5 <inport name="ND_2IP_1" node="ND_2" edge="ED_1" >

<invariable name="a_1(1)" dataType="" />
<bindvariable name="in_0" dataType="" />
<domain type="LBS" >

<linearbound index="i" staticControl="" dynamicControl="" parameter="N" >
10 <constraint matrix="[0, 1, 0, -2;

1, 0, 0, 1]" />
<context matrix="[1, -1, 10;

1, 1, -2]" />
</linearbound>

15 <filterset index="" staticControl="" dynamicControl="" parameter="" >
<constraint matrix="[]" />

</filterset>
</domain>

</inport>
20 <inport name="ND_2IP_2" node="ND_2" edge="ED_2" >

<invariable name="a_2(i-1)" dataType="" />
<bindvariable name="in_0" dataType="" />
<domain type="LBS" >

<linearbound index="i" staticControl="" dynamicControl="" parameter="N" >
25 <constraint matrix="[1, 1, 0, -3;

1, 0, 0, 1]" />
<context matrix="[1, -1, 10;

1, 1, -2]" />
</linearbound>

30 <filterset index="" staticControl="" dynamicControl="" parameter="" >
<constraint matrix="[]" />

</filterset>
</domain>

</inport>
35 <outport name="ND_2OP_1" node="ND_2" edge="ED_2" >

<outvariable name="a_2(i)" dataType="" />
<bindvariable name="out_0" dataType="" />
<domain type="LBS" >

<linearbound index="j" staticControl="" dynamicControl="" parameter="N" >
40 <constraint matrix="[1, -1, 1, -1;

1, 0, 0, 1]" />
<context matrix="[1, -1, 10;

1, 1, -2]" />
</linearbound>

45 <filterset index="" staticControl="" dynamicControl="" parameter="" >
<constraint matrix="[]" />

</filterset>
</domain>

</outport>
50 <outport name="ND_2OP_1_d1" node="ND_2" edge="ED_3" >

<outvariable name="a_2(i)" dataType="" />
<bindvariable name="out_0" dataType="" />
<domain type="LBS" >

<linearbound index="i" staticControl="" dynamicControl="" parameter="N" >
55 <constraint matrix="[0, 1, -1, 0;

1, 0, 0, 1]" />
<context matrix="[1, -1, 10;

1, 1, -2]" />
</linearbound>

60 <filterset index="" staticControl="" dynamicControl="" parameter="" >
<constraint matrix="[]" />

</filterset>
</domain>

</outport>
65 <function name="Compute" >

<inargument name="in_0" dataType="" />
<outargument name="out_0" dataType="" />

</function>
<domain type="LBS" >

70 <linearbound index="i" staticControl="" dynamicControl="" parameter="N" >
<constraint matrix="[1, 1, 0, -2;

1, -1, 1, 0]" />
<context matrix="[1, -1, 10;

1, 1, -2]" />
75 </linearbound>

<filterset index="" staticControl="" dynamicControl="" parameter="" >
<constraint matrix="[]" />

</filterset>
</domain>

80 </node>
...
</adg>

Figure 2.17: ADG for Process P2
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• Global run-time parameter information: From the Polytopes we can get the
vector of parameters which in Figure 2.1 is N with its value 1, lowerbound
1 and upperbound 100.

• Function execution loop information: From the Polytopes the information
of iterators can be obtained. In this case, iterator i, with its lower bound
expression 2 as well as upperbound expression N.

• Reading/writing control information: The reading/writing control informa-
tion specifies when should the I/O argument read from/write to a specific
I/O port. It can be obtained from the LBS domain of the corresponding
port. In the reading part of Figure 2.16, we can see that when the control
expression i-2 ==0 is true, input argument in 0 will read data from input
port IP1. If the control expression i-3 >=0 is true, this input argument will
read data from the other input port IP2.

From Figure 2.17 we can see all information we want to extract in the XML
format for ADG. In line 2 there is information for the global parameter. The
information for the two input ports ND 2IP 1, ND 2IP 2 and two output ports
ND 2OP 1, ND 2OP 1 d1 begin in lines 5, 20, 35 and 50 separately. For each
port, the context matrix contains bound information for the parameters; the con-
straint matrix stores information for reading/writing control expressions. For the
ADG node, the constraint matrix in lines 71-72 contains the information of func-
tion execution loop bounds. In lines 66-67, we can see that there are one input
argument in 0 and one output argument out 0 for the ADG function named Com-
pute. Each I/O argument is connected to one or several ADG I/O Ports. To find
out the correspondence, we can just check the corresponding name of the Binding
Variables of an ADG Port. In line 7 the bind variable name for the input port
ND 2IP 1 is in 0. That means this input port corresponds to input argument in 0.

From the illustration and analysis above we can see that most of the informa-
tion we need to put in the wrapper, such as communication with other processing
components, loops of functional execution and the logic of reading and writing, is
already stored in our ESPAMADG Model.

Now let us think about the wrapper structure shown in Figure 2.5 again. For
the reading multiplexer and writing demultiplexer we need to find out the cor-
respondence between the I/O arguments and I/O ports. This information can be
decided by checking the corresponding ESPAM ADG model instance information
– the name of the bind variable of the I/O port. The I/O argument which has
the same name as the bind variable is the argument which is connected with the
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I/O port. For clarity and easy organizing, we order the ports according to the or-
der of their related I/O arguments of the function. And till now our ESPAM only
supports the situation that one I/O port be connected with only one function I/O
argument. So the the corresponding I/O ports for the function arguments do not
have intersection.

Also, in the Figure 2.5, GEN COUNTER components need function execution
loop information, which can be obtained from the ADG node Polytopes. Parame-
ters component needs the global run-time parameter information from the ADG
node Polytopes. EVAL LOGIC RD and EVAL LOGIC WR need reading/writing
control information which can be obtained from the LBS domain of the I/O ports.
The I/O argument names that Execution Unit needs can be directly obtained from
the ADG node.

The parameter settings for the wrapper components are in the top-level file
of a hardware module. Most values can also be known from the ADG model
instance. For the interface of reading multiplexer in Figure 2.7, the number of
related input ports N PORTS for a input argument can be obtained by calculating
the number of ADG input ports which have the bind variable name same as the
ADG input argument name. For the interface of EVAL LOGIC RD component in
Figure 2.9, N IN PORTS is the number of the ADG input ports; N CNTRS is the
number of iterators; CNTR WIDTH contain the numbers of bits needed to present
the counters’ upperbounds; N PAR is the number of global run-time parameters.
For the Execution Unit component in Figure 2.11, N INPORTS is the number of
input arguments for the ADG function; N OUTPORTS is the number of ADG
function output arguments. All the other parameters which have the same name
have the same meanings as these ones. The parameters we do not explain here are
set values by system designers according to their needs.

In Figure 2.15 there are other two very important models: Mapping Model [1]
and Platform Model [1]. The Platform Model is related to generating the part for
our hardware IP core wrappers in XPS Microprocessor Hardware Specification
(MHS) [17] files. And the Mapping Model acts like a bridge between Platform
Model and Application Model [1]. Because the so-called Application Model uses
KPN for Application Specification, it is corresponding to ADG Model. Thus the
originally completely unrelated platform components and ADG nodes become
associated through mappings.

The Platform Model of ESPAM is a set of generic parameterized components.
The components are grouped into:
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• Processing Components : It is used to run processes. Currently our ESPAM

support programmable processor and dedicated hardware modules.

• Memory Components : One type of memory components specify the proces-
sors’ local program and data memories. The other is to specify data com-
munication storage (buffer) between processors and is thus called ”Commu-
nication Memory”.

• Communication Components : These components are a point-to-point net-
work, a crossbar switch, and a shared bus. They specify the network topol-
ogy of a multiprocessor platform.

• Auxiliary Components : Controller components for specifying an interface
between processing, memory and communication components. Or Link
components for connecting any two components in the platform model.

Using the Platform Model described above the users can specify many plat-
form instances easily by connecting processing, memory and communication com-
ponents using link components and setting parameter values of the components.
How to specify a platform in the ESPAM defined XML format will be explained
in a detailed tutorial in Chapter 4. The only restriction is the resource limitation
of the physical platform onto which the multiprocessor systems are implemented.
Also a Consistency Check is run on each platform model instance to find impos-
sible and/or meaningless connections between platform components as well as
parameter values that are out of range.

For the heterogeneous system generation, when a Platform Visitor visits a
hardware module component during traversing all the components of a platform
(the concept about Visitor will be introduced in Section 2.4), the information of its
Input/Output Ports can be obtained from the Platform Model instance and being
printed with other relating information in the MHS file of XPS project.

The Mapping Model in Figure 2.15 contains Mappings for binding the appli-
cation and platform models together. A Mapping Specification gives the relation
between all channels and processes in the Application Specification(in KPN) and
all components in the Platform Specification. It is important and convenient to
get the ADG node information corresponding to a hardware component through
the Mapping Model, and vice versa. Currently in our ESPAM, one ADG Node is
mapped onto one hardware component. This conserves the communication topol-
ogy from the initial KPN and ensures that the task level parallelism described at
the KPN level is propagated.
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From Figure 2.15 we can see that ADG Model is later converted into Compaan-
Dyn Process Network (CDPN) [16]. A CDPN consists of CD processes which
communicate with each other through CD Channels and CD Gates. Sometimes,
according to the mapping specification, each CD process is corresponding to sev-
eral ADG Nodes which are mapped onto one processing platform component; each
CD Channel corresponding to several ADG Edges; each CD Gate corresponding
to several ADG Ports. But currently for a hardware component, its corresponding
ADG node is related to only one CD process. Thus, the structure and topology
of the ADG and CDPN for the hardware IP part are the same. It is sufficient to
extract information only from the ADG Model as we stated earlier this section.

2.3.2 IP Core Wrapper Files Generation in Xilinx Platform
Studio Format

For integrating hardware IP cores in an XPS project, Microprocessor Peripheral
Definition (MPD) file [17] and Peripheral Analyze Order (PAO) file [17] are also
needed besides the VHDL files we introduced in the previous sections. These two
files are located under the data subdirectory of the hardware module folder in the
project suite in Figure 2.21. XPS accesses these two files during synthesis for the
hardware IP modules.

Before we introduce these two files, we first have to see how to make our
general FIFO interface in Figure 2.6 match the XPS existing FIFO interface. The
FIFO interface used by our MicroBlaze processors is mainly the FSL V20 bus
interface. FSL V20 Fast Simplex Link (FSL) Bus [11] [18] is a uni-directional
point-to-point communication channel bus used to perform fast communication
between any two design elements on the FPGA when implementing an interface
to the FSL bus. It can be used for fast transfer of data words between master and
slave implementing the FSL interface. The block diagram in Figure 2.18 shows
the signals for the FSL bus.

The correspondence of the general FIFO interface and the FSL V20 interface
is quite straight forward. All the general FIFO interface signals correspond to the
similar FSL V20 interface signals with FSL in the front. The only two signals
in FSL V20 interface which are not presented in the general FIFO interface are
the control signals FSL M Control and FSL S Control. In our case we do not set
value for these two signals.

Since the directions of the signals in this block diagram are for FIFO com-
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FSL_M_Clk

FSL_M_Data

FSL_M_Full

FSL_S_Data

FSL_M_Control

FSL_M_Write

FSL_S_Exists

FSL_S_Read

FSL_S_Control

FSL_S_Clk

Figure 2.18: Fast Simplex Link (FSL) Bus Block Diagram

ponents, the signals of our corresponding IP core component should have the
opposite directions for the data transfer. The signals on the left side are for a
master processor component to write data to a FIFO. In the case for hardware IP
cores as masters, FSL M Clk is the master clock signal as an output of the IP to
asynchronously control the master writes to the FIFO. FSL M Data is the output
data bus to write tokens to the FIFO. FSL M Control is a single bit control sig-
nal that is transmitted out from the IP together with the data at each clock edge.
FSL M Write is the output signal that controls the write enable signal of the FIFO.
FSL M Full is the input signal from the FIFO indicating when the FIFO is full.

The signals on the right side are for a slave processor component to read data
from the FIFO. In the case for hardware IP cores as slaves, FSL S Clk is the output
slave read clock to asynchronously read the FIFO. FSL S Data is the input data
bus to read tokens from the FIFO. FSL S Control is the input signal that indicates
the control bit associated with the data at the read end of the FIFO. FSL S Read
is the output signal that controls the read enable signal of the FIFO. FSL S Exists
is the input signal indicating when the FIFO contains valid data for the IP core to
read.

The declarations of these bus interface signals for every I/O port of our hard-
ware IP core are in Microprocessor Peripheral Definition (MPD) file [17] of an
XPS project. An example is given to illustrate the interface signals in Section
2.3.2.
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Microprocessor Peripheral Definition (MPD) file

An MPD file is used to define the interface of a peripheral. Ports, bus interfaces,
parameters and default values for parameters of our hardware IP modules can be
listed in the MPD file. The syntax of an MPD file is case insensitive and the MPD
parameter/signal names must be HDL (VHDL, Verilog) compliant. The format for
component definition and assignment commands are very similar to that of MHS
files. BEGIN peripheral name and END are used to begin and end a peripheral
definition. Assignment commands for a peripheral between BEGIN and END are
in the format command name = value. For our hardware IP modules we mainly
set the default values of the parameters and declare the relations of ports and bus
interfaces in this file.

A bus interface is a grouping of interface ports which are related. It provides
a high level of abstraction for component connectivity of a common interface.
Components can use a bus interface the same as if it were a single port. In our
ESPAM, as explained previously, we define FSL bus interfaces with related ports.
In an MPD file the definition of bus interfaces is in the format BUS INTERFACE
BUS=bus label, BUS STD=bus std, BUS TYPE=bus type. The bus label is a
string which serves as the name of the bus. The bus std which is DCR, LMB,
OPB, PLB, or TRANSPARENT, is the bus standard of a bus interface. The
bus type is MASTER, MASTER SLAVE, SLAVE, or UNDEF. This format is the
most basic format and is used in our current ESPAM for hardware IP modules.

