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Mapping of Streaming Applications Considering Alternative
Application Specifications

JIALI TEDDY ZHAI, HRISTO NIKOLOV, and TODOR STEFANOV, Leiden University,
The Netherlands

Streaming applications often require a parallel Model of Computation (MoC) to specify their application
behavior and to facilitate mapping onto Multi-Processor System-on-Chip (MPSoC) platforms. Various perfor-
mance requirements and resource budgets of embedded systems ask for an efficient design space exploration
(DSE) approach to select the best design from a design space consisting of a large number of design choices.
However, existing DSE approaches explore the design space that includes only architecture and mapping
alternatives for an initial application specification given by the application designer. In this article, we first
show that a design often might not be optimal if alternative specifications of a given application are not
taken into account. We further argue that the best alternative specification consists of only independent
and load-balanced application tasks. Based on the Polyhedral Process Network (PPN) MoC, we present an
approach to analyze and transform an initial PPN to an alternative one that contains only independent
processes if possible. Finally, by prototyping real-life applications on both FPGA-based MPSoCs and desktop
multi-core platforms, we demonstrate that mapping the alternative application specification results in a
large performance gain compared to those approaches, in which alternative application specifications are
not taken into account.
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1. INTRODUCTION

Streaming applications are widely used in the context of audio, video, and digital signal
processing domains. Stringent performance requirements such as high throughput
and/or low latency have been driving the implementation of streaming applications
on Multi-Processor System-on-Chip (MPSoC) platforms, which contain an increasing
number of Processing Elements (PEs).
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To facilitate the MPSoC design, application behavior is usually specified using a
certain parallel Model of Computation (MoC), in which the application is modeled as
several concurrently executing and communicating tasks. The task-level parallelism is
thus naturally exposed. The MPSoC platforms are modeled using a set of PEs intercon-
nected via certain communication infrastructure. Both application and platform models
enable systematic, model-based approaches [Gerstlauer et al. 2009] for efficient MPSoC
design. Among all steps in these design approaches, efficient mapping of application
tasks onto MPSoC platform resources plays a vital role and obtaining such efficient
mapping is very challenging. During the mapping step, platform resources such as PEs
are allocated and assignment of application tasks to the platform resources is deter-
mined. In most of the cases, all possible combinations of PE allocation and assignment
of application tasks to PEs constitute an enormous design space. To efficiently search
the design space and find an optimum mapping solution, various Design Space Explo-
ration (DSE) approaches proposed in the literature try to find a mapping that delivers
the maximum achievable system performance for a given number of PEs. Such a map-
ping is called a Pareto-optimal point in the design space if higher performance cannot
be achieved with fewer PEs. Currently, existing DSE approaches search the design
space using different algorithms, e.g., stepwise refinement [Gerstlauer et al. 2008],
heuristics [Stuijk et al. 2007], evolutionary algorithms [Pimentel et al. 2006; Thiele
et al. 2007], branch-and-bound [Cong et al. 2009], and constraint programming [Zhu
et al. 2010]. Existing DSE approaches consider only a single application specification
given by application designers.

However, the given application specification may not be the most appropriate one
for the considered MPSoC platform. The authors in [Kudlur and Mahlke 2008] showed
that, for a set of representative streaming benchmarks, the theoretical speedup of map-
ping the initial parallel application specifications, given by the application designer,
can only reach up to a limited number. This is because application designers mainly
focus on realizing certain application behavior, including the identification of the func-
tionality of application tasks and the synchronization/communication between these
tasks. The computational capacity and communication cost of the MPSoC platform are
often not taken into account when developing a parallel application specification. As a
consequence, overwhelming communication between application tasks may cancel out
the expected performance improvement when the application tasks are executed con-
currently. Also, if the number of available PEs is greater than the number of application
tasks in an initial specification, the aforementioned DSE approaches are incapable of
exploring the mapping possibilities that utilize all PEs.

The discussion above indicates that alternative application specifications may be
needed for efficient mapping of an application. In this article, we consider an alternative
application specification as a different description of the same application behavior
using the same MoC. For the same application behavior, there exists a large number of
alternative specifications. Among them, the considered application specification should
be the one that best matches the underlying MPSoC platform. In general, the best
application specification, if it exists, to be mapped onto n PEs is the one that consists
of n independent and load-balanced tasks. Then, without complex DSE, subsequently
mapping these n tasks onto n PEs will always result in n times speedup, because all PEs
are equally loaded and 100% utilized without the need to synchronize and communicate
data with each other.

Therefore, in this article we study the problem of whether an alternative specification
exists for an initial parallel application specification, which consists of only independent
and load-balanced tasks. We solve the problem in the case when an application is
initially modeled using the Polyhedral Process Network (PPN) MoC [Verdoolaege et al.
2007a]. Specifically, we divide the problem into two stages. In the first stage, given an
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application initially modeled using the PPN MoC, we analytically identify independent
execution of PPN processes,1 called communication-free partitions. If they exist, the
initial PPN is automatically transformed to a set of communication-free partitions,
i.e., an alternative PPN. In the second stage, the application mapping problem is
considered as grouping the set of obtained communication-free partitions to balance the
application workloads across all PEs. To achieve the load-balancing, any existing DSE
algorithm can be leveraged. As a result, mapping an application using this alternative
PPN leads to better performance than mapping the initial PPN.

1.1. Motivating Example

To demonstrate the importance and usefulness of considering alternative application
specifications, let us consider an example application modeled using the PPN MoC
shown in Figure 1(a). It represents a common topology of a parallel application spec-
ification and consists of three PPN processes P1, P2, and P3 communicating data via
FIFO channels. Note that P3 has cyclic data dependences through channel E3. The be-
havior of each PPN process is given as C code above the corresponding process. Besides
the PPN processes expressing the application behavior, the nodes src and snk represent
the environment which provides input data and collects results. The formal definition
of the PPN MoC is given in Section 2.1. Suppose that nodes src and snk are much
faster than the PPN processes and the PPN is to be mapped onto the platform shown
in Figure 2(a). The type of platforms we assume is stated in Section 1.3. The workloads
of functions F1, F2, and F3 in Figure 1(a) on the PEs are 6, 100, and 30 time units,
respectively. The communication latency via the interconnection structure is assumed
to be 5 time units. Naturally, the maximum performance of mapping the initial PPN
can be achieved if each PPN process is mapped onto a separate PE, namely 3 PEs in
this example. In case that more than 3 PEs are available, the existing DSE approaches
are incapable of exploring the mapping possibilities that utilize all PEs. Thus, further
performance improvements of the system are not explored. In fact, considering only
the initial PPN shown in Figure 1(a), only 2 PEs are required to achieve the maxi-
mum performance if we perform DSE to obtain pareto-optimal mappings of processes.
That is, processes P1 and P2 are pipelined and mapped onto PE1, while process P3 is
mapped onto PE2 as shown in Figure 2(a). Figure 2(b) shows the achieved speedup of
pareto-optimal mappings of the initial PPN (denoted as Initial).

