
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018 2755

Resource Optimization for Real-Time Streaming
Applications Using Task Replication

Sobhan Niknam , Peng Wang , and Todor Stefanov , Member, IEEE

Abstract—In this paper, we study the problem of exploiting
parallelism in a hard real-time streaming application modeled as
an acyclic synchronous data flow (SDF) graph and scheduled on
a heterogeneous multiprocessor system-on-chip platform to alle-
viate the capacity fragmentation due to partitioned scheduling
algorithms and reduce the number of required processors when a
throughput requirement is satisfied. As the main contribution in
this paper, we propose a method to determine a replication factor
for each task in an acyclic SDF graph such that by distributing
the workloads among more parallel tasks with lower utilization
in the obtained transformed graph, the left capacity on the pro-
cessors can be efficiently exploited, hence reducing the number
of required processors. The experimental results, on a set of real-
life streaming applications, demonstrate that our approach can
reduce the minimum number of processors required to schedule
an application and considerably improve the memory require-
ments and application latency compared to related approaches
while meeting the same throughput constraint.

Index Terms—Hard real-time scheduling, model-based design,
multiprocessor system-on-chip, parallel processing, resource
optimization, streaming applications.

I. INTRODUCTION

STREAMING applications is an important group of embed-
ded software that spans different application domains,

such as image processing, video/audio processing, and digital
signal processing. The ever-increasing computational demand
and hard real-time constraints of these applications push the
system designers toward using multiprocessor system-on-chip
(MPSoCs) in modern embedded systems to benefit from paral-
lel execution. Nowadays, heterogeneous MPSoCs are becom-
ing increasingly common due to their capability to balance
the performance and energy efficiency by employing relatively
slower but low-power processors along with faster but high-
power ones, e.g., ARM big.LITTLE [1]. To efficiently exploit
the computational capacity of such MPSoCs, however, stream-
ing applications must be expressed primarily in a parallel

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. Date of publication July 18, 2018; date of current version
October 18, 2018. This work was supported by the Dutch Technology
Foundation STW under the Robust Cyber Physical Systems program under
Project 12695. This article was presented in the International Conference
on Hardware/Software Codesign and System Synthesis 2018 and appears
as part of the ESWEEK-TCAD special issue. (Corresponding author:
Sobhan Niknam.)

The authors are with the Leiden Institute of Advanced Computer
Science, Leiden University, 2333 CA Leiden, The Netherlands
(e-mail: s.niknam@liacs.leidenuniv.nl; p.wang@liacs.leidenuniv.nl;
t.p.stefanov@liacs.leidenuniv.nl).

Digital Object Identifier 10.1109/TCAD.2018.2857039

fashion. The common practice for expressing the parallelism
in an application is to use parallel models of computation
(MoCs). The main benefits of the MoCs are the explicit rep-
resentation of important properties in the application, e.g.,
parallelism, and the enhanced design-time analyzability of
certain system properties, e.g., throughput. Within a parallel
MoC, a streaming application is represented as a task graph
with concurrently executing and communicating tasks. Two
well-known MoCs are synchronous dataflow (SDF) [2] and
its generalization, cyclo-static dataflow (CSDF) [3].

Although parallel MoCs resolve the problem of explicitly
exposing the available parallelism in an application, the main
challenge is then how to allocate and schedule the tasks of
the application on an MPSoC such that all hard real-time
constraints are guaranteed. To address this challenge, a large
body of research exists in the classical real-time scheduling
theory for scheduling different real-time task models, e.g.,
periodic and sporadic task models, on multiprocessors [4].
However, since these theories typically assume sets of inde-
pendent tasks, they are not directly applicable to modern
embedded streaming applications which have data-dependent
tasks. Recently, a scheduling framework has been presented
in [5] that shows how streaming applications modeled as
acyclic (C)SDF graphs can be scheduled as a set of real-time
implicit-deadline periodic tasks. This framework, thus, enables
a designer to reuse many well-developed algorithms from the
classical hard real-time multiprocessor scheduling theory to
guarantee hard real-time constraints and temporal isolation
among different concurrently running applications on a multi-
processor system, using fast schedulability analysis. Moreover,
these algorithms provide fast analytical calculation of the min-
imum number of processors needed to schedule the tasks in an
application. Therefore, because of the advantages of [5] over
conventional static scheduling, we adopt [5] in this paper as a
primary technique for scheduling streaming applications.

In real-time systems, tasks can be scheduled on multiproces-
sors using three main classes of algorithms, i.e., global, parti-
tioned, and hybrid scheduling algorithms based on whether
a task can migrate between processors [4]. Under global
scheduling algorithms, all the tasks can migrate between all
the processors. Such scheduling guarantees optimal utiliza-
tion of the available processors but at the expense of high
scheduling overheads due to extreme task preemptions and
migrations. More importantly, implementing global schedul-
ing algorithms in distributed-memory MPSoCs imposes a large
memory overhead due to replicating the code of each task on
every processor [6]. Under partitioned scheduling algorithms,

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6146-363X
https://orcid.org/0000-0002-9808-8893
https://orcid.org/0000-0001-6006-9366

2756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

however, no task migration is allowed and the tasks are
allocated statically to the processors, hence they have low
run-time overheads. The tasks on each processor are sched-
uled separately by a uniprocessor (hard) real-time scheduling
algorithm, e.g., earliest deadline first (EDF) [7]. The third
class of scheduling algorithms is hybrid scheduling that is a
mix of global and partitioned approaches to take advantages
of both classes. However, since hybrid scheduling algorithms
allow task migration, they still introduce additional run-time
task migration/preemption overheads and memory overhead
on distributed-memory MPSoCs. By performing an extensive
empirical comparison of global, clustered (hybrid) and par-
titioned algorithms for EDF scheduling, Bastoni et al. [8]
concluded that the partitioned algorithms outperform all the
other algorithms when hard real-time systems are consid-
ered. Thus, in this paper, we consider partitioned scheduling
algorithms.

Although partitioned scheduling algorithms do not impose
any migration and memory overheads, they are known to be
nonoptimal for scheduling real-time tasks [4]. This is because
the partitioned scheduling algorithms fragment the processors’
computational capacity such that no single processor has suf-
ficient remaining capacity to schedule any other task in spite
of the existence of a total large amount of unused capacity
on the platform. Therefore, more processors are needed to
schedule a set of real-time tasks using partitioned schedul-
ing algorithms compared to optimal (global) scheduling
algorithms.

However, for better resource usage and energy efficiency
in a real-time embedded system while taking advantages of
partitioned scheduling algorithms, the number of processors
needed to guarantee a performance constraint, i.e., throughput,
in an application should be minimized. This can be diffi-
cult because often the given initial application task graph
is not the most suitable one for the given MPSoC platform
because the application developers typically focus on realiz-
ing certain application behavior while neglecting the efficient
utilization of the available resources on MPSoC platforms.
Therefore, to better utilize the resources on an underlying
MPSoC platform while using partitioned scheduling algo-
rithms, the initial application task graph should be transformed
to an alternative one that exposes more parallelism while
preserving the same application behavior and performance.
This is mainly because by replicating a task, its workload is
distributed among more parallel task’s replicas in the obtained
transformed graph. Therefore, the task’s required capacity
is split up in multiple smaller chunks that can more likely
fit into the left capacity on the processors and alleviate the
capacity fragmentation due to partitioned scheduling algo-
rithms. However, having more parallelism, i.e., tasks’ replicas,
than necessary introduces significant overheads in code and
data memory, scheduling and intertasks communication. Thus,
the right amount of parallelism should be determined in
a parallel application specification to achieve the required
performance while minimizing the number of required
processors.

Therefore, considering partitioned scheduling algorithms,
in this paper, we address the problem of finding a proper

replication factor for each task in an initial application graph,
such that the obtained alternative one requires fewer proces-
sors while guaranteeing a given throughput constraint. More
specifically, the main novel contributions of this paper are
summarized as follows.

1) We propose a novel heuristic algorithm to allocate the
tasks in a hard real-time streaming application modeled
as an acyclic SDF graph, which is subject to a through-
put constraint, onto a heterogeneous MPSoC such that
the number of required processors is reduced under par-
titioned scheduling algorithms. The main innovation in
this algorithm is that by using the unfolding graph trans-
formation in [9], we propose a method to determine a
replication factor for each task in the SDF graph such
that the distribution of the workloads among more paral-
lel tasks, in the obtained graph after the transformation,
results in a better resource utilization, which can allevi-
ate the capacity fragmentation introduced by partitioned
scheduling algorithms, hence reducing the number of
required processors.

