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Abstract—Mixed-criticality models are an emerging paradigm for the design of real-time systems because of their significantly

improved resource efficiency. However, formal mixed-criticality models have traditionally been characterized by two impractical

assumptions: once any high-criticality task overruns, all low-criticality tasks are suspended and all other high-criticality tasks are

assumed to exhibit high-criticality behaviors at the same time. In this paper, we propose a more realistic mixed-criticality model, called

the flexible mixed-criticality (FMC) model, in which these two issues are addressed in a combined manner. In this new model, only the

overrun task itself is assumed to exhibit high-criticality behavior, while other high-criticality tasks remain in the same mode as before.

The guaranteed service levels of low-criticality tasks are gracefully degraded with the overruns of high-criticality tasks. We derive a

utilization-based technique to analyze the schedulability of this new mixed-criticality model under EDF-VD scheduling. During run time,

the proposed test condition serves an important criterion for dynamic service level tuning, by means of which the maximum available

execution budget for low-criticality tasks can be directly determined with minimal overhead while guaranteeing mixed-criticality

schedulability. Experiments demonstrate the effectiveness of the FMC scheme compared with state-of-the-art techniques.

Index Terms—EDF-VD scheduling, flexible mixed-criticality system, utilization-based analysis

Ç

1 INTRODUCTION

A mixed-criticality (MC) system is a system in which
tasks with different criticality levels share a computing

platform. InMC systems, different degrees of assurance must
be provided for tasks with different criticality levels. To
improve resource efficiency, MC systems [26] often specify
different WCETs for each task at all existing criticality levels,
with those at higher criticality levels being more pessimistic.
Normally, tasks are scheduled with less pessimistic WCETs
for resource efficiency. Only when the less pessimistic WCET
is violated, the system switches to the high-criticality mode
and only tasks with higher criticality levels are guaranteed to
be scheduledwith pessimisticWCETs thereafter.

There is a large body of research work on specifying and
scheduling mixed-criticality systems (see [8] for a compre-
hensive review). However, to ensure the safety of high-criti-
cality tasks, the classic MC model [1], [2], [3], [4], [5] applies
conservative restrictions to the mode-switching scheme.
In the classic MC model, whenever any high-criticality task
overruns, all low-criticality tasks are immediately abandoned
and all other high-criticality tasks are assumed to exhibit
high-criticality behaviors. This mode-switching scheme is
not realistic in the following two important respects.

� First, it is pessimistic to immediately abandon all low-
criticality tasks, because low-criticality tasks require a
certain timing performance as well [17], [25].

� Second, it is pessimistic to bind the mode switches of
all high-criticality tasks together for the scenarios
where the mode switches of high-criticality tasks are
naturally independent [12], [22].

Although there has been some research on solving the
first problem, i.e., statically reserving a certain degraded
level of service for low-criticality execution [7], [16], [24],
[25], to our knowledge, little work has been done to date to
address the second problem.

In this paper, we propose a flexibleMCmodel (denoted as
FMC) on a uni-processor platform, in which the two afore-
mentioned issues are addressed in a combined manner.
In FMC, the mode switches of all high-criticality tasks are
independent. A single high-criticality task that violates its
low-criticality WCET triggers only itself into high-criticality
mode, rather than triggering all high-criticality tasks. All
other high-criticality tasks remain at their previous criticality
levels and thus do not require to book additional resources
at mode-switching points. In this manner, significant resour-
ces can be saved compared with the classic MC model [1],
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[2], [3]. On the other hand, these saved resources can be used
by low-criticality tasks to improve their service quality.
More importantly, the proposed FMC model adaptively
tunes the service level for low-criticality tasks to compensate
for the overrun of high-criticality tasks, thereby allowing the
systemworkload to be balancedwithminimal service degra-
dation for low-criticality tasks. At each independent mode-
switching point, the service level for low-criticality tasks is
dynamically updated based on the overruns of high-critical-
ity tasks. By doing so, the quality of service (QoS) for low-
criticality tasks can be significantly improved.

Since the service level for low-criticality tasks is dynami-
cally determined during run time, the decision-making
procedure should be light-weighted. For this purpose, utili-
zation-based scheduling is more desirable for run-time deci-
sion-making because of its simplicity. However, using
utilization-based scheduling for our FMC model brings new
challenges due to the intrinsic dynamics of this model, such
as the service level tuning strategy. In particular, utiliza-
tion-based schedulability analysis relies on whether the
cumulative execution time of low-criticality tasks can be
effectively upper bounded. In FMC, the service levels for
low-criticality tasks are dynamically tuned at each mode
switching point. Therefore, the cumulative execution time
of low-criticality tasks strongly depends on when mode
switches occur. In general, such information is difficult to
explicitly represent prior to real execution, because the inde-
pendence of the mode switches in FMC results in a large
analysis space. It is computationally infeasible to analyze all
possibilities. To resolve this challenge, we propose a novel
approach based on mathematical induction, which allows
the cumulative execution time of low-criticality tasks to be
effectively upper bounded.

In this work, we study the schedulability of the proposed
FMCmodel under EDF-VD scheduling. An utilization-based
schedulability test condition is derived by integrating the
independent triggering scheme and the adaptive service
level tuning scheme. A formal proof of the correctness of this
new schedulability test condition is presented. Based on this
test condition, an EDF-VD-based MC scheduling algorithm,
called FMC-EDF-VD, is proposed for the scheduling of an
FMC task system. During run time, the optimal service level
for low-criticality tasks can be directly determined via this
condition with minimum overhead, and mixed-criticality
schedulability can be simultaneously guaranteed. In addi-
tion, we explore the feasible region of the virtual deadline
factor for FMC model. Simulation results show that FMC-
EDF-VD provides benefits in supporting low-criticality exe-
cution comparedwith state-of-the-art algorithms.

2 RELATED WORK

Mixed-criticality scheduling is a research field that has
received considerable attention in recent years. As stated in
[7], much existing research work [1], [2], [3] on MC schedul-
ing makes the pessimistic assumption that all low-criticality
tasks are immediately abandoned once the system enters
high-criticality mode. Instead of abandoning all low-critical-
ity tasks, some efforts [7], [16], [19], [24], [25] have been
made to provide solutions for offering low-criticality tasks
a certain degraded service quality when the system is in
high-criticality mode. Nevertheless, these studies still use a

pessimistic mode-switch triggering scheme in which, when-
ever one high-criticality task overruns, all other high-criti-
cality tasks are triggered to exhibit high-criticality behavior
and book unnecessary resources.

Recent work presented in [12], [15], [22] offers solutions
for improving performance for low-criticality tasks by using
different mode-switch triggering strategies. Huang et al. [15]
proposed an interference constraint graph to specify the exe-
cution dependencies between high-criticality and low-
criticality tasks. However, this approach still uses high-confi-
dence WCET estimates for all high-criticality tasks when
determining system schedulability, and therefore does not
address the second problem discussed above. Gu et al. [12]
presented a component-based strategy in which the compo-
nent boundaries offer the isolation necessary to support the
execution of low-criticality tasks.Minor overruns can be han-
dled with an internal mode switch by dropping off all low-
criticality jobs within a component. More extensive overruns
will result in a system-wide external mode switch and the
dropping off of all low-criticality jobs. Therefore, the mode
switches at the internal and external levels still use pessimis-
tic strategy in which all low-criticality tasks are abandoned
once a mode switch occurs at the corresponding level. The
two problems mentioned above still exist at both levels. In
addition, the system schedulability is tested using a demand
bound function (DBF) based approach. The complexity of
the schedulability test is exponential in the size of the
input [12], resulting in costly computations.

Ren and Phan [22] proposed a partitioned scheduling
algorithm based on group-based Pfair-like scheduling [14]
for mixed-criticality systems. Within a task group, a single
high-criticality task is encapsulated with several low-criti-
cality tasks. The tasks are scheduled via Pfair-like schedul-
ing [14] by breaking them into quantum-length sub-tasks.
Sub-tasks that belong to different groups are scheduled on
an earliest-pseudo-deadline-first (EPDF) basis. Pfair sched-
uling is a well-known optimal scheduling method for
scheduling periodic real-time tasks on a multiple-resource
system. However, Pfair scheduling poses many practical
problems [14]. First, the Pfair algorithm incurs very high
scheduling overhead because of frequent preemptions
caused by the small quantum lengths. Second, the task
groups are explicitly required to be well synchronized and
to make progress at a steady rate [27]. Therefore, the work
presented in [22] strongly relies on the periodic task models.
In addition, the system schedulability in [22] is determined
by solving a MINLP problem, which in general has NP-
hard complexity [11]. Because of this complexity, the scal-
ability problem needs to be carefully considered.

Compared with the existing work [12], [22], the proposed
FMCmodel and its scheduling techniques offer both simplic-
ity and flexibility. In particular, our work differs from these
approaches in the following respects. Compared with the
Pfair-based scheduling method [22] which relies on periodic
taskmodels, our paper derives an EDF-VD-based scheduling
scheme for sporadic mixed-criticality task systems, that
incorporates an independent mode-switch triggering
scheme and an adaptive service level tuning scheme. EDF-
VD has shown strong competence in both theoretical and
empirical evaluations [4]. Compared with the work pre-
sented in [12], our approach uses a more flexible strategy
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that allows a component/system to abandon low-criticality
tasks in accordance with run-time demands. Therefore, both
of the problems stated above are addressed in our approach.
In contrast to the work of [12], [22], our approach is based on
a utilization-based schedulability analysis. The system
schedulability can be effectively determined. From the
designer’s perspective, our utilization-based approach
requires simpler specifications and reasoning compared
with the work of [12], [22]. In terms of flexibility, our
approach can efficiently allocate execution budgets for low-
criticality tasks during runtime in accordancewith demands,
whereas the approaches presented in [12], [22] require that
low-criticality tasks should be executed in accordance with
the dependencies between low-criticality and high-criticality
tasks that have been determined in off-line.