However, more parallelism is exposed and higher performance can be achieved, if the
initial PPN is transformed to a set of communication-free partitions. A communication-
free partition corresponds to a subset execution of PPN processes to produce an output
of the PPN, without the need to communicate data with other partitions. To illustrate
communication-free partitions, the execution of each PPN process in Figure 1(a) is vi-
sualized in Figure 1(b). The dots represent individual iterations of the PPN processes.
For example, one iteration of P3 comprises one execution of its loop body (lines 3–10
of P3 in Figure 1(a)). The arrows between iterations denote data dependences. For
this example, the initial PPN can be transformed to 8 communication-free partitions
denoted as Parti. 0–7 in Figure 1(b) (each partition is surrounded by a dashed box).
One can see in Figure 1(b) that no arrows (data dependences) exist across the par-
titions. Each partition contains a subset execution of PPN processes P1, P2, and P3
in Figure 1(a). After communication-free partitioning, the initial PPN in Figure 1(a)
is transformed to the alternative PPN shown in Figure 3(a). The only communication
between PEs occurs when input data is demultiplexed from node src to all partitions

1In this article, processes and tasks are used interchangeably.
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Fig. 1. (a) An example of a PPN; (b) execution of the PPN processes and its communication-free partitions.

and output produced by the partitions is multiplexed to node snk. For example, this
can be seen with the help of Figure 1(b). In the initial PPN, node src sends the input
data to P1 at its iterations from (0) to (7) due to a dependence relation (the definition
of dependence relations is given in Section 2.1). In the alternative PPN, with the same
dependence relation, node src sends the input data at iteration (0) of P1 to partition
Parti. 0, the input data at iteration (1) of P1 to partition Parti. 1, and so on. Analogously,
in the alternative PPN, node snk collects the output data produced at iteration (0, 0)
of P3 from partition Parti. 0, the output data produced at iterations (0, 1) and (1, 2) of
P3 from partition Parti. 1, and so on. With a given dependence relation in the initial
PPN, the correct demultiplexing and multiplexing in the alternative PPN from the
data source to all partitions and from all partitions to the data sink are automatically
generated by our approach (see Section 2.4.2 for details). Except the communication

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1, Article 34, Publication date: March 2013.



Mapping of Streaming Applications Considering Alternative Application Specifications 34:5

P1 P2 P3
E1 E2

E3

PE1

Interconnection

Mem. Mem.

PE2

(a) (b)

Fig. 2. (a) Mapping of the PPN in Figure 1(a) onto 2 PEs achieving the maximum performance; (b) perfor-
mance results of mapping the initial PPN and the alternative PPN after communication-free partitioning.
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Fig. 3. (a) The alternative specification of the PPN in Figure 1(a) after communication-free partitioning;
(b) mapping of the alternative specification onto 4 PEs (the data source and sink as well as all channels
connected to both of them are omitted for succinctness).

between the partitions and the data source/sink, mapping the obtained partitions onto
PEs will only result in local communication whose cost can be neglected on any plat-
form. For instance, in case of 4 PEs available, mapping the derived alternative PPN
in Figure 3(a) is shown in Figure 3(b).

Figure 2(b) also shows the achieved speedup of pareto-optimal mappings of the
alternative PPN in Figure 3(a) (denoted as Alternative). Compared to mapping the
initial PPN, mapping the alternative PPN constantly leads to a better performance.
Moreover, the alternative PPN allows us to utilize up to 8 PEs, thereby achieving even
higher speedup, which is not possible by considering only the initial PPN. Figure 2(b)
shows that, for the alternative PPN, a linear speedup is observed up to 5 PEs. This is
because the grouping of the 8 communication-free partitions can balance the workloads
across up to 5 PEs. For instance, the 4 groups with 2 partitions each shown in Figure 3(b)
have the same workload, i.e., the total number of iterations (dots) in all such 4 groups is
equal. The speedup of mapping the derived alternative PPN onto 6 to 8 PEs saturates
due to unbalanced workloads. From this motivating example, we can see the necessity
and usefulness of considering alternative application specifications, particularly the
one containing only communication-free and load-balanced partitions.
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1.2. Research Contributions

For an application modeled using the Polyhedral Process Network (PPN) MoC
[Verdoolaege et al. 2007a], we devise an approach to analytically determine the max-
imum amount of data-level parallelism, i.e., the number of communication-free parti-
tions. Subsequently, we propose a procedure to transform the initial PPN to a set of
communication-free partitions, if they exist. Our approach also can be applied to ap-
plications with cyclic dependences, which are traditionally considered as performance
bottleneck and hard to parallelize. Finally, we demonstrate and validate the effective-
ness of our approach by prototyping real-life streaming applications on FPGA-based
MPSoCs and a desktop multi-core platform, each of which has different computational
and communication characteristics.

1.3. Scope of Work

In this article, we consider streaming applications which can be modeled using the PPN
MoC. To facilitate application modeling, the PPN MoC can be derived automatically
using the pn compiler [Verdoolaege et al. 2007a] or Polly [Grosser et al. 2011], which
accept a sequence of affine nested loop programs in C. We assume that there are only one
data source and sink and they are orders of magnitude faster than the computational
tasks of the applications. Furthermore, the achievable performance of a PPN is not
constrained by the buffer size required for each communication channel. It is possible
to compute a buffer size for each PPN channel using the pn compiler such that larger
buffer sizes do not increase the performance. We statically allocate a FIFO buffer
for each PPN channel on target platforms. The target platforms considered in this
article are homogeneous MPSoCs consisting of programmable PEs interconnected via
any type of communication infrastructure. After communication-free partitioning, we
assume that one partition completely fits onto one PE, in terms of program and data
memory usage.

1.4. Related Work

An alternative application specification modeled as a Synchronous Dataflow (SDF) [Lee
and Messerschmitt 1987] MoC is considered in Yang and Ha [2009]. All actors in the
initial SDF graph are completely unfolded to their equivalent Homogeneous SDF ac-
tors (production/consumption rate equal to 1). The unfolding leads to an exponential
increase in the size of the graph. Therefore, the authors propose a heuristic based on
an evolutionary algorithm to find a mapping and a schedule for the resulting Homo-
geneous SDF graph. Compared to Yang and Ha [2009], we consider a more expressive
model than SDF, i.e., the PPN MoC. Also, instead of completely unfolding all PPN
processes (equal to unfolding actors in Yang and Ha [2009]), we operate on a compact
representation to avoid the explosion in the size of the graph. Moreover, this com-
pact representation also allows us to analytically determine the maximum amount of
data-level parallelism to be exploited, i.e., the maximal number of communication-free
partitions.