Figure 2.19 is part of a simple MPD file for a hardware IP module named
HWN 1. The lines beginning with BUS INTERFACE declares one slave FSL,
one master FSL and one undefined bus interfaces with labels In 1, Out 1 and
PAR BUS. They are corresponding to the input and output port of the hardware
module and the bus for parameter loading. The line beginning with PARAMETER
set the default value for parameter RESET HIGH to 1 and declares its data type
as natural. The PORT declaration PORT ND 2IP 1 Rd = FSL S Read, DIR = O,
BUS = In 1 shows that one port name of the hardware module is ND 2IP 1 Rd.
This is an output port belongs to bus In 1. The corresponding signal name in
the FSL bus interface for this port is FSL S Read. We can see that for master or
slave FSL bus interfaces there are five signals. All these five signals’ relation to
the corresponding ports of the hardware module is listed in the MPD file. In the
figure all the ports beginning with ND 2IP 1 are corresponding to the signals for
the input port of the ADG node for the hardware module. They are combined
together to form the In 1 slave FSL bus interface and can be treated as if it were a
single port.
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BEGIN HWN_1

## Peripheral Options
...

## Bus Interfaces
BUS_INTERFACE BUS = In_1, BUS_TYPE = SLAVE, BUS_STD = FSL
BUS_INTERFACE BUS = Out_1, BUS_TYPE = MASTER, BUS_STD = FSL
BUS_INTERFACE BUS = PAR_BUS, BUS_STD = TRANSPARENT, BUS_TYPE = UNDEF

## Generics for VHDL or Parameters for Verilog
PARAMETER RESET_HIGH = 1, DT = NATURAL
...

## Ports
PORT RST = "", DIR = I, SIGIS = RST
PORT CLK = "", DIR = I, SIGIS = CLK

PORT ND_2IP_1_Rd = FSL_S_Read, DIR = O, BUS = In_1
PORT ND_2IP_1_Din = FSL_S_Data, DIR = I, VEC = [(KWANT-1):0],

ENDIAN = LITTLE, BUS = In_1
PORT ND_2IP_1_Exist = FSL_S_Exists, DIR = I, BUS = In_1
PORT ND_2IP_1_CLK = FSL_S_Clk, DIR = O, SIGIS = CLK, BUS = In_1
PORT ND_2IP_1_CTRL = FSL_S_Control, DIR = I, BUS = In_1

PORT ND_2OP_1_Wr = FSL_M_Write, DIR = O, BUS = Out_1
PORT ND_2OP_1_Dout = FSL_M_Data, DIR = O, VEC = [(KWANT-1):0],

ENDIAN = LITTLE, BUS = Out_1
PORT ND_2OP_1_Full = FSL_M_Full, DIR = I, BUS = Out_1
PORT ND_2OP_1_CLK = FSL_M_Clk, DIR = O, SIGIS = CLK, BUS = Out_1
PORT ND_2OP_1_CTRL = FSL_M_Control, DIR = O, BUS = Out_1

PORT PARAM_DT = "PARAM_DATA", DIR = I, VEC = [(PAR_WIDTH-1):0], BUS = PAR_BUS
PORT PARAM_LD = "PARAM_LOAD", DIR = I, BUS = PAR_BUS

PORT STOP = "", DIR = O

END

Figure 2.19: MPD file example

PAO (Peripheral Analyze Order) file

Another important file in the data subdirectory of our hardware module folder is
the PAO file. It contains a list of HDL files that are needed for synthesis, and
defines the analyze order for compilation.

The format for the statements of the PAO file is tooltarget libraryname file-
name hdllang. The tooltarget can have lib, simlib or synlib as its value. For
current ESPAM we use lib which mean that the file can be used for both synthesis
and simulation. The libraryname specifies the library that contains the file. We
use the IP as the library name for all files of the IP. The filename specifies the
name of the file and optionally can have a file extension. The hdllang specifies the
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language of the file which can be verilog or vhdl.

lib HWN_1_v1_00_a hw_node_pack vhdl
lib HWN_1_v1_00_a controller vhdl
lib HWN_1_v1_00_a counter vhdl
lib HWN_1_v1_00_a function vhdl
lib HWN_1_v1_00_a execution_unit vhdl
lib HWN_1_v1_00_a eval_logic_rd vhdl
lib HWN_1_v1_00_a eval_logic_wr vhdl
lib HWN_1_v1_00_a parameters vhdl
lib HWN_1_v1_00_a read_mux vhdl
lib HWN_1_v1_00_a write_demux vhdl
lib HWN_1_v1_00_a HWN_1 vhdl

Figure 2.20: PAO file example

In Figure 2.20 an example of PAO file of our hardware IP module is given.
We decide the compilation order of the files by their dependency. From the figure
we can see that the file hw node pack.vhd is listed as the first. Because this file
contains type and function definitions that other files refer to. Also the file for
the function implementation should be compiled before the execution unit.vhd
because it is a component for the execution unit file. The top-level file for the
hardware IP module should be listed at last because it contains all the other com-
ponents and thus has dependency on other files for compilation. Because the
compilation dependency is the same with different IP modules, we can generate
the PAO files similar to the one in Figure 2.20.

2.3.3 Integration Into XPS Project

We already explained how to get the information we need for IP core wrapper
generation from ESPAM’s models. The next step to consider is how to integrate the
new generated part into XPS project generated by ESPAM. Since ESPAM generates
project files for XPS to synthesize, we first have to get an overview of XPS project
files that ESPAM generates. Below we first introduce some information about
XPS.

XPS is used to develop Xilinx Embedded Development Kit (EDK) - based
system designs and provides a common fully integrated hardware/software devel-
opment environment that supports the complete range of Xilinxs processor solu-
tions. Embedded Development Kit (EDK) is a series of software tools for design-
ing embedded processor systems on programmable logic, and supports the IBM
PowerPC hard processor core and the Xilinx MicroBlaze soft processor core. In
ESPAM, mainly the configurable MicroBlaze embedded soft processor cores are
used. That is because the MicroBlaze is a soft processor core; the number of
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processors we can implement on a given FPGA is only limited by the size of the
FPGA itself. This feature is very advantageous for constructing our multiproces-
sor embedded systems.

Figure 2.21 shows the project suite which is generated by ESPAM which com-
prise an XPS project.

<PROJECT_ROOT>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- code/: Program codes
|-------- MemoryMap.h
|-------- aux_func.h
|-------- P_1/: program code for processor P_1
|------------- P_1.cpp
|------------- default_link_script
|-------- P_2
|-------- ...
|--- etc/: Optional files for implementation tools
|--- data/: UCF files
|--- pcores/: Customized hardware modules for the EDK project
|---------- fifo_if_ctrl_v1_00_a/
|---------- clock_cycle_counter_v1_00_a/
|---------- ...
|---------- HWN_1_v1_00_a: directory for an ESPAM generated pcore
|--------------- data
|--------------- devl
|--------------- hdl
|---------- HWN_2_v1_00_a
|---------- ...

Figure 2.21: Project directory structure

The top three files: system.xmp, system.mhs and system.mss store most of the
project information. They are the corresponding Microprocessor Project (XMP)
file [9], Microprocessor Hardware Specification (MHS) file [9] [17] and Micro-
processor Software Specification (MSS) file [9] [17] for an XPS project.

An XMP file stores the top-level information of the project. It points the loca-
tion of the MHS, MSS file, and the C/C++ program codes that need to be compiled
into an executable file for a processor. It also includes the FPGA architecture fam-
ily and the device type for which the XPS hardware tool flow needs to run as well
as the software settings for this project.

An MHS file defines all hardware components in a platform. It includes the
information of Bus architecture, Peripherals, Processor, Connectivity and Address
space. Each component definition starts with BEGIN peripheral name and ends
with END. Between these are assignment commands with the format command
name = value. There are in total three assignment commands: BUS INTERFACE,
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PARAMETER and PORT.

An MSS file contains directives for customizing libraries, drivers, and file
systems. An MSS file has a dependency on a MHS file. For starting a definition
for a driver, processor, or file system, keyword BEGIN is used. And keyword
END ends the definition block. An MSS file has a simple name = value format
for most statements and the Parameter keyword is required before every such
NAME, VALUE pairs. If the parameter is within a BEGIN-END block, it is a local
assignment, otherwise it is a global (system level) assignment.

In Figure 2.21, these three files are followed by the code directory. The soft-
ware program code files for processors are stored here as well as file aux func.h
and MemoryMap.h. The aux func.h file declares read and write primitives and
wrappers of all function calls in the initial code of an application. The Memo-
ryMap.h file specifies physical addresses of the components in a platform. Then
directory etc contains the files bitgen.ut, bitgen spartan3.ut, fast runtime.opt and
download.cmd which store options for the XPS tool. Below in the data directory,
the User Constraint File (UCF) [9] file, which contains constrains such as FPGA
pin locations, timing, FPGA resource specification and I/O standards, is stored.
ESPAM generate several UCF files for different FPGA boards, XPS use the UCF
file named system.ucf for platform synthesis.

The pcores directory contains predefined hardware IP modules as well as hard-
ware modules generated by ESPAM. In the hdl subdirectory several vhdl files of
an IP core and its wrapper are included. In the data subdirectory the compiling
order of the VHDL files in hdl subdirectory and the communication ports and
interface of the hardware module are described seperately in Peripheral Analyze
Order (PAO) file and Microprocessor Peripheral Definition (MPD) file. More in-
formation of these files are introduced in Section 2.3.2.

To integrate the hardware IP core wrapper generation part into the previous
homogeneous system generating ESPAM, we only need to consider the hardware
related files introduced above. They are the MHS file and the files in the pcores
directory. Other files can stay unchanged because our hardware IP core wrapper
generation part does not bring any effect to them.

For the pcores directory, we have to generate VHDL files, PAO file and MPD
file for each hardware module component which is specified in the platform spec-
ification. A corresponding subdirectory for the hardware module should be gener-
ated to store all these files, such as the HWN 1 v1 00 a directory in Figure 2.21.
The VHDL, PAO, MPD files can be generated by using the information extracted
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from the ADG Model, Mapping Model and Platform Model as explained before in
Section 2.3.1.

For the MHS file, for each hardware module component in the platform spec-
ification, a BEGIN-END block is generated with assignment commands in be-
tween. With these assignment commands the parameters of the hardware module
can be set; the interfaces and ports of the hardware module can be connected with
the FIFO or wire according to the specific application. The corresponding FIFO
name for a bus interface can be decided by getting the link information between
the FIFO and the bus interface from the Platform Model instance of the system.
Other information between the BEGIN-END block can be generated independent
of the specific hardware module. We show a sample below to help understanding.

Figure 2.22 below is the hardware module part definition of a MHS file. The
lines which begin with PARAMETER keyword are used to set values for different
parameters of the hardware module. The lines which begin with BUS INTERFACE
are used to declare the connection relations of different bus interfaces. In the fig-
ure, In 1 and Out 1 are bus interfaces which has grouped signals for FIFO com-
munication. According to the name, In 1 is connected to the reading/slave end of
a FIFO; Out 1 is connected to the writing/master end of a FIFO. The bus interface
PAR BUS are connected with signals related to parameter loading. The last few
lines which begin with PORT are used to declare the connection relations of other
signals of this hardware module, such as clock or reset signals. The STOP port in
the figure is used to indicate the completion status of the execution of the whole
hardware module.
BEGIN HWN_1

PARAMETER INSTANCE = HWN_1_ip
PARAMETER HW_VER = 1.00.a
PARAMETER RESET_HIGH = 0
PARAMETER PAR_WIDTH = 16
PARAMETER KWANT = 32

BUS_INTERFACE In_1 = FIFO_MB_1_Out_1
BUS_INTERFACE Out_1 = FIFO_HWN_1_Out_1
BUS_INTERFACE PAR_BUS = PARBUS
PORT CLK = sys_clk_s
PORT RST = net_design_rst
PORT STOP = net_fin_signal_IP_1

END

Figure 2.22: Sample Hardware module Part in MHS file

For integrating the hardware IP core wrapper generation part into our ESPAM,
the hardware module parts of MHS file are automatically generated and added to
the MHS file. Each hardware module has its own part similar to Figure 2.22 in
MHS file. Also in the MHS file, the port information for parameter register should
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be added to the part for Host Interface component zbt main. And the value setting
for parameter PAR WIDTH, finishing signals for hardware modules, bus interface
PAR BUS for parameter bus should all be added to the part for the host design ctrl
component. These two components in MHS are for the communication between
the host processors, off-chip ZBT SSRAM memories and our Function Design.
They are introduced in detail in [8]. Since the load of parameters and transfer
of finishing signals are related to the communication between host, ZBT and our
function design, the corresponding parts of these two components in MHS are
changed.

For the integration, we not only have to know the whole project suite and
modify the MHS file, but also have to make our hardware modules communicate
with other processing components well. Since in ESPAM FIFOs are used for this
communication, we also need to study the FIFO communicating interface and
make the signals for I/O ports of our IP core wrapper conform to it.

The Microblaze core provides 8 input and 8 output interfaces to Fast Simplex
Link (FSL) buses. The FSL buses are uni-directional non-arbitrated dedicated
communication channels. In ESPAM Microblaze processor components commu-
nicate with fsl v20 FIFO components through their FSL interfaces by default. If
the number of Input or Output ports of the process for a MicroBlaze is more than
8, additional Local Memory BUS (LMB) interfaces of the MicroBlaze are used to
communicate with other processing components through FIFO controllers. Cur-
rently the FIFO controller can translate between FSL and LMB protocols.

For making the communication interface of our hardware module conform to
the previous homogeneous ESPAM, our ESPAM supports FSL V20 Fast Simplex
Link (FSL) Bus for the hardware modules’ I/O interfaces. Through this FSL in-
terface the hardware module components can communicate with the fsl v20 FIFO
components. More details about the FSL bus interface are explained in Section
2.2.1.

2.4 Visitor Pattern

Till now, all the hardware IP core wrapper related files that are generated by our
ESPAM tool are introduced. To generate all these files, we mainly use the Vis-
itor Pattern [19] which is a commonly used design pattern. In this section we
introduce this visitor pattern and how it is applied in our ESPAM.
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A visitor represents an operation to be performed on the elements of an ob-
ject structure. The elements provide interfaces for a visitor to access their internal
state. Compared to Iterator Pattern [19], Visitor Pattern can traverse objects of
different classes while a iterator can only traverse objects of the same class. Our
ESPAM uses the Visitor Pattern for code and file generation because our platform
and application instances contain objects of different classes and a certain oper-
ation will be applied on many of these objects. Also for our IP core wrapper
generation part we only get information from already existing model instances
without adding any extra information. This fact also matches the function of a
visitor because a visitor normally only access elements’ internal state and infor-
mation without changing it.

Adding a new operation for the whole object structure can be done by simply
adding a new visitor. But if there is a new element class being created, in every
visitor a new function to operate on this new class needs to be added. So the
Visitor Pattern is useful if there are a fair number of instances of a small number
of classes and we want to perform some operation that involves all or most of
them. Every concrete element implements an Accept operation that takes a visitor
as an argument. The concrete visitor which visits this concrete element can thus
call the function related to this element class among all its functions.

For our hardware IP core wrapper files, we simply add a new visitor which tra-
verses the platform instance and generate IP core wrapper files when it discovers
hardware IP components among the platform elements. This new visitor inherits
from an abstract PlatformVisitor class because it also traverses platform instances.
And this Platform Visitor implements the most basic interface class Visitor in our
ESPAM.
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Chapter 3

Case Studies

In this Chapter we present four case studies. We analyze the results obtained
from the experiments performed in the case studies and give some comments and
explanation.

These four case studies are about applications of Discrete Cosine Transform
(DCT), Sobel Edge Detection, Discrete Wavelet Transform (DWT) and one ge-
netic algorithm. To validate and verify our ESPAM heterogeneous system genera-
tion and the advantage of heterogeneous systems, we generate one homogeneous
system and one heterogeneous system for the DCT application. Then we can
check whether the heterogeneous system works correctly and compare the perfor-
mance data of these two systems. Another heterogeneous system for the Sobel
application is presented in Chapter 4. After this, we want to compare the perfor-
mance of ESPAM generated systems and LAURA generated ones. Since LAURA

generated systems consist of only hardware modules, we also generate homoge-
neous systems with all hardware modules for the other three applications. When
we get the ESPAM and LAURA generated homogeneous systems for Sobel, DWT
and the genetic algorithm applications, we compare the performance data and an-
alyze them.