3 SYSTEM MODELS AND BACKGROUND

3.1 FMC Implicit-Deadline Sporadic Task Model

Task Model. We consider an MC system with two different
criticality levels, HI and LO. The task set g contains n MC
implicit-deadline sporadic tasks which are scheduled on a
uni-processor platform. Each task ti in g generates an infinite
sequence of jobs and can be specified by a tuple fTi; Li; Cig.
Here, Ti denotes the minimum job-arrival intervals.
Li 2 fLO;HIg denotes the criticality level of a task. Each task
is either a low-criticality task or high-criticality task. gLO and
gHI (where g ¼ gLO [ gHI) denote low-criticality task set and
high-criticality task set, respectively. Ci 2 fCLO

i ; CHI
i g is the

list of WCETs, where CLO
i and CHI

i denote the low-criticality
and high-criticalityWCETs, respectively.

For high-criticality tasks, the WCETs satisfy CLO
i < CHI

i .
For low-criticality tasks, their execution budget is dynami-
cally determined in FMC based on the overruns of high-crit-
icality tasks. To characterize the execution behavior of low-
criticality tasks in high-criticality mode, we now introduce
the concept of the service level on each mode-switching
point, which specifies the guaranteed service quality after
the mode switch.

Service Level. Instead of completely discarding all low-
criticality tasks, Burns and Baruah in [7] proposed a more
practical MC task model in which low-criticality tasks are
allowed to statically reserve resources for their execution at
a degraded service level in high-criticality mode (i.e., a
reduced execution budget). By contrast, in FMC, the execu-
tion budget is dynamically determined based on the run-
time overruns rather than statically reserved as in [7]. To
model this dynamic behavior, the service level concept
defined in [7] should be extended to apply to independent
mode switches. Therefore, we define the service level zki
when the system has undergone kmode switches.

Definition 1 (Service level zki when k mode switches
have occurred). If low-criticality task ti is executed at service
level zki when the system has undergone k mode switches, up to
zki � CLO

i time units can be used for the execution of ti in one
period Ti. When ti runs in low-criticality mode, we say ti is
executed at service level z0i , where z

0
i ¼ 1.

The service level definition given above is compliant
with the concept of the imprecise computation model devel-
oped by Lin et al. [18] to deal with time-constrained iterative

calculations. Imprecise computation model is partly motivated
by the observation that many real-time computations are
iterative in nature, solving a numeric problem by successive
approximations. Terminating an iteration early can return
useful imprecise results. With this motivation in mind, the
imprecise computation model can be used in a natural way
to enhance graceful degradation [20]. The practicality of
imprecise computation model has been deeply investigated
and verified in [9]. Imprecise computation model provides
an approximate but timely result, which may be acceptable
in many application areas. Examples of such applications
are optimal control [6], multimedia applications [21], image
and speech processing [10], and fault-tolerant scheduling
problems [13]. In FMC, when an overrun occurs, low-criti-
cality tasks will be terminated before completion and sacri-
fice the quality of the produced results to ensure their
timing correctness.

Utilization. Low and high utilization for a task ti are

defined as uLO
i ¼ cLO

i
Ti

and uHI
i ¼ cHI

i
Ti
, respectively. The system-

level utilization for task set g are defined as uLOLO ¼P
ti2gLO uLO

i , uLO
HI ¼Pti2gHI

uLO
i , and uHI

HI ¼
P

ti2gHI
uHI
i . The

system utilization of low-criticality tasks after kth mode-
switching point can be defined as uk

LO ¼Pti2gLO zki � uLO
i . To

guarantee the execution of the mandatory portions of low-
criticality tasks, the mandatory utilization can be defined as
uman
LO ¼Pti2gLO zman

i � uLO
i , where zman

i is the mandatory ser-
vice level for task ti as specified by the users.

Assumptions. For the remainder of the paper, we make
the following assumptions: (1) Regarding the compensation
for the kth overrun of a high-criticality task, we assume
that zki � zk�1

i . After the kth mode-switching point, the
allowed execution time budget in one period should thus
be reduced from zk�1

i � cLOi to zki � cLOi . (2) According to [4],
if uLO

LO þ uHI
HI � 1, then all tasks can be perfectly scheduled

by regular EDF under the worst-case reservation strategy.
Therefore, we here consider meaningful cases in which
uLOLO þ uHI

HI > 1.

3.2 Execution Semantics of the FMC Model

The main differences between our FMC execution model
and the classic MC execution model lie in the indepen-
dent mode-switch triggering scheme for high-criticality
tasks and the dynamic service tuning of low-criticality
tasks. In contrast to the classic MC model, the FMC model
allows an independent triggering scheme in which the
overrun of one high-criticality task triggers only itself
into high-criticality mode. Consequently, the high-critical-
ity mode of the system in FMC depends on the number
of high-criticality tasks that have overrun. Therefore, we
introduce the following definition:

Definition 2 (k-level high-criticality mode). At a given
instant of time, if k high-criticality tasks have entered high-crit-
icality mode, then the system is in k-level high-criticality
mode. For low-criticality mode, we say that the system is in 0-
level high-criticality mode.

Based on Definition 2, the execution semantics of the
FMC model is illustrated in Fig. 1. Initially, the system is in
low-criticality mode (i.e., 0-level high-criticality mode). Then,
the overruns of high-criticality tasks trigger the system to
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proceed through the high-criticality modes one by one until
the condition for transitioning back is satisfied. According
to Fig. 1, the execution semantics can be summarized as
follows:

� Low-criticality mode: All tasks in g start in 0-level
high-criticality mode (i.e., low-criticality mode). As
long as no high-criticality task violates its CLO

i , the
system remains in 0-level high-criticality mode. In
this mode, all tasks are scheduled with CLO

i .
� Transition: When one job of a high-criticality task that

is being executed in low-criticality mode overruns its
CLO

i , this high-criticality task immediately switches
into high-criticality mode. However, the overrun of
this task does not trigger other high-criticality tasks
to enter high-criticality mode. All other high-critical-
ity tasks still remain in the same mode as before. Cor-
respondingly, the system transitions to a higher-
level high-criticality mode.1

� Updates: At the kth transition point (corresponding to

time instant t̂k in Fig. 1), a new service level zki is
determined and updated to provide degraded ser-
vice for low-criticality tasks ti to balance the resource
demand caused by the overrun of the high-criticality
task. At this time, if any low-criticality jobs have
completed more than zki � cLOi time units of execution
(i.e., have used up the updated execution budget for
the current period), those jobs will be suspended
immediately and wait for the budget to be renewed
in the next period. Otherwise, low-criticality jobs can
continue to use the remaining time budget for their
execution.

� Return to low-criticality mode: When the system
detects an idle interval [7], [23], the system will tran-
sition back into low-criticality mode.

3.3 EDF-VD Scheduling

EDF-VD [4], [5] is a scheduling algorithm for implementing
classic preemptive EDF scheduling in MC systems. The
main concept of EDF-VD is to artificially reduce the (virtual)
deadlines of high-criticality tasks when the system is in low-
criticality mode. These virtual deadlines can be used to
cause high-criticality tasks to finish earlier to ensure that the
system can reserve a sufficient execution budget for the
high-criticality tasks to meet their actual deadlines after
the system switches into high-criticality mode. In this paper,
we study the schedulability under EDF-VD scheduling for
the proposed FMCmodel.

4 FMC-EDF-VD SCHEDULING ALGORITHM

In this section, we provide an overview of the proposed
EDF-VD-based scheduling algorithm for our FMC model,
called FMC-EDF-VD. The proposed scheduling algorithm
consists of an off-line step and a run-time step. We implement
the off-line step prior to run time to select a feasible virtual
deadline factor x for tightening the deadlines of high-criti-
cality tasks. During run time, the service levels zki for low-
criticality tasks are dynamically tuned based on the overrun
of high-criticality tasks. Here, we present the operation flow
of FMC-EDF-VD.

Off-Line Step. In accordance with Theorem 1, we first

determine x as
uLO
HI

1�uLO
LO

. Then, to guarantee the schedulability of

FMC-EDF-VD, the determined x value should be validated
by testing condition Eqn. (24) in Theorem 5. Note that if con-
dition Eqn. (24) is not satisfied, then it is reported that the
specified task set cannot be scheduled using FMC-EDF-VD.

Run-Time Step. The run-time behavior follows the execu-
tion semantics presented in Section 3.2. In low-criticality
mode, all high-criticality tasks are scheduled with their vir-
tual deadlines. At each mode-switching point, the following
two procedures are triggered:

� Reset the deadline of overrun high-criticality task
from its virtual deadline to the actual deadline.
The deadline settings of other high-criticality tasks
remain the same as before.

� Update the service levels for low-criticality tasks in
accordance with Theorem 2.

Note that various run-time tuning strategies can be speci-
fied by the user as long as the condition in Theorem 2 is sat-
isfied. For the purpose of demonstration, a uniform tuning
strategy and a dropping-off strategy are discussed in this
paper. Complete descriptions of these strategies are pro-
vided in Section 6.