SDF is also used as the underlying MoC in Gordon et al. [2006] and Kudlur and
Mahlke [2008]. Each SDF actor is assumed to have only one input and one output port.
Based on this assumption, stateless actors (the actors without cyclic dependences) in
the SDF graph are first fused into compound actors. Then, those compound actors are
duplicated by inserting splitters and joiners to distribute data and collect results. Com-
pared to Gordon et al. [2006] and Kudlur and Mahlke [2008], the PPN MoC considered
in this article is more general with an arbitrary number of input and output ports of
PPN processes. The problem addressed in this article is thus more difficult as simple
fusion-duplication is not applicable to PPN processes. Also, in Gordon et al. [2006] and
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Kudlur and Mahlke [2008], stateful actors (see for instance process P3 in Figure 1(a))
cannot be fused and duplicated. Instead, software pipelining techniques are applied to
the stateful actors. It is based on the assumption that communication latency between
different PEs (different pipeline stages) could be overlapped by computation. However,
we believe, depending on the platform in use, the communication latency may not be
hidden and completely overlapped by computation. In contrast, our approach tries to
extract data-level parallelism even for the PPN processes with cyclic data dependences
while completely avoiding communication between PEs.

In Liao et al. [2006], affine partitioning is used in the Brook language to map stream-
ing applications. Similar to the affine partitioning, our communication-free partition-
ing also aims at obtaining coarse-grained PPN processes. In contrast, our partitioning
strategy is able to completely eliminate communication, which might not be possible
in some cases using affine partitioning.

The PPN MoC is used in Meijer et al. [2010]. The authors suggest that a perfect
alternative application specification can be achieved by first partitioning PPN processes
and then merging some PPN processes into a compound one. However, a procedure of
partitioning and merging PPN processes is not discussed. In this article, we propose a
systematic procedure to partition and merge PPN processes in a PPN.

2. SOLUTION APPROACH

We first introduce the application model used in this article, i.e., the PPN MoC, in
Section 2.1 to better understand our contributions. Based on the PPN MoC, we translate
the problem of finding communication-free partitions in a PPN to first finding all direct
and indirect data dependences. The procedure of finding all data dependences in a
PPN is presented in Section 2.2. In Section 2.3, we present an analytical framework
to determine the number of communication-free partitions that can be derived from
a PPN, for which all direct and indirect data dependencies are computed. We propose
an algorithm in Section 2.4 to transform the PPN to such a set of communication-free
partitions, if they exist.

2.1. Preliminaries - the PPN MoC

The PPN MoC [Verdoolaege et al. 2007a] represents a streaming application as a di-
rected, multi-dimensional dataflow graph G = (P, E) which is a special case of the Kahn
Process Network [Kahn 1974] MoC. That is, a PPN consists of several autonomously
executing processes P ∈ P only communicating via FIFO channels E ∈ E . PPN pro-
cesses are synchronized through FIFOs, i.e. any process is blocked when attempting to
read from an empty FIFO or write to a full FIFO. The execution of a PPN process is
specified using affine nested for-loops, called domain. The domain can be represented
in the polytope model [Feautrier 1996]. Formally, a domain D is defined as:

D = {�I ∈ Z
d | A · �I ≥ �b},

where A ∈ Z
m×d, �b ∈ Z

d, �I is an iteration vector, and d indicates the nested-loop depth.
At each iteration �I during the execution of a PPN process P, namely �I ∈ DP , P first
reads data from input ports (IP) in the input port domain DIP if �I ∈ DIP. Then the
process executes the process function (computation) and subsequently writes results
to output ports (OP) in the output port domain DOP if �I ∈ DOP. The set of iterations, at
which a PPN process writes data to the environment, are called sink iterations, denoted
by Dsnk. Furthermore, an affine function called dependence relation RE is defined for
each channel E, after performing Array Dataflow Analysis (ADA) [Feautrier 1991] in
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Table I. Notations

D domain (polytope)
|D| cardinality of domain D
E channel in a PPN
∩/∪ intersection/union of domains
n the number of communication-free partitions
P PPN process
RE affine dependence relation R associated with channel E
R+ transitive closure of relation R

R( �I) slicing of relation R by a constant �I
R(D) apply a domain D to relation R
ranR range of relation R
domR domain of relation R

the pn compiler [Verdoolaege et al. 2007a]. It is formally specified as:

RE = {�I → �J ∈ Z
d1 × Z

d2 | �I ∈ DIP ∧ �J ∈ DOP ∧ �J = B · �I + �c},

where B ∈ Z
d2×d1, �c ∈ Z

d2. It indicates that data produced at iteration �J ∈ DOP is
consumed at iteration �I ∈ DIP if output port OP is connected to input port IP via
channel E. Finally, for the sake of convenience, the set of operators and notations used
in this article is summarized in Table I.

Consider the PPN shown in Figure 1(a). The PPN reads data from the data source
through input port IP and writes results to the data sink through output port OP. For
instance, the sink iterations (see lines 1, 2, and 8 in Figure 1(a)) are represented as:

Dsnk =

⎧⎪⎪⎨
⎪⎪⎩

(i3, j3) ∈ Z
2 |

⎡
⎢⎢⎣

1 0
−1 0
0 1

−1 −1

⎤
⎥⎥⎦ ·

[
i3
j3

]
≥

⎡
⎢⎢⎣

0
−7
0

−7

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

= {(i3, j3) ∈ Z
2 | 0 ≤ i3 ≤ 7 ∧ 0 ≤ j3 ≤ 7 − i3}. (1)

For process P3, its execution is described by domain DP3 = Dsnk (see lines 1–2 of
process P3 in Figure 1(a)). The iterations in process domain DP3 are illustrated as dots
in Figure 4. Process P3 reads data from input port IP3 (see line 1–2 and 5 of process
P3 in Figure 1(a)) in domain DIP3 ⊂ DP3, denoted as:

DIP3 = {(i3, j3) ∈ Z
2 | 1 ≤ i3 ≤ 7 ∧ 0 ≤ j3 ≤ 7 − i3}.

The iterations in input port domain DIP3 are surrounded by the solid triangle in Fig-
ure 4. After reading data from an input port IP2 or IP3 to initialize variable in, P3
performs computation by executing function F3. Finally, P3 writes data to output ports
OP and OP3 (see lines 1−2 and 9 in Figure 1(a)) if the iteration �I = (i3, j3) is in domain
DOP3, denoted as:

DOP3 = {(i3, j3) ∈ Z
2 | 0 ≤ i3 ≤ 6 ∧ 1 ≤ j3 ≤ 7 − i3}.