2) We show, on a set of real-life benchmarks, that our
approach significantly reduces the number of required
processors compared to the related approach in [10],
called first-fit decreasing (FFD) allocation algorithm,
with slightly increasing the memory requirements and
application latency while maintaining the same applica-
tion throughput. We also show that our approach can
still reduce the number of required processors com-
pared to the related approaches in [9] and [11]–[13]
with significantly improving the memory requirements
and application latency while maintaining the same
application throughput.

A. Scope of Work

In this paper, we consider SDF graphs that are acyclic. This
restriction comes from the adopted hard real-time schedul-
ing framework [5] to schedule an SDF graph. Although this
restriction may seem to limit the scope of our approach,
our approach is still applicable to the majority of real-
life streaming applications. This is because, Thies and
Amarasinghe [14] have shown that around 90% of stream-
ing applications can be modeled as acyclic SDF graphs.
In this paper, we also consider heterogeneous multiproces-
sor systems with distributed program and data memory to
ensure predictability of the execution at runtime and scalabil-
ity. We assume that the communication infrastructure used for
interprocessor communication is predictable, i.e., it provides
guaranteed communication latency. We use the worst-case
communication latency to compute the worst-case execu-
tion time of a task, which in our approach includes the
worst-case time needed for the task’s computation and the
worst-case time needed to perform intertask data communica-
tion on the considered platform. Finally, we adopt a partitioned
scheduling algorithm, i.e., partitioned EDF, in this paper.
Partitioned EDF outperforms the global EDF scheduling algo-
rithm for hard real-time task sets, as empirically studied and
shown in [8].

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2757

B. Organization

The remainder of this paper is organized as follows.
Section II gives an overview of the related work. Section III
introduces the background material needed for understanding
the contributions of this paper. Section IV gives a motiva-
tional example. Section V presents the proposed approach.
Section VI presents the results of the evaluation of the
proposed approach. Finally, Section VII ends this paper with
conclusions.

II. RELATED WORK

In order to overcome the scheduling problems in global and
partitioned scheduling algorithms, a restricted-migration semi-
partitioned scheduling algorithm, called EDF-fm, in the class
of hybrid scheduling algorithms, is proposed in [11] for homo-
geneous platforms. In this scheduling algorithm, the tasks can
be either fixed or migrating between only two processors at
job boundaries. The purpose of this migration is to utilize the
remaining capacity on the processors, where a migrating task
cannot be entirely allocated. However, this scheduler provides
hard real-time guarantees only for migrating tasks and soft
real-time guarantees for fixed tasks, i.e., fixed tasks can miss
their deadlines by a bounded value called tardiness. In [13],
another semi-partitioned scheduling algorithm, called EDF-sh,
is proposed that, in contrast to EDF-fm, supports heteroge-
neous platforms and allows the tasks to migrate between more
than two processors. In EDF-sh, however, both migrating and
fixed tasks may miss their deadlines.

Similarly, [15] proposes the C=D approach to split real-time
tasks on homogeneous multiprocessor systems while on each
processor a normal EDF scheduler is used. In this approach,
if a task cannot be entirely allocated to a processor, the C=D
approach splits the task into two parts. However, since the task
splitting is performed in every job execution, this approach
requires transferring the internal state of the splitted tasks
between processors at run-time, thereby imposing high task
migration overhead. Moreover, these approaches in [11], [13],
and [15] only consider sets of independent tasks. In con-
trast, in this paper, we consider a more realistic application
model which consists of tasks with data dependencies. In
addition, we use partitioned scheduling to allocate the tasks
statically on the processors. Therefore, since task migration
is not allowed in partitioned scheduling, no extra run-time
overhead is imposed to the system by our approach in com-
parison to [15] and no task is subjected to a deadline miss
in comparison to [11] and [13]. Compared to the approaches
in [11] and [15] that only support homogeneous platforms, our
proposed approach also supports heterogeneous platforms.

To allocate data-dependent application tasks to a mul-
tiprocessor platform, many techniques have already been
devised [16]. Existing approaches which are close to this
paper are [5], [9], and [12]. Bamakhrama and Stefanov [5]
proposed a scheduling framework to only convert each task
in an acyclic (C)SDF graph to an implicit-deadline periodic
task by deriving parameters, such as period and start time
to enable the usage of all well-developed real-time theories.
In [5], however, no optimization technique for different system

design metrics, such as, throughput, latency, memory, number
of processors, etc. is proposed. In contrast, in this paper, we
propose a heuristic approach on top of the scheduling frame-
work in [5] to optimize the number of required processors
when scheduling a hard real-time streaming application with
a throughput constraint onto a heterogeneous MPSoC under
partitioned scheduling algorithms.

Using the framework in [5], Cannella et al. [12] proposed
a heuristic under the semi-partitioned scheduling algorithm
in [11] to allocate tasks to processors while taking the data
dependencies into account. Although the fixed tasks can miss
their deadlines in the EDF-fm scheduling approach, a hard
real-time property can be guaranteed on the input/output
interfaces of the application with the external environment,
using the extension of the framework in [5] proposed in [12].
Anderson et al. [11] also proposed three task-allocation heuris-
tics under EDF-fm to allocate independent tasks to processors
in which the one called fm-LUF requires the least number of
processors. In a similar way, this heuristic can be used while
taking data dependencies into account using the approach
presented in [12]. However, in these approaches [11], [12],
the deadline misses of the fixed tasks due to task migration
have significant overheads on the memory requirements and
the application latency. In contrast, in this paper, we provide
hard real-time guarantees for all tasks in an application mod-
eled as an SDF graph. Moreover, we use partitioned scheduling
and to utilize processors efficiently, we adopt the unfold-
ing graph transformation technique. By using our proposed
approach, as shown in Section VI, processors can be more
efficiently utilized while imposing considerably lower over-
heads on the memory requirements and the application latency
compared to the approaches in [11] and [12]. In addition, our
proposed approach supports heterogeneous platforms while the
approaches in [11] and [12] can only support homogeneous
platforms.

Spasic et al. [9] proposed an approach to increase the appli-
cation throughput in a homogeneous platform with a fixed
number of processors. This approach considers partitioned
scheduling and exploits an unfolding transformation to fully
utilize the platform by replicating the bottleneck tasks which
are the ones with the maximum workload, i.e., highest uti-
lization, when mapping a streaming application modeled as
an SDF. However, to guarantee a throughput constraint under
limited resources, the approach in [9] does not always repli-
cate the right tasks, as shown in Section IV. Consequently,
this leads to more parallelism than needed which increases the
memory requirements and application latency unnecessarily. In
contrast, we propose an approach that supports heterogeneous
platforms. In addition, our proposed approach first detects
which tasks cause the capacity fragmentation in partitioned
scheduling on the processors. Note that these tasks are not the
bottleneck tasks identified and used in [9]. This is because, the
bottleneck tasks efficiently utilize the processors’ capacity and
there is no need to replicate them. Then, using the unfolding
transformation technique, we replicate the detected tasks caus-
ing the capacity fragmentation to distribute their workloads
among more parallel tasks and utilize the platform more effi-
ciently with less unused capacity on the processors. As a result,

2758 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

shown in Section VI, our proposed approach can reduce the
number of required processors to guarantee the same through-
put while keeping a low memory and latency overheads under
partitioned scheduling in comparison to [9].

Spasic et al. [17] used the same approach as in [9] for
energy efficiency purpose under partitioned scheduling algo-
rithms, when there are a lot of processors available on a cluster
heterogeneous MPSoC. To reduce energy consumption, they
iteratively take the bottleneck tasks which are limiting the pro-
cessors to work at a lower frequency and replicate them. By
replicating the application tasks with heavy utilization, their
utilization is distributed among more task’s replicas while still
providing the same application performance. Consequently, the
workload distribution of these bottleneck tasks enables the
processors to work at a lower frequency, thereby reducing
the energy consumption. In this paper, however, we focus on
and solve a totally different problem, that is, how the unfold-
ing transformation technique can be exploited to reduce the
number of required processors when a partitioned schedul-
ing algorithm is used. In our approach, we do not search for
and take the bottleneck task, which is taken in [17], for repli-
cation in every iteration. In contrast, we detect which task is
responsible for fragmentation of the processors’ capacity when
using a partitioned scheduling algorithm and try to resolve this
fragmentation by replicating this task such that the number of
processors is reduced. We do not replicate the bottleneck task
because it can efficiently utilize the processor and it does not
contribute to the fragmentation of the processors’ capacity.