4.1 Motivational Example

In this section, we present a motivational example to show
how the global triggering scheme in FMC-EDF-VD can effi-
ciently support low-criticality task execution. The uniform
tuning strategy (see Theorem 6), in which all low-criticality
tasks share the same service level setting zk during run time
(i.e., 8ti 2 gLO, z

k
i ¼ zk), is adopted for this demonstration.

Example 1. For clarity of presentation, we consider a task
set that contains four identical high-criticality tasks and
two low-criticality tasks, as listed in Table 1. We specify
uman
LO ¼ 0 for demonstration. From Table 1, one can derive

uLOLO ¼ 2
5, u

LO
HI ¼ 3

10, and uHI
HI ¼ 4

5.

According to Theorem 6, we can compute the uniform
service levels zk for all possible mode-switching scenarios.
The results are listed in Table 2.

Fig. 1. Execution semantics of the FMC model.

TABLE 1
Example Task Set

Li Ti CLO
i CHI

i

t1; t2; t3; t4 HI 40 3 8
t5 LO 200 30
t6 LO 300 75

1. Without loss of generality, we assume that the system is in k-level
high-criticality mode.
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As shown in Table 2, FMC-EDF-VD can efficiently sup-
port low-criticality task execution by dynamically tuning
the low-criticality execution budget based on overrun
demand. When only one high-criticality task overruns, low-
criticality task t5 and t6 can use up to 22.5 and 56.25 time
units per period for execution. In this case, low-criticality
tasks can maintain 75 percent execution. Only when all
high-criticality tasks overrun their CL

i , low-criticality tasks
are all dropped. For comparison, the global triggering strat-
egy used in [7], [19] are always required to drop all low-crit-
icality tasks regardless of how many overruns occur during
run time because of the overapproximation of the overrun
workload. From a probabilistic perspective, the likelihood
that all high-criticality tasks will exhibit high-criticality
behavior is very low in practice. Therefore, in a typical case,
only a few high-criticality tasks will overrun their CL

i dur-
ing a busy interval. In most cases, FMC-EDF-VD will only
need to schedule resources for a portion of high-criticality
tasks based on their overrun demands and can maintain the
service level for low-criticality task execution to the greatest
possible extent. In this sense, FMC-EDF-VD can provide
better and more graceful service degradation.

5 SCHEDULABILITY TEST CONDITION

In this section, we present a utilization-based schedulability
test condition for the FMC-EDF-VD scheduling algorithm.
We start by ensuring the schedulability of the system when
it is operating in low-criticality mode (Theorem 1). Then, we
discuss how to derive a sufficient condition to ensure the
schedulability of the algorithm after kmode switches (Theo-
rem 2). Based on several sophisticated new techniques, the
correctness of this new schedulability test condition can be
proven and the formal proof is provided in Section 5.3.
Finally, we derive the region of x that can guarantee the fea-
sibility of the proposed scheduling algorithm.

5.1 Low-Criticality Mode

In low-criticality mode, the system behaviors in FMC are
exactly the same as in EDF-VD [4]. Therefore, we can use
the following theorem presented in [4] to ensure the sched-
ulability of tasks in low-criticality mode.

Theorem 1. The following condition is sufficient to ensure that
EDF-VD can successfully schedule all tasks in low-criticality
mode:

uLO
LO þ uLOHI

x
� 1 (1)

5.2 High-Criticality Mode After kMode Switches

In this section, we analyze the schedulability of the FMC-
EDF-VD algorithm during the transition phase. With this
analysis, we provide the answer to the question of how

much execution budget can be reserved for low-criticality
tasks while ensuring a schedulable system for mode transi-
tions. Without loss of generality, we consider a general
transition case in which the system transitions from
ðk� 1Þ-level high-criticality mode to k-level high-criticality
mode. Here, we first introduce the derived schedulability
test condition in Theorem 2. Then, the formal proof of the
correctness of this schedulability test condition is provided
in Section 5.3. Recall that ukLO denotes the utilization of
low-criticality tasks for the kth mode-switching point and is
defined as ukLO ¼Pti2gLO zki � uLO

i .

Theorem 2. The system is in ðk� 1Þ-level high-criticality mode.
For the kth mode-switching point t̂k, when high-criticality task
tt̂k overruns, the system is schedulable at t̂k if the following
conditions are satisfied:

uk
LO � uk�1

LO þ
uLO
t̂k

uLO
HI

ð1� uLOLOÞ � uHI
t̂k

ð1� xÞ
(2)

zki � zk�1
i ð8ti 2 gLOÞ (3)

where uLO
t̂k

and uHI
t̂k

denote low and high utilization, respec-
tively, for the high-criticality task tt̂k that undergoes a mode
switch at t̂k.

In Theorem 2, we present a general utilization-based
schedulability test condition for the FMC model. Now, let
us take a closer look at the conditions specified in Theo-
rem 2. We observe the following interesting properties of
FMC-EDF-VD:

� In Theorem 2, the desired utilization balance
between low-criticality and high-criticality tasks is
achieved. As constrained by Eqn. (3), the utilization
of low-criticality tasks should be further reduced
when a new overrun occurs. As shown in Eqn. (2),
the utilization reduction uk

LO � uk�1
LO is bounded by

uLO
t̂k

uLO
HI

ð1�uLO
LO

Þ�uHI
t̂k

ð1�xÞ for utilization balance.

� Another important observation is that the bound on
the utilization reduction is determined only by the
overrun of high-criticality task tt̂k (as shown in
Eqn. (2)). This means that the effects of the overruns
on utilization reduction are independent. Moreover,
the occurrence sequence of high-criticality task over-
runs has no impact on the utilization reduction.

� Theorem 2 also provides us with a generic metric for
managing the resources of low-criticality tasks when
each independent mode switch occurs. In general,
various run-time tuning strategies can be applied
during the transition phase, as long as the conditions
in Theorem 2 are satisfied.

5.3 The Proof of Correctness

We now prove the correctness of the schedulability test con-
dition presented in Theorem 2. We start with the proof by
introducing some important concepts. Then, we propose a
key technique to obtain the bound of the cumulative execu-
tion time for low-criticality and high-criticality tasks
(Lemma 1, Lemma 2, and Lemma 3). Based on these derived
bounds, the utilization-based test condition can be derived.

TABLE 2
Low-Criticality Service Levels

Number of Overrun k 1 2 3 4

Utilization uk
LO 0.3 0.2 0.1 0

Service Level zk 0.75 0.5 0.25 0
Execution Budget of t5 22.5 15 7.5 0
Execution Budget of t6 56.25 37.5 18.75 0
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5.3.1 Challenges

Incorporating the FMC model into a utilization-based EDF-
VD scheduling analysis introduces several new challenges.
The independent triggering scheme and the adaptive ser-
vice level tuning scheme in the FMC model allow flexible
system behaviors. However, this flexibility also makes the
system behavior more complex and more difficult to ana-
lyze. In particular, it is difficult to effectively determine an
upper bound on the cumulative execution time for low-criti-
cality tasks. In the FMC model, the service levels for low-
criticality tasks are dynamically tuned at each mode-switch-
ing point. Therefore, the cumulative execution time of low-
criticality tasks strongly depends on when each mode
switch occurs. However, this information is difficult to
explicitly represent prior to real execution because the inde-
pendence of the mode switches in the FMC model results in
a large analysis space. This makes it computationally infea-
sible to analyze all possibilities. Moreover, apart from the
timing information of multiple mode switches, the deriva-
tion of the cumulative execution time also depends on the
service tuning decisions made at previous mode switches.
Determining how to extract static information (i.e., utiliza-
tion) to formulate a feasible sufficient condition from these
variables is another challenging task.

5.3.2 Concepts and Notation

Before diving into the detailed proofs, we introduce some
commonly used concepts and notation that will be used
throughout the proofs. To derive a sufficient test, suppose
that there is a time interval ½0; tf � such that the system
undergoes the kth mode switch and the first deadline miss
occurs at tf . Let J be the minimal set of jobs released from
the MC task set g for which a deadline is missed. This mini-
mality means that if any job is removed from J , the remain-
der of J will be schedulable. Here, we introduce some
notation for later use. t̂k denotes the time instant of the kth

mode switch caused by high-criticality task tt̂k . The absolute
release time and deadline of the job of tt̂k that overruns at t̂

k

are denoted by at̂k and dt̂k , respectively. h
k
i ðt1; t2Þ denotes

the cumulative execution time of task ti when the system is
operating in k-level high-criticality mode during the inter-
val ðt1; t2�. Next, we define a special type of job for low-
criticality tasks, called a carry-over job, and introduce several
important propositions that will be useful for our later
proofs.

Definition 3. A job of low-criticality task ti is called a k-carry-
over job if the kth mode switch occurs in the interval ½aki ; dki �,
where aki and dki are the absolute release time and deadline of
this job, respectively.

Fig. 2 shows how a k-carry-over job is executed during the
interval ½aki ; dki �. The black box represents the cumulative
execution time hki ðaki ; t̂kÞ of the k-carry-over job before the kth

mode-switching point t̂k.

Proposition 1. (From [4], [5]) All jobs executed in ½t̂k; tf �
have a deadline � tf .

Proposition 2. The kth mode-switching point t̂k satisfies
t̂k � at̂k þ x � ðtf � at̂kÞ.

Proof. Since a high-criticality job of tt̂k triggers the k
th mode

switch at t̂k, its virtual deadline at̂k þ x � ðdt̂k � at̂kÞ must
be greater than t̂k. Otherwise, the high-criticality job
would have completed its execution before the time
instant of the switch. tu

Proposition 3. For a k-carry-over job of low-criticality task ti,
if hki ðaki ; t̂kÞ 6¼ 0, then the following holds: dki � at̂k þ x�
ðtf � at̂kÞ.