3.1 Discrete Cosine Transform (DCT)

In this case study we design a heterogeneous embedded system for a Discrete Co-
sine Transform application. It is a very simple application to validate the correct-
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ness of our heterogeneous embedded system generation by the proposed COM-
PAAN/ESPAM tool chain.

The initial Matlab code of this application is shown in Figure 3.1. The first
two lines declare global parameters N and M which stand for the number of blocks
operated on and the block size. The data ranges for them are 1-10 and 10-100. In
the experiments we use 8×8 data blocks. Lines 4-8 contain a loop to read data
from the blocks to array a. The next loop applies DCT on the data and stores
it in array c. The last loop stores the data into dct out. Three function calls are
involved: ReadDataA(), DCT() and Sink().

1 %parameter N 1 10;
%parameter M 10 100;

for i = 1:1:N,
5 for j = 1:1:M,

[ a(i,j) ] = ReadDataA();
end

end

10 for i = 1:1:N,
for j = 1:1:M,

[ c(i,j) ] = DCT( a(i,j) );

15 end
end

for i = 1:1:N,
for j = 1:1:M,

20
[ dct_out(i,j) ] = Sink( c(i,j) );

end
end

Figure 3.1: Initial Matlab code for DCT application

We first convert this initial Matlab code into a KPN using our COMPAAN tool.
Each function call corresponds to one process/node in the KPN. The result KPN is
shown in Figure 3.2. From the figure we see that the KPN consists of three nodes
corresponding to three functions. Two channels are in the KPN for communica-
tions between the nodes.

After getting the KPN of the application, we conduct two experiments to vali-
date our heterogeneous system generation and compare the system performance of
homogeneous and heterogeneous systems for this application. In the first exper-
iment, we map the DCT application onto a homogeneous system platform with
three MicroBlazes. In the second experiment, we map the DCT process onto
hardware IP modules while keeping other two processes the same as in the first
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Figure 3.2: KPN for DCT application

experiment.

Since the input for our ESPAM tool also requires Platform Specification and
Mapping Specification files, we need to write our .pla and .map files for the first
experiment according to the experiment purpose. They are given in Figure 3.3 and
Figure 3.4.

In this Platform Specification, each MicroBlaze processor uses one of the cus-
tom memory controllers to connect to one bank of ZBT SSRAM on the target
FPGA platform. The MicroBlaze MB 1 uses the memory controller ZBT CTRL 1
to read the initial data blocks from the first ZBT SSRAM bank while MB 3 uses
ZBT CTRL 3 to write the result data blocks to the fifth ZBT SSRAM bank. From
Figure 3.3 we can see that the data memory size and program memory size for
each processor are also set in the Platform Specification.

The Mapping Specification is quite straightforward. It specifies which process
is mapped onto which processing component. From Figure 3.4 and the KPN for
the DCT application, we can see that process ReadDataA() is mapped onto proces-
sor MB 1; process DCT() is mapped onto MB 2; and process Sink() is mapped
onto MB 3.

For the second experiment, we only make a small modification which maps the
DCT() process onto a hardware IP module. Thus for Platform Specification, we
only need to replace the declaration part for MB 2 with the part we show in Figure
3.5 as well as deleting the corresponding ZBT CTRL 2 and mb opb 2 parts. For
Mapping Specification we replace the part for process DCT()/ND 2 with the part
in Figure 3.6.

In these two experiments, we use one 8×8 data block to test the two embedded
systems. We get the clock cycle numbers for both systems by getting the number
of the counter which is attached to MB 3. The result clock cycle numbers of these
two systems are shown in Table 3.1. The result clock cycles may not reflect the
time merit of hardware modules completely because the MicroBlaze processors
may be too slow to catch the hardware IP module’s execution time. But even
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<platform name="myPlatform">

<processor name="MB_1" type="MB" data_memory="16384" program_memory="8192">
<port name="OPB_1" type="OPBPort"/>

</processor>

<processor name="MB_2" type="MB" data_memory="16384" program_memory="16384">
<port name="OPB_2" type="OPBPort"/>

</processor>

<processor name="MB_3" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB_3" type="OPBPort"/>

</processor>

<peripheral name="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port name="IO_1" type="OPBPort"/>

</peripheral>

<peripheral name="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">
<port name="IO_2" type="OPBPort"/>

</peripheral>

<peripheral name="ZBT_CTRL_3" type="ZBTCTRL" size="1000000">
<port name="IO_3" type="OPBPort"/>

</peripheral>

<link name="mb_opb_1">
<resource name="MB_1" port="OPB_1"/>
<resource name="ZBT_CTRL_1" port="IO_1"/>

</link>

<link name="mb_opb_2">
<resource name="MB_2" port="OPB_2"/>
<resource name="ZBT_CTRL_2" port="IO_2"/>

</link>

<link name="mb_opb_3">
<resource name="MB_3" port="OPB_3"/>
<resource name="ZBT_CTRL_3" port="IO_3"/>

</link>

</platform>

Figure 3.3: Platform Specification of Homogeneous System for DCT application

with this condition, the time performance of the heterogeneous system with hard-
ware modules is more than 30 times better than the homogeneous system with all
MicroBlaze processors.

Homo Sys Hetero Sys
Clock Cycles 148214 4334

Table 3.1: DCT Experiment

The DCT case study constructs a very simple heterogeneous system with two
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<mapping name="myMapping">

<processor name="MB_1">
<process name="ND_1" />

</processor>

<processor name="MB_2">
<process name="ND_2" />

</processor>

<processor name="MB_3">
<process name="ND_3" />

</processor>

</mapping>

Figure 3.4: Mapping Specification of Homogeneous System for DCT application

<processor name="HWN" type="CompaanHWNode">
</processor>

Figure 3.5: Modification of Platform Specification for Heterogeneous System

<processor name="HWN">
<process name="ND_2" />

</processor>

Figure 3.6: Modification of Mapping Specification for Heterogeneous System

MicroBlaze processors and one hardware module. In the tutorial of the next chap-
ter, a more complicated heterogeneous system construction with the Sobel Edge
Detection application will be presented.

3.2 Sobel Edge Detection

In this case study we consider a more complicated application, a Sobel Edge De-
tection application, to evaluate our design flow. The Sobel application performs a
2-D spatial gradient measurement on an image and so emphasizes regions of high
spatial gradient that corresponds to edges. Typically it is used to find the approxi-
mate absolute gradient magnitude at each point in an input greyscale image.

The initial Matlab code is shown in Figure 3.7. The first two lines declare
two parameters N and M whose ranges are both from 50 to 1000. They stand for
the width and height of the input grayscale image. Lines 4-9 specify the types
of the data which are used in the code. This is necessary for this application
because the default type will be char which is shorter than the type int needed
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1 %parameter N 50 1000;
%parameter M 50 1000;

%typedef a int;
5 %typedef image int;

%typedef Jx int;
%typedef Jy int;
%typedef Sbl int;
%typedef Sink int;

10
for j = 1:1:M,

for i = 1:1:N,
[ a(j,i) ] = _Read_m();
[ image(j,i) ] = Copy(a(j,i));

15
end

end

20 for j = 2:1:M-1,
for i = 2:1:N-1,

[ Jx(j,i) ] = Jc( image(j-1,i-1),image(j,i-1),image(j+1,i-1),
image(j-1,i+1),image(j,i+1),image(j+1,i+1) );

25
end

end

30 for j = 2:1:M-1,
for i = 2:1:N-1,

[ Jy(j,i) ] = Jc( image(j-1,i-1),image(j-1,i),image(j-1,i+1),
image(j+1,i-1),image(j+1,i), image(j+1,i+1) );

35
end

end

40 for j = 2:1:M-1,
for i = 2:1:N-1,

[ Sbl(j,i) ] = Sb( Jx(j,i), Jy(j,i) );

45 end
end

for j = 2:1:M-1,
for i = 2:1:N-1,

50
[ Sink(j,i) ] = _Write_m( Sbl(j,i) );

end
end

Figure 3.7: Initial Matlab code for Sobel Edge Detection application

here. Lines 11-17 contain a loop for data initialization. We add an extra line 14
to copy the data from array a to make the control for the reading and writing
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being separated. Because we use MicroBlaze to implement initialization from the
memory and the controls for other process are very simple, we need this Copy
process to be implemented as an IP module to check whether our ESPAM can
generate more complicated controls correctly. The next two loops in lines 30-37
calculate the horizontal and vertical derivative approximations respectively. Lines
40-46 contain the loop for calculating the final gradients and store them in array
Sbl. The last loop writes the data in array Sbl into Sink.

First, we need to convert the initial Matlab code which is shown in Figure 3.7
into a KPN specification. For this step we use the COMPAAN tool which can
automatically transform the Matlab code into a KPN which reveals the task-level
parallelism in the sobel application. The KPN of the sobel application which is
generated by COMPAAN is shown in Figure 3.8. From the KPN we can see that
there are in total 6 processes and 16 channels corresponding to the Matlab code.
The function corresponding to each process can be seen in the figure.

Figure 3.8: KPN for Sobel Edge Detection application

After getting the KPN of the application, we conduct two experiments with
ESPAM to verify the generated homogeneous and heterogeneous systems for this
application. In the first experiment, we map the first and last node of the KPN onto
two MicroBlazes for reading from and writing to the off-chip ZBT memory. All
the other nodes in between are mapped onto hardware IP modules. We use one
150×275 pixel image as the input of the embedded system. The system works
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and gives the correct result. This verifies our heterogeneous system generation by
ESPAM.

In the second experiment we use ESPAM to map the Sobel application onto
a homogeneous system platform with all hardware IP modules. Each node is
mapped onto one hardware module. How to write the Platform Specification and
Mapping Specification for a certain design will be shown in the tutorial in the next
chapter with an example of the first experiment here. For this experiment, we also
construct the same embedded system with all hardware components generated by
the LAURA tool to compare the performance of our ESPAM tool with it. The
experiments are done with Xilinx ISE Foundation based on FPGA device Virtex2
xc2v6000. The result is shown in Table 3.2.

LAURA
Slices LUT FFs Freq (MHz) Clock Cycles

2126(6%) 2772(4%) 2115(3%) 59.347 494937

ESPAM
Slices LUT FFS Freq (MHz) Clock Cycles

1641(4%) 2090(3%) 1763(2%) 51.099 245447

Table 3.2: Sobel Experiment with 150×275 Image Size

In the tables, Slices indicates the number of slices used on the FPGA. The
percentage number shows the percentage of the used slices to all the slices avail-
able on the FPGA. LUT indicates the number of look-up tables for the constructed
embedded system. FFs means the number of flip-flops. Freq and Clock Cycles
indicate system frequency and the number of clock cycles for the execution of the
Sobel application on the constructed system. From the tables we can see that for
the Sobel application, the homogeneous embedded system generated by ESPAM

uses less resource on the FPGA board. Considering the frequency and the clock
cycle numbers, the system time performance of the ESPAM generated system is
around twice better than that of LAURA generated system.

3.3 Discrete Wavelet Transform (DWT)

In this case study, a quite complex application is used for designing a heteroge-
neous embedded system. The application is called Discrete Wavelet Transform
(DWT) which is performed on one image. The initial Matlab code can be referred
to Appendix A. The KPN generated by COMPAAN for this application is shown
in Figure 3.9.
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Figure 3.9: KPN for DWT application

With our ESPAM tool, we conduct two experiments for this DWT application.
In the first experiment, we map the init()/ND 1 process onto one Microblaze and
the four Sink processes onto another MicroBlaze. All the other processes in be-
tween are mapped onto hardware IP modules. We use one 128×128 pixel image
as the input of the embedded system. The system works and gives the correct
result. This verifies our heterogeneous system generation by ESPAM.
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In the second experiment we map the DWT application onto a homogeneous
system generated by ESPAM with all hardware modules. Also we construct the
same embedded system with all hardware components generated by the LAURA

tool to compare the performance of our ESPAM tool with LAURA. The result is
shown in Table 3.3 and Table 3.4. They list the performance of the experiments
with different input image sizes. For different image sizes, only the clock cycle
numbers are different.

LAURA
Slices LUT FFs Freq (MHz) Clock Cycles

5826(17%) 7380(10%) 5562(8%) 54.975 65487

ESPAM
Slices LUT FFS Freq (MHz) Clock Cycles

4666(13%) 5616(8%) 4343(6%) 51.395 16597

Table 3.3: DWT Experiment with 128×128 Image Size

LAURA ESPAM
Clock Cycles 262095 66005

Table 3.4: DWT Experiment with 256×256 Image Size

From the tables we can see that for the DWT application, the homogeneous
embedded system generated by ESPAM uses less resource on the FPGA board.
Although the frequency of the ESPAM generated system is a bit lower, the total
execution time is still much lower than that of the LAURA generated system. Also,
regardless of the input image size, the time performance of the ESPAM generated
system is four times better than that of the system generated by LAURA.

3.4 A Genetic Algorithm

In this case study, we further evaluate the correctness and efficiency of the het-
erogeneous system generated by ESPAM. The application is a genetic algorithm
which is applied on a input stream containing values 0 and 1. The initial Matlab
code is shown in Figure 3.10. The first line declares parameter N which is the
size of the input stream ranging from 6 to 10000. Lines 3-7 define the types of
the data used in the code. Lines 9-11 contain a loop to read the stream data into
array stream. Lines 13-17 contain a loop to propagate the data to two outputs. The
zero2() function in Line 20 assigns zero values for array s and y. The XNOR SUM
function in Line 25 calculates the output value using the third input depending
on the XNOR value of the first and second input. The SQUARE SUM function
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1 %parameter N 6 10000;

%typedef stream int;
%typedef b int;

5 %typedef s int;
%typedef y int;
%typedef sink int;

for k=1:1:N,
10 [ stream(k) ] = ReadStream();

end

for k=1:1:N-1,
for i=1:1:N,

15 [ b(k,i), stream(i) ] = ReadMatrixB( stream(i) );
end

end

for k=1:1:N-1,
20 [ s(k), y(k) ] = zero2();

end

for j=1:1:N-1,
for i=1:1:N-j,

25 [ s(j), b(j,i), b(j,i+j) ] = XNOR_SUM( b(j,i), b(j,i+j), s(j) );
end

end

for k=1:1:N-1,
30 [ y(k+1) ] = SQUARE_SUM( s(k), y(k) ); %% produces y

end

for k=N:1:N, %% y(1)
[ sink(k)] = Output( y(k) );

35 end

Figure 3.10: Initial Matlab code for one Genetic Algorithm application

calculates the sum of the second input and the square of the first input. The last
function Output writes the result data into array Sink.

The KPN generated by COMPAAN for this application is given in Figure 3.11.
Again, for ESPAM, we map all the processes onto hardware IP modules. And
for comparison we also conduct the same experiment with the LAURA tool. The
experiment results are shown in Table 3.5 and Table 3.6. These experiments are
conducted with input data streams with size 20, 40, and 60 items.