III. BACKGROUND

Given the fact that we use the unfolding transformation
in [9] to replicate the tasks in an application modeled as an
SDF graph, such transformation converts the initial graph into
an equivalent CSDF graph. Therefore, because the CSDF MoC
is a superset of the SDF MoC, in this section, we first introduce
the CSDF MoC, followed by the unfolding transformation
proposed in [9]. Then, we briefly introduce the scheduling
framework proposed in [5], which we use to schedule tasks
in a CSDF graph. After that, we present the system model
considered in this paper.

A. Cyclo-Static Data Flow

An application modeled as a CSDF [3] graph is a directed
graph G = (V, E), where V is a set of tasks and E is a set
of edges. Task τi ∈ V represents computation and edges rep-
resent the transfer of data tokens between tasks. Each task
τi ∈ V has an execution sequence [fi(1), fi(2), . . . , fi(Pi)] of
length Pi, i.e., it has Pi phases. This means that the execu-
tion of each phase φ of task τi is associated with a certain
function fi(φ). Therefore, the kth time the task τi is fired, the
function according to the phase (((k − 1) mod Pi) + 1) is
being executed, i.e., fi(((k − 1) mod Pi) + 1). Consequently,
the execution time and the data production/consumption rate
for each output/input edge of task τi are also defined for
each phase. Therefore, each task τi ∈ V has the following
sequences of length Pi: a sequence of the worst-case execution
time [Ci(1), Ci(2), . . . , Ci(Pi)], a predefined data production

Fig. 1. SDF graph G.

sequence of [xu
i (1), xu

i (2), . . . , xu
i (Pi)] on its every output

channel eu, and a predefined data consumption sequence of
[yu

i (1), yu
i (2), . . . , yu

i (Pi)] on its every input channel eu. If
every task τi in a CSDF graph G has a single phase, i.e.,
Pi = 1, then the graph G is an SDF [2] graph that means the
SDF MoC is a subset of the CSDF MoC.

An important property of the CSDF MoC that is proven
in [3], is that a valid static schedule of a CSDF graph can be
generated at design-time if the graph is consistent and live. A
CSDF graph is said to be consistent if a nontrivial solution
exists for the repetition vector �q = [q1, q2, . . . , qn]T ∈ N

n.
An entry qi indicates the number of invocations of task τi

in one graph iteration of the CSDF graph. If a deadlock-free
schedule can be found, G is then said to be live. Throughout
this paper, we consider and use consistent and live SDF and
CSDF graphs.

Fig. 1 shows an example of an SDF graph. The worst-case
execution time of each task τi, i.e., Ci, is shown below its
name. For instance, task τ2 has worst-case execution time
C2 = 6 time units and its data production rate x2

2 on channel e2
is 1. The repetition vector of G is �q = [2, 1, 1, 1, 1, 2]T . Fig. 2
shows two examples of a CSDF graph. The repetition vector of
the graphs shown in Fig. 2(a) and (b) are [4, 2, 2, 2, 1, 1, 4]T

and [4, 2, 1, 1, 1, 1, 2, 4]T , respectively.

B. Unfolding Transformation of SDF Graphs

Spasic et al. [9] have shown that an SDF graph can be
transformed into an equivalent CSDF graph by using a graph
unfolding transformation technique to better utilize the under-
lying MPSoC platform by exposing more parallelism in the
SDF graph. In fact, the intuition behind the unfolding, i.e.,
task replication, is to evenly distribute the workload of a task
in the initial SDF graph among multiple of its replicas that
are running concurrently. Given a vector �f ∈ N

n of replication
factors, where fi denotes the replication factor for task τi, the
unfolding transformation replaces task τi with fi replicas of
task τi. To ensure the functional equivalence, the production
and consumption sequences on channels in the obtained CSDF
graph are calculated accordingly to the production and con-
sumption rates in the initial SDF graph. After the replication,
each replica τi,k ∈ G′, k ∈ [1, fi], of task τi ∈ G will have the
repetition qi,k [9]

qi,k = qi · lcm(�f)
fi

(1)

where lcm(�f) is the least common multiple of all replication
factors in �f . For example, after the unfolding of the SDF
graph in Fig. 1 with replication vector �f = [1, 1, 1, 1, 2, 1],
the CSDF graph shown in Fig. 2(a) is obtained which has the
repetition vector �q′ = [4, 2, 2, 2, 1, 1, 4]T , e.g., q5,1 = q5,2 =
([1 · lcm(1, 1, 1, 1, 2, 1)]/2) = 1.

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2759

(a) CSDF graph Gʹ

(b) CSDF graph Gʹʹ

Fig. 2. Equivalent CSDF graphs of the SDF graph G in Fig. 1 obtained
by (a) replicating task τ5 by factor 2 and (b) replicating tasks τ3 and τ4 by
factor 2.

C. Strictly Periodic Scheduling Framework

In [5], the real-time strictly periodic scheduling (SPS)
framework for acyclic (C)SDF graphs is proposed. In this
framework, every task τi ∈ V in an acyclic (C)SDF graph
G is converted to a real-time implicit-deadline periodic task
by deriving the minimum period (Ti) and earliest start time
(Si). In this framework, the minimum period (Ti) of every task
τi ∈ V can be computed as

Ti = lcm(�q)

qi
· s, ∀τi ∈ V (2)

s =
⌈

Ŵ

lcm(�q)

⌉
(3)

where lcm(�q) is the least common multiple of all repetition
entries in �q, Ŵ = maxτj∈V{Cj.qj} is the maximum task work-
load of the (C)SDF graph, and Cj is the worst-case execution
time of task τj. In general, the derived periods of tasks satisfy
the condition q1T1 = q2T2 = · · · = qnTn = α, where α is the
graph iteration period representing the duration needed by the
graph to complete one iteration. Note that the derived period
in (2) is the minimum period for a task scheduled by SPS. But,
there exist other longer valid periods for a task by scaling the
minimum period by taking any integer s > �Ŵ/lcm(�q)�. Once
task periods are computed, the utilization of task τi, denoted
as ui, can be computed as ui = Ci/Ti, where ui ∈ (0, 1].
Moreover, the throughput of each task τi can be computed as
1/Ti. The throughput R of graph G, defined as the number of
samples the graph can produce during a given time interval
when its tasks are scheduled as strictly periodic tasks, is deter-
mined by the period of the output task (Tout) and is given by
R = 1/Tout. Note that when all tasks have the minimum peri-
ods, graph G can reach the maximum throughput achievable
by the SPS framework. In this paper, we take this maximum
achievable throughput as the throughput constraint.

Then, the earliest start time (Si) of task τi is calculated such
that τi is never blocked on reading data tokens from any input
FIFO channel connected to it during its periodic execution,
using the following expression:

Si =
{

0 if prec(τi) = ∅
maxτj∈prec(τi)

(
Sj→i

)
if prec(τi) �= ∅ (4)

where prec(τi) is the set of predecessors of τi, and Sj→i is
given by

Sj→i = min
t∈[0,Sj+α]

{
t : prd[Sj,max(Sj,t)+k)(τj)

≥ cns[t,max(Sj,t)+k](τi) ∀k ∈ [0, 1, . . . , α]

}

(5)

where prd[ts,te)(τj) is the number of tokens produced by τj

during the time interval [ts, te), cns[ts,te](τi) is the number of
tokens consumed by τi during the time interval [ts, te], and Sj

is the earliest start time of a predecessor task τj.
Bamakhrama and Stefanov [5] also provided a method to

calculate the minimum required buffer size for each com-
munication channel and the latency L of the (C)SDF graph
scheduled in a strictly periodic fashion. In this method, once
the start time of tasks have been calculated, the minimum
buffer size of communication channel eu connecting tasks τj

and τi, denoted with bu(τj, τi), is calculated using the following
expression:

bu(τj, τi) = max
k∈[0,1,...,α]

{
prd[Sj,max(Sj,Si)+k)(τj)

− cns[Si,max(Sj,Si)+k)(τi)
}

(6)

that is the maximum number of unconsumed data tokens in
channel eu during the execution of τj and τi in one graph
iteration period. The latency is also calculated as the elapsed
time between the arrival of a data sample to the application
and the output of the processed sample by the application.