Proof. There are two cases to consider: aki � at̂k and aki < at̂k .
Case 1 (aki � at̂k ): In this case, for the k-carry-over job

to be executed after at̂k , the k-carry-over job should
have a deadline no later than the virtual deadline
at̂k þ xðdt̂k � at̂kÞ of the high-criticality job that triggered
the kth mode switch. As a result, because dt̂k � tf , we
have dki � ðat̂k þ x � ðtf � at̂kÞÞ.

Case 2 (aki < at̂k ): We prove the correctness of this
case by contradiction. Suppose that the k-carry-over job of
low-criticality task ti, with its deadline of dki > ðat̂kþ
x � ðtf � at̂kÞÞ, were to be executed before at̂k . Let t�

denote the latest time instant at which this k-carry-over
job is executed before at̂k . At time instant t̂k, all previous
ðk� 1Þ mode switches are known to the system2. At t�,
we know that there should be no pending job with a
deadline of � ðat̂k þ x � ðtf � at̂kÞÞ. This means that jobs
that are released at or after t� will also suffer a deadline
miss at tf , which contradicts the minimality of J . There-
fore, dki � ðat̂k þ x � ðtf � at̂kÞÞ. tu
Using the propositions and notation presented above, we

now derive an upper bound on the cumulative execution
time hki ð0; tfÞ for low-criticality tasks (Lemma 1) and high-
criticality tasks (Lemma 2 and Lemma 3).

5.3.3 Bound for Low-Criticality Tasks

As discussed above, it is difficult to derive an upper bound
on the cumulative execution time of low-criticality tasks
during the interval ½0; tf � because of the large analysis space.
In this section, we propose a novel derivation strategy to
resolve this challenge. The overall derivation strategy is
based on the specified derivation protocol (Rule 1-Rule 4)
and mathematical induction. The purpose of the derivation
protocol is to specify unified intermediate upper bounds for
different execution scenarios. The advantage of introducing
these intermediate upper bounds is that we can virtually hide
the influence of the previous k� 1 mode switches. For
instance, in Rule 1 (see Eqn. (4)), the influence of the previ-
ous k� 1 mode switches is hidden in the term
supfhki ð0; dliÞg. In this way, the kth mode switch and the pre-
vious k� 1mode switches are decorrelated.

Throughout the remainder of this section, we will use
supfhki ðt1; t2Þg to denote the intermediate upper bounds on
hki ðt1; t2Þ for different execution scenarios, which represent
the upper bounds under specific conditions. Let t̂k�j (j > 0)
denote the last mode-switching point before aki (as shown in

Fig. 2. The execution scenario for a k-carry-over job.

2. At t̂k, all previous k� 1mode switches have already occurred.
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Fig. 2). zk�j
i denotes the updated service level at t̂k�j. dli

denotes the absolute deadline for the last job3 of ti during
½0; tf �. Now, we present the rules for deriving supfhki ð0; tfÞg
and supfhki ðaki ; dki Þg, as summarized in Eqns. (4) and (5).

supfhki ð0; tfÞg

¼ supfhki ð0; dliÞg þ ðtf � t̂kÞ � zki � uLOi dli < t̂k ðRule 1Þ
supfhki ð0; dki Þg þ ðtf � dki Þ � zki � uLO

i Otherwise ðRule 2Þ

(

(4)

supfhki ðaki ; dki Þg

¼ ðdki � aki Þ � zk�j
i � uLO

i hki ðaki ; t̂kÞ 6¼ 0 ðRule 3Þ
ðdki � aki Þ � zki � uLO

i Otherwise ðRule 4Þ

(
(5)

The detailed description and proof are presented in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2017.2763133. In Rule 1-Rule 4, one may notice
that there are several different execution scenarios in which
only one mode switch is considered. When nmode switches
are allowed, the combination space for all execution scenar-
ios will increase exponentially with n. In general, it is very
difficult to derive a bound on the cumulative execution time
for low-criticality tasks because of this large combination
space. To solve this problem, we analyze the difference
between supfhki ð0; tfÞg and supfhk�1

i ð0; tfÞg and find that this
difference can be uniformly bounded by a difference term ck

i

(see Lemma 1). This finding is formally proven in Lemma 1
through mathematical induction. Before the proof, we first
present a fact that will be useful for later interpretation.

Fact 1. For the kth mode-switching point t̂k, at time instant t0
such that t0 � t̂k, hki ð0; t0Þ ¼ hk�1

i ð0; t0Þ.
Proof. The kth mode switch can only begin to affect low-crit-

icality task execution after the corresponding mode-
switching point t̂k. Before t̂k, the kth mode switch has no
impact. Thus, we have hki ð0; t0Þ ¼ hk�1

i ð0; t0Þ. tu
Lemma 1. For all k � 1, the cumulative execution time hki ð0; tfÞ

can be upper bounded by

tf � uLO
i þ

Xk
j¼1

c
j
i (6)

where the difference term c
j
i is defined as ðtf � at̂jÞ

ð1� xÞðzji � zj�1
i ÞuLO

i .

Proof. Instead of proving the original statement,wewill prove
an alternative statementP ðkÞ, which is defined as follows:

The intermediate upper bounds supfhki ð0; tfÞg under differ-
ent execution scenarios can be uniformly upper bounded by
Eqn. (6).

Since hki ð0; tfÞ � supfhki ð0; tfÞg, the original statement
will be proven correct if the statement P ðkÞ is proven to
be correct. Now, we will prove that the statement P ðkÞ is
correct for all possible integers k based on mathematical
induction. Recall that dli is the absolute deadline for the
last job of ti during ½0; tf �.

Step 1(base case): We will prove that P ð1Þ is correct for
k ¼ 1. tu

Proof. We consider two cases, one in which a carry-over job
does not exist at the first mode-switching point t̂1 (i.e.,
dli < t̂1) and one inwhich such a job does exist (i.e., dli � t̂1).

Case 1 (dl
i < t̂1): According to Rule 1 and Property 2,

we have the following:

supfh1i ð0; tfÞg
¼ supfh1i ð0; dliÞg þ ðtf � t̂1Þ � z1i � uLOi
¼ dli � uLOi þ ðtf � t̂1Þ � z1i � uLOi
since dli < t̂1 � at̂1 þ x � ðtf � at̂1Þ

< tf � z1i � uLOi þ t̂1 � uLOi � ð1� z1i Þ ðreplace dli with t̂1Þ
� tf � uLOi þ ðtf � at̂1Þð1� xÞðz1i � 1ÞuLOi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

difference term c1
i

ðreplace t̂1Þ

Case 2 (dl
i � t̂1): In this case, we consider the two fol-

lowing execution scenarios.
S1 (h1i ða1i ; t̂1Þ 6¼ 0Þ: According to Rule 2, Rule 3, and

Property 3, we have the following:

supfh1i ð0; tfÞg
¼ supfh1i ð0; a1i Þg þ supfh1i ða1i ; d1i Þg þ ðtf � d1i Þz1i uLO

i

¼ a1i u
LO
i þ ðd1i � a1i ÞuLO

i þ ðtf � d1i Þz1i uLO
i

¼ tf � uLO
i þ ðtf � d1i Þðz1i � 1ÞuLO

i

since d1i � at̂1 þ x � ðtf � at̂1Þ
� tf � uLO

i þ ðtf � at̂1Þð1� xÞðz1i � 1ÞuLOi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c1

i

ðreplace d1i Þ

S2 (h1i ða1i ; t̂1Þ ¼ 0): According to Rule 2, Rule 4, and
Property 2, we have the following:

supfh1i ð0; tfÞg
¼ supfh1i ð0; a1i Þg þ supfh1i ða1i ; d1i Þg þ ðtf � d1i Þz1i uLOi
¼ a1i u

LO
i þ ðd1i � a1i Þz1i uLOi þ ðtf � d1i Þz1i uLOi

¼ tf � uLOi þ ðtf � a1i Þðz1i � 1ÞuLOi
since a1i < t̂1 � at̂1 þ x � ðtf � at̂1Þ

� tf � uLOi þ ðtf � at̂1Þð1� xÞðz1i � 1ÞuLOi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c1

i

ðreplace a1i Þ

Therefore, P ð1Þ is correct for k ¼ 1. tu
Step 2 (induction hypothesis): Assume that P ðk0 � 1Þ is

correct for some possible integers k0 � 1.
Step 3. (induction): We now prove that P ðk0Þ is correct by

the induction hypothesis.

Proof. Since t̂k0�1 � t̂k0 , we need to consider the following
three cases.