The iterations in output port domain DOP3 are surrounded by the dotted triangle in
Figure 4. In Figure 1(a), the dependence relation RE3 for channel E3, connecting output
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Fig. 4. Domain of PPN process P3 in Figure 1(a), the input port domain of IP3 (surrounded by the solid
triangle), output port domain of OP3 (surrounded by the dotted triangle), and dependence relation RE3
(denoted by the arrows between dots).

port OP3 to input port IP3, is derived by performing ADA and denoted as:

RE3 =
{

(i3, j3) → (i3′, j3′) | (i3, j3) ∈ DIP3 ∧ (i3′, j3′) ∈ DOP3 ∧
[

i3′

j3′

]
(2)

=
[
1 0
0 1

]
·
[

i3
j3

]
+

[−1
1

]}

= {(i3, j3) → (i3′, j3′) | (i3, j3) ∈ DIP3 ∧ (i3′, j3′) ∈ DOP3 ∧ i3′

= i3 − 1 ∧ j3′ = j3 + 1}.
RE3 is illustrated as the solid arrows in Figure 4. For example, the bold arrow shows
that iteration (1, 2) of process P3 depends on iteration (0, 3) of itself, denoted by RE3 =
{(1, 2) → (0, 3)}. The domain of RE3 is denoted by domRE3 = DIP3 and the range of RE3
is denoted by ranRE3 = DOP3

2.2. Finding All Dependences in a PPN

For streaming applications, input data is read from the data source, subsequently
processed by PPN processes at their iterations during the execution, and finally written
to the data sink. Therefore, to generate an output of a PPN, i.e., the output produced
at an iteration �I ∈ Dsnk, it directly or indirectly depends on several iterations of PPN
processes. To find out communication-free partitions in a PPN, we need to solve the
problem of finding all “direct” and “indirect” data dependences in a PPN.

The direct dependences result immediately from the dependence relations. For exam-
ple, dependence relation RE3 = {(1, 2) → (0, 3)} in Figure 4 (the bold arrow) expresses
a direct dependence. In contrast, iteration (2, 1) indirectly depends on iteration (0, 3)
through iteration (1, 2). In this article, we formulate the problem of finding all direct
and indirect data dependences by computing transitive closure [Kelly et al. 1996; Pugh
and Rosser 1997], denoted by R+, of affine dependence relation R. It is formally defined
as:

�I → �J ∈ R+ ⇔ ( �I → �J) ∈ R ∨ ∃ �K s.t. ( �I → �K) ∈ R ∧ ( �K → �J) ∈ R+. (3)
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Now, as an example, considering the affine dependence relation RE3, illustrated in
Figure 1(b) (solid arrows), and its transitive closure R+

E33, we can have for instance an
indirect dependence:

(2, 1) → (0, 3) ∈ R+
E33 ⇔ ∃(1, 2) s.t. (2, 1) → (1, 2) ∈ RE3 ∧ (1, 2) → (0, 3) ∈ RE3.

From Equation (3), we can see that “direct” and “indirect” dependences are uniformly
expressed as transitive closure of dependence relations. Thus, we use the term tran-
sitive dependences to denote both types of dependences. Note that transitive closure
of a set of affine relations is not an affine form in general. An under-approximated
and closed affine form is computed in Kelly et al. [1996]. In contrast, we consider an
affine over-approximation in case of non-affine closed form. The over-approximation
first guarantees that a valid schedule always can be found for each communication
free partition at the cost of potentially fewer communication-free partitions. Second,
existing powerful code generation methods for affine dependence relations still can be
leveraged.

Now, finding all transitive dependences in a PPN is translated to computing tran-
sitive closure of all dependence relations. Therefore, we first take a union Rdeps of all
dependence relations in a PPN as:

Rdeps =
⋃

∀E∈E
RE.

Subsequently, we can compute the transitive closure of the union Rdeps. In this article,
we use the isl library [Verdoolaege 2010] to compute the transitive closure of affine
dependence relations in a potentially over-approximated closed form. For the PPN in
Figure 1(a), computing the union of all dependence relations yields:

Rdeps =RE1 ∪ RE2 ∪ RE3.

Then, by computing the transitive closure of Rdeps, we obtain:

R+
deps =Rdeps ∪ R+

E13 ∪ R+
E23 ∪ R+

E33,

where R+
E13, R+

E23, and R+
E33 are transitive dependence relations, represented as

follows:

R+
E13 = {(i3, j3) → (i1) | 0 ≤ i3 ≤ i1 ∧ i1 ≤ 7 ∧ i1 = i3 + j3}, (4a)

R+
E23 = {(i3, j3) → (i2) | 0 ≤ i3 ≤ i2 ∧ i2 ≤ 7 ∧ i2 = i3 + j3}, (4b)

R+
E33 = {(i3, j3) → (i3′, j3′) | 1 ≤ i3 ≤ 7 ∧ 0 ≤ j3 ≤ 7 − i3 ∧ 0 ≤ i3′ ≤ 6

∧ 0 ≤ i3′ ≤ i3 + j3 − 1 ∧ j3′ = i3 + j3 − i3′}. (4c)

After computing the transitive closure of all dependence relations in the PPN in
Figure 1(a), 3 extra channels E13, E23, and E33 corresponding to the transitive de-
pendence relations are added in the PPN as shown in Figure 5(a). For the execution
of the PPN (domains of PPN processes P1, P2, and P3) shown in Figure 1(b), a set
of transitive dependences is illustrated as dashed arrows in Figure 5(b). For instance,
RE33+ = {(3, 0) → (0, 3)}, shown as the bold and dashed arrow, indicates that iteration
(3, 0) of PPN process P3 transitively depends on iteration (0, 3) of itself.

2.3. Computing the Number of Communication-Free Partitions

As explained in Section 2.2, we derive all dependent iterations that generate an output
at any iteration �I ∈ Dsnk. Based on this information, in this section, we compute the
number of communication-free partitions that can be derived from a given PPN.
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Fig. 5. (a) Transitive dependences of the PPN in Figure 1(a); (b) the set of transitive dependences for
communication-free partition Parti. 3 in Figure 1(b)

Essentially, we need to find a set of iterations in domain Dsnk that are independent
from each other. Each of these iterations identifies a distinct communication-free par-
tition (see the dashed boxes in Figure 1(b)). Consider the PPN in Figure 1(a) and its
execution illustrated in Figure 1(b). As explained in Section 2.1, Dsnk = DP3 (see the
triangular part in Figure 1(b) denoted as P3). Our goal is to find the 8 iterations marked
by circles in Figure 1(b). It can be seen that they are independent of each other and they
identify the 8 communication-free partitions. Therefore, the number of these iterations
determines the number of communication-free partitions.

In general, to find the set of iterations mentioned above, we first state the following
lemma.

LEMMA 2.1. Any transitive dependence relation R+
E is a total and surjective affine

relation, which maps iterations �I in input port domain DIP to iterations �J in output
port domain DOP.