D. System Model

The considered MPSoC platforms in this paper are
heterogeneous containing two types of processors,1 i.e.,
performance-efficient (PE) and energy-efficient (EE) proces-
sors, with distributed memories. We use �PE and �EE to
denote the sets consisting of all PE processors and all EE pro-
cessors, respectively. We denote the heterogeneous MPSoCs
containing all PE and EE processors by � = {�PE,�EE}.

The processors execute a set � = {τ1, τ2, . . . , τn} of n peri-
odic implicit-deadline tasks, i.e., each task τi has a relative
deadline Di equal to its period Ti. Tasks can be preempted at
any time. Every periodic task τi ∈ � is represented by a tuple
τi = (Ci, Si, Ti), where Ci is the worst-case execution time, Si

is the start time, and Ti is the period of the task. Since tasks
may run on two different types of processors (PE and EE),
the worst-case execution time value Ci for each task τi has
two values, i.e., CPE

i and CEE
i , when EE and PE processors

run at their maximum operating frequencies supported by the
hardware platform. The utilization of task τi on a PE proces-
sor and an EE processor, denoted as uPE

i and uEE
i , is defined

as uPE
i = CPE

i /Ti and uEE
i = CEE

i /Ti, respectively. The total
utilizations of the tasks assigned to a PE processor j and an

1We refer to the ARM big.LITTLE architecture [1] including Cortex A15
“big” (PE) and Cortex A7 “little” (EE).

2760 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a)

(b)

Fig. 3. Strictly periodic execution of the tasks in (a) SDF graph G in Fig. 1
and (b) CSDF graph G′ in Fig. 2(a). The x-axis represents the time.

EE processor k can be calculated by

U(πPE
j) =

∑
τi∈�πj

CPE
i

Ti
, U(πEE

k) =
∑

τi∈�πk

CEE
i

Ti
(7)

where �πj and �πk represent sets of tasks assigned to PE pro-
cessor j and EE processor k, respectively. In this paper, we
consider partitioned EDF [7] scheduling algorithm to sched-
ule the tasks on MPSoCs. The EDF is known to be optimal
scheduling algorithm for periodic tasks on uniprocessors [4].

IV. MOTIVATIONAL EXAMPLE

In this section, we take the SDF graph shown in Fig. 1
as our motivational example to demonstrate the necessity and
efficiency of our proposed approach, presented in Section V,
compared to related approaches [9] and [11]–[13] in terms
of memory requirements, application latency, and number of
required processors on a homogeneous platform,2 i.e., includ-
ing only PE processors, to schedule the tasks in the SDF graph
under a throughput constraint. By applying the SPS frame-
work, briefly explained in Section III-C, for graph G shown
in Fig. 1, the task set � = {τ1 = (C1 = 3, S1 = 0, T1 = 5),
τ2 = (6, 10, 10), τ3 = (10, 20, 10), τ4 = (7, 30, 10), τ5 =
(5, 40, 10), τ6 = (3, 50, 5)} of six strictly periodic implicit-
deadline tasks can be derived. Based on these tuples, a strictly
periodic schedule, as shown in Fig. 3(a), can be obtained for
this graph. In this schedule, for instance, task τ3 starts at time
instant 20, executes for ten time units, and repeats its exe-
cution every ten time units. Since task τ6 is the output task

2In this section, we adopt a homogeneous platform because the related
approaches [9], [11], [12] can support only such platform. Later, in
Section VI-B, we compare our proposed approach and the approach proposed
in [13] in terms of memory requirements and application latency on different
heterogeneous platforms for a set of real-life benchmarks.

in this graph, the throughput of this schedule can be com-
puted as R = (1/T6) = (1/5). In this example, we consider
this throughput as the throughput constraint. The application
latency L for this schedule is 55 which is the elapsed time
between the arrival of the first sample to the application, at
t = 0, and the departure of the processed sample from task
τ6, at t = 55. The minimum number of processors needed
for this schedule using an optimal scheduling algorithm, for
instance [18], is mOPT =

⌈∑
τi∈� ui

⌉ = �(3/5) + (6/10) +
(10/10) + (7/10) + (5/10) + (3/5)� = 4. However, using
the partitioned EDF and the FFD [10] allocation algorithm,
that is proven to be the resource efficient heuristic allocation
algorithm [19], six processors are required for this schedule
with task allocation �� = {�π1 = {τ3}, �π2 = {τ4}, �π3 ={τ1}, �π4 = {τ2}, �π5 = {τ6}, �π6 = {τ5}}. We refer to this
scheduler as partitioned FFD-EDF scheduler.

To reduce the number of required processors under the FFD-
EDF scheduler while guaranteeing the throughput constraint,
in this paper, we adopt the unfolding graph transformation
technique presented in [9]. Let us assume that the platform
has only five processors. Then, to schedule the applica-
tion tasks on five processors under FFD-EDF scheduler, our
proposed approach, explained in Section V, replicates task
τ5 in G by a factor of 2. Fig. 2(a) shows the CSDF graph
obtained after applying the unfolding transformation on the
initial graph G. By applying the SPS framework for graph
G′, shown in Fig. 2(a), the task set �′ = {τ1,1 = (3, 0, 5),
τ2,1 = (6, 10, 10), τ3,1 = (10, 20, 10), τ4,1 = (7, 30, 10),
τ5,1 = (5, 40, 20), τ5,2 = (5, 50, 20), τ6,1 = (3, 60, 5)} of
seven strictly periodic tasks can be derived that is schedula-
ble on five processors under FFD-EDF scheduler, with task
allocation �� = {�π1 = {τ3,1}, �π2 = {τ4,1, τ5,1}, �π3 ={τ1,1, τ5,2}, �π4 = {τ2,1}, �π5 = {τ6,1}}, while guarantee-
ing the throughput constraint of (1/5). This is because, the
workload of task τ5 with u5 = (5/10) is now evenly dis-
tributed between two replicas τ5,1 and τ5,2 of task τ5, i.e.,
u5,1 = u5,2 = (5/20). Apparently, this workload distribution
using the unfolding transformation can enable the FFD-EDF
scheduler to more efficiently utilize the processors and sched-
ule the tasks on fewer processors while guaranteeing the
throughput constraint. The strictly periodic schedule of the
task set �′ is shown in Fig. 3(b).

The approach in [9] is very close to our approach as
it adopts the unfolding transformation technique to increase
the throughput of an SDF graph scheduled on an MPSoC
with fixed number of processors under partitioned scheduling.
However, to schedule � on a platform with five processors
under the throughput constraint of (1/5), the approach in [9]
performs differently. It first scales the period of the tasks
in � using (3) to make � schedulable on five processors
under FFD-EDF scheduler. Due to scaling the periods, i.e.,
s = 6 > �10/2� = 5, however, the throughput is dropped to
(1/6). Then, to increase the throughput, the approach in [9]
replicates the bottleneck task, i.e., the task with the heav-
iest workload during one graph iteration, and scales again
the minimum computed periods of the tasks such that the
new task set can be scheduled on five processors under FFD-
EDF scheduler. This procedure is repeated until no throughput

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2761

improvement can be gained anymore by task replication under
the resource constraint. For our example in Fig. 1, the approach
in [9] replicates tasks τ3 and τ4 by a factor of 2 that results
in the throughput of (1/3). Fig. 2(b) shows the CSDF graph
G′′ obtained after applying the unfolding transformation on
graph G. Then, to schedule the tasks on five processors
under FFD-EDF scheduler, the periods of tasks are scaled by
using (3), i.e., s = 5 > �12/4� = 3, where the throughput
of (1/5) finally could be achieved with the derived task set
�′′ = {τ1,1 = (3, 0, 5), τ2,1 = (6, 10, 10), τ3,1 = (10, 20, 20),
τ3,2 = (10, 30, 20), τ4,1 = (7, 40, 20), τ4,2 = (7, 50, 20),
τ5,1 = (5, 60, 10), τ6,1 = (3, 70, 5)} of eight strictly periodic
tasks and the task allocation �� = {�π1 = {τ4,1, τ1,1}, �π2 ={τ4,2, τ2,1}, �π3 = {τ6,1}, �π4 = {τ3,1, τ3,2}, �π5 = {τ5,1}}.