Case 1(dl
i < t̂k0�1 � t̂k0 ): In this case, neither a ðk0� 1Þ-

carry-over job nor a k0-carry-over job exists. According to
Rule 1 and Fact 1, we have the following:

supfhk0�1
i ð0; tfÞg ¼ supfhk0�1

i ð0; dliÞg þ ðtf � t̂k0�1Þzk0�1
i uLOi

supfhk0i ð0; tfÞg ¼ supfhk0i ð0; dliÞg þ ðtf � t̂k0Þzk0i uLO
i

supfhk0�1
i ð0; dliÞg ¼ supfhk0i ð0; dliÞg3. Here, the last job means the last job with a deadline of � tf .
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Since t̂k0 � t̂k0�1 and z
k0
i � z

k0�1
i , we have

supfhk0i ð0; tfÞg � supfhk0�1
i ð0; tfÞg þ ðtf � t̂k0Þðzk0i � z

k0�1
i ÞuLOi

(7)

According to Property 2, we can replace t̂k0 with
at̂k0 þ xðtf � at̂k0 Þ in Eqn. (7). Then, supfhk0i ð0; tfÞg can be
bounded by

supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þ � ð1� xÞ � ðzk0i � z

k0�1
i Þ � uLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

Case 2 (̂t
k0�1 � t̂k0 � dl

i): In this case, both a
ðk0 � 1Þ-carry-over job and a k0-carry-over job exist. Recall
that d

k0�1
i is the absolute deadline for the ðk0 � 1Þ-carry-

over job. Two sub-cases, one with t̂k0 � d
k0�1
i and one

with t̂k0 > d
k0�1
i , as shown in Figs. 3a and 3b, need to be

considered.
According to Fact 1, we have the following:

h
k0
i ð0; ak0i Þ ¼ h

k0�1
i ð0; ak0i Þ (8)

� Case 2-A (t̂k0 � d
k0�1
i ): This execution scenario is illus-

trated in Fig. 2. In this case, the ðk0 � 1Þ-carry-over job and
the k0-carry-over job are the same job. Therefore, we have
a
k0
i ¼ a

k0�1
i and d

k0
i ¼ d

k0�1
i . In the following, we use a

k0�1
i

and d
k0�1
i in place of a

k0
i and d

k0
i , respectively. In Case 2-

A, the following two scenarios are considered:
S1 (h

k0
i ðak0�1

i ; t̂k0Þ 6¼ 0Þ: According to Rule 3 and
Rule 4, we have the following4:

supfhk0i ðak0�1
i ; d

k0�1
i Þg ¼ supfhk0�1

i ðak0�1
i ; d

k0�1
i Þg

¼ ðdk0�1
i � a

k0�1
i Þ � zk0�j

i � uLOi hki ðak0�1
i ; t̂k0�1Þ 6¼ 0

ðdk0�1
i � a

k0�1
i Þ � zk0�1

i � uLOi otherwise

(
(9)

According to Rule 2, Eqns. (8) and (9), we have the fol-
lowing:

supfhk0i ð0; tfÞg
¼ supfhk0i ð0; ak0�1

i Þg þ supfhk0i ðak0�1
i ; d

k0�1
i Þg

þ ðtf � d
k0�1
i Þzk0i uLOi

¼ supfhk0�1
i ð0; ak0�1

i Þg þ supfhk0�1
i ðak0�1

i ; d
k0�1
i Þg

þðtf � d
k0�1
i Þzk0�1

i uLOi þ ðtf � d
k0�1
i Þðzk0i � z

k0�1
i ÞuLOi

¼ supfhk0�1
i ð0; tfÞg þ ðtf � d

k0�1
i Þðzk0i � z

k0�1
i ÞuLOi

According to Property 3, by replacing d
k0�1
i with

at̂k0 þ x � ðtf � at̂k0 Þ, supfhk0i ð0; tfÞg can be bounded by

supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þ � ð1� xÞ � ðzk0i � z

k0�1
i Þ � uLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

(10)

S2 (h
k0
i ðak0�1

i ; t̂k0Þ ¼ 0): According to Rule 2, Rule 4, and
Eqn. (8), we have the following:

supfhk0i ð0; tfÞg
¼ supfhk0i ð0; ak0�1

i Þg þ supfhk0i ðak0�1
i ; d

k0�1
i Þg

þ ðtf � d
k0�1
i Þzk0i uLO

i

¼ supfhk0�1
i ð0; ak0�1

i Þg þ supfhk0�1
i ðak0�1

i ; d
k0�1
i Þg

þðtf � d
k0�1
i Þzk0�1

i uLO
i þ ðtf � a

k0�1
i Þðzk0i � z

k0�1
i ÞuLO

i

¼ supfhk0�1
i ð0; tfÞg þ ðtf � a

k0�1
i Þðzk0i � z

k0�1
i ÞuLOi

According to Property 2 and a
k0�1
i < t̂k0 , supfhk0i

ð0; tfÞg can be bounded by

supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þð1� xÞðzk0i � z

k0�1
i ÞuLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

(11)

� Case 2-B: (d
k0�1
i < t̂k0 ): This execution scenario is illus-

trated in Fig. 3. In this case, the ðk0 � 1Þ-carry-over job and
the k0-carry-over job are different jobs. For this case, we
will consider the following two scenarios:

S1 (h
k0
i ðak0i ; t̂k0Þ 6¼ 0): According to Rule 2, Rule 3, and

Eqn. (8), we have the following:

supfhk0i ð0; tfÞg
¼ supfhk0i ð0; ak0i Þg þ supfhk0i ðak0i ; d

k0
i Þg þ ðtf � d

k0
i Þzk0i uLO

i

¼ supfhk0�1
i ð0; ak0i Þg þ ðtf � a

k0
i Þzk0�1

i uLO
i

þ ðtf � d
k0
i Þðzk0i � z

k0�1
i ÞuLOi

¼ supfhk0�1
i ð0; tfÞg þ ðtf � d

k0
i Þðzk0i � z

k0�1
i ÞuLOi

Again, by replacing d
k0
i in accordance with Property 3,

we obtain the following bound:

supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þð1� xÞðzk0i � z

k0�1
i ÞuLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

(12)

S2 (h
k0
i ðak0i ; t̂k0Þ ¼ 0): According to Rule 2, Rule 4, and

Eqn. (8), we have the following:

supfhk0i ð0; tfÞg
¼ supfhk0i ð0; ak0i Þg þ supfhk0i ðak0i ; d

k0
i Þg þ ðtf � d

k0
i Þzk0i uLO

i

¼ supfhk0�1
i ð0; ak0i Þg þ ðtf � a

k0
i Þzk0�1

i uLO
i

þ ðtf � a
k0
i Þðzk0i � z

k0�1
i ÞuLO

i

¼ supfhk0�1
i ð0; tfÞg þ ðtf � a

k0
i Þðzk0i � z

k0�1
i ÞuLO

i

Again, according to Proposition 2 and a
k0
i < t̂k0 ,

supfhki ð0; tfÞg can be upper bounded by

Fig. 3. Mode switch from t̂k0�1 to t̂k0 .

4. According to the proof of Rule 3 (see Appendix A, available online),
we have a similar result: supfhk0i ðak0�1

i ; d
k0�1
i Þg ¼ ðdk0�1

i � a
k0�1
i Þ � zk0�1

i �
uLOi because hki ðak0�1

i ; t̂k0�1Þ ¼ 0.
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supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þð1� xÞðzk0i � z

k0�1
i ÞuLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

(13)

For case 2, we can conclude that supfhki ð0; tfÞg can be

upper bounded by supfhk0�1
i ð0; tfÞg þ c

k0
i according to

Eqns. (10)-(13).
Case 3 (t̂k0�1 � dli < t̂k0 ): In this case, a ðk0 � 1Þ-carry-

over job exists but a k0-carry-over job does not. According
to Rule 1, we have the following:

supfhk0i ð0; tfÞg ¼ supfhk0i ð0; dliÞg þ ðtf � t̂k0Þ � zk0i � uLO
i

Since dli < t̂k0 < tf , we can derive

supfhk0�1
i ð0; tfÞg ¼ supfhk0�1

i ð0; dliÞg þ ðtf � dliÞ � zk0�1
i � uLO

i

According to Fact 1 and dli < t̂k0 , we have

supfhk0i ð0; tfÞg � supfhk0�1
i ð0; tfÞg þ ðtf � t̂k0Þðzk0i � z

k0�1
i ÞuLOi

Again, according to Proposition 2, supfhki ð0; tfÞg can
be upper bounded by

supfhk0�1
i ð0; tfÞg þ ðtf � at̂k0 Þð1� xÞðzk0i � z

k0�1
i ÞuLO

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference term c

k0
i

For the three cases above, we can conclude that
supfhki ð0; tfÞg can be upper bounded by supfhk0�1

i

ð0; tfÞg þ c
k0
i . Thus, P ðk0Þ is correct by the induction

hypothesis.
Hence, throughmathematical induction,P ðkÞ is proven

correct for all possible k. Under different execution scenar-
ios, the cumulative execution time hki ð0; tfÞ can be
bounded by the intermediate upper bound supfhki ð0; tfÞg.
Since P ðkÞ is correct, the original statement is correct. tu

5.3.4 Bound for High-Criticality Tasks

Recall that tt̂k is the high-criticality task that suffers an over-
run at t̂k. Since the mode switches are independent, the
high-criticality tasks can be divided into two sets, namely,
the sets of tasks that have and have not already entered
high-criticality mode at mode-switching point t̂k, which can
be denoted by gHI

HIðt̂kÞ and gLO
HI ðt̂kÞ, respectively. Now, we

derive the upper bounds on the cumulative execution time
for both types of high-criticality tasks.