LAURA
Slices LUT FFs Freq (MHz) Clock Cycles

1957(5%) 2620(3%) 1713(2%) 65.075 720

ESPAM
Slices LUT FFS Freq(MHz) Clock Cycles

1614(4%) 2282(3%) 1275(1%) 50.888 745

Table 3.5: Genetic Algorithm Experiment with input stream size 20
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Figure 3.11: KPN for one Genetic Algorithm application

LAURA ESPAM
Clock Cycles (40) 3020 3084
Clock Cycles (60) 6920 7025

Table 3.6: Genetic Algorithm Experiment with input stream size 40 and 60

We can see from the tables that our ESPAM generated system still uses less
programmable resource on the FPGA. The system time performance of the ES-
PAM generated system is a bit worse than the LAURA generated one. This is
not consistent with the previous experiment results. One possible reason for the
inconsistency is that for previous experiments ESPAM and LAURA generated sys-
tems use the same IP cores; while for this experiment we used different IP cores
in ESPAM because the ones used by LAURA do not work with ESPAM.
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3.5 Conclusions

In this chapter we conducted several experiments and from the experimental re-
sults, we can see that by mapping the most computational intensive processes onto
hardware modules the system performance can be greatly improved.

By comparing systems generated by ESPAM and LAURA, we conclude that:

• ESPAM generated systems use less hardware resources on the FPGA. The
reason is that our ESPAM generated systems with hardware modules are
more clearly structured and modularized, thereby redundant hardware is
removed.

• The system time performances of the ESPAM generated systems are better
than the similar ones generated by LAURA. The reason is that the Control
Unit component in ESPAM hardware modules is simpler.

• The clock frequencies of the ESPAM generated systems are a bit lower than
the ones used in the systems generated by LAURA. One reason is that the
logic evaluation component in ESPAM hardware modules is not optimized.
A possible optimization is to make this component pipelined as in LAURA.
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Chapter 4

Getting Started: Tutorial for
Heterogeneous System Design with
COMPAAN/ESPAM tool chain

In this chapter, we give a detailed tutorial to show how to design a heteroge-
neous embedded system with processors and hardware modules using the COM-
PAAN/ESPAM tool chain as well as how to make modifications to make the gener-
ated design suitable for the XPS synthesis tool. In this tutorial, the application of
Sobel Edge Detection which is explained in Chapter 3 is chosen as an example to
show the steps.

This chapter is further organized as follows. In Section 4.1 we describe how
to generate an XPS project using our COMPAAN/ESPAM tool chain and import the
generated files to XPS. In Section 4.2 the manual modifications needed to make to
the imported project are introduced. The last section introduces how to use XPS

to generate the final bitstream file and how to use a software program in an outside
host processor to download the final bitstream file onto the target FPGA board to
get the result data.

4.1 XPS Project Generation

In this section we elaborate how to generate files for XPS using COMPAAN and
ESPAM for the Sobel edge detection application. Also the steps for importing the
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generated project suite to XPS will be described.

4.1.1 KPN Specification Generation Using the COMPAAN tool

The first step for our heterogeneous embedded system generation is to use the
COMPAAN tool to transform the initial Matlab code of a certain application into
KPN specification. Thus the initial Matlab code is the top-level entry for our
COMPAAN/ESPAM tool chain. In figure 3.7 the initial sequential Matlab code for
the Sobel edge detection application is given. From the figure we can see that
there are six function calls: Read m(), Copy(), two Jc(), Sb() and Write m. For
each function call there is a process/node generated for the result KPN.

We use three commands in Figure 4.1 to generate the KPN specification for
our Sobel edge detection application.

1) matparser --input Sobel.m --output Sobel.sac --compile --verbose -r
2) dgparser --input Sobel.sac --output Sobel --xml -r
3) panda --input Sobel.rdg -c Sobel.m --xml -ls --lms -RP -r

Figure 4.1: Commands of the COMPAAN tool

The first command uses the MATPARSER tool [20] to transform the initial
Matlab code into a Single Assignment Code (SAC), which resembles the Depen-
dence Graph (DG) of the initial Matlab code. The usage of the options of this
command is explained below:

• --input: This option is used to specify the input file. It should be followed
by a filename which points to the file where the initial Matlab code is stored.

• --output: This option is used to specify the output file. It should be fol-
lowed by a filename which points to the file where the SAC results, for
example, will be written.

• --compile: This option tells MATPARSER to convert the Matlab code into
a SAC.

• --verbose: This option tells MATPARSER to produce information mes-
sages showing the progress and status of the conversion.

• -r: This option applies a set of optimizations on a solution tree which de-
scribes data-dependencies. The optimizations include removing redundant
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if/else statements, removing redundant index statements, and removing re-
dundant sub-graphs.

The second command uses the DGPARSER tool. It converts the SAC into a
Polyhedral Reduced Dependence Graph (PRDG) data structure, which is a com-
pact mathematical representation of the DG in terms of polyhedra. The options
for the DGPARSER tool are:

• --input: This option specifies the SAC file generated by MATPARSER.

• --output: This option specifies the output file where the PRDG data struc-
ture will be stored.

• --xml: This option specifies the format of the output file as XML.

• -r: This option manipulates the parse tree. In particular, it removes control
from the index statements.

The third command uses the PANDA tool to convert the PRDG into a KPN
process network [6] [21]. The options for this command are:

• --input: This option specifies the input PRDG file generated by DG-
PARSER.

• -c: This option describes a valid global schedule as a Matlab program for
all the nodes in the PRDG. We can use any valid schedule specified as a
Matlab program. Here we use the original Matlab code.

• --xml: This option tells PANDA to generate the corresponding KPN in
XML format.

• -ls -lms: These options tell PANDA to select communication linearization
model, since the communication is not always in order. For more details
see [6] [21].

• -RP: This option makes sure that the number of data tokens which a pro-
ducer process sends is the same as the number of tokens a consumer process
needs. For more details see [6] [21]. An alternative option is –R2 which is
used in the case that there exist mathematical divisions in the reading/writ-
ing conditions of the nodes mapped onto hardware IP modules. The result-
ing conditions in the processes will have module 2 expressions in place of
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divisions because division is not efficient in hardware implementation. The
DWT case study in Section 3.3 need to use –R2 option.

• -r: This option optimizes the number of communication channels without
decreasing the performance of the process network. It removes some chan-
nels which start from one same process and end to another process.

After executing the three commands described above, we can get the KPN
specification in XML format. The KPN of the Sobel edge detection application
which is generated by COMPAAN is shown in Figure 3.8 in the previous chapter.
There are six processes/nodes in the KPN corresponding to the six function calls
in the initial Matlab Code.

4.1.2 Heterogeneous Embedded System Generation Using the
ESPAM tool

From the system design flow chart in Figure 1.1 we can see that besides the Ap-
plication Specification in KPN generated by COMPAAN, we also need Platform
Specification and Mapping Specification as inputs for our ESPAM tool. These two
specifications are shown in Figure 4.2 and Figure 4.3.

Because we only want to map the data initialization and output process onto
MicroBlaze processors to communicate with the host processor, we map process
Read m()(ND 1) and process Write m()(ND 6) onto MicroBlaze processors MB 1

and MB 2. All the other processes are mapped onto hardware IP modules in lines
7-12 in Figure 4.3. Although in the Mapping Specification only one HWN(hardware
node) is specified, all the processes declared in between ( Copy()(ND 2), Jc()(ND 3),
Jc()(ND 4) and Sb()(ND 5)) are generated as hardware modules separately.

In the Platform Specificatoin in Figure 4.2 we can see that each MicroBlaze
processor connects to one bank of ZBT SSRAM on the target FPGA platform
through one custom memory controller. The MicroBlaze MB 1 connects to the
memory controller ZBT CTRL 1 through the link mb opb 1 to read the initial im-
age data from the first ZBT SSRAM bank. The MicroBlaze MB 2 connects to the
memory controller ZBT CTRL 2 through the link mb opb 2 to write the resulting
data to the second ZBT SSRAM bank. We also set the data memory size and
program memory size for these two MicroBlaze processors to 8129 bytes each. In
the Platform Specification we do not set any properties currently.
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<platform name="myPlatform">

<processor name="MB_1" type="MB" data_memory="8129" program_memory="8129">
<port name="OPB_1" type="OPBPort"/>

</processor>

<processor name="HWN" type="CompaanHWNode">
</processor>

<processor name="MB_2" type="MB" data_memory="8129" program_memory="8129">
<port name="OPB_2" type="OPBPort"/>

</processor>

<peripheral name="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port name="IO_1" type="OPBPort"/>

</peripheral>

<peripheral name="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">
<port name="IO_2" type="OPBPort"/>

</peripheral>

<link name="mb_opb_1">
<resource name="MB_1" port="OPB_1"/>
<resource name="ZBT_CTRL_1" port="IO_1"/>

</link>

<link name="mb_opb_2">
<resource name="MB_2" port="OPB_2"/>
<resource name="ZBT_CTRL_2" port="IO_2"/>

</link>

</platform>

Figure 4.2: Platform Specification for Heterpgeneous Embedded System of Sobel
application

When the Application Specification, Platform Specification and Mapping Spec-
ification are all ready, we can start to run our ESPAM tool to automatically generate
all of the necessary XPS project files for the Sobel edge detection application. The
command of our ESPAM tool is shown in Figure 4.4. The options are explained
below:

• --platform: This option specifies the Platform Specification file.

• --kpn: This option specifies the Application Specification file as KPN
specification generated by COMPAAN.

• --mapping: This option specifies the Mapping Specification file.

• --scheduler: This option specifies a file which is used to describe a valid
global schedule among the processes in the Application Specification.
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1 <mapping name="myMapping">

<processor name="MB_1">
<process name="ND_1" />

5 </processor>

<processor name="HWN">
<process name="ND_2" />
<process name="ND_3" />

10 <process name="ND_4" />
<process name="ND_5" />

</processor>

<processor name="MB_2">
15 <process name="ND_6" />

</processor>

</mapping>

Figure 4.3: Mapping Specification for Heterpgeneous Embedded System of Sobel
application

espam --platform Sobel.pla --kpn Sobel.kpn --mapping Sobel.map
--scheduler Sobel.m --xps --libxps <libXPS> --debugger

Figure 4.4: Command of the ESPAM tool

• --xps: This option is used to tell our ESPAM tool to generate all necessary
files of an XPS project.

• --libxps: This option specifies the library which stores predefined compo-
nents or files that are common for all projects. Such as some common cus-
tom IP cores, component files which are the same for all ESPAM generated
IP core wrappers, the UCF files and some optional files for XPS implemen-
tation tools. Our ESPAM tool can copy these files from the library specified
by this option during project generation. The <libXPS> specifies the path
to this library which is currently the CVS repository path .../espam/src/es-
pam/libXPS.

• --debugger: This option is used to tell our ESPAM tool to generate com-
ponents used for debugging.

After we run the command in Figure 4.4, the XPS project for this Sobel edge
detection heterogeneous embedded system is generated. The project directory
structure is shown in Figure 4.5.

The system.xmp, system.mhs and system.mss files are the corresponding XMP,
MHS and MSS files which have been introduced in Section 2.3.3. The MHS file
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<PROJECT_ROOT>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- loader.exe
|--- etc/
|------------- bitgen.ut
|------------- bitgen_spartan3.ut
|------------- fast_runtime.opt
|------------- download.cmd
|--- data/
|------------- system.ucf
|------------- system ADMXRCII.ucf
|------------- system-default.ucf
|------------- system-zbt.ucf
|--- code/
|------------- aux func.h
|------------- MemoryMap.h
|------------- P 1/
|----------------------- P 1.cpp
|------------- P 3/
|----------------------- P 3.cpp
|--- pcores/
|------------- buffers v1 00 a/
|------------- cb_wrapper v1 00 a/
|------------- clock cycle counter v1 00 a/
|------------- fifo if ctrl v1 00 a/
|------------- fin ctrl v1 00 a/
|------------- host design ctrl v1 00 a/
|------------- LMB VB CTRL v1 00 a/
|------------- mux v1 00 a/
|------------- myCLKRST v1 00 a/
|------------- opb zbt controller v1 00 a/
|------------- VB Wrapper v1 00 a/
|------------- zbt main v1 00 a/
|------------- HWN_1_v1_00_a
|------------------- data
|------------------- devl
|------------------- hdl
|------------- HWN_2_v1_00_a
|------------------- data
|------------------- devl
|------------------- hdl
|------------- HWN_3_v1_00_a
|------------------- data
|------------------- devl
|------------------- hdl
|------------- HWN_4_v1_00_a
|------------------- data
|------------------- devl
|------------------- hdl

Figure 4.5: XPS project directory structure for the Sobel edge detection embedded
system

for this system can be found in Appendix B. The loader.exe file is a program
used to download and run the bitstream file. Directory etc contains bitgen.ut [22],
bitgen spartan3.ut, fast runtime.opt [22] and download.cmd which store options
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for the Xilinx implementation tools. The data directory contains several UCF
files for different FPGA devices. These files are used to specify implementation
constraints such as timing, FPGA pin locations, FPGA resource specification and
IO standards. In our case, we use the system ADMXRCII.ucf UCF file for the
physical implementation in the selected FPGA device.

Directory code contains the program code files for each processor in the plat-
form. Each processor has a corresponding subdirectory in which the program
source code file is stored. In Figure 4.5 the subdirectories P 1 and P 3 are for
the two MicroBlaze processors separately. In the top level of the code directory,
there are two files named aux func.h and MemoryMap.h. They are common for
program codes of all processors. The aux func.h file declares read and write primi-
tives as well as empty wrappers of all function calls in the initial Matlab code. The
MemoryMap.h file specifies physical addresses of the components in the platform.

What need to be mentioned is that our ESPAM tool does not deal with the
implementations of the function calls in the initial Matlab code. It only generates
empty wrappers for these functions without implementation. To implement the
application in XPS, these empty wrappers have to be replaced with corresponding
software function source code or hardware function files. In this tutorial we map
the Copy(), the two Jc() and the Sb() processes onto hardware IP modules. Thus
we need to replace the generated empty wrapper VHDL files with VHDL files
containing implementations. For the Read m() and Write m() processes which
are mapped onto MicroBlaze processors the corresponding empty wrappers are
replaced by corresponding software code. These will be explained in detail in
Section 4.2.

The pcores directory contains all predefined hardware IP modules and the
hardware IP modules generated by our ESPAM tool. The buffers v1 00 a,
fin ctrl v1 00 a, host design ctrl v1 00 a, mux v1 00 a, opb zbt controller v1 00 a
and zbt main v1 00 a are the hardware IP modules working as an interface for the
embedded system with the outside host processor and memory banks, the detailed
information can be referred to [8]. The fifo if ctrl v1 00 a is the LMB FIFO con-
troller which is explained in [23].