The approaches in [11] and [12], adopt differently the
semi-partitioned scheduling EDF-fm to allow certain tasks to
migrate between processors for efficiently utilizing the remain-
ing capacity on the processors. Under EDF-fm scheduling,
the LUF heuristic in [11] allocates the tasks in � to five
processors with task allocation �� = {�π1 = {τ3}, �π2 ={τ4, τ5}, �π3 = {τ5, τ1}, �π4 = {τ6, τ2}, �π5 = {τ2}}, where
task τ5 is allowed to migrate between π2 and π3 and task τ2
is allowed to migrate between π4 and π5. In this task mapping,
however, the fixed tasks τ1, τ4, and τ6 that are allocated to the
same processors as the migrating tasks τ2 and τ5, can miss
their deadline by a bounded tardiness. To reduce the num-
ber of affected tasks by tardiness, the FFD-SP heuristic is
proposed in [12] to restrict the task migrations. Under EDF-
fm scheduling, this approach allocates the tasks in � to five
processors with task allocation �� = {�π1 = {τ3}, �π2 ={τ4, τ5}, �π3 = {τ5, τ1}, �π4 = {τ6}, �π5 = {τ2}}, where only
task τ5 is allowed to migrate between π2 and π3. Similar to
the approach in [12], EDF-sh [13] allocates the tasks in � to
five processors with task allocation �� = {�π1 = {τ3}, �π2 ={τ4, τ5}, �π3 = {τ5, τ1}, �π4 = {τ6}, �π5 = {τ2}}, where only
task τ5 is allowed to migrate between π2 and π3.

The reduction on the number of required processors using
our proposed approach and the related approaches, however,
comes at the expense of more memory requirements and
longer application latency either because of task replication,3

i.e., more tasks and data communication channels, or task
migration, i.e., task tardiness. The throughput R, latency L,
memory requirements M, i.e., sum of the buffer sizes of the
communication channels in the graph and the code size of the
tasks, and the number of required processors m for different
scheduling/allocation approaches are given in Table I. Table I
clearly shows that our proposed approach can reduce the num-
ber of required processors while keeping a low memory and
latency increase compared to the related approaches for the
same throughput constraint.

Let us now assume that the platform has only four pro-
cessors. Then, all the related approaches, except EDF-sh, fail
to guarantee the throughput constraint of (1/5) under this

3When replicating a task, its period is enlarged. As a consequence, the
production of data tokens that are required by its data-dependent tasks to
execute are postponed that results in a further offsetting of their start time,
when calculating the earliest start time of tasks in SPS framework using (4),
hence increasing the application latency.

TABLE I
THROUGHPUT R (1/TIME UNITS), LATENCY L (TIME UNITS), MEMORY

REQUIREMENTS M (BYTES), AND NUMBER OF PROCESSORS M FOR G
UNDER DIFFERENT SCHEDULING/ALLOCATION APPROACHES

resource constraint. However, our approach finds a vector of
replication factors �f = [1, 2, 1, 1, 5, 1] such that the CSDF
graph obtained after applying the unfolding transformation
on the initial SDF graph G, is schedulable on four proces-
sors under FFD-EDF scheduler using the SPS framework
while guaranteeing the throughput constraint of (1/5). EDF-
sh can also allocate the tasks in � to four processors with
task allocation �� = {�π1 = {τ3}, �π2 = {τ4, τ2}, �π3 ={τ2, τ5, τ1}, �π4 = {τ5, τ6}}, where task τ2 is allowed to
migrate between π2 and π3 and task τ5 is allowed to migrate
between π3 and π4. The memory requirement and application
latency to schedule G on four processors using our proposed
approach and EDF-sh are given in the third and seventh rows
of Table I in parenthesis. As a result, our proposed approach
can decrease the application latency by 45.3% while increasing
the memory requirement by only 4.9% compared to EDF-sh.

From the above example, we can see the deficiencies of the
related approaches because they have significant impact on the
memory requirements and application latency when reducing
the number of processors. Oppositely, our proposed approach
that adopts the graph unfolding transformation, can reduce the
number of processors while introducing lower memory and
latency increase compared to the related approaches for the
same throughput constraint.

V. PROPOSED APPROACH

As explained and shown in Section IV, the partitioned
scheduling algorithms, potentially, has the disadvantage that
processors cannot be fully utilized, i.e., capacity fragmenta-
tion, because the static allocation of tasks on processors leaves
an amount of unused capacity that is not sufficient to accom-
modate another task. Therefore, in this section, we present our
novel approach that aims to exploit these unused capacity on
the processors to reduce the number of processors needed to
schedule the tasks in a hard real-time streaming application,
modeled as an acyclic SDF graph and subjected to a through-
put constraint, onto a heterogeneous MPSoC under partitioned
scheduling algorithms, i.e., FFD-EDF scheduler. Our propose
approach can achieve this goal by replicating tasks such that
the required capacity of each resulting task replica is suffi-
ciently small to make use of the available capacity on the
processors.

The rationale behind our approach is the following: our
approach first detects every task which cannot be entirely

2762 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

allocated to any individual under-utilized processor due to
insufficient free capacity while, in total, there exists sufficient
remaining capacity on under-utilized processors to schedule
the tasks. Then, our approach replicates some of these tasks to
distribute their workloads equally among more parallel replicas
and fit them entirely on the remaining capacity of the proces-
sors without increasing the number of processors. As a result,
our approach can alleviate the capacity fragmentation due to
the FFD-EDF scheduler and utilize the processors more effi-
ciently. In this section, therefore, we present a novel heuristic
algorithm to derive the proper replication factor for each task
in an SDF graph and the task allocation to reduce the num-
ber of required processors while guaranteeing the throughput
constraint. In our approach, we use the SPS framework [5] to
convert the tasks in the SDF graph to a set of periodic tasks.

The algorithm is given in Algorithm 1. It takes as input an
SDF graph G, and a heterogeneous platform � = {�PE,�EE}
with fixed number of PE and EE processors onto which the
tasks in the graph have to be allocated. The algorithm returns
as output a CSDF graph G′, that is functionally equivalent
to the initial SDF graph, and a task allocation set �� if a
successful allocation is found. Otherwise, it returns false as
output.

In line 1, the algorithm initializes the replication factor of
all tasks in graph G to 1, G′ to G, and �′ to �. In line 2, the
tasks in the graph G′ are converted to periodic tasks using the
SPS framework, explained in Section III-C, where the mini-
mum period T ′i of each task in G′ is calculated for PE type of
processors, i.e., using CPE

i for each task τ ′i,k, by (2) and (3).
In this paper, we take the maximum throughput of graph G,
achievable by the SPS framework with the minimum calcu-
lated periods, as the throughput constraint. Note that we can
set another throughput constraint by scaling the minimum cal-
culated periods. Then, the algorithm builds a set of periodic
tasks � in line 3 and sorts the tasks in the order of decreas-
ing utilization. Next, the algorithm enters to a while loop,
lines 4–42, where the task allocation is started on platform �′.
The body of the while loop, then, is repetitively executed to
better utilize the processors’ capacity using the graph unfold-
ing transformation, explained in Section III-B, and allocate the
tasks on platform �′.

In line 5, a task allocation set �� is created, to keep the
tasks allocated to each processor individually. Please note that
in sets �′ and ��, the processors are ordered according to
their type, where EE processors are followed by PE proces-
sors, to first utilize the EE processors. In line 6, an empty task
set �1 is defined to keep the candidate tasks for replication.
In lines 7–26, the algorithm allocates every task τ ′i,k ∈ � to
one of the processors according to the FFD-EDF scheduler.
In lines 9–12, the total unused capacity Uleft from the first
processor π1 to the current processor πj is calculated. The
current processor πj can be either an EE processor or a PE
processor. If it is an EE processor, all the previous proces-
sors are also EE processors due to the ordering of processors
based on their type in platform �′. In this case, the total
unused capacity is calculated in line 10 and stored in vari-
able Uleft. Otherwise, if πj is a PE processor, the total unused
capacity from π1 to the current processor πj, that includes
all the EE processors followed by a subset of PE processors,

Algorithm 1: Proposed Task Allocation and Finding
Proper Replication Factors for an SDF Graph

Input: An SDF graph G = (V, E) and a heterogeneous MPSoC
� = {�PE, �EE}.