Lemma 2. For high-criticality task tt̂j in task set gHI
HIðt̂kÞ

(j � k), the cumulative execution time hktt̂j
ð0; tfÞ can be

bounded as follows:

supfhktt̂j ð0; tfÞg ¼ at̂j

x
� uLO

t̂j
þ ðtf � at̂jÞ � uHI

t̂j
(14)

Proof. For the proof, refer to fact 3 in [4]. tu
Lemma 3. For high-criticality task ti in task set gLOHI ðt̂kÞ, the

cumulative execution time hki ð0; tfÞ can be bounded as follows:

supfhki ð0; tfÞg ¼ tf
x
� uLO

i (15)

Proof. Since the job has a modified deadline � tf , the actual

deadline is � tf
x . Therefore, supfhki ð0; tfÞg ¼ tf

x � uLO
i . tu

5.3.5 Putting It All Together

Now, we are ready to establish the schedulability test condi-
tion. To prove Theorem 2, we first introduce two auxiliary
theorems, Theorems 3 and 4. In Theorem 3, the schedulabil-
ity test condition is derived based on Lemmas 1, 2, and 3.
This test condition should rely on the previous mode
switches. Theorem 4 demonstrates the consistency of the
test condition, by which the dependences among mode
switches can be removed.

Theorem 3. At the kth mode-switching point t̂k, k (k � 1) high-
criticality tasks tt̂1 ; tt̂2 ; . . . ; tt̂k have switched into high-critical-
ity mode. The system is schedulable if the service level zji at t̂

j

satisfies the following conditions for all j such that 1 � j � k.

zji � zj�1
i (16)

uHI
t̂j

þ ð1� xÞðuj
LO � uj�1

LO Þ þ uLO
t̂j

uLO
HI

ðuLO
LO � 1Þ � 0 (17)

Proof. The condition zji � zj�1
i is a basic assumption of our

model, which guarantees the satisfaction of Lemma 1,
Rule 3, and Rule 4. Therefore, zji � zj�1

i needs to be
satisfied.

Let Nk
g denote the cumulative execution time of task

set g during the interval ½0; tf � when the kth mode switch
occurs. To calculate Nk

g , let us sum the the cumulative
execution time of all tasks over ½0; tf �.

For the low-criticality task set gLO, we can bound Nk
gLO

according to Lemma 1.

Nk
gLO

�
X

ti2gLO
tfu

LO
i þ

Xk
j¼1

c
j
i

 !
(18)

For the high-criticality task set gHI
HIðt̂kÞ, which contains

k high-criticality tasks (i.e., kgHI
HIðt̂kÞk ¼ k), we can derive

the cumulative execution time according to Lemma 2.

Nk
gHI
HI

ðt̂kÞ �
Xk
j¼1

at̂j

x
� uLO

t̂j
þ ðtf � at̂jÞ � uHI

t̂j

� �
(19)

For the high-criticality tasks in gLO
HI ðt̂kÞ, which have not

entered high-criticality mode at t̂k, we can derive the
cumulative execution time according to Lemma 3.

Nk
gLO
HI

ðt̂kÞ �
X

ti2gLOHI
ðt̂kÞ

tf
x
uLO
i (20)

Based on Eqns. (18), (19) and (20), Nk
g can be bounded

as shown in Eqn. (21). The complete derivation is given in
Appendix B, available online because of space limitations.

Nk
g ¼ Nk

gLO
þNk

gHI
HI

ðt̂kÞ þNk
gLO
HI

ðt̂kÞ

�tf þ
Xk
j¼1

ðtf � at̂jÞ
�
uHI
t̂j

þ ð1� xÞðujLO � uj�1
LO Þ þ uLO

t̂j

uLOHI

ðuLOLO � 1Þ
�

(21)
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Since the first deadline miss occurs at time instant tf , the
following holds5:

Nk
g > tf

Therefore,

Xk
j¼1

ðtf � at̂jÞ
�
uHI
t̂j

þ ð1� xÞðujLO � uj�1
LO Þ þ uLO

t̂j

uLO
HI

ðuLO
LO � 1Þ

�
> 0

Taking the contrapositive, we obtain

Xk
j¼1

ðtf � at̂jÞ
�
uHI
t̂j

þ ð1� xÞðuj
LO � uj�1

LO Þ þ uLO
t̂j

uLOHI

ðuLOLO � 1Þ
�

� 0

(22)

Since tf � at̂j > 0, to guarantee the system schedul-
ability of task set g at the kth mode switch, it is sufficient
to ensure that the term indicated in Eqn. (22) is less than
0 for all j such that 1 � j � k.

8j such that 1 � j � k :

uHI
t̂j

þ ð1� xÞðujLO � uj�1
LO Þ þ uLO

t̂j

uLOHI

ðuLO
LO � 1Þ � 0

(23)

tu
In Theorem 3, at the kth mode-switching point, additional

conditions are imposed on the previous k� 1 mode
switches. Therefore, to remove this dependence, we require
that these imposed conditions should be consistent with the
decision-making at the previous mode-switching points t̂j

(j < k). We demonstrate this consistency in Theorem 4.

Theorem 4. The new conditions imposed on u1
LO; u

2
LO; . . . ; u

k�1
LO

by the kth mode switch are consistent with the decisions that
have been made at the previous mode-switching points.

Proof. The conditions given in Theorem 3 for decisions that
have been made at the previous k� 1 mode-switching
points t̂j (1 � j � k� 1) are exactly the same as the new
conditions imposed on u1

LO; u
2
LO; . . . ; u

k�1
LO with the kth

mode switch. Therefore, their consistency is guaranteed.tu
FMC Schedulability. Now, we are ready to prove Theo-

rem 2 using Theorem 3 and Theorem 4.

Proof.According to Theorem 4, the constraints in Theorem 3
that are imposed on u1

LO; u
2
LO; . . . ; u

k�1
LO with the kth mode

switch have already been covered by the previous k� 1
mode switches. Therefore, we need to check only two
conditions: Eqns. (16) and (17) with j ¼ k. tu

5.4 Feasibility of Algorithm

In this section, we investigate the region of x values that can
guarantee the feasibility of the run-time algorithm. The
selection of any x from this region during the off-line phase
can guarantee that a feasible solution as determined by The-
orem 2 can always be found during run time. To derive this

region, we first introduce several definitions and properties
that will be useful for the later proof of feasibility.

According to Eqn. (2) in Theorem 2, when
uLO
t̂k

uLO
HI

ð1�
uLOLOÞ � uHI

t̂k
> 0, we do not need to reduce the utilization of

low-criticality tasks. The overrun of the high-criticality task
at this mode-switching point is covered by the system

resource margin. Only when
uLO
t̂k

uLO
HI

ð1� uLO
LOÞ � uHI

t̂k
� 0, uk

LO

should be decreased to compensate for the overrun of the
high-criticality task. For simplicity, we define a discriminant
function fðtiÞ for each high-criticality task ti to indicate
whether the overrun of ti can be covered by the system
resource margin.

Definition 4. fðtiÞ ¼ uLO
i

uLO
HI

ð1� uLO
LOÞ � uHI

i ðti 2 gHIÞ
Definition 5. A high-criticality task ti is called margin high-

criticality task if fðtiÞ > 0. Otherwise, ti is called compensa-
tion high-criticality task.

Definition 6. The margin high-criticality task set and the com-
pensation high-criticality task set are defined as
g	HI ¼ fti 2 gHI jfðtiÞ > 0g and g�HI ¼ fti 2 gHI jfðtiÞ �
0g, respectively. gHI ¼ g	

HI [ g�
HI .

With the definitions given above, we can now perform
the feasibility analysis for x.

Theorem 5. Given the mandatory utilization uman
LO , any x that

satisfies the following condition can guarantee that a feasible
solution as determined by Theorem 2 can always be found dur-
ing run time.

ð1� xÞðuLO
LO � uman

LO Þ þ
X

ti2g�HI

fðtiÞ � 0 (24)

Proof. Recall that gHI
HIðt̂kÞ is the set of high-criticality tasks

that have entered high-criticality mode at t̂k. By iterating
the conditions in Theorem 2, a direct solution for uk

LO can
be obtained as follows:

uk
LO � uLOLO þ

P
ti2g�HI

\gHI
HI

ðt̂kÞ fðtiÞ
ð1� xÞ (25)

To guarantee the execution of the mandatory portions
of low-criticality tasks, the following condition should be
satisfied for all k:

uman
LO � uk

LO � uLO
LO þ

P
ti2g�HI

\gHI
HI

ðt̂kÞ fðtiÞ
ð1� xÞ (26)

Since the right-hand side of Eqn. (26) is non-increasing
with respect to the number of overrun high-criticality tasks
(i.e., k), the worst-case scenario is that all high-criticality
tasks in gHI enter high-criticality mode. If mandatory ser-
vice can be guaranteed in this worst-case scenario, then the
feasibility of the proposed algorithm is ensured. Therefore,
condition Eqn. (26) can be rewritten as Eqn. (27).

uLO
LO þ

P
ti2g�HI

fðtiÞ
ð1� xÞ � uman

LO

) ð1� xÞðuLO
LO � uman

LO Þ þ
X

ti2g�HI

fðtiÞ � 0
(27)5. Note that there is no idle instant within the interval ½0; tf �. Other-

wise, jobs from set J with release times at or after the latest idle instant
could form a smaller job set causing a deadline miss at tf , which would
contradict the minimality of J .
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Note that uman
LO is the mandatory utilization defined as

uman
LO ¼Pti2gLO zman

i � uLO
i , where the item zman

i � uLOi can
be considered as a mandatory part which affects the
correctness of the result in imprecise computation
model [18]. tu
Now, we use the following example to illustrate how to

test the feasibility of FMC-EDF-VD.

Example 2. Considering the task system in Example 1, we

can derive x ¼ uLO
HI

1�uLO
LO

¼ 1
2 according to Theorem 1. For

high-criticality tasks, one can compute discriminant func-

tions fðt1Þ ¼ fðt2Þ ¼ fðt3Þ ¼ fðt4Þ ¼ � 1
20 in accordance

with Definition 4. The feasibility of x is validated by

checking condition Eqn. (24) in Theorem 5.