The clock cycle counter v1 00 a is the hardware IP module for debugging.
The myCLKRST v1 00 a is the hardware module which is used to generate the
system clock and reset. The cb wrapper v1 00 a, LMB VB CTRL v1 00 a and
VB Wrapper v1 00 a are the hardware modules for the crossbar communication
component. These components are not used in our current projects.
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The four subdirectories HWN 1 v1 00 a, HWN 2 v1 00 a, HWN 3 v1 00 a
and HWN 4 v1 00 a are corresponding to the four hardware modules for processes
Copy()(ND 2), Jc()(ND 3/4), Sb()(ND 5). In each of these four directories there
are again three subdirectories data, devl and hdl. The data directory contains the
MPD and PAO files which we explained in Section 2.3.2. The devl directory cur-
rently contains no files. The hdl directory contains the VHDL files, which are
listed in the PAO file, for the hardware module.

4.1.3 Importing Project to XPS

After the files for an XPS project is generated by our ESPAM, we have to import
his project into XPS. To startXPS, we use the start menu of Windows: start-
>Xilinx Platform Studio 7.1i->Xilinx Platform Studio. In the XPS tool, select
the menu option: File->Open Project. Then in the new dialog box, select the
XMP file — system.xmp of our XPS project by double clicking on it. By doing
these the project is loaded to XPS automatically. In our case we use XPS version
7.1. Because the files generated by ESPAM for our XPS project is based on XPS

version 6.3, XPS will automatically ask whether we want it to be upgraded to
version 7.1. We should just click YES to let the project be upgraded. We can get a
visual view of all the components and settings in our XPS project by selecting the
menu option: Project->Add/Edit Cores...(dialog). All the components, buses,
addresses, ports, and parameters are listed separately in the tabs Peripherals, Bus
Connections, Addresses, Ports, and Parameters.

4.2 Custom Modifications

After we import the project to XPS, we still need to make some modifications
manually on both hardware and software.

4.2.1 Hardware Modifications

In this section, we first describe the hardware modifications in detail. We will
make changes to the hardware and system settings, the MHS file and the hardware
modules.
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Hardware Setting Modification

We modify the UCF file name first. In the data directory of our XPS project,
there are several UCF files. When we import the project to XPS, it automatically
recognizes and uses the UCF file named system.ucf. Since the UCF file we need
to use for our project is system ADMXRCII.ucf and there is already a file named
system.ucf in the data directory, we have to first rename the original system.ucf to
system old.ucf and change the name of system ADMXRCII.ucf file to system.ucf.

Another thing we need to modify is the fast runtime.opt file. Although XPS

will automatically upgrade our project files from version 6.3 to version 7.1, the
fast runtime.opt file which is stored in the etc directory will not be upgraded ac-
cording to the corresponding version 7.1 format. In the fast runtime.opt file there
is an option for place and route named -ol which is used to set the overall effort
level. In XPS version 6.3, it can be set to number 1 to 5. But in XPS version 7.1, it
can only be set to std, med and high. Therefore, we need to manually change this
number 5 to std as shown in Figure 4.6. The modified part is in bold font.
...
...
Program par
-w; # Overwrite existing placed and routed ncd
-ol std; # Overall effort level
<inputdir><design>_map.ncd; # Input mapped NCD file
<design>.ncd; # Output placed and routed NCD
<inputdir><design>.pcf; # Input physical constraints file
END Program par
...
...

Figure 4.6: Modified fast runtime.opt file

Also we need to set our target FPGA board. In the System tab of XPS, there
is Project Options where the option Device resides in. Double click the Device
option, then in the new dialog box poped up we set the target device to : Archi-
tecture: virtex2, Device Size: xc2v6000, Package: ff1152, Grade: -5. At last we
click the OK button and XPS set this target device for our project.

MHS File Modification

The generated MHS file for this Sobel project is shown in Appendix B. We need
to adjust the size of the FIFOs in the MHS file. By default, our ESPAM tool
allocates 2048 bytes (512×32) for each FIFO. 512 is the data depth of a FIFO
and 32 is the data width of a FIFO. Lines 357 and 358 of Appendix B show the
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example of FIFO size setting in the MHS file. However, from the initial Matlab
code, we find out that 2048 bytes are not enough for all the FIFOs. Since the
off-chip memory is big enough for this application, we enlarge all the FIFOs to
size 4096 bytes (1024×32). An example for the modification of the size of FIFO
FIFO MB 1 Out 1 is shown in Figure 4.7. Sizes of other FIFOs can be modified
in the same way.
...
...
BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
...
...

Figure 4.7: Modified FIFO size example

Hardware module Modification

Since our ESPAM only generated wrappers for hardware modules, we need to
add the corresponding VHDL function implementation files for each hardware
module. In our project, we replace the empty function VHDL files with the cor-
responding VHDL files implementing the desired functions. For the hardware
module HWN 1 v1 00 a, the Copy.vhd file which simply copies the input to the
outputs should be added as replacement for the corresponding Copy() process. For
the hardware module HWN 2 v1 00 a and HWN 3 v1 00 a, the Jc.vhd file which
calculates the derivative approximations should be added for the corresponding
Jc() processes. For the last hardware module HWN 4 v1 00 a, the Sb.vhd file
which implements the calculation of the final gradients should be added for the
corresponding Sb() process.

Because the function files are added manually and the corresponding function
wrapper in the execution unit.vhd is generated according to the ESPAM applica-
tion model instance, the interface definition of the entities in these VHDL files
can be different. We have to check the definitions of the entities Copy, Jc and Sb.
Then compare them with the corresponding component declaration for these en-
tities. If they are different, we should modify the part in the execution unit.vhd to
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conform to the entity definition in the added function VHDL files. In this project,
the execution unit.vhd for the hardware module HWN 1 v1 00 a does not need
to be modified. All the others need to be modified. Since for all the other hard-
ware modules, there is one more output port RDY in the entity definition than in
the component declaration in execution unit.vhd, we simply add this port to the
component declaration. An example for HWN 4 v1 00 a is given in Figure 4.8.

...

...
architecture RTL of EXECUTION_UNIT is

component Sb is
port (

RST : in std_logic;
CLK : in std_logic;

in_0 : in std_logic_vector(KWANT - 1 downto 0);
in_1 : in std_logic_vector(KWANT - 1 downto 0);

out_0 : out std_logic_vector(KWANT -1 downto 0);

RDY : out std logic;
EN : in std_logic

);
end component;

...

...

Figure 4.8: Modified execution unit.vhd example

The last thing we need to modify for the hardware modules is to modify the
corresponding pipeline stage number of the function in the top-level VHDL file for
the hardware module. Because currently our ESPAM has not supported pipeline
stage setting in the application specification, we have to set the stage numbers
manually in the corresponding line in the top-level files. The top-level files for
the hardware modules in this project are HWN 1.vhd, HWN 2.vhd, HWN 3.vhd
and HWN 4.vhd in the corresponding hardware module directories. In these files
there is a part for parameter setting for the hardware module. An example of the
corresponding modification for the hardware module HWN 4 v1 00 a is given in
Figure 4.9. The pipeline stage numbers for the Copy, Jc and Sb functions are one,
two and two separately.

4.2.2 Software Modifications

After the hardware modifications, we have to make some modifications to the
software part of the project.
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...

...
-- Setting the parameters of the HW Node
constant c_IN_PORTS : natural := 2; -- # of input ports of a HW node
constant c_OUT_PORTS : natural := 1; -- # of output ports of a HW node
constant c_IN_FUNC_VAR : natural := 2; -- # of input ports of a HW IP
constant c_OUT_FUNC_VAR : natural := 1; -- # of output ports of a HW IP
constant N_PAR : natural := 2; -- # of global parameters
constant c_par_values : t_par_values := (0=>4, 1=>63, others=>0 );

-- each number represents
the default value of a parameter

constant c_COUNTERS : natural := 2; -- # of iterators
constant c_cntr_widths : t_counter_width := ( 0=>11, 1=>11, others=>10 );
constant c_STAGES : natural := 2;

-- # of stages of the pipeline or delay
constant c_BLOCKING : natural := 1;

-- block (or not) the pipeline
if there is no input data

constant c_IP_RESET : natural := 1; -- active level of the
HW IP reset signal

...

...

Figure 4.9: Modified HWN 4.vhd

We already explained that our ESPAM only generates empty wrappers for func-
tion calls, we first need to import all the implementations of the function calls
manually. The function calls for the two MicroBlaze processors for this project
are Read m and Write m for data initialization and output. We can first copy
the implementation source code files for these two function calls Sobel func.h,
Video in.h and Video in.cpp to the code directory. Then we manually import these
files for the corresponding MicroBlaze processor.

There is an Application tab in XPS where two software projects for the two
processors can be found. In each software project, there are Sources option and
Headers option. Double click the Sources option, then in the new dialog box we
can import the implementation program code files for each processor. Double
click the Headers option, then in the new dialog box we can import the head files
for each processor. Since both processors use the same header and implementa-
tion files, for both Proj MB 1 and Proj MB 2 we import Video in.cpp in Sources
option; Sobel func.h and Video in.h in Headers option. After importing normally
we also set the stack size for each processor project by double clicking the Com-
piler Options option in the Application tab to fill in the stack size. But for this
Sobel project the default stack size is big enough, we do not need to set the stack
size manually.

The next task we need to do is to add the function declarations and replace
each empty wrapper with a function call in each processor program code. As an
example, the modified program code of processor P 1 is shown in Figure 4.10.
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The bold lines in the code highlight the modification which we need to do man-
ually. In Line 6 we include Sobel func.h header files. In lines 21-22, we replace
the empty wrapper with the actual function call. The program code of the other
processors can be modified in the same way.

1 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"

5 #include "MemoryMap.h"
#include ”Sobel func.h”

int main ()

10 int clk_num;

*clk_cntr = 0;

// Input Arguments

15 // Output Arguments
tCH_1 out_0ND_1;

for( int j = ceil1(1); j <= floor1(M ); j += 1 )
for( int i = ceil1(1); i <= floor1(N ); i += 1 )

20
// Read m(out 0ND 1) ;
out 0ND 1 = Read m() ;

writeFSL(ND_1_OG_1_CH_1, &out_0ND_1,
25 (sizeof(tCH_1)+(sizeof(tCH_1)%4)+3)/4);

// for i
// for j

clk_num = *clk_cntr;
30 *FIN_SIGNAL = (volatile long)0x00000001;

// main

Figure 4.10: Modified program code for processor P 1

We also need to modify the aux func.h file which is generated by our ESPAM.
The modified aux func.h file is shown in Figure 4.11. The bold lines in the code
highlight the modification that we need to do manually. In lines 25-26 we change
the parameter numbers into 450 and 275 which are the size of the input image
width and height. Also because we have already replaced the empty wrappers with
the actual function calls in program code of each processor, we need to comment
the inline empty wrapper declarations which are generated by ESPAM in lines
28-33.

The last thing is to modify the MemoryMap.h file. The modified file is shown
in Figure 4.12. In lines 28-29 we add the physical address assignment for
ZBT MEMORY MB1 and ZBT MEMORY MB2. Because in the file Video in.cpp
we need these two addresses to read data from and write result to. The complete
modified project can be found in the CVS repository:
docs/students/YingTao/experiment/Sobel ip int.zip
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1 #ifndef __AUX_FUNC_H__
#define __AUX_FUNC_H__

#include <math.h>
5 #include "mb_interface.h"

typedef int tCH_1;
typedef int tCH_2;
typedef int tCH_3;

10 typedef int tCH_4;
typedef int tCH_5;
typedef int tCH_6;
typedef int tCH_7;
typedef int tCH_8;

15 typedef int tCH_9;
typedef int tCH_10;
typedef int tCH_11;
typedef int tCH_12;
typedef int tCH_13;

20 typedef int tCH_14;
typedef int tCH_15;
typedef int tCH_16;

// Parameters
25 #define N 450

#define M 275

/*inline
void _Read_m( tCH_1 *out_0 )

30

inline
void _Write_m( tCH_16 in_0, char *out_0 )

35 */

#define min(a,b) ((a)<=(b))?(a):(b)
#define max(a,b) ((a)>=(b))?(a):(b)
...
...

Figure 4.11: Modified aux func.h file
1 #ifndef __MEMORYMAP_H_

#define __MEMORYMAP_H_

#define PCTRL_BRAM1_MB_1 0x00000000 //read from PCTRL_BRAM1_MB_1 address for MB_1
5 #define PCTRL_BRAM1_MB_1 0x00000000 //write to PCTRL_BRAM1_MB_1 address for MB_1

#define DCTRL_BRAM1_MB_1 0x00000000 //read from DCTRL_BRAM1_MB_1 address for MB_1
#define DCTRL_BRAM1_MB_1 0x00000000 //write to DCTRL_BRAM1_MB_1 address for MB_1

#define ZBT_CTRL_1 0xf0000000 //read from ZBT_CTRL_1 address for MB_1
10 #define ZBT_CTRL_1 0xf0000000 //write to ZBT_CTRL_1 address for MB_1

//MB_1 FIFOs
#define ND_1_OG_1_CH_1 0 //write to CDChannelCH_1 address for MB_1

15 #define PCTRL_BRAM1_MB_2 0x00000000 //read from PCTRL_BRAM1_MB_2 address for MB_2
#define PCTRL_BRAM1_MB_2 0x00000000 //write to PCTRL_BRAM1_MB_2 address for MB_2
#define DCTRL_BRAM1_MB_2 0x00000000 //read from DCTRL_BRAM1_MB_2 address for MB_2
#define DCTRL_BRAM1_MB_2 0x00000000 //write to DCTRL_BRAM1_MB_2 address for MB_2

20 #define ZBT_CTRL_2 0xf0000000 //read from ZBT_CTRL_2 address for MB_2
#define ZBT_CTRL_2 0xf0000000 //write to ZBT_CTRL_2 address for MB_2

//MB_2 FIFOs
#define ND_6_IG_1_CH_16 0 //read from CDChannelCH_16 address for MB_2

25
#define clk_cntr (volatile int *)0xf8000000
#define FIN_SIGNAL (volatile long *)0xf9000000
#define ZBT MEMORY MB1 (volatile long *)0xf0000000
#define ZBT MEMORY MB2 (volatile long *)0xf0000000

30 #define ZBT_MEM_CLK (volatile long *)0xf00ffffc

#endif

Figure 4.12: Modified MemoryMap.h file
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4.3 XPS Project Execution and Results

Once we finish with importing our project to XPS and all of the modifications
for our project, we are ready to use XPS to generate the final bitstream file. The
bitstream file is used to configure the FPGA chip to implement the Sobel edge
detection application. We use the following commands to generate the bitstresm
step by step. All these commands can be found in the menu option Tools in XPS

tool.

• Generate Libraries: This command uses the library building tool LibGen
with the correct MSS file as input to create the Board Support Packet (BSP)
which includes device drivers, libraries, STDIN/STDOUT configurations,
and interrupt handlers associated with the design.

• Compile Program Source: This command invokes the cross compiler mc-
gcc. This compiler generates several ELF executable files, one for each
processor in the system, by compiling the program code of each processor.
If LibGen has not been executed, this command first invokes LibGen.

• Generate Netlist: This command uses the platform building tool PlatGen
with the MHS file as input. It produces system netlist files in NGC format.

• Generate Bitstream: This command uses the xflow tool with the NGC
netlist files as input. The fast runtime.opt and bitgen.ut files in the etc di-
rectory of our project are used to set some options of the xflow tool. The
xflow tool generates the bitstream file — system.bit for the FPGA. This file
is located in directory implementation of our project.