Output: True, an equivalent CSDF graph G′ = (V ′, E′), and a task
allocation set �� if a successful task allocation onto platform
� is found, False otherwise.

1 �f = [1, 1, · · · , 1]; G′ ← G; �′ ← �;
2 Calculate period T ′i for PE type of processors for each task τ ′i,k in G′

by using (2) and (3);
3 �← Sort tasks in G′ in order of decreasing utilization;
4 while True do
5 �� ← {�π1 , �π2 , · · · , �π|�′| };
6 �1 ← ∅;
7 for τ ′i,k ∈ � do
8 for 1 ≤ j ≤ |�′| do
9 if πj is an EE processor then

10 Uleft =
j−1∑
�=1

(1− U(πEE
�

)); ui = uEE
i ;

11 if πj is a PE processor then

12 Uleft = CPE
i

CEE
i

|�EE|∑
�=1

(1− U(πEE
�

))+
j−1∑

�=|�EE|+1
(1− U(πPE

�
)); ui = uPE

i ;

13 Check EDF schedulability test on πj;
14 if τ ′i,k is not schedulable on πj then
15 continue;

16 else
17 if U(πj) = 0 ∧ Uleft ≥ ui then
18 if τ ′i,k is not stateful/in/out then
19 �1 ← �1 + {τ ′i,k, πj};

20 �πj ← τ ′i,k;
21 break;

22 if τ ′i,k is not allocated then
23 if ui > Uleft then
24 return False;

25 �′ ← �′ + πPE;
26 go to 5

27 for |�EE| < j ≤ |�′| do
28 if �πj = ∅ then
29 �′ ← �′ − πPE

j ;

30 if |�′PE| ≤ |�PE| then
31 break;

32 if �1 �= ∅ then
33 uleft = 0;
34 for {τ ′i,k, πj} ∈ �1 do
35 if 1− U(πj) > uleft then
36 uleft = 1− U(πj); sel = i;

37 else
38 return False;

39 fsel = fsel + 1; fsel ∈ �f ;
40 Get CSDF graph G′ = (V ′, E′) by unfolding G with replication

factors �f using the method in Section III-B;
41 Calculate period T ′i for PE type of processors for each task τ ′i,k in

G′ by using (2) and (3);
42 �← Sort tasks in G′ in order of decreasing utilization;

43 return True, G′, ��;

is calculated in line 12 and stored in variable Uleft. Since
the tasks have different utilization on the PE and EE pro-
cessors, the total unused capacity on the EE processors are

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2763

scaled accordingly by the proportion of the worst-case execu-
tion time of task τ ′i,k on the PE processor and EE processor,
in line 12.

In line 13, the EDF schedulability test [7] is performed
to check the schedulability of task τ ′i,k on processor πj, i.e.,
τ ′i,k is schedulable if the total utilization of all tasks currently
allocated to processor πj (including τ ′i,k) is not greater than
the utilization bound of 1. If task τ ′i,k is not schedulable on
processor πj, the procedure of visiting the next processors is
continued in line 15. Otherwise, the candidate tasks for repli-
cation are identified first in lines 17–19. If task τ ′i,k is allocated
to an unused processor πj while there is, in total, a sufficient
unused capacity on the other under-utilized processors, the task
is selected as a candidate to be replicated. This condition is
checked in line 17. Note that stateful tasks, whose next exe-
cution depends on the current execution, and input and output
tasks, which are connected to the external environment, are
not replicated. So, if task τ ′i,k satisfies the condition in line 18,
it is added in line 19 to task set �1 together with the processor
πj which it will be allocated to. Task τ ′i,k is actually allocated
on processor πj in line 20 and the procedure of vising the next
processors is terminated in line 21.

If task τ ′i,k is not allocated after visiting all processors in
platform �′ and if the utilization of the task is larger than the
total unused capacity left on the platform, then the algorithm
cannot allocate the application tasks onto the given platform
and returns false in line 24. Otherwise, a PE processor is added
to platform �′ in line 25. This is because to reasonably find
all candidate tasks for replication, the algorithm first checks
how the processors are finally utilized by continuing the task
mapping through adding an extra processor and finding a valid
tasks’ allocation using the FFD-EDF scheduler. For instance,
the capacity of a processor that is fragmented by a big task
can be efficiently exploited later by smaller tasks. Therefore,
there is no need to replicate such a big task. Later, by iter-
atively replicating the selected tasks, the algorithm gradually
exploits the processors’ capacity more efficiently and removes
the extra added PE processors to finally find a valid tasks’
allocation on the given platform �. Next, the procedure is
moved to line 5 to find new tasks’ allocation on the new
platform �′.

In lines 27–29, the reduction of the number of required
processors is performed by removing PE processors. If a PE
processor with no allocated tasks is found, it means the task set
� requires one PE processor fewer to be scheduled under FFD-
EDF scheduler. Therefore, the PE processor with no allocated
tasks is removed from platform �′ in line 29. Then, line 30
checks whether the number of PE processors in platform �′ is
fewer than or equal to the number of PE processors in the given
platform � (Note that both platforms �′ and � have an equal
number of EE processors as the algorithm only adds/removes
PE processor to/from platform �′). If yes, then the CSDF
graph G′ and the task allocation set �� are returned in line 43
and the algorithm terminates successfully.

If not, to better utilize the processors, a task is selected
among the candidate tasks in �1 for replication, in lines 32–36.
If task set �1 is empty then no task could be selected for repli-
cation, therefore the algorithm cannot allocate the application

TABLE II
BENCHMARKS USED FOR EVALUATION TAKEN FROM [12]

tasks onto platform � and returns false as output in line 38.
Among all the candidates in task set �1, the task allocated to a
processor with the largest amount of unused capacity is iden-
tified as a fragmentation-responsible task, in lines 35 and 36.
Then, the replication factor of this task is increased by one
in line 39 and the initial SDF graph is transformed into an
equivalent CSDF graph using the unfolding transformation
technique with unfolding vector �f , in line 40. The periods of
the tasks in the obtained CSDF graph are calculated again
for PE type of processors using (2) and (3) in line 41 and the
new periodic tasks are sorted in � in the order of decreasing
utilization, in line 42. The body of the while loop, then, is
repeated to either find successfully a task allocation of the
transformed graph onto platform � or fail due to lack of
candidate tasks for replication, i.e., empty task set �1.

VI. EVALUATION

In this section, we present the experiments to evaluate our
proposed approach in Section V. The experiments have been
performed on a set of seven real-life streaming applications
(benchmarks) modeled as acyclic SDF graphs taken from [12].
All SDF graphs are consistent and live. These benchmarks,
from different application domains, are listed in Table II. In
this table, |V | denotes the number of tasks in a benchmark
and |E| denotes the number of communication channels among
tasks in the corresponding SDF graph of the benchmark.

To demonstrate the effectiveness and efficiency of our
proposed approach, we perform two experiments. In the first
experiment, Section VI-A, we consider a homogeneous plat-
form as considered in the related works [9], [11], [12].
In this experiment, we compare the application latency, the
memory requirements, and the minimum number of proces-
sors needed to schedule the tasks of each benchmark under
a given throughput constraint for a homogeneous platform,
i.e., platform with only PE processors, obtained with six dif-
ferent scheduling/allocation approaches: 1) partitioned EDF
with FFD heuristic; 2) partitioned EDF with our proposed
heuristic; 3) partitioned EDF with the heuristic proposed
in [9]; 4) semi-partitioned EDF-fm, with the FFD-SP heuristic
proposed in [12]; 5) semi-partitioned EDF-fm, with the LUF
heuristic proposed in [11]; 6) semi-partitioned EDF-sh [13].
These approaches are denoted in Table III with FFD, our,
FFD-EP, FFD-SP, fm-LUF, and EDF-sh, respectively. In the
second experiment, Section VI-B, we consider heterogeneous
platforms, including PE and EE processors, as considered in
the related work [13]. In this experiment, we compare the
application latency and the memory requirements needed to

2764 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

TABLE III
COMPARISON OF DIFFERENT SCHEDULING/ALLOCATION APPROACHES

schedule the tasks of each benchmark under a given throughput
constraint obtained with Partitioned EDF with our proposed
heuristic and Semi-partitioned EDF-sh [13] for different het-
erogeneous platforms. Please note that we use the approach
presented in [12] to handle data dependencies when using the
scheduling/allocation approaches in [11] and [13] for compar-
ison with our approach. The throughput constraint R of each
benchmark, that is the maximum achievable throughput under
the SPS framework, is given in the second column in Table III.