ð1� xÞðuLO
LO � uman

LO Þ þ
X

ti2g�HI

fðtiÞ ¼ 1� 1

2

� �

 2

5
� 4
 1

20
¼ 0

Thus, we know x ¼ 1
2 that is feasible for scheduling using

FMC-EDF-VD.

6 SERVICE LEVEL TUNING STRATEGY

Theorem 2 provides an important criterion for run-time ser-
vice level tuning. By checking the conditions in Theorem 2,
one can determine how much utilization can be reserved for
low-criticality task execution to compensate for the over-
runs. In general, various tuning strategies can be specified
by the user as long as the condition in Theorem 2 is satisfied
during run time. In this paper, we present a uniform tuning
strategy and a dropping-off strategy to demonstrate the per-
formance of FMC.

6.1 Dropping-Off Strategy

To compensate for overruns, the dropping-off strategy par-
tially drops low-criticality tasks by assigning zki ¼ 0 for
dropped tasks. To maximize the utilization of low-criticality
tasks, the tasks to be dropped can be selected according to
their utilization. At each mode-switching point t̂k, tasks
with less utilization are given higher priority for dropping.
To implement this selection strategy, we can create a task
table TALO during the off-line phase by sorting the low-criti-
cality tasks in ascending order of their utilization. During
run time, the utilization reduction Uk

R that is required to
compensate for the kth mode switch is determined accord-
ing to Theorem 2. Based on TALO, the set gk

LO of tasks that
are dropped at the kth mode-switching point is determined
via binary search. Note that other selection criteria, such as
job completion percentage, can also be applied to select the
low-criticality tasks to be dropped.

6.2 Uniform Tuning Strategy

In this section, we present a uniform tuning strategy in
which zki ¼ zk holds for all low-criticality tasks. The service
levels zki of all low-criticality tasks ti are uniformly set to zk

at the kth mode-switching point. By applying zki ¼ zk in the
conditions given in Theorem 2, the uniform service level zk

can be directly computed using Eqn. (28) in Theorem 6.

Theorem 6. The system is schedulable at the k� 1th mode-
switching point with a uniform zk�1. At the kth mode-switching

point t̂k, the system is still schedulable if zk is determined
as follows:

0 � zk � zk�1 þmin 0;

uLO
t̂k

uLO
HI

ð1� uLO
LOÞ � uHI

t̂k

ð1� xÞuLO
LO

0
BB@

1
CCA (28)

where uLO
t̂k

and uHI
t̂k

denote low and high utilization, respec-
tively, of the high-criticality task tt̂k that suffers an overrun at
t̂k.

Proof. In the uniform tuning strategy, zki ¼ zk holds for any
low-criticality task ti. Recall that u

k
LO ¼Pti2gLO zki � uLOi .

Thus, we can obtain Eqn. (28) by combining the two con-
ditions expressed in Eqns. (2) and (3) in Theorem 2. tu

6.3 Case Study

In this case study, we first use the task system in Example 1
to illustrate how uniform tuning strategy and dropping-off
strategy work in FMC. Then, we implement the uniform
tuning strategy in our simulation framework (presented in
Appendix C, available online) to demonstrate the graceful
low-criticality service degradation of FMC.

First of all, we consider the generalized conditions pre-
sented in Theorem 2, which determines how much utiliza-
tion can be reserved for low-criticality task execution to
compensate for the overruns. By applying the task system
presented in Example 1 to Theorem 2, we can get the follow-
ing utilization conditions

uk
LO � uk�1

LO �
uLO
t̂k

uLO
HI

ð1� uLO
LOÞ � uHI

t̂k

ð1� xÞ ¼ � 1

10
(29)

zki � zk�1
i ð8ti 2 gLOÞ (30)

Since the high-criticality tasks are identical, each overrun
will result in identical utilization reduction of 1

10, as shown
in Eqn. (29). Now, we illustrate how uniform tuning strat-
egy and dropping-off strategy work based on these general-
ized conditions Eqn. (29) and Eqn. (30).

� For dropping-off strategy by assigning zki ¼ 0 for
dropped tasks, the system is required to drop off a
portion of low-criticality tasks to compensate for the
overruns of one high-criticality task. For example,
when one high-criticality task overruns its CL

i , low-
criticality task t5 may decrease its execution budget
from 30 to 10, while low-criticality task t6 is executed
without degradation. By this way, the service degra-
dation of t5 results in utilization reduction of 1

10 to
accommodate one high-criticality overrun. The drop-
ping-off process is summarized in Table 3.

TABLE 3
Low-Criticality Service Levels

Number of Overrun k 1 2 3 4

Utilization uk
LO 0.3 0.2 0.1 0

Execution Budget of t5 10 0 0 0
Execution Budget of t6 75 60 30 0
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� For uniform tuning strategy by restricting zki ¼ zk for
all low-criticality tasks, each overrun will result in
an identical reduction of 0.25 in zk, such that the con-
dition Eqn. (29) is satisfied. Therefore, the service
level zk for operation in k-level high-criticality mode
can be expressed as zk ¼ 1� 0:25 � k.

� By contrast, if one were to apply IMC [19] to this task
set, the guaranteed service level would be 0. This
means that any overrun would result in the drop-
ping off of all low-criticality tasks.

Next, we evaluate the implementation of the FMC-EDF-
VD run-time system in our simulation framework to demon-
strate the graceful low-criticality service degradation of FMC.
In this case study, the uniform tuning strategy is applied for
demonstration. We ran the simulation for 2
 106 time units,
which contains 5
 104 high-criticality jobs. We set the high-
criticality job behavior probability to 0.1. The simulation pro-
cess is detailed inAppendixC, available online.

Fig. 4 shows the run-time service levels for both FMC
and IMC [19]. The lower bounds on the service levels with
different numbers of mode switches, as discussed above,
for FMC and IMC are represented by red and black lines,
respectively, in Fig. 4. The dashed green line represents ser-
vice level zk�1 for operation in ðk� 1Þ-level high-criticality
mode for FMC. The collected run-time service levels as
scheduled by FMC are represented in the form of box-whis-
ker plots with blue dots.

As shown in Fig. 4, FMC can gracefully degrade the low-
criticality service level as the number of mode switches
increases. By contrast, IMC fails to respond to the variability
in the workload. As long as not all high-criticality tasks
overrun during run time, the execution budget determined
by FMC always outperforms that of IMC.

Another interesting observation is that the collected run-
time service levels are bounded by the red and green lines.
This observation matches the FMC execution semantics pre-
sented in Section 3.2. In the kth transition phase, the execu-
tion budget for low-criticality jobs will be reduced from
zk�1 � CLO

i to zk � CLO
i . According to the FMC execution

semantics, two cases can be considered:

� Case 1: Low-criticality jobs that have already
exhausted their execution budget of zk � CLO

i at the
transition point. Such jobs will be suspended imme-
diately. In addition, these suspended jobs should
have an execution time of less than zk�1 � CLO

i by the
kth transition point. Otherwise, these jobs would

have already been suspended when the system
entered ðk� 1Þ � level high-criticality mode. There-
fore, the execution time of these jobs will be bounded
in ½zk � CLO

i ; zk�1 � CLO
i Þ.

� Case 2: Low-criticality jobs that have not yet
exhausted their execution budget zk � CLO

i . Such jobs
will continue to run until their remaining time bud-
get is used up. Therefore, these jobs will execute up
to zk � CLO

i .
From the above two cases, we can conclude that the exe-

cution time of these jobs in k-level high-criticality mode is
bounded in ½zkCLO

i ; zk�1CLO
i Þ, as clearly shown in Fig. 4.

6.4 Run-Time Complexity

According to [4], for a task set containing n tasks, the classic
EDF-VD algorithm has a run-time complexity of Oðlog nÞ
per event for job arrival, job completion, and mode switch-
ing. Compared with EDF-VD [4], FMC-EDF-VD needs to
implement only one additional operation during mode
switching, that is, tuning the service levels for low-criticality
tasks according to the specified strategy. For the uniform
tuning strategy, the uniform service level zk can be directly
computed with a complexity of Oð1Þ according to Theo-
rem 6. For the dropping-off strategy, the dropping-off task
can be determined via binary search with a complexity
of Oðlog nÞ. Therefore, FMC-EDF-VD still has a run-time
complexity of Oðlog nÞ per event.

7 EVALUATION

In this section, simulation experiments are presented to
evaluate the performance of FMC. Our experiments are
based on randomly generated MC tasks. We randomly gen-
erate task sets using the same approach as in [4], [12]. The
various parameters are set as follows:

� The period Ti of each task is an integer drawn uni-
formly at random from ½20; 150�.

� For each task ti, low-criticality utilization uLO
i is a

real number drawn at random from ½0:05; 0:15�.
� Ri denotes the ratio of uHI

i =uLO
i , which is a real num-

ber drawn uniformly at random from ½2; 3�.
� pCri denotes the probability that a task ti is a high-

criticality task, and we set this probability to 0.5. If ti
is a low-criticality task, then we set CLO

i ¼ buLO
i � Tic.

Otherwise, we set CLO
i ¼ buLO

i � Tic and CHI
i ¼ buLO

i �
Ri � Tic.