• Update Bitstream: This command uses the tool bitinit. This is the stage
where the hardware and the software flows are merged. If the above com-
mands have not been executed, this command will invoke them one by one.
At the end of this stage, we can get the resulting bitstream file download.bit
which is located in the implementation directory of our project. This bit-
stream file contains the entire FPGA configuration information regarding
both the software and the hardware part of the heterogenous embedded sys-
tem.

In order to download the final bitstream file onto the target FPGA board to get
the resulting data, we need to use a software program in an outside host proces-
sor to communicate with our target ADM-XRC-II board. This software program
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is a Microsoft Visual C++ 6.0 project which uses the ADM-XRC application-
programming interface (API) to take care of open, close and device I/O control
calls to the driver of the ADM-XRC-II board. The main code of the software
program is shown in Appendix C.

From the appendix, we can see that in Line 35 the initial image data is put into
the first off-chip memory bank. Lines 36-40 initialize the other five memory banks
with zero. Lines 49-51 load the first parameter by putting the first parameter value
to address for the parameter register on the FPGA board and enable the command
for loading parameter for a while. The second parameter is loaded in the same way
in Lines 54-56. Then in lines 63-69, our Sobel heterogeneous embedded system
reads the initial image data from the off-chip memory, executes the Sobel edge
detection application for the initial image data and writes the resulting image data
into the second off-chip memory bank corresponding to the second MicroBlaze
processor. In line 79 the outside host processor reads back the resulting image
data from the off-chip memory. The last few lines 90-100 write the image data
into a raw file and convert it into a JPEG file.

Therefore, in order to download the final bitstream file onto the target FPGA
board and get the resulting data, we just need to copy the XPS generated final
bitstream file to the directory of this software program. Then we compile and run
this software program with Microsoft Visual C++ 6.0 to get the resulting image
data in the outside host processor. This software program can be found in the CVS
repository:
docs/students/YingTao/experiment/PentiumProgram Sobel.zip
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Chapter 5

Summary and Conclusions

In this thesis, we first introduced our tool ESPAM and the motivation for us to make
ESPAM support heterogeneous multiprocessor system generation. Later more de-
tails about the structure of the IP core wrapper and the implementation ideas are
explained. After that case study of several XPS projects and detailed tutorial are
given.

Our system design methodology allows efficient and effective mapping of a
class of multimedia and signal processing applications onto heterogeneous multi-
processor platforms in a systematic and automated way. By using our ESPAM tool,
designers can easily design heterogeneous multiprocessor embedded systems for
various applications and get the XPS project implementation. This thesis mainly
integrate hardware IP cores into ESPAM generated systems. Evaluation of the re-
sult system performances and comparison with other similar work are done in this
thesis. Better time performance can be met with this heterogeneous architecture.

Essential to the hardware IP core part is the structure of the IP wrappers. We
make them conform to the behaviour of Kahn Process Network processes. The
internal components of a wrapper are clearly structured and modularized, which
makes the components loosely coupled for easy separate optimization. Since these
predefined and parameterized internal components are with clearly defined inter-
face, we only have to instantiate these components by setting the component pa-
rameters for wrapper generations.

Future improvements for our ESPAM tool can be made in three aspects.

Firstly, we can make the IP core wrapper part more general, automatic and
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optimized.

• Currently we only support the iterator step as +1. This can be made para-
meterized later.

• We have to take the IP cores manually from a library and add them. A
later work can let the platform specification part contain the specification
for IP cores of certain functions. So the IP cores can be copied from ESPAM

library if it exists instead of being added manually.

• For the control information evaluation for reading and writing, we can con-
sider to further optimize the control expressions or use another way to eval-
uate the expressions to make sure any expression evaluation will always be
faster than the execution of the function.

• The hardware modules in ESPAM take scalar values as data inputs. Fur-
ther work can make complex data types also supported by dividing them at
reading and restoring them in temporary memories for execution.

Secondly, we can make the already existing ESPAM model instances support
more general cases.

• The input ports of an ADG node may be related to more than one or none
input argument of the ADG function. However, our hardware modules do
not support this situation yet because the application input from COMPAAN

does not deal with this. Further work can be done to support this situation.

• ESPAM models support FIFO channels as communication channels. Com-
munication components other than FIFOs, such as Reordering Channels,
should be able to be mapped as platform channels to deal with out-of-order
communication [24].

The last improvement can be made to make the ESPAM design flow more
automated.

• Currently the application specification input can be generated by COM-
PAAN. However, we still have to specify manually the mapping specifi-
cation and the platform specification. In the future we can integrate an au-
tomatic mapping part in our ESPAM tool. This part can give one or several
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optimal mappings which map the applications onto specific platforms. The
mappings can be decided by considering the device resource and the appli-
cation processes.

• If we use COMPAAN generated KPN as the application specification input of
ESPAM, we have to calculate the FIFO sizes and modify them manually if it
is necessary. We can also use the Process Network Generator tool (PNgen)
generated networks as the application specification input of ESPAM. Then
we can get the FIFO sizes measured in tokens and calculate the exact sizes
using the token size. We can further automate this aspect in ESPAM.
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Appendix A

Initial Matlab code for DWT
application

1 %parameter Nrow 10 256; %% The first time Nrow=Height/2 So, the max image height is 512
%parameter Ncol 10 256; %% In the algorithm we use Ncol*2 and Ncol

%typedef image int;
5 %typedef tmpLine int;

%typedef Hf int;
%typedef oldHf int;
%typedef Lf int;
%typedef tmp int;

10 %typedef buffLow int;
%typedef buffHigh int;
%typedef LL int;
%typedef LH int;
%typedef HL int;

15 %typedef HH int;
%typedef result int;

for i=0:1:2*Nrow -1,
for j=0:1:2*Ncol-1,

20 [image(i,j)]=init();
end

end

for i=0:1:Nrow-1,
25 %% DWT by columns at pixel level (3 elements per column with subsampling)

for j=0:1:2*Ncol -1,

if i>=Nrow-1,
[ tmpLine ] = copy( image(2*i,j) );

30 else
[ tmpLine ] = copy( image(2*i+2,j) );

end

%% compute high frequency coeff.
35 // High Pass Filter

[ Hf(j) ] = my_high_flt_vert( image(2*i,j),image(2*i+1,j),tmpLine );

if i<=0,
[ oldHf(j) ] = copy_Hf( Hf(j) );

40 end

%% compute low frequency coeff.
// Low Pass Filter
[ Lf(j), oldHf(j) ] = my_low_flt_vert( oldHf(j), image(2*i,j), Hf(j) );

45 end
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%% variables Lf and Hf represent 1 line of Low and High pass filtered image resectively
%% DWT by rows at pixel level (Low Pass Filter with subsampling)
---------------------------------

50 for j=0:1:Ncol-1,

if j>=Ncol-1, %% 2*j==Ncol-2
[ tmp ] = copy( Lf(2*j) );

else
55 [ tmp ] = copy( Lf(2*j+2) );

end

// High Pass Filter
[ buffLow(2*j+1), HL(i,j) ] = my_high_flt_hor( Lf(2*j), Lf(2*j+1), tmp );

60
if j<=0,
[ tmp ] = copy( buffLow(2*j+1) ); // or HL[c][i][j]; // one reg is enough

else
[ tmp ] = copy( buffLow(2*j-1) ); // or HL[c][i][j-1];

65 end

// Low Pass Filter
[ buffLow(2*j), LL(i,j) ] = my_low_flt_hor( tmp, Lf(2*j), buffLow(2*j+1) );

70 end

%% DWT rows row at pixel level (High Pass Filter with subsampling)
---------------------------------
for j=0:1:Ncol-1,

75
if j>=Ncol-1,
[ tmp ] = copy( Hf(2*j) );

else
[ tmp ] = copy( Hf(2*j+2) );

80 end

// High Pass Filter
[ buffHigh(2*j+1), HH(i,j) ] = my_high_flt_hor( Hf(2*j), Hf(2*j+1), tmp );

85 if j<=0,
[ tmp ] = copy( buffHigh(2*j+1) ); // or HH[c][i][j];

else
[ tmp ] = copy( buffHigh(2*j-1) ); // or HH[c][i][j-1];

end
90

// Low Pass Filter
[ buffHigh(2*j), LH(i,j) ] = my_low_flt_hor( tmp, Hf(2*j), buffHigh(2*j+1) );

end
95 end

%% The Sink

for i=0:1:Nrow-1,
100 for j=0:1:Ncol-1,

[ result(i,j) ] = sink( LL(i,j) );
[ result(i,Ncol+j) ] = sink( HL(i,j) );
[ result(Nrow+i,j) ] = sink( LH(i,j) );
[ result(Nrow+i,Ncol+j) ] = sink( HH(i,j) );

105 end
end



Appendix B

MHS file for Sobel Heterogeneous
Embedded System project

1 ## F i l e a u t o m a t i c a l l y g e n e r a t e d by ESPAM
2
3
4 PARAMETER VERSION = 2 . 1 . 0
5 PORT l c l k = l c l k , DIR = IN
6 PORT mclk = mclk , DIR = IN
7 PORT r a m c l k i = ramc lk i , VEC = [ 1 : 0 ] , DIR = IN
8 PORT ramclko = ramclko , VEC = [ 1 : 0 ] , DIR = OUT
9 PORT l r e s e t o l = l r e s e t o l , DIR = IN

10 PORT l w r i t e = l w r i t e , DIR = IN
11 PORT l a d s l = l a d s l , DIR = IN
12 PORT l b l a s t l = l b l a s t l , DIR = IN
13 PORT l b t e r m l = l b t e r m l , DIR = INOUT
14 PORT l d = ld , VEC = [ 3 1 : 0 ] , DIR = INOUT
15 PORT l a = la , VEC = [ 2 3 : 2 ] , DIR = IN
16 PORT l r e a d y i l = l r e a d y i l , DIR = OUT
17 PORT l b e l = l b e l , VEC = [ 3 : 0 ] , DIR = IN
18 PORT f h o l d a = f h o l d a , DIR = IN
19 PORT r a 0 = ra0 , VEC = [ 1 9 : 0 ] , DIR = OUT
20 PORT rd0 = rd0 , VEC = [ 3 1 : 0 ] , DIR = INOUT
21 PORT r c 0 = rc0 , VEC = [ 8 : 0 ] , DIR = OUT
22 PORT r a 1 = ra1 , VEC = [ 1 9 : 0 ] , DIR = OUT
23 PORT rd1 = rd1 , VEC = [ 3 1 : 0 ] , DIR = INOUT
24 PORT r c 1 = rc1 , VEC = [ 8 : 0 ] , DIR = OUT
25 PORT r a 2 = ra2 , VEC = [ 1 9 : 0 ] , DIR = OUT
26 PORT rd2 = rd2 , VEC = [ 3 1 : 0 ] , DIR = INOUT
27 PORT r c 2 = rc2 , VEC = [ 8 : 0 ] , DIR = OUT
28 PORT r a 3 = ra3 , VEC = [ 1 9 : 0 ] , DIR = OUT
29 PORT rd3 = rd3 , VEC = [ 3 1 : 0 ] , DIR = INOUT
30 PORT r c 3 = rc3 , VEC = [ 8 : 0 ] , DIR = OUT
31 PORT r a 4 = ra4 , VEC = [ 1 9 : 0 ] , DIR = OUT
32 PORT rd4 = rd4 , VEC = [ 3 1 : 0 ] , DIR = INOUT
33 PORT r c 4 = rc4 , VEC = [ 8 : 0 ] , DIR = OUT
34 PORT r a 5 = ra5 , VEC = [ 1 9 : 0 ] , DIR = OUT
35 PORT rd5 = rd5 , VEC = [ 3 1 : 0 ] , DIR = INOUT
36 PORT r c 5 = rc5 , VEC = [ 8 : 0 ] , DIR = OUT
37
38 BEGIN lmb v10
39 PARAMETER INSTANCE = PBUS MB 1
40 PARAMETER HW VER = 1 . 0 0 . a
41 PARAMETER C EXT RESET HIGH = 0
42 PORT SYS Rst = n e t d e s i g n r s t
43 PORT LMB Clk = s y s c l k s
44 END
45
46 BEGIN lmb v10
47 PARAMETER INSTANCE = DBUS MB 1
48 PARAMETER HW VER = 1 . 0 0 . a

49 PARAMETER C EXT RESET HIGH = 0
50 PORT SYS Rst = n e t d e s i g n r s t
51 PORT LMB Clk = s y s c l k s
52 END
53
54 BEGIN opb v20
55 PARAMETER INSTANCE = mb opb 1
56 PARAMETER HW VER = 1 . 1 0 . c
57 PARAMETER C EXT RESET HIGH = 0
58 PORT SYS Rst = n e t d e s i g n r s t
59 PORT OPB Clk = s y s c l k s
60 END
61
62 BEGIN f i n c t r l
63 PARAMETER INSTANCE = f i n c t r l P 1
64 PARAMETER HW VER = 1 . 0 0 . a
65 PARAMETER C BASEADDR = 0 xf9000000
66 PARAMETER C HIGHADDR = 0 xf900000f
67 PARAMETER C AB = 8
68 BUS INTERFACE SLMB = DBUS MB 1
69 PORT S l F i n O u t = n e t f i n s i g n a l P 1
70 END
71
72 BEGIN c l o c k c y c l e c o u n t e r
73 PARAMETER INSTANCE = c l o c k c y c l e c o u n t e r P 1
74 PARAMETER HW VER = 1 . 0 0 . a
75 PARAMETER C BASEADDR = 0 xf8000000
76 PARAMETER C HIGHADDR = 0 xf8000003
77 BUS INTERFACE SLMB = DBUS MB 1
78 PORT LMB Clk = s y s c l k s
79 END
80
81 BEGIN m i c r o b l a z e
82 PARAMETER INSTANCE = MB 1
83 PARAMETER HW VER = 4 . 0 0 . a
84 PARAMETER C NUMBER OF PC BRK = 1
85 PARAMETER C NUMBER OF RD ADDR BRK = 0
86 PARAMETER C NUMBER OF WR ADDR BRK = 0
87 BUS INTERFACE MFSL0 = FIFO MB 1 Out 1
88 BUS INTERFACE DLMB = DBUS MB 1
89 BUS INTERFACE ILMB = PBUS MB 1
90 BUS INTERFACE DOPB = mb opb 1
91 PARAMETER C FSL LINKS = 1
92 PORT CLK = s y s c l k s
93 END
94
95 BEGIN lmb v10
96 PARAMETER INSTANCE = PBUS MB 2
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97 PARAMETER HW VER = 1 . 0 0 . a
98 PARAMETER C EXT RESET HIGH = 0
99 PORT SYS Rst = n e t d e s i g n r s t