PROOF. Totality of a transitive dependence relation R+
E holds because of the follow-

ing property of the PPN MoC. For streaming applications operating on infinite input
streams, we are only interested in consistent and deadlock-free PPNs. Therefore, if
an iteration in an input domain ( �I ∈ DIP) is unmapped, it means that the PPN will
deadlock at this iteration during execution of the PPN. At the same time, R+

E is also
surjective, because several iterations in an input domain can be mapped to the same
iteration in an output domain. This can be seen from the definition of the transitive
closure of affine relations in Equation (3). If there exists �I → �K ∈ R and �K → �J ∈ R,
both iterations �I and �K are mapped to iteration �J in R+.

For instance, transitive relation R+
E23 in Figure 5(b) denotes that iterations

(0, 3), (1, 2), (2, 1), and (3, 0) of P3 are mapped to iteration (3) of P2.
Based on Lemma 2.1, we can have the following theorem.
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THEOREM 2.1. For any PPN, the number n of communication-free partitions is com-
puted as n = |Dind

snk|, where Dind
snk ⊆ Dsnk and

Dind
snk = {�I ∈ Z

d | ∃R+ : �I → �J ∈ R+ ∧ �I ∈ Dsnk ∧ �J ∈ Dsnk ∧ �I ∈ (domR+ − ranR+)}⋃{ �I ∈ Z
d | ∀R+ : �I → �J ∈ R+ ∧ �I ∈ Dsnk ∧ �J /∈ Dsnk ∧ �I ∈ domR+}.

(5)

PROOF. For an iteration �I ∈ Dsnk, it satisfies one of two mutually exclusive conditions.
That is, the iteration either transitively depends on other iterations �J ∈ Dsnk, or does
not transitively depend on any iteration �J ∈ Dsnk. The former condition is stated as
�I → �J ∈ R+ ∧ �J ∈ Dsnk in Equation (5), whereas the latter condition is expressed as
�I → �J ∈ R+ ∧ �J /∈ Dsnk. For the former condition, the surjective property of a transitive
dependence R+ stated in Lemma 2.1 indicates that multiple iterations �I ∈ domR+ ⊂
Dsnk may depend on the same �J ∈ ranR+ ⊂ Dsnk. We thus need to find out distinct
iterations �I ∈ domR+, which are not mapped from any other iterations �I ∈ Dsnk.
It is essentially equivalent to computing the lexicographically maximal iteration �I if
�I → �J ∈ R+. Such iterations �I can be found by domR+ − ranR+. On the other hand,
if an iteration �I ∈ Dsnk does not transitively depend on any other iteration �J ∈ Dsnk,
where �I �= �J, all these iterations are independent. This means all such iterations can
definitely find independent communication-free partitions. Finally all those iterations
in domain Dind

snk ⊆ Dsnk can be computed by taking the union as given in Equation (5).

Consider the PPN in Figure 1(a). As explained in Section 2.1, the sink iterations Dsnk
are described in Equation (1). Upon computing transitive closure R+

deps of all dependence
relations presented in Section 2.2, there are three transitive dependence relations on
Dsnk, namely R+

E13, R+
E23, and R+

E33. Among them, R+
E33 satisfies the condition �I → �J ∈

R+ ∧ �I ∈ Dsnk ∧ �J ∈ Dsnk as stated in Equation (5). The domain and range of R+
E33 are:

domR+
E33 = {(i3, j3) ∈ Z

2 | 1 ≤ i3 ≤ 7 ∧ 0 ≤ j3 ≤ 7 − i3},
ranR+

E33 = {(i3, j3) ∈ Z
2 | 0 ≤ i3 ≤ 7 ∧ 1 ≤ j3 ≤ 7 − i3}.

Then, domR+
E33 − ranR+

E33 in Equation (5) yields:

Dind1
snk = {(i3, j3) ∈ Z

2 | 1 ≤ i3 ≤ 7 ∧ j3 = 0}. (6)

Furthermore, we compute those iterations that satisfy the latter condition in Equa-
tion (5), namely they do not depend on any other iterations in domain Dsnk. That is:

Dind2
snk = {(i3, j3) | i3 = 0 ∧ j3 = 0}. (7)

Finally, Dind
snk can be computed by taking the union of Dind1

snk obtained in Equation (6) and
Dind2

snk obtained in Equation (7):

Dind
snk = Dind1

snk ∪ Dind2
snk

= {(i3, i3) ∈ Z
2 | 0 ≤ i3 ≤ 7 ∧ j3 = 0}. (8)

In general, Dind
snk computed in accordance with Equation (5) is a union of domains

represented by polytopes. Then, computing the number of communication-free par-
titions is equal to counting the number of integer points in the union of polytopes,
denoted by |Dind

snk|. The counting problem can be efficiently solved in polynomial time
using the barvinok [Verdoolaege et al. 2007b] library. Finally, for the PPN shown in
Figure 1(a) and Dind

snk obtained in Equation (8), counting the number of integer points
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in Dind
snk yields n = |Dind

snk| = 8. This confirms the same number of communication-free
partitions, namely 8 as shown in Figure 1(b). Also, Dind

snk corresponds to the iterations
marked by circles show in both Figures 1(b) and 5(b).

2.4. Communication-Free Partitioning Algorithm

If the number of communication-free partitions computed in Section 2.3 is greater
than 1, we can transform the initial PPN to a set of communication-free partitions. In
Section 2.4.1, we first show an example of constructing one of the communication-free
partitions for the PPN in Figure 1(a). Subsequently, we present the general partitioning
algorithm in Section 2.4.2.

2.4.1. An Illustrative Example. Consider the PPN in Figure 1(a) and its execution il-
lustrated in Figure 1(b). Let us for example assume that communication-free parti-
tion Parti. 3 in Figure 1(b) is to be constructed. In the partitioning algorithm, our
goal is to partition the domains of the PPN processes and obtain all iterations sur-
rounded by the dashed box for Parti. 3. These iterations are transitively dependent
on the iteration that identifies Parti. 3. In this case, Parti. 3 is identified by iteration
(i3, j3) = (3, 0) ∈ Dind

snk of process P3 as computed in Equation (8). All transitive depen-
dence relations R+

E33, R+
E23, and R+

E13 on iteration (3, 0) are computed in Equations (4a)
to (4c) and illustrated in Figure 5(b). In the first step of the partitioning algorithm
for Parti. 3, we instantiate process instance P3inst (see Figure 6) of PPN process P3
through R+

E33. A process instance Pinst performs the same computational function as
the original PPN process P does. The only difference is that the process instance Pinst
only executes in a subdomain DPinst of the original domain DP . For Parti. 3, besides that
iteration (3, 0) belongs to domain DP3inst of process instance P3inst, DP3inst contains also
iterations (2, 1), (1, 2), and (0, 3) of P3, on which iteration (3, 0) depends, as shown in
Figure 5(b). These iterations can be derived by “substituting” iteration (3, 0) in R+