Given the utilization bound uB, we generate one task at a
time until the following conditions are both satisfied: (1)
uB � 0:05 � maxfuLOLO þ uLO

HI ; u
HI
HIg � uB. (2) At least 3 high-

criticality tasks have been generated.
The generated task set is evaluated for both off-line

schedulability and on-line performance in terms of support
for low-criticality task execution under six different
schemes. These schemes include FMC with dropping off
strategy proposed in this paper(’FMC’), Pfair-based scheme
with using task grouping [22] (’PF’), component-based
scheme [12] (’COM’), advanced EDF-VD scheduling of IMC
systems [19] (’IMC’), service adaption strategy that
decreases the dispatch frequency of low-criticality tasks
based on EDF-VD scheduling [16] (’sA’), classic EDF-VD
scheduling [4] (’EDF-VD’).

Fig. 4. Service level of low-criticality tasks under the different number of
mode switches.
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The on-line low-criticality performance is measured as
the percentage of finished LC jobs (denoted by PFJ), which
is the same quantitative parameter used in [12]. PFJ is
defined as the percentage of low-criticality jobs that are suc-
cessfully finished by their deadlines. Each simulation is run
for 106 time units. The execution distribution presented in
[23] is used to compute the probability that a high-criticality
task ti will be executed beyond its low-criticality WCET.
Due to schedulability performance differences among the
compared schemes, the PFJ is obtained only when the task-
set is schedulable for all compared schemes. The simulation
process is detailed in Appendix C, available online.

7.1 Comparison with Schemes Based on the Global
Triggering Strategy

First, we demonstrate the effectiveness of FMC compared
with the IMC, SA, and classic EDF-VD schemes, which use
the global triggering strategy. In these three schemes, any
overrun will trigger low-criticality tasks to statically reserve
a constant degraded service level. For IMC and FMC, we
consider the mandatory utilization Uman

LO ¼ 0 for the sched-
ulability test. The schedulability test for the SA scheme [16]
is a utilization-based test. Therefore, the IMC, SA, and clas-
sic EDF-VD schemes have the same schedulability. How-
ever, for some schedulable task sets, the SA scheme [16]
cannot derive a suitable factor y to increase the period of
low-criticality tasks. For this case, we consider y to be infin-
ity, which means that all low-criticality jobs will be dropped
when an overrun occurs.

For various utilization bounds uB 2 f0:75; 0:8; 0:85; 0:9g,
the average PFJ and system schedulability are compared.
The results are shown in Fig. 5. The left axis shows the
PFJ values achieved for low-criticality tasks, represented
by the bar graphs, and the right axis shows the accep-
tance ratios, represented by the line graphs. From Fig. 5,
we can observe the following trends: (1) FMC consistently
outperforms the three other schemes in terms of support
for low-criticality task execution. This is expected because
schemes that use the global triggering strategy always
consider the worst-case overrun workload, resulting in
waste of unnecessary resources. By contrast, FMC can
allocate resources based on the true overrun demands. (2)
Compared with these three schemes based on the global
triggering strategy, FMC achieves almost the same accep-
tance ratio. This means that FMC can achieve higher

on-line low-criticality performance with negligibly reduced
schedulability performance.

7.2 Comparison with the Pfair- and Component-
Based Schemes

Next, wewill experimentally compare our approach to Pfair-
and component-based schemes: PF [22] and COM [12]. For
the component-based scheme COM [12], we use the same
experiment setting as [12] and consider a two-component
system with a high-criticality component CH and a low-
criticality component CL. All the high-criticality tasks are
allocated to CH. Each low-criticality task can be allocated to
either CH or CL.

6 Since the performance of the scheme pre-
sented in [12] depends on a tolerance limit TL, we generate
the result of component-based scheme [12] for various val-
ues of the tolerance limit TL ¼ f0; b0:25jHjc; b0:5jHjc;
b0:75jHjc; jHjg, where jHj denotes the number of high-criti-
cality tasks. For the Pfair-based scheme [22], a two-phased
scheduling strategy7 is implemented for comparison.

Comparison with Component-Based Scheme COM [12]. The
performance results of COM and FMC are presented in
Figs. 6a and 6b with different settings on uB. In these figures,
x-axis denotes the varying value of TL, whereas the left and
right y-axis present the average PFJ and acceptance ratio,
respectively. As shown in Fig. 6, FMC consistently outper-
forms COM in terms of support for low-criticality execution.
This performance gain is achieved by the fact that COM
adopts pessimistic dropping-off strategies in internal and

Fig. 5. Comparison between FMC and schemes based on the global
triggering.

Fig. 6. Comparison between component-based scheme and FMC.

6. Since the work presented in [12] does not specify the settings for
low-criticality tasks, we specify one probability to determine if a low-
criticality task is allocated to CH. Here, we choose a relatively low value
for probability and set it as 0.25.

7. The version used for evaluation in [22].
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external mode-switch levels. In COM, all low-criticality
tasks in CH will be abandoned once any overrun occurs,
which thus results in resource under-utilization. As a com-
parison, FMC drops off low-criticality tasks as the demand
and therefore can achieve better execution support for
low-criticality tasks. Besides, we can observe that there is a
performance trade-off between PFJ and acceptance ratio in
COM. The reason for this trend is that a higher TL in COM
requires additional resources to support low-criticality
executions but generally implies lower schedulability, and
the converse also holds. When we consider the TL configu-
ration on which the same scheduability performance can
be achieved by FMC and COM, FMC can support more
than 25 and 15 percent low-criticality tasks to finish the
deadline compared to COM under different uB settings,
respectively.

Comparison with Pfair-Based Scheme PF [22]. Fig. 7 shows
the compared results for FMC and PF. Compared with PF,
FMC can achieve a better execution support for low-critical-
ity tasks but with inferior schedulability, as shown in Fig. 7.
The reason for the gain in low-criticality task execution sup-
port is that the Pfair scheduling tends to evenly distribute
the quanta of tasks over time, resulting in more unfinished
jobs at mode-switching points.

Regarding schedulability inferiority, we mainly attribute
this expected inferiority to the theoretical optimality of Pfair
scheduling in terms of schedulability performance [14]. In
fact, this optimality is achieved at the cost of a high schedul-
ing overhead by quantum-length sub-tasks partitioning and
the enforcement of proportional progress. In fact, this

schedulability deficit of FMC can be compensated by signifi-
cantly reduced context-switching overheads compared with
PF. Here, we present simulation results to show the com-
pared context-switch numbers. Fig. 8 presents the number
of context switches for the Pfair-based scheme, which is nor-
malized with respect to the number for FMC. The results
confirm the significant reduction of context switches by
FMC. The Pfair-based scheme requires 38.0 to 41.3 times the
number of context switches required in FMC for different
utilization settings.

7.3 Graceful Service Level Degradation

In the case study presented above, we have demonstrated
the gradual service level degradation property of FMC, that
is, the degradation in the service levels for low-criticality
tasks as the number of mode switch increases. Now, we val-
idate this trend in a generic simulation. The uniform tuning
strategy is applied to randomly generated task sets. We use
the task generator introduced above to generate 100 task
sets in which uB is randomly selected from ½0:75; 0:9�. A gen-
erated task set is accepted for simulation when the follow-
ing two additional conditions are satisfied: (1) the task set
can be scheduled by FMC, and (2) the task set contains 5
high-criticality tasks. The degraded low-criticality jobs
under various task sets are classified according to the num-
ber of mode switches.

The simulation results are shown in Fig. 9. The left and
right y-axis present the service level and the normalized
number of service-degraded low-criticality jobs, respec-
tively. To reveal the distribution of service levels for service-
degraded low-criticality jobs, the service levels are repre-
sented in the form of box-whisker plots. The results shown
in Fig. 9 confirm the observations made in Section 6.3. For
almost all low-criticality task jobs, the graceful degradation
property is clearly demonstrated except for a few corner
cases. Furthermore, the results in terms of the percentages of
service-degraded low-criticality jobs also confirm that the
likelihood of all high-criticality tasks exhibiting the high-crit-
icality behavior is very low. Only 0.35 percent of service-
degraded low-criticality jobs are affected by this worst-case
overrun scenario. By contrast, 96.9 percent of service-
degraded low-criticality jobs are impacted by mode-switch
scenarios with mode switches � 3. For this vast majority of
cases, FMC needs to allocate additional resources to only a
subset of the high-criticality tasks based on their demands
and therefore can provide better and more graceful service
degradation.

Fig. 7. Comparison between Pfair-based scheme and FMC.

Fig. 8. Context switches for FMC and Pfair-based scheme.

Fig. 9. Service degradation in generic simulation.
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8 CONCLUSION AND FUTURE WORK

Most previous theoretical work on scheduling in mixed-crit-
icality systems has adopted impractical assumptions: once
any high-criticality task overruns, all low-criticality tasks
are suspended and all other high-criticality tasks are
required to exhibit high-criticality behaviors. In this paper,
we propose a more flexible MC model (FMC) with EDF-VD
scheduling, in which the above issues are addressed. In this
model, the transitions of all high-criticality tasks are inde-
pendent and the service levels of low-criticality tasks can be
adaptively tuned in accordance with the true overruns of
the high-criticality tasks. A utilization-based schedulability
test condition is successfully derived for the FMC systems.
Numerical results are presented to illustrate the improved
service levels for low-criticality tasks during run time.

For the next step, we are interested in implementing the
proposed approach on real-time operating system and eval-
uating its performance. Furthermore, another interesting
future work includes investigations on: (1) integration of
FMC and fault tolerance techniques to develop optimal
resource allocation strategies for assurances against differ-
ent types of faults; (2) integrating the slack reclamation
schemes into FMC for further performance improvement.
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