A. Homogeneous Platform

Let us first compare our approach with the related
approaches in terms of the number of required processors.
The number of required processors to guarantee the through-
put constraint for each benchmark using an optimal scheduler,
for instance [18], denoted as mOPT, is given in the third column
in Table III. To find the number of required processors using
our proposed approach and the related approaches proposed
in [9] and [11]–[13], we set the number of PE processors on
the homogeneous platform initially to mOPT. Then, if the task
set cannot be scheduled on the platform, we add one more PE
processor and repeat the task allocation procedure again until
a successful task allocation is found.

As can be seen in Table III, the FFD approach requires
considerably more processors, on average 17.6% more, than
the number of required processors by an optimal scheduler,
see column mFFD. In contrast, our approach and EDF-sh
require the same number of processors as the optimal sched-
uler while maintaining the same throughput for this set of
benchmarks, see columns mour and msh, respectively. For the
other approaches, although they require fewer processors than
FFD, they still require more processors than our approach for
some benchmarks. For instance, the approach FFD-EP requires
one more processor for TDE, DES, and Serpent, see column
mEP; The approach FFD-SP requires two more processors for
FFT and one more processor for DES and Serpent, see col-
umn mSP; Finally, the approach fm-LUF requires two more
processors for FFT and DES and one more processor for TDE
and MPEG2, see column mLUF. Although this difference in
terms of number of required processors is not too large, it
clearly reveals that our approach is more capable of schedul-
ing the benchmarks with fewer processors compared to the
FFD-EP, FFD-SP, and fm-LUF approaches while meeting the
same throughput constraint.

However, this reduction on the number of required pro-
cessors comes at the expense of increased memory require-
ments and application latency. For each benchmark, columns
MFFD and LFFD report the memory requirements, expressed
in bytes, and the application latency, expressed in time units,
under FFD, respectively. The memory requirements is com-
puted as the sum of the buffer sizes of the communication
channels in the (C)SDF graph and the code size of the tasks.
For each benchmark, the increase on memory requirements
and application latency by our approach over FFD are given
in columns (Mour/MFFD) and (Lour/LFFD), respectively, that
are on average 24.2% and 17.2%, respectively. Similarly, the
increases on memory requirements and application latency
are on average, respectively, 100% and 52.85% for FFD-EP,
24.3% and 29.2% for FFD-SP, 65.9% and 90.2% for fm-
LUF, and finally 88.5% and 127.8% for EDF-sh compared to
FFD. From these numbers, we can conclude that not only our
approach requires fewer processors compared to the related
approaches, but also it imposes, on average, lower memory,
and latency overheads.

To further compare our approach with the related approaches,
we compute the memory requirements and application latency
of our approach when equal number of processors as the related
approaches are used, see the bolded numbers in parenthesis
in columns mour, (Mour/MFFD), and (Lour/LFFD). To ease the
interpretation of Table III for this comparison, Fig. 4(a) and (b)
illustrate the memory and latency reductions obtained by our
approach compared to the related approaches, respectively. For
instance, the reduction on memory requirements is computed
using the following equation:

r = Mrel −Mour

Mrel
(8)

where Mrel is the memory requirements of scheduling an appli-
cation using a related approach and Mour denotes the memory
requirements achieved by our approach for the same number
of processors. In Fig. 4(a), we can see that our approach can
reduce the memory requirements by an average of 31.43%,
5.72%, 27.11%, and 27.46% compared to FFD-EP, FFD-
SP, fm-LUF, and EDF-sh, respectively. In Fig. 4(a), however,
there are two exceptions, where our approach requires 2.43%
and 0.19% more memory for TDE and Bitonic compared
to FFD-SP and FFD-EP, respectively. In Fig. 4(b), we can
also see that our approach can reduce the application latency
considerably for all benchmarks by an average of 22.60%,

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2765

(a) (b)

Fig. 4. Memory and latency reduction of our approach compared to the related approach with the same number of processors. (a) Memory reduction.
(b) Latency reduction.

Fig. 5. Total number of task replications needed by FFD-EP and our proposed
approach.

13.24%, 37.92%, and 44.09% compared to FFD-EP, FFD-SP,
fm-LUF, and EDF-sh, respectively. This comparison clearly
demonstrates that for most of the benchmarks our approach
is more efficient than the related approaches in exploiting the
available resources. Compared to FFD-EP, that is the closest
approach to our approach as both approaches adopt the graph
unfolding transformation, our efficiency comes from signifi-
cantly reducing the number of required task replications due
to our novel Algorithm 1, as shown in Fig. 5. This figure
clearly shows that, by replicating the right tasks, our proposed
approach can reduce the total number of task replications sig-
nificantly, up to 30 times, compared to FFD-EP. From Fig. 4,
it can be also observed that our proposed approach works
better for some applications than for others compared to the
related approaches. Given the (C)SDF graph of each appli-
cation has different properties, e.g., the number of tasks, the
tasks’ workload, the graph’s topology, repetition vector, etc.,
the applications are represented with a different set of peri-
odic tasks in terms of the number of tasks and the utilization
of tasks. Therefore, this variation on the number of tasks and
the utilization of tasks in the set of periodic tasks according to
each application can have different impact on the performance
of different scheduling/allocation approaches.

Finally, we evaluate the efficiency of our algorithm in terms
of the execution time. We compare the execution time of our
algorithm with the corresponding execution times of FFD,
FFD-EP, FFD-SP, fm-LUF, and EDF-sh. The comparison is
given in Table IV. As can be seen from Table IV, the exe-
cution time of FFD and EDF-sh are always within less than
34 ms, while the execution times of FFD-SP and fm-LUF are
within less than 1.5 s. However, the execution time of our
algorithm is longer than FFD, FFD-SP, fm-LUF, and EDF-sh

TABLE IV
RUNTIME (IN SECONDS) COMPARISON OF DIFFERENT

SCHEDULING/ALLOCATION APPROACHES

due to its iterative execution nature, but it is within less than
10 s for most of the cases and within less than 1 min for one
case which is reasonable given that our proposed approach
is a design-time approach and that it achieves better resource
utilization. Among all the approaches, FFD-EP has the high-
est execution time, which is within less than 17 min, due to
excessive number of algorithm iterations. This excessive num-
ber of iterations is due to the excessive number of required task
replications in FFD-EP as shown in Fig. 5.

B. Heterogeneous Platform

To compare our proposed approach and EDF-sh [13] on het-
erogeneous platforms, in this section, we conduct experiments
on a set of heterogeneous platforms including different num-
ber of PE and EE processors. To do so, we initially generate
a heterogeneous platform having mFFD−1 PE processors (see
Table III for mFFD) and one EE processor for each benchmark
and iteratively replace one PE processor with one EE proces-
sor (or more EE processors if the task set is not schedulable
on the platform). However, due to the restrictive allocation
rules in EDF-sh to ensure bounded tardiness for deadline
misses, EDF-sh cannot find a task allocation for some het-
erogeneous platforms that have fewer than a certain number
of PE processors. Therefore, we only compare our approach
with EDF-sh on the heterogeneous platforms for which EDF-
sh can successfully allocate the tasks for each benchmark.
Fig. 6 shows the memory and latency reductions obtained by
our approach compared to EDF-sh for each benchmark indi-
vidually. The reductions are computed using (8). In Fig. 6, the
x-axis shows different heterogeneous platforms, composed of
different number of PE and EE processors denoted by {number
of PEs, number of EEs}. The y-axis shows the reduction on

2766 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a) (b) (c) (d)

(g)(f)(e)

Fig. 6. Memory and latency reduction of our approach compared to EDF-sh [13] for real-life benchmarks on different heterogeneous platforms. (a) FFT.
(b) Beamformer. (c) DES. (d) Bitonic. (e) MPEG2. (f) TDE. (g) Serpent.

the memory requirements and application latency. Note that for
the Serpent benchmark, a subset of heterogeneous platforms
is shown in Fig. 6(g) due to the space limitation, while for the
other benchmarks all successful heterogeneous platforms are
shown.