100 PORT LMB Clk = s y s c l k s
101 END
102
103 BEGIN lmb v10
104 PARAMETER INSTANCE = DBUS MB 2
105 PARAMETER HW VER = 1 . 0 0 . a
106 PARAMETER C EXT RESET HIGH = 0
107 PORT SYS Rst = n e t d e s i g n r s t
108 PORT LMB Clk = s y s c l k s
109 END
110
111 BEGIN opb v20
112 PARAMETER INSTANCE = mb opb 2
113 PARAMETER HW VER = 1 . 1 0 . c
114 PARAMETER C EXT RESET HIGH = 0
115 PORT SYS Rst = n e t d e s i g n r s t
116 PORT OPB Clk = s y s c l k s
117 END
118
119 BEGIN f i n c t r l
120 PARAMETER INSTANCE = f i n c t r l P 2
121 PARAMETER HW VER = 1 . 0 0 . a
122 PARAMETER C BASEADDR = 0 xf9000000
123 PARAMETER C HIGHADDR = 0 xf900000f
124 PARAMETER C AB = 8
125 BUS INTERFACE SLMB = DBUS MB 2
126 PORT S l F i n O u t = n e t f i n s i g n a l P 2
127 END
128
129 BEGIN c l o c k c y c l e c o u n t e r
130 PARAMETER INSTANCE = c l o c k c y c l e c o u n t e r P 2
131 PARAMETER HW VER = 1 . 0 0 . a
132 PARAMETER C BASEADDR = 0 xf8000000
133 PARAMETER C HIGHADDR = 0 xf8000003
134 BUS INTERFACE SLMB = DBUS MB 2
135 PORT LMB Clk = s y s c l k s
136 END
137
138 BEGIN m i c r o b l a z e
139 PARAMETER INSTANCE = MB 2
140 PARAMETER HW VER = 4 . 0 0 . a
141 PARAMETER C NUMBER OF PC BRK = 1
142 PARAMETER C NUMBER OF RD ADDR BRK = 0
143 PARAMETER C NUMBER OF WR ADDR BRK = 0
144 BUS INTERFACE SFSL0 = FIFO HWN 4 Out 15
145 BUS INTERFACE DLMB = DBUS MB 2
146 BUS INTERFACE ILMB = PBUS MB 2
147 BUS INTERFACE DOPB = mb opb 2
148 PARAMETER C FSL LINKS = 1
149 PORT CLK = s y s c l k s
150 END
151
152 BEGIN z b t m a i n
153 PARAMETER INSTANCE = h o s t z b t m a i n
154 PARAMETER HW VER = 1 . 0 0 . a
155 BUS INTERFACE HOST BUFF 0 PORT = b u f f r d 0
156 BUS INTERFACE HOST BUFF 1 PORT = b u f f r d 1
157 BUS INTERFACE HOST BUFF 2 PORT = b u f f r d 2
158 BUS INTERFACE HOST BUFF 3 PORT = b u f f r d 3
159 BUS INTERFACE HOST BUFF 4 PORT = b u f f r d 4
160 BUS INTERFACE HOST BUFF 5 PORT = b u f f r d 5
161 BUS INTERFACE HOST MUX PORT = m u x t o h o s t
162 PORT l c l k = l c l k
163 PORT mclk = mclk
164 PORT ramclko = ramclko
165 PORT r a m c l k i = r a m c l k i
166 PORT l r e s e t o l = l r e s e t o l
167 PORT l w r i t e = l w r i t e
168 PORT l a d s l = l a d s l
169 PORT l b l a s t l = l b l a s t l
170 PORT l b t e r m l = l b t e r m l
171 PORT l d = l d
172 PORT l a = l a
173 PORT l r e a d y i l = l r e a d y i l
174 PORT l b e l = l b e l
175 PORT f h o l d a = f h o l d a
176 PORT CLK out = s y s c l k s
177 PORT RST out = s y s r s t s
178 PORT COMMAND REG = net command
179 PORT DESIGN STAT REG = n e t d e s i g n s t a t u s

180 PORT PARAMETER REG = n e t p a r a m e t e r
181 END
182
183 BEGIN h o s t d e s i g n c t r l
184 PARAMETER INSTANCE = h o s t d e s i g n c o n t r o l l e r
185 PARAMETER HW VER = 1 . 0 0 . a
186 PARAMETER N FIN = 6
187 PARAMETER PAR WIDTH = 16
188 PORT RST = s y s r s t s
189 PORT COMMAND REG = net command
190 PORT STATUS REG = n e t d e s i g n s t a t u s
191 PORT PARAMETER REG = n e t p a r a m e t e r
192 PORT RST OUT = n e t d e s i g n r s t
193 PORT FIN REG 0 = n e t f i n s i g n a l P 1
194 PORT FIN REG 1 = n e t f i n s i g n a l P 2
195 PORT FIN REG 2 = n e t f i n s i g n a l I P 1
196 PORT FIN REG 3 = n e t f i n s i g n a l I P 2
197 PORT FIN REG 4 = n e t f i n s i g n a l I P 3
198 PORT FIN REG 5 = n e t f i n s i g n a l I P 4
199 BUS INTERFACE PAR BUS = PARBUS
200 END
201
202 BEGIN mux
203 PARAMETER INSTANCE = m u l t i p l e x e r
204 PARAMETER HW VER = 1 . 0 0 . a
205 PARAMETER N MUX = 2
206 BUS INTERFACE MUX BUFF PORT = b u f f t o m u x
207 BUS INTERFACE MUX DESIGN 0 PORT = mux des ign 0
208 BUS INTERFACE MUX DESIGN 1 PORT = mux des ign 1
209 BUS INTERFACE MUX HOST PORT = m u x t o h o s t
210 PORT r a 0 = r a 0
211 PORT r a 1 = r a 1
212 PORT r a 2 = r a 2
213 PORT r a 3 = r a 3
214 PORT r a 4 = r a 4
215 PORT r a 5 = r a 5
216 PORT r c 0 = r c 0
217 PORT r c 1 = r c 1
218 PORT r c 2 = r c 2
219 PORT r c 3 = r c 3
220 PORT r c 4 = r c 4
221 PORT r c 5 = r c 5
222 PORT RST = s y s r s t s
223 PORT CNTRL = net command
224 END
225
226 BEGIN b u f f e r s
227 PARAMETER INSTANCE = b u f f
228 PARAMETER HW VER = 1 . 0 0 . a
229 BUS INTERFACE BUFF MUX PORT = b u f f t o m u x
230 BUS INTERFACE BUFF RD 0 PORT = b u f f r d 0
231 BUS INTERFACE BUFF RD 1 PORT = b u f f r d 1
232 BUS INTERFACE BUFF RD 2 PORT = b u f f r d 2
233 BUS INTERFACE BUFF RD 3 PORT = b u f f r d 3
234 BUS INTERFACE BUFF RD 4 PORT = b u f f r d 4
235 BUS INTERFACE BUFF RD 5 PORT = b u f f r d 5
236 PORT rd0 = rd0
237 PORT rd1 = rd1
238 PORT rd2 = rd2
239 PORT rd3 = rd3
240 PORT rd4 = rd4
241 PORT rd5 = rd5
242 END
243
244 BEGIN o p b z b t c o n t r o l l e r
245 PARAMETER INSTANCE = ZBT CTRL 1
246 PARAMETER HW VER = 1 . 0 0 . a
247 PARAMETER C BASEADDR = 0 xf0000000
248 PARAMETER C HIGHADDR = 0 x f 0 0 f f f f f
249 PARAMETER C EXTERNAL DLL = 1
250 PARAMETER C ZBT ADDR SIZE = 20
251 BUS INTERFACE SOPB = mb opb 1
252 BUS INTERFACE DESIGN BUFF PORT = b u f f r d 0
253 BUS INTERFACE DESIGN MUX PORT = mux des ign 0
254 END
255
256 BEGIN o p b z b t c o n t r o l l e r
257 PARAMETER INSTANCE = ZBT CTRL 2
258 PARAMETER HW VER = 1 . 0 0 . a
259 PARAMETER C BASEADDR = 0 xf0000000
260 PARAMETER C HIGHADDR = 0 x f 0 0 f f f f f
261 PARAMETER C EXTERNAL DLL = 1
262 PARAMETER C ZBT ADDR SIZE = 20
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263 BUS INTERFACE SOPB = mb opb 2
264 BUS INTERFACE DESIGN BUFF PORT = b u f f r d 1
265 BUS INTERFACE DESIGN MUX PORT = mux des ign 1
266 END
267
268 BEGIN HWN 1
269 PARAMETER INSTANCE = HWN 1 ip
270 PARAMETER HW VER = 1 . 0 0 . a
271 PARAMETER RESET HIGH = 0
272 PARAMETER PAR WIDTH = 16
273 PARAMETER KWANT = 32
274
275 BUS INTERFACE I n 1 = FIFO MB 1 Out 1
276 BUS INTERFACE Out 1 = FIFO HWN 1 Out 1
277 BUS INTERFACE Out 2 = FIFO HWN 1 Out 2
278 BUS INTERFACE Out 3 = FIFO HWN 1 Out 3
279 BUS INTERFACE Out 4 = FIFO HWN 1 Out 4
280 BUS INTERFACE Out 5 = FIFO HWN 1 Out 5
281 BUS INTERFACE Out 6 = FIFO HWN 1 Out 6
282 BUS INTERFACE Out 7 = FIFO HWN 1 Out 7
283 BUS INTERFACE Out 8 = FIFO HWN 1 Out 8
284 BUS INTERFACE Out 9 = FIFO HWN 1 Out 9
285 BUS INTERFACE Out 10 = FIFO HWN 1 Out 10
286 BUS INTERFACE Out 11 = FIFO HWN 1 Out 11
287 BUS INTERFACE Out 12 = FIFO HWN 1 Out 12
288 BUS INTERFACE PAR BUS = PARBUS
289 PORT CLK = s y s c l k s
290 PORT RST = n e t d e s i g n r s t
291 PORT STOP = n e t f i n s i g n a l I P 1
292 END
293
294 BEGIN HWN 2
295 PARAMETER INSTANCE = HWN 2 ip
296 PARAMETER HW VER = 1 . 0 0 . a
297 PARAMETER RESET HIGH = 0
298 PARAMETER PAR WIDTH = 16
299 PARAMETER KWANT = 32
300
301 BUS INTERFACE I n 2 = FIFO HWN 1 Out 1
302 BUS INTERFACE I n 3 = FIFO HWN 1 Out 2
303 BUS INTERFACE I n 4 = FIFO HWN 1 Out 3
304 BUS INTERFACE I n 5 = FIFO HWN 1 Out 4
305 BUS INTERFACE I n 6 = FIFO HWN 1 Out 5
306 BUS INTERFACE I n 7 = FIFO HWN 1 Out 6
307 BUS INTERFACE Out 13 = FIFO HWN 2 Out 13
308 BUS INTERFACE PAR BUS = PARBUS
309 PORT CLK = s y s c l k s
310 PORT RST = n e t d e s i g n r s t
311 PORT STOP = n e t f i n s i g n a l I P 2
312 END
313
314 BEGIN HWN 3
315 PARAMETER INSTANCE = HWN 3 ip
316 PARAMETER HW VER = 1 . 0 0 . a
317 PARAMETER RESET HIGH = 0
318 PARAMETER PAR WIDTH = 16
319 PARAMETER KWANT = 32
320
321 BUS INTERFACE I n 8 = FIFO HWN 1 Out 7
322 BUS INTERFACE I n 9 = FIFO HWN 1 Out 8
323 BUS INTERFACE I n 1 0 = FIFO HWN 1 Out 9
324 BUS INTERFACE I n 1 1 = FIFO HWN 1 Out 10
325 BUS INTERFACE I n 1 2 = FIFO HWN 1 Out 11
326 BUS INTERFACE I n 1 3 = FIFO HWN 1 Out 12
327 BUS INTERFACE Out 14 = FIFO HWN 3 Out 14
328 BUS INTERFACE PAR BUS = PARBUS
329 PORT CLK = s y s c l k s
330 PORT RST = n e t d e s i g n r s t
331 PORT STOP = n e t f i n s i g n a l I P 3
332 END
333
334 BEGIN HWN 4
335 PARAMETER INSTANCE = HWN 4 ip
336 PARAMETER HW VER = 1 . 0 0 . a
337 PARAMETER RESET HIGH = 0
338 PARAMETER PAR WIDTH = 16
339 PARAMETER KWANT = 32
340
341 BUS INTERFACE I n 1 4 = FIFO HWN 2 Out 13
342 BUS INTERFACE I n 1 5 = FIFO HWN 3 Out 14
343 BUS INTERFACE Out 15 = FIFO HWN 4 Out 15
344 BUS INTERFACE PAR BUS = PARBUS
345 PORT CLK = s y s c l k s