E33
(see Equation (4c)), denoted as R+

E33((3, 0)):

R+
E33((3, 0)) = {

(i3′, j3′) | (3, 0) → (i3′, j3′) ∈ R+
E33

}
= {(i3′, j3′) | 0 ≤ i3′ ≤ 2 ∧ j3′ = 3 − i3′}. (9)

Then, domain DP3inst for Parti. 3 can be obtained by taking a union of iteration (3, 0)
with the ones computed in Equation (9):

DP3inst = (3, 0) ∪ R+
E33((3, 0))

= {(i3′, j3′) | 0 ≤ i3′ ≤ 3 ∧ j3′ = 3 − i3′}. (10)

Second, a process instance P2inst (see Figure 6) of PPN process P2 is instantiated due
to R+

E23 for Parti. 3. Domain DP2inst contains iteration (3) of P2 as shown Figure 5(b). It
can be derived by “substituting” domain DP3inst , obtained in Equation (10), in R+

E23 (see
Equation (4b)), denoted as R+

E23(DP3inst ):

DP2inst = R+
E23(DP3inst ) = {( j2) | (i3, j3) → ( j2) ∈ R+

E23 ∧ (i3, j3) ∈ DP3inst}
= {(i2) ∈ Z | i2 = 3}. (11)

Finally, we need to instantiate a process instance P1inst (see Figure 6) with domain
DP1inst due to R+

E13. Domain DP1inst corresponds to iteration (3) in domain DP1 as shown
in Figure 5(b). Analogous to obtaining domain DP2inst , domain DP1inst can be obtained by
“substituting” domain DP3inst in R+

E13 (see Equation (4a)):

DP1inst = R+
E13(DP3inst) = {(i1) ∈ Z | i1 = 3}.
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P3P2

Parti. 0

P3P2

...

Parti. 7

P1inst
inst

inst
inst

P1

src snk

E1 E2

E1 E2

E3

E3

Parti. 3

E1 E2

E3

...

P3P2P1

inst

inst

inst
inst

inst
inst

inst

inst

inst
inst

inst
inst

inst

inst

Fig. 6. The PPN in Figure 1(a) after communication-free partitioning.

Once all process instances for Parti 3 are instantiated, next we instantiate channels
for the process instances. Basically, if a channel in the initial PPN is incident with
the process instances, a new channel is instantiated. For Parti. 3, channel E3 in the
initial PPN is incident with the process instance P3inst. Then, a new channel E3inst
is instantiated with the associated input port domain DIP3 inst, output port domain
DOP3 inst, and dependence relation RE3inst :

DIP3 inst = DIP3 ∩ DP3inst

= {(i3, j3) | 1 ≤ i3 ≤ 3 ∧ j3 = 3 − i3},
DOP3 inst = DOP3 ∩ DP3inst

= {(i3′, j3′) | 0 ≤ i3′ ≤ 2 ∧ j3′ = 3 − i3′},
RE3inst = {(i3, j3) → (i3′, j3′) | (i3, j3) ∈ DIP3 inst ∧ (i3′, j3′) ∈ DOP3 inst

∧i3′ = i3 − 1 ∧ j3′ = j3 + 1}.

(12)

Two other channels E1inst, E2inst can be instantiated in a similar way, due to channels
E1, E2 in the initial PPN. In this way, communication-free partition Parti. 3 shown
in Figure 1(b) is constructed and illustrated by the solid box in Figure 6. In the next
step, we merge all process instances P3inst, P2inst, and P1inst into a single compound
process Parti. 3 as shown in Figure 3(a). We generate a static schedule, similar to the
one proposed in Verdoolaege et al. [2003], that executes all dependent iterations of the
processes instances as soon as possible.

2.4.2. General Partitioning Algorithm. In general, to instantiate process instances and
channels, we devise Algorithm 1 presented in this article. The input to Algorithm 1
is a PPN with all transitive dependences (E+) computed in Section 2.2 and Dind

snk ⊆
Dsnk obtained in Theorem 2.1. Every sink iteration �K ∈ Dind

snk is used to identify a
distinct communication-free partition. The output of Algorithm 1 is n communication-
free partitions. The core part of the algorithm is presented below.

Algorithm 1 starts partitioning a PPN from the sink process, namely partitioning
Psnk into n process instances Psnk inst. For each iteration �K ∈ Dind

snk of the sink process, we
instantiate a new process instance Psnk inst (line 4). The loop (lines 3–17) iterates over all
PPN processes to instantiate all process instances in all communication-free partitions.
Basically, for a particular partition, we construct the domain for each process instance
through all transitive dependence relations R+

E on iteration �K. First, we construct
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ALGORITHM 1: Communication-free partitioning procedure

Input: A PPN = {P, E}, E+, and Dind
snk obtained in Theorem 2.1 (n = |Dind

snk|).
Result: A PPN′ = {P ′, E ′}.

1 P ′ ← ∅, E ′ ← ∅ ;
2 Get sink process Psnk, DPsnk inst ← ∅ ;
3 foreach �K ∈ Dind

snk do
4 Psnk inst ← Psnk ;
5 foreach Channel E+ ∈ E+ incident with Psnk do
6 Get R+

E associated with channel E+ ;
7 if �K /∈ domR+

E then
8 continue;

9 if ranR+
E ⊆ Dsnk then /* �K depends on other iterations in Dsnk */

10 DPsnk inst ← DPsnk inst ∪ �K ∪ R+
E( �K) ;

11 else /* �K depends on another process P */

12 DPsnk inst ← DPsnk inst ∪ �K ;
13 Get process P ∈ P incident with channel E+;
14 Pinst ← P ;
15 DPinst ← R+

E(Dsnk inst) ;
16 P ′ ← P ′ ∪ Pinst ;

17 P ′ ← P ′ ∪ Psnk inst ;

18 foreach Pinst ∈ P ′ do
19 Einst ← instantiateChannels(Pinst, E) ;
20 E ′ ← E ′ ∪ Einst;

domain DPsnk inst . If this iteration �K transitively depends on other iterations in domain
Dsnk (line 9), then domain DPsnk inst contains also all iterations in Dsnk that iteration �K
depends on. All such iterations can be computed by slicing a transitive dependence R+

using iteration �K, denoted as R+( �K). It is formally defined as:

R+( �K) = { �J | �I → �J ∈ R+ ∧ �I = �K},
where �K is a constant vector (see an example in Equation (9)). Therefore, in this case,
we can obtain DPsnk inst as shown at line 10 in Algorithm 1. In contrast, if the iteration
�K does not depend on any other iteration in Dsnk, then DPsnk inst is simply equal to �K
(line 12). Also, in this case, �K transitively depends on another PPN process P through
transitive dependence relation R+

E, where P �= Psnk. Therefore, we need to instantiate
a process instance Pinst for process P (lines 13–15). Domain DPinst can be computed by
applying domain DPsnk inst to dependence relation R+

E, denoted as R+
E(DPsnk inst). R+

E(DPsnk inst)
is defined as:

R+
E(DPsnk inst ) = { �J | �I → �J ∈ R+

E ∧ �I ∈ DPsnk inst

}
.

