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Abstract—For modern embedded systems in the realm of high-
throughput multimedia, imaging, and signal processing, the com-
plexity of embedded applications has reached a point where the
performance requirements of these applications can no longer be
supported by embedded system architectures based on a single
processor. Thus, the emerging embedded system-on-chip plat-
forms are increasingly becoming multiprocessor architectures. As
a consequence, two major problems emerge, namely how to design
and how to program such multiprocessor platforms in a systematic
and automated way in order to reduce the design time and to
satisfy the performance needs of applications executed on such
platforms. As an efficient solution to these two problems, in this
paper, we present the methodology and techniques implemented
in a tool called Embedded System-level Platform synthesis and
Application Mapping (ESPAM) for automated multiprocessor sys-
tem design, programming, and implementation. ESPAM moves the
design specification and programming from the Register Transfer
Level and low-level C to a higher system level of abstraction.
We explain how, starting from system-level platform, applica-
tion, and mapping specifications, a multiprocessor platform is
synthesized, programmed, and implemented in a systematic and
automated way. The class of multiprocessor platforms we consider
is introduced as well. To validate and evaluate our methodology,
we used ESPAM to automatically generate and program several
multiprocessor systems that execute three image processing appli-
cations, namely Sobel edge detection, Discrete Wavelet Transform,
and Motion JPEG encoder. The performance of the systems that
execute these applications is also presented in this paper.

Index Terms—Automated programming of MultiProcessor
Systems-on-Chip (MPSoC), design automation for MPSoC,
system-level design.

I. INTRODUCTION

MOORE’S law predicts the exponential growth over time
of the number of transistors that can be integrated in a

single chip. Not only must the intrinsic computational power
of a chip be used efficiently and effectively, but also the time
and effort to design a system containing both hardware and
software must remain acceptable. Unfortunately, most of the
current methodologies for multiprocessor system design are
still based on register transfer level (RTL) platform descriptions
created by hand using, for example, VHSIC Hardware Descrip-
tion Language (VHDL). Such methodologies were effective
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in the past when platforms based only on single-processor
or processor–coprocessor architectures were considered. How-
ever, the applications and platforms used in many of today’s
new system designs are mainly based on heterogeneous Multi-
Processor Systems-on-Chip (MPSoCs) architectures. As a con-
sequence, the designs are so complex that traditional design
practices are now inadequate, because creating RTL descrip-
tions of complex MPSoCs is error prone and time consuming.
The complexity of high-end computationally intensive appli-
cations in the realm of high-throughput multimedia, imaging,
and digital signal processing exacerbates the difficulties asso-
ciated with the traditional hand-coded RTL design. Moreover,
to execute an application on MPSoC, the system has to be
programmed, which implies writing software for each of the
processors using languages such as C/C++. In recent years, a lot
of attention has been paid to the building of MPSoCs. However,
insufficient attention has been paid to the development of con-
cepts, methodologies, and tools for the efficient programming
of such systems so that the programming still remains a major
difficulty and challenge [1]. Today, system designers experience
significant difficulties in programming MPSoCs because the
way an application is specified by an application developer,
which is typically as a sequential program, does not match
the way multiprocessor systems operate, i.e., multiprocessor
systems require parallel application specifications.

A. Problem Description

For all the reasons stated above, we conclude the following.
1) The use of an RTL system specification as a starting

point for multiprocessor system design methodologies is
a bottleneck. Although the RTL system specification has
the advantage that the state-of-the-art synthesis tools can
use it as an input to automatically implement a system,
we believe that a system should be specified at a higher
level of abstraction called system level. This is the only
way to solve the problems caused by the low-level RTL
specification. However, moving up from the detailed RTL
specification to a more abstract system-level specification
opens a gap that we call Implementation Gap. Indeed, on
one hand, the RTL system specification is very detailed
and close to an implementation, which thereby allows an
automated system synthesis path from RTL specification
to implementation. This is obvious if we consider the
current commercial synthesis tools where the RTL-to-
netlist synthesis is very well developed and efficient. On
the other hand, the complexity of today’s systems forces
us to move to higher levels of abstraction when designing
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a system. However, we currently do not have mature
methodologies, techniques, and tools to move down from
the high-level system specification to an implementation.
Therefore, the Implementation Gap has to be closed by
devising a systematic and automated way to effectively
and efficiently convert a system-level specification to an
RTL specification.

2) Programming multiprocessor systems is a tedious, error-
prone, and time-consuming process. On one hand, the
applications are typically specified by the application
developers as sequential programs using imperative pro-
gramming languages such as C/C++ or Matlab. Specify-
ing an application as a sequential program is relatively
easy and convenient for application developers. However,
the sequential nature of such specification does not reveal
the available concurrency in an application because only
a single thread of control is considered. In addition,
the memory is global, and all data reside in the same
memory source. On the other hand, system designers
need parallel application specifications, because when
an application is specified using a parallel model of
computation (MoC), the programming of multiprocessor
systems could be done in a systematic and automated
way. This is so because the multiprocessor platforms
contain processing components that run in parallel, and a
parallel MoC represents an application as a composition
of concurrent tasks with a well-defined mechanism for
intertask communication and synchronization.

The facts discussed above suggest that to program an
MPSoC, the system designers have to partition an applica-
tion into concurrent tasks starting from a sequential program
(delivered by application developers) as a reference specifi-
cation. Then, they have to assign the tasks to processors and
to write a specific program code for each processor. This
activity consumes a lot of time and effort because the system
designers have to study the application in order to identify the
possible task-level parallelism that is available, and to reveal it.
Moreover, an explicit synchronization for data communication
between tasks is needed. This information is not available in
the sequential program and has to be explicitly specified by the
designers. Therefore, an approach and a tool support are needed
for application partitioning and code generation to allow the
systematic and automated programming of MPSoCs.

B. Paper Contributions

In this paper, we present our tool, i.e., Embedded System-
level Platform synthesis and Application Mapping (ESPAM),
and a design flow around it that implements our methods
and techniques for systematic and automated multiprocessor
platform design