346 PORT RST = n e t d e s i g n r s t
347 PORT STOP = n e t f i n s i g n a l I P 4
348 END
349
350 BEGIN f s l v 2 0
351 PARAMETER HW VER = 2 . 0 0 . a
352 PARAMETER INSTANCE = FIFO MB 1 Out 1
353 PARAMETER C EXT RESET HIGH = 0
354 PARAMETER C ASYNC CLKS = 0
355 PARAMETER C IMPL STYLE = 1
356 PARAMETER C USE CONTROL = 0
357 PARAMETER C FSL DWIDTH = 32
358 PARAMETER C FSL DEPTH = 1024
359 PORT FSL Clk = s y s c l k s
360 PORT SYS Rst = n e t d e s i g n r s t
361 END
362
363 BEGIN f s l v 2 0
364 PARAMETER HW VER = 2 . 0 0 . a
365 PARAMETER INSTANCE = FIFO HWN 1 Out 1
366 PARAMETER C EXT RESET HIGH = 0
367 PARAMETER C ASYNC CLKS = 0
368 PARAMETER C IMPL STYLE = 1
369 PARAMETER C USE CONTROL = 0
370 PARAMETER C FSL DWIDTH = 32
371 PARAMETER C FSL DEPTH = 1024
372 PORT FSL Clk = s y s c l k s
373 PORT SYS Rst = n e t d e s i g n r s t
374 END
375
376 BEGIN f s l v 2 0
377 PARAMETER HW VER = 2 . 0 0 . a
378 PARAMETER INSTANCE = FIFO HWN 1 Out 2
379 PARAMETER C EXT RESET HIGH = 0
380 PARAMETER C ASYNC CLKS = 0
381 PARAMETER C IMPL STYLE = 1
382 PARAMETER C USE CONTROL = 0
383 PARAMETER C FSL DWIDTH = 32
384 PARAMETER C FSL DEPTH = 1024
385 PORT FSL Clk = s y s c l k s
386 PORT SYS Rst = n e t d e s i g n r s t
387 END
388
389 BEGIN f s l v 2 0
390 PARAMETER HW VER = 2 . 0 0 . a
391 PARAMETER INSTANCE = FIFO HWN 1 Out 3
392 PARAMETER C EXT RESET HIGH = 0
393 PARAMETER C ASYNC CLKS = 0
394 PARAMETER C IMPL STYLE = 1
395 PARAMETER C USE CONTROL = 0
396 PARAMETER C FSL DWIDTH = 32
397 PARAMETER C FSL DEPTH = 1024
398 PORT FSL Clk = s y s c l k s
399 PORT SYS Rst = n e t d e s i g n r s t
400 END
401
402 BEGIN f s l v 2 0
403 PARAMETER HW VER = 2 . 0 0 . a
404 PARAMETER INSTANCE = FIFO HWN 1 Out 4
405 PARAMETER C EXT RESET HIGH = 0
406 PARAMETER C ASYNC CLKS = 0
407 PARAMETER C IMPL STYLE = 1
408 PARAMETER C USE CONTROL = 0
409 PARAMETER C FSL DWIDTH = 32
410 PARAMETER C FSL DEPTH = 1024
411 PORT FSL Clk = s y s c l k s
412 PORT SYS Rst = n e t d e s i g n r s t
413 END
414
415 BEGIN f s l v 2 0
416 PARAMETER HW VER = 2 . 0 0 . a
417 PARAMETER INSTANCE = FIFO HWN 1 Out 5
418 PARAMETER C EXT RESET HIGH = 0
419 PARAMETER C ASYNC CLKS = 0
420 PARAMETER C IMPL STYLE = 1
421 PARAMETER C USE CONTROL = 0
422 PARAMETER C FSL DWIDTH = 32
423 PARAMETER C FSL DEPTH = 1024
424 PORT FSL Clk = s y s c l k s
425 PORT SYS Rst = n e t d e s i g n r s t
426 END
427
428 BEGIN f s l v 2 0
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429 PARAMETER HW VER = 2 . 0 0 . a
430 PARAMETER INSTANCE = FIFO HWN 1 Out 6
431 PARAMETER C EXT RESET HIGH = 0
432 PARAMETER C ASYNC CLKS = 0
433 PARAMETER C IMPL STYLE = 1
434 PARAMETER C USE CONTROL = 0
435 PARAMETER C FSL DWIDTH = 32
436 PARAMETER C FSL DEPTH = 1024
437 PORT FSL Clk = s y s c l k s
438 PORT SYS Rst = n e t d e s i g n r s t
439 END
440
441 BEGIN f s l v 2 0
442 PARAMETER HW VER = 2 . 0 0 . a
443 PARAMETER INSTANCE = FIFO HWN 1 Out 7
444 PARAMETER C EXT RESET HIGH = 0
445 PARAMETER C ASYNC CLKS = 0
446 PARAMETER C IMPL STYLE = 1
447 PARAMETER C USE CONTROL = 0
448 PARAMETER C FSL DWIDTH = 32
449 PARAMETER C FSL DEPTH = 1024
450 PORT FSL Clk = s y s c l k s
451 PORT SYS Rst = n e t d e s i g n r s t
452 END
453
454 BEGIN f s l v 2 0
455 PARAMETER HW VER = 2 . 0 0 . a
456 PARAMETER INSTANCE = FIFO HWN 1 Out 8
457 PARAMETER C EXT RESET HIGH = 0
458 PARAMETER C ASYNC CLKS = 0
459 PARAMETER C IMPL STYLE = 1
460 PARAMETER C USE CONTROL = 0
461 PARAMETER C FSL DWIDTH = 32
462 PARAMETER C FSL DEPTH = 1024
463 PORT FSL Clk = s y s c l k s
464 PORT SYS Rst = n e t d e s i g n r s t
465 END
466
467 BEGIN f s l v 2 0
468 PARAMETER HW VER = 2 . 0 0 . a
469 PARAMETER INSTANCE = FIFO HWN 1 Out 9
470 PARAMETER C EXT RESET HIGH = 0
471 PARAMETER C ASYNC CLKS = 0
472 PARAMETER C IMPL STYLE = 1
473 PARAMETER C USE CONTROL = 0
474 PARAMETER C FSL DWIDTH = 32
475 PARAMETER C FSL DEPTH = 1024
476 PORT FSL Clk = s y s c l k s
477 PORT SYS Rst = n e t d e s i g n r s t
478 END
479
480 BEGIN f s l v 2 0
481 PARAMETER HW VER = 2 . 0 0 . a
482 PARAMETER INSTANCE = FIFO HWN 1 Out 10
483 PARAMETER C EXT RESET HIGH = 0
484 PARAMETER C ASYNC CLKS = 0
485 PARAMETER C IMPL STYLE = 1
486 PARAMETER C USE CONTROL = 0
487 PARAMETER C FSL DWIDTH = 32
488 PARAMETER C FSL DEPTH = 1024
489 PORT FSL Clk = s y s c l k s
490 PORT SYS Rst = n e t d e s i g n r s t
491 END
492
493 BEGIN f s l v 2 0
494 PARAMETER HW VER = 2 . 0 0 . a
495 PARAMETER INSTANCE = FIFO HWN 1 Out 11
496 PARAMETER C EXT RESET HIGH = 0
497 PARAMETER C ASYNC CLKS = 0
498 PARAMETER C IMPL STYLE = 1
499 PARAMETER C USE CONTROL = 0
500 PARAMETER C FSL DWIDTH = 32
501 PARAMETER C FSL DEPTH = 1024
502 PORT FSL Clk = s y s c l k s
503 PORT SYS Rst = n e t d e s i g n r s t
504 END
505
506 BEGIN f s l v 2 0
507 PARAMETER HW VER = 2 . 0 0 . a
508 PARAMETER INSTANCE = FIFO HWN 1 Out 12
509 PARAMETER C EXT RESET HIGH = 0
510 PARAMETER C ASYNC CLKS = 0
511 PARAMETER C IMPL STYLE = 1

512 PARAMETER C USE CONTROL = 0
513 PARAMETER C FSL DWIDTH = 32
514 PARAMETER C FSL DEPTH = 1024
515 PORT FSL Clk = s y s c l k s
516 PORT SYS Rst = n e t d e s i g n r s t
517 END
518
519 BEGIN f s l v 2 0
520 PARAMETER HW VER = 2 . 0 0 . a
521 PARAMETER INSTANCE = FIFO HWN 2 Out 13
522 PARAMETER C EXT RESET HIGH = 0
523 PARAMETER C ASYNC CLKS = 0
524 PARAMETER C IMPL STYLE = 1
525 PARAMETER C USE CONTROL = 0
526 PARAMETER C FSL DWIDTH = 32
527 PARAMETER C FSL DEPTH = 1024
528 PORT FSL Clk = s y s c l k s
529 PORT SYS Rst = n e t d e s i g n r s t
530 END
531
532 BEGIN f s l v 2 0
533 PARAMETER HW VER = 2 . 0 0 . a
534 PARAMETER INSTANCE = FIFO HWN 3 Out 14
535 PARAMETER C EXT RESET HIGH = 0
536 PARAMETER C ASYNC CLKS = 0
537 PARAMETER C IMPL STYLE = 1
538 PARAMETER C USE CONTROL = 0
539 PARAMETER C FSL DWIDTH = 32
540 PARAMETER C FSL DEPTH = 1024
541 PORT FSL Clk = s y s c l k s
542 PORT SYS Rst = n e t d e s i g n r s t
543 END
544
545 BEGIN f s l v 2 0
546 PARAMETER HW VER = 2 . 0 0 . a
547 PARAMETER INSTANCE = FIFO HWN 4 Out 15
548 PARAMETER C EXT RESET HIGH = 0
549 PARAMETER C ASYNC CLKS = 0
550 PARAMETER C IMPL STYLE = 1
551 PARAMETER C USE CONTROL = 0
552 PARAMETER C FSL DWIDTH = 32
553 PARAMETER C FSL DEPTH = 1024
554 PORT FSL Clk = s y s c l k s
555 PORT SYS Rst = n e t d e s i g n r s t
556 END
557
558 BEGIN bram block
559 PARAMETER INSTANCE = BRAM1 MB 1
560 PARAMETER HW VER = 1 . 0 0 . a
561 BUS INTERFACE PORTA = BUS DCTRL BRAM1 MB 1
562 BUS INTERFACE PORTB = BUS PCTRL BRAM1 MB 1
563 END
564
565 BEGIN l m b b r a m i f c n t l r
566 PARAMETER INSTANCE = DCTRL BRAM1 MB 1
567 PARAMETER HW VER = 1 . 0 0 . b
568 PARAMETER C MASK = 0 xf f000000
569 PARAMETER C BASEADDR = 0 x00000000
570 PARAMETER C HIGHADDR = 0 x 0 0 0 0 3 f f f
571 BUS INTERFACE SLMB = DBUS MB 1
572 BUS INTERFACE BRAM PORT = BUS DCTRL BRAM1 MB 1
573 END
574
575 BEGIN l m b b r a m i f c n t l r
576 PARAMETER INSTANCE = PCTRL BRAM1 MB 1
577 PARAMETER HW VER = 1 . 0 0 . b
578 PARAMETER C MASK = 0 xf f000000
579 PARAMETER C BASEADDR = 0 x00000000
580 PARAMETER C HIGHADDR = 0 x 0 0 0 0 3 f f f
581 BUS INTERFACE SLMB = PBUS MB 1
582 BUS INTERFACE BRAM PORT = BUS PCTRL BRAM1 MB 1
583 END
584
585 BEGIN bram block
586 PARAMETER INSTANCE = BRAM1 MB 2
587 PARAMETER HW VER = 1 . 0 0 . a
588 BUS INTERFACE PORTA = BUS DCTRL BRAM1 MB 2
589 BUS INTERFACE PORTB = BUS PCTRL BRAM1 MB 2
590 END
591
592 BEGIN l m b b r a m i f c n t l r
593 PARAMETER INSTANCE = DCTRL BRAM1 MB 2
594 PARAMETER HW VER = 1 . 0 0 . b
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595 PARAMETER C MASK = 0 xf f000000
596 PARAMETER C BASEADDR = 0 x00000000
597 PARAMETER C HIGHADDR = 0 x 0 0 0 0 3 f f f
598 BUS INTERFACE SLMB = DBUS MB 2
599 BUS INTERFACE BRAM PORT = BUS DCTRL BRAM1 MB 2
600 END
601
602 BEGIN l m b b r a m i f c n t l r
603 PARAMETER INSTANCE = PCTRL BRAM1 MB 2

604 PARAMETER HW VER = 1 . 0 0 . b
605 PARAMETER C MASK = 0 xf f000000
606 PARAMETER C BASEADDR = 0 x00000000
607 PARAMETER C HIGHADDR = 0 x 0 0 0 0 3 f f f
608 BUS INTERFACE SLMB = PBUS MB 2
609 BUS INTERFACE BRAM PORT = BUS PCTRL BRAM1 MB 2
610 END
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Appendix C

The main code of the software
program in the host processor

1 vo id FPGA : : MJPEG ( )
2
3 {
4
5 UINT bank 6 = 5∗bankS ize ;
6 UINT bank 5 = 4∗bankS ize ;
7 UINT bank 4 = 3∗bankS ize ;
8 UINT bank 3 = 2∗bankS ize ;
9 UINT bank 2 = 1∗bankS ize ;

10 UINT bank 1 = 0 ;
11
12 i n t pa r1 =450;
13 i n t pa r2 =275;
14
15 / / I n i t i a l i z a t i o n
16 sys t em ( ” c o n v e r t c a r g r a y . j p g −i n t e r l a c e p a r t i t i o n RGB: c a r ” ) ;
17 fh1 = mropen ( ” c a r . B ” ) ;
18
19 f o r ( i n t n =0 ; n<6∗bankS ize ; n ++) {
20 rambuf [ n ] = 0 ;
21 }
22
23 f o r ( n =0 ; n<450∗275; n++) {
24 rambuf [ n ] = (DWORD) b g e t c ( fh1 ) ;
25 }
26
27 mclose ( fh1 ) ;
28
29
30 p r i n t f ( ” change t o i n i t i a l i s e memory mode\n ” ) ;
31
32 fpgaSpace [COMMAND REG] = c m d I n i t i a l i z e ; / / i n i t i a l i s e memory mode + a c c e s s t o banks t o h o s t
33 fpgaSpace [COMMAND REG ] ;
34
35 s t a t u s = writeSSRAM( rambuf , 0 , 450∗275, dma ) ;
36 s t a t u s = writeSSRAM( rambuf+ bankS ize , bankS ize , bankS ize , dma ) ;
37 s t a t u s = writeSSRAM( rambuf+2∗ bankS ize , 2∗bankS ize , bankS ize , dma ) ;
38 s t a t u s = writeSSRAM( rambuf+3∗ bankS ize , 3∗bankS ize , bankS ize , dma ) ;
39 s t a t u s = writeSSRAM( rambuf+4∗ bankS ize , 4∗bankS ize , bankS ize , dma ) ;
40 s t a t u s = writeSSRAM( rambuf+5∗ bankS ize , 5∗bankS ize , bankS ize , dma ) ;
41
42 i f ( s t a t u s != ADMXRC2 SUCCESS) {
43 p r i n t f ( ” e x i t i n g\n ” ) ;
44 e x i t ( 0 ) ;
45 }
46
47
48 //−−− Load f i r s t p a r a m e t e r −−−
49 fpgaSpace [PARAM REG] = par1 ;
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50 fpgaSpace [COMMAND REG] = cmd LoadPar ; / / s e t t h e s t r o b e
51 fpgaSpace [COMMAND REG] = 0x0 ; / / c l e a r t h e s t r o b e
52
53 //−−− Load second p a r a m e t e r −−−
54 fpgaSpace [PARAM REG] = par2 ;
55 fpgaSpace [COMMAND REG] = cmd LoadPar ; / / s e t t h e s t r o b e
56 fpgaSpace [COMMAND REG] = 0x0 ; / / c l e a r t h e s t r o b e
57
58 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59
60
61 p r i n t f (”\ nchange t o e x e c u t e mode\n\n ” ) ;
62
63 fpgaSpace [COMMAND REG] = cmd Execute ; / / e x e c u t e mode + a c c e s s t o banks t o d e s i g n
64 fpgaSpace [COMMAND REG ] ;
65
66 whi l e (1 ){
67 temp = fpgaSpace [STATUS REG ] ;
68 i f ( temp == s t a t F i n i s h e d ) b reak ;
69 }
70
71
72 / / r e a d t h e p a c k e t from Bank5 of t h e FPGA board
73
74 p r i n t f (”\ nchange t o r e a d memory mode\n\n\n ” ) ;
75 fpgaSpace [COMMAND REG] = cmd Read ; / / r e a d memory mode + a c c e s s t o banks t o h o s t
76 fpgaSpace [COMMAND REG ] ;
77
78
79 s t a t u s = readSSRAM ( rambuf + bankS ize , bank 2 , 448∗273, dma ) ;
80
81
82 i f ( s t a t u s != ADMXRC2 SUCCESS) {
83 p r i n t f ( ” E r r o r : f a i l e d t o r e a d SSRAM\n ” ) ;
84 e x i t ( 1 ) ;
85 }
86
87
88 / / S t o r e t h e j p e g image
89
90 fh4 = mwopen ( ” c a r s o b e l . raw ” ) ;
91
92 f o r ( i n t k = 0 ; k < 448∗273; k++) {
93
94 bpu tc ( rambuf [ bankS ize + k ] , fh4 ) ;
95
96 }
97
98 mclose ( fh4 ) ;
99

100 sys t em ( ” c o n v e r t −dep th 8 −s i z e 448x273 gray : c a r s o b e l . raw c a r s o b e l . j p g ” ) ;
101
102 r e t u r n ;
103
104 }
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