An example of the apply operation can be seen in Equation (11). Finally, all process
instances in the same communication-free partitions can be instantiated (lines 5–17).

Once all process instances for each communication-free partition are instantiated,
as the next step, we need to instantiate channels for all process instances (line 19
in Algorithm 1). The procedure of instantiating all channels for a process instance is
depicted in Algorithm 2. As input, it takes a process instance Pinst with constructed
domain DPinst and all channels E in the initial PPN. The algorithm outputs a set of
channels Einst incident with process instance Pinst. In Algorithm 2, if both the input
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ALGORITHM 2: Procedure instantiateChannels
Input: A process instance Pinst and a set channels E .
Result: A set of channels Einst incident with process instance Pinst.

1 Get DPinst of Pinst;
2 foreach Channel E ∈ E incident with Pinst do
3 Get DIP and DOP associated with channel E;
4 Einst ← E ;
5 if DIP ∩ DPinst �= ∅ and DOP ∩ DPinst �= ∅ then /* a self-channel */
6 DIP inst ← Dinst ∩ DIP , domREinst ← DIP inst;
7 DOP inst ← Dinst ∩ DOP, ranREinst ← DOP inst ;
8 Einst ← Einst ∪ Einst ;

9 else if DIP ∩ DPinst �= ∅ and DOP ∩ DPinst = ∅ then /* an incoming channel */
10 DIP inst ← Dinst ∩ DIP, domREinst ← DIP inst ;
11 Einst ← Einst ∪ Einst ;

12 else if DIP ∩ DPinst = ∅ and DOP ∩ DPinst �= ∅ then /* an outgoing channel */
13 DOP inst ← Dinst ∩ DOP, ranREinst ← DOP inst ;

port and output port of a channel E are incident with Pinst (line 5), a new self-channel
Einst is instantiated with the corresponding input and output port domains (lines 6 and
7). An example of instantiating self-channel E33inst for process instance P3inst can be
seen in Equation (12). If only the input port or output port of a channel E is incident
with Pinst (line 9 and 12 respectively), it denotes a dependence relation from/to another
process instance in the same communication-free partition. In other words, it is either
an incoming or outgoing channel of process instance Pinst. In this case, we instantiate
only one channel with its corresponding input and output port domains (lines 10 and
13). Therefore, using Algorithm 2, we can instantiate all channels incident with a
process instance Pinst.

3. EXPERIMENTAL RESULTS

In this section, we present the performance results obtained by applying our approach
explained in Section 2 and prototyping two real-life streaming applications on two dif-
ferent platforms. Then, we present a set of experiments to evaluate the time complexity
of our approach.

We selected two different platforms, a Xilinx ML605 board equipped with a Virtex
6 FPGA (referred as FPGA platform hereinafter) and a desktop multi-core platform
containing an Intel i7-920 processor running at 2.66GHz with 4 cores and 4GB sys-
tem memory (referred as desktop platform hereinafter). For the FPGA platform, the
generated MPSoCs consist of up to 8 MicroBlaze (MB) soft-cores interconnected via
Xilinx’ Fast Simplex Link FIFOs. All MBs run at 100Mhz with their own 64KB pro-
gram memory and 64KB data memory. On the desktop platform, a main thread was
used to measure the performance and to spawn up to 8 threads, due to hyper-threading.
The inter-core data communication cost on the desktop platform is much higher than
that on the FPGA platform. Therefore, the performance gain introduced using our
approach was evaluated on the platforms with different computation/communication
characteristics. We conducted all experiments using the open-source ESPAM [Nikolov
et al. 2008] tool, the Xilinx Platform Studio 13.2, and Microsoft Visual Studio 2008.
All generated programs were compiled using compilers mb-g++4.1.2 and g++4.52 on the
selected platforms respectively, with optimization level -O2.
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(a) (b)

Fig. 7. Performance results of mapping the MJPEG encoder onto (a) FPGA-based MPSoC platforms and
onto (b) a desktop multi-core platform.

3.1. Case Studies

We considered two real-life applications modeled using the PPN MoC, namely a Motion-
JPEG (MJPEG) encoder used in Cong et al. [2009] and the FM radio application
taken from the StreamIT benchmark suite [Gordon et al. 2006]. The MJPEG encoder
encodes frames with size 128 × 128 pixels. For the FM radio application, we took the
provided sequential C implementation to generate the initial PPN with the following
parameters: decimation rate 4, tap size 64, and 10 equalization bands. To optimally
balance the workloads across a particular number of PEs, we exhaustively mapped all
possible groupings of the obtained communication-free partitions on both platforms. As
a reference, we also implemented the initial PPNs of both applications on the selected
platforms by performing maximal load-balancing and optimal pipelining, such that the
best possible mapping was found for a given number of MBs or threads. The metric
used to evaluate the performance results is the relative speedup compared to the 1-MB
or 1-thread system implementation.

The performance results of mapping the MJPEG encoder are plotted in Figure 7(a)
for the FPGA platform and in Figure 7(b) for the desktop platform. As expected, the
implementation on the desktop platform results in less speedup than the one obtained
on the FPGA platform for the same number of MBs or threads in use. This is because
of the shared memory architecture and very costly inter-thread communication on the
desktop platform. Also, the initial PPN mapped onto the desktop platform using 1
thread is already highly optimized by the compiler. For the mapping of the initial PPN
(denoted as Initial), the initial PPN does not have enough processes to utilize more
than 5 MBs or threads. It can be seen that up to 1.91X speedup for the FPGA platforms
and 1.64X speedup for the desktop platform are achieved. The main reason is that the
workloads of processes in the initial PPN are not well-balanced, as the Discrete Cosine
Transform (DCT) dominates the total execution time of the MJPEG encoder. Although
all PPN processes are fully pipelined, the speedup is limited by the longest pipeline
stage, the DCT process. For the desktop platform, the pipelining leads to less benefits
compared to the FPGA platform, because the communication between threads mapped
onto different cores cannot be completely overlapped by computation.