From Fig. 6, it can be observed that our proposed approach
outperforms EDF-sh in terms of memory requirements and
application latency for most of the cases. Compared to EDF-
sh, our approach can reduce the memory requirements and
application latency by an average of 42.6% and 51.1%,
12.4% and 43.8%, 21.7% and 36.2%, 21.8% and 35.4%,
11.9% and 20.1%, 37.6% and 42.2%, and 3.6% and 33.8%
for the FFT, Beamformer, DES, Bitonic, MPEG, TDE, and
Serpent benchmarks, respectively. For the MPEG bench-
mark, however, our proposed approach increases the memory
requirements compared to EDF-sh by 20.6% on a plat-
form including six PE and three EE processors. This is
because our approach excessively replicates a task to uti-
lize the unused capacity left on the under-utilized processors.
Therefore, the memory requirements increase significantly due
to the code and data memory overheads. However, since the
replicated task has low impact on the application latency,
our approach can still reduce the application latency by
8.3% compared to EDF-sh. For the TDE benchmark, both
approaches find a task allocation without requiring either task
replication (our) or task migration (EDF-sh) on a platform
including 24 PE and 1 EE processors, therefore no reduc-
tion is achieved for both memory requirements and latency in
this case.

In addition, it can be observed in Fig. 6 that for most of the
cases by replacing more PE processors with EE processors on
the platform, our approach can further reduce the memory
requirements and application latency compared to EDF-sh.
This is mainly because, by replacing more number of PE
processors with EE processors on the platform, the number
of migrating tasks under EDF-sh scheduler is considerably
increased while the number of task replications is only gently
increased in our approach. As a result, more fixed tasks are

affected by migrating tasks and can miss their deadlines, by
a bounded tardiness, under EDF-sh scheduler that comes at
the expense of more memory requirements and longer appli-
cation latency. According to the approach presented in [12],
the memory requirements increases due to both the size of
buffers, that have to be enlarged to handle task tardiness, and
the code size overhead of task replicas, which are necessary
in case of migrating tasks. In addition, the application latency
increases due to the postponement of task start times needed
to handle task tardiness.

VII. CONCLUSION

In this paper, we have presented a novel heuristic algo-
rithm that determines a replication factor for each task in
an acyclic SDF graph, which is subject to a throughput con-
straint, such that the number of required processors to schedule
the tasks in the obtained transformed graph is reduced under
partitioned scheduling algorithms. By performing tasks repli-
cation, the tasks’ workload is distributed among more parallel
tasks’ replicas with larger period and lower utilization in the
obtained transformed graph. Therefore, the required capac-
ity of the tasks which are replicated, is split up in multiple
smaller chunks that can more likely fit into the left capac-
ity on the processors and alleviate the capacity fragmentation
due to partitioned scheduling algorithms, hence reducing the
number of required processors. The experiments on a set
of real-life streaming applications show that our proposed
approach can reduce the number of required processors by up
to seven processors with increasing the memory requirements
and application latency by 24.2% and 17.2% on average com-
pared to FFD while meeting the same throughput constraint.
We also show that our approach can still reduce the number
of required processors by up to two processors and consider-
ably improve the memory requirements and application latency
by up to 31.43% and 44.09% on average compared to the
other related approaches while meeting the same throughput
constraint.

NIKNAM et al.: RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICATION 2767

REFERENCES

[1] P. Greenhalgh, “Big. Little processing with arm Cortex-A15 & Cortex-
A7,” Cambridge, U.K., ARM, White Paper, 2011.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 397–408,
Feb. 1996.

[4] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surveys, vol. 43, no. 4, p. 35,
2011.

[5] M. A. Bamakhrama and T. P. Stefanov, “On the hard-real-time schedul-
ing of embedded streaming applications,” Design Autom. Embedded
Syst., vol. 17, no. 2, pp. 221–249, 2013.

[6] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov,
“Adaptivity support for MPSoCs based on process migration in
polyhedral process networks,” VLSI Design, vol. 2012, p. 2,
Jan. 2012.

[7] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[8] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empir-
ical comparison of global, partitioned, and clustered multiproces-
sor EDF schedulers,” in Proc. RTSS, San Diego, CA, USA, 2010,
pp. 14–24.

[9] J. Spasic, D. Liu, and T. Stefanov, “Exploiting resource-constrained par-
allelism in hard real-time streaming applications,” in Proc. DATE, 2016,
pp. 954–959.

[10] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson,
“Approximation algorithms for bin packing: A survey,” in
Approximation Algorithms for NP-Hard Problems. Boston, MA, USA:
PWS, 1996.

[11] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based scheduling
algorithm for multiprocessor soft real-time systems,” in Proc. ECRTS,
2005, pp. 199–208.

[12] E. Cannella, M. Bamakhrama, and T. Stefanov, “System-level scheduling
of real-time streaming applications using a semi-partitioned approach,”
in Proc. DATE, 2014, pp. 1–6.

[13] K. Yang and J. H. Anderson, “Soft real-time semi-partitioned scheduling
with restricted migrations on uniform heterogeneous multiprocessors,”
in Proc. RTNS, 2014, p. 215.

[14] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
Proc. PACT, 2010, pp. 365–376.

[15] A. Burns et al., “Partitioned EDF scheduling for multiprocessors using
a C=D task splitting scheme,” Real Time Syst., vol. 48, no. 1, pp. 3–33,
2012.

[16] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel,
“Mapping on multi/many-core systems: Survey of current and
emerging trends,” in Proc. DAC, Austin, TX, USA, 2013,
pp. 1–10.

[17] J. Spasic, D. Liu, and T. Stefanov, “Energy-efficient mapping of real-
time applications on heterogeneous MPSoCs using task replication,” in
Proc. CODES+ISSS, 2016, pp. 1–10.

[18] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[19] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in Proc. IPDPS, 2003, p. 9.

Sobhan Niknam received the B.Sc. degree in com-
puter engineering from Shahed University, Tehran,
Iran, in 2012 and the M.Sc. degree in computer
engineering from the Iran University of Science and
Technology, Tehran, in 2014. He is currently pur-
suing the Ph.D. degree in computer science with
the Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands.

His current research interests include real-
time embedded systems and system-level multicore
system design.

Peng Wang received the B.S. degree from the
Harbin Institute of Technology, Harbin, China. He is
currently pursuing the Ph.D. degree with the Leiden
Institute of Advanced Computer Science, Leiden
University, Leiden, The Netherlands.

His current research interests include a wide
range of computer architecture, with an empha-
sis on power-efficient network-on-chip and real-time
embedded systems.

Todor Stefanov (S’01–M’05) received the Dipl.Ing.
and M.S. degrees in computer engineering from
the Technical University of Sofia, Sofia, Bulgaria,
in 1998, and the Ph.D. degree in computer science
from Leiden University, Leiden, The Netherlands,
in 2004.

He is currently an Associate Professor with the
Leiden Institute of Advanced Computer Science,
Leiden University, and the Head of the Leiden
Embedded Research Center, which is a medium-size
research group with a strong track record in the area

of system-level modeling and synthesis, programming, and implementation
of heterogeneous embedded systems. He has (co-)authored over 80 scientific
papers. His current research interests include several aspects of embedded
systems design, with particular emphasis on system-level design automation,
multiprocessor systems-on-chip design, and hardware/software co-design.

Dr. Stefanov was a recipient of the prestigious 2009 IEEE TCAD
Donald O. Pederson Best Paper Award for his journal article “Systematic
and Automated Multiprocessor System Design, Programming, and
Implementation” published in the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. He is an
Editorial Board Member of the Springer Journal on Embedded Systems.
He was also an Editorial Board Member of the International Journal
of Reconfigurable Computing and a Guest Associate Editor of ACM
Transactions on Embedded Computing Systems in 2013. He was the General
Chair of ESTIMedia in 2015 and the Local Organization Co-Chair of
ESWeek in 2015. Moreover, he serves (has served) on the organizational
committees of several leading conferences, symposia, and workshops,
such as DATE, ACM/IEEE CODES+ISSS, RTSS, IEEE ICCD, IEEE/IFIP
VLSI-SoC, ESTIMedia, SAMOS (as a TPC member), and IEEE ESTIMedia,
ACM SCOPES (as the Program Chair).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