Compared to the mapping of the initial PPN for the MJPEG encoder, our approach
(denoted as Alternative in Figure 7(a) and 1(b)) leads to better performance. Our ap-
proach outperforms the mapping of the initial PPN by 5% to 87.05% on 2 to 5 MBs.
As shown in Figure 7(a) for the FPGA platform, the speedup increases linearly for
the mapping of the alternative PPN onto 1 to 4 MBs (3.45X speedup on 4 MBs). In
case of 5 to 7 MBs, the speedup increases only slightly (3.6X to 4.09X speedup on
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(a) (b)

Fig. 8. Performance results of mapping the FM radio application onto (a) FPGA-based MPSoC platforms
and onto (b) a desktop multi-core platform.

5 to 7 MBs). We found that unbalanced workloads and the single data sink become
bottlenecks for these cases. As the number of MBs increases, a slightly unbalanced
grouping of communication-free partitions has large impact on the performance. As
a consequence, the single data sink is constantly blocking on the group of partitions
with the heaviest workload. Of course, modern architectures may have multiple I/O
ports, namely multiple data sinks. For instance, the authors in [Gordon et al. 2006] ob-
serve 18.4% performance improvement on the 16-core RAW architecture with 16 data
sinks compared to the one with the single data sink. In the best case, our approach
results in 6.14X speedup on 8 MBs, when the grouping of the obtained partitions bal-
ances the workload across 8 MBs. For the results on the desktop platform shown in
Figure 7(b), the mapping of the alternative PPN outperforms the mapping of the ini-
tial PPN by 5.5% to 61.97% using 2 to 5 threads. Moreover, the effect of unbalanced
grouping of communication-free partitions is amortized by the higher communication
cost compared to the FPGA platform. In the best case, 2.97X speedup is achieved using
7 threads. When 8 threads are used, the main thread, mentioned earlier, introduces
extra overhead. Therefore, the 8-thread implementation performs 3.68% worse than
the 7-thread implementation.

For the FM radio application, the workloads of PPN processes in the initial PPN
are overall not balanced. The low pass and high pass filters in the equalizer dominate
the total execution time of the application. Moreover, the communication between PPN
processes is performed at more fine-grained level compared to the MJPEG encoder, i.e.,
at each iteration, one audio sample is flowed through all PPN processes instead of one
macroblock as in the MJPEG encoder. The obtained speedup of mapping the initial PPN
(denoted as Initial) is plotted in Figure 8(a) for the FPGA platform and in Figure 8(b) for
the desktop platform. In the best case on the FPGA platform, by pipelining all processes
in the initial PPN and offloading the high pass filter (or low pass filter) in the equalizer
to a separate MB, 1.99X speedup is achieved on 2 MBs. On the desktop platform
shown in Figure 8(b), the best mapping of the initial PPN is found using 5 threads
occupying 4 cores, i.e., 1.27X speedup. In case of 6 and 7 threads, the implementation
slows down compared to the 1-thread implementation. The fine-grained communication
and the little workloads of some threads (e.g., the Demodulation and the Amplify
processes in the Equalizer) fully expose the communication/synchronization overhead
which dominates the total execution time.

After communication-free partitioning, the alternative PPN of the FM radio ap-
plication exhibits ample data-level parallelism. Also, the fine-grained communica-
tion between MBs or threads in the initial PPN is completely eliminated, except the
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Table II. Execution Time on Benchmarks

Benchmark |P| |E | Array dimensions Execution time (sec.)

adi 12 67 3 2.644
gramschmidt 8 19 2 0.924
fdtd-2d 9 27 2 0.604
correlation 12 20 2 0.076
reg-detect 8 11 3 0.068
dynprog 8 12 3 0.064
gauss-filter 11 18 2 0.044
covariance 8 11 2 0.032

communication from the data source and to the data sink. For the results on the FPGA
platform shown in Figure 8(a) (denoted as Alternative), the obtained speedup by map-
ping the alternative PPN outperforms mapping the initial PPN by 32.05% to 97.74%
on 3 to 7 MBs. Compared to the 4-MB implementation, the mapping of the alterna-
tive PPN onto 5 to 7 MBs does not result in further improvements. This is because,
as the number of MBs increases, the workloads of the obtained communication-free
partitions cannot be evenly distributed. This fact combined with the relatively cheaper
inter-MB communication on the FPGA platform, shows that our communication-free
partitioning does not bring too much benefits on 5 to 7 MBs. Once the workload is
balanced, 7.83X speedup is achieved on 8 MBs. On the desktop platform, our approach
(denoted as Alternative in Figure 8(b)) outperforms the mapping of the initial PPN by
39.79% to 489.27% using 2 to 7 threads. In the best case, speedup 3.46X is observed
using 7 threads. The 8-thread implementation performs 1.51% worse compared to the
7-thread one due to the overhead introduced by the main thread similar to the MJPEG
case study.

3.2. Time Complexity of Our Approach

To quantify the time complexity of our approach, we conducted experiments on a set
of real-life benchmarks from Polybench [Polybench 2012]. Other benchmarks are less
complex than the benchmarks listed in Table II in terms of their characteristics. The
characteristics of each benchmark are given in columns 2 to 4 in Table II. The bench-
marks differ in the of number of PPN processes (denoted by |P|) and channels (denoted
by |E |) in the initial PPNs, as well as dimensions of data arrays accessed in PPN pro-
cesses. For instance, the Alternating Direction Implicit (adi) solver in Table II operates
on 3 dimensional data arrays. In practice, it can be seen that, from the last column
in Table II, our approach takes less than 3 seconds to derive all communication-free
partitions for the considered benchmarks. This shows that our approach is very fast
even for relatively large PPNs such as the PPN of the adi application.

4. CONCLUSIONS

In this article, we have shown that the mapping of streaming applications consider-
ing a single initial application specification cannot fully utilize the processing power
of MPSoC platforms. Using the Polyhedral Process Network (PPN) MoC as the ap-
plication specification, we have presented an analytical framework to determine the
maximum data-level parallelism, i.e., the maximum number of communication-free
partitions. Subsequently, we have proposed an approach to transform an initial PPN to
a set of communication-free partitions, if it exists. The experimental results on FPGA-
based MPSoCs and desktop multi-core platforms showed that our approach leads to
significantly better performance than the approaches, in which alternative application
specifications are not taken into account.
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We are also aware of some spaces to improve the applicability of our approach. First,
a better exploration strategy is required to automatically select alternative application
specifications with respect to the target platform, i.e., a given number of PEs available.
Second, we found out that a holistic mapping of streaming applications also strongly
depends on the platform characteristics. In case of relatively low communication cost
between PEs, by allowing a certain degree of communication between PEs, a more
load-balanced mapping could lead to better system performance. Third, the perfor-
mance improvement resulted from using our approach comes at the cost of increased
memory usage. Hence, we would like to investigate the trade-off between memory
usage and obtained partitions in the future. And, if one partition does not entirely fit to
one PE in terms of the memory requirement, we would like to develop a re-partitioning
strategy while introducing least amount of communication between PEs possible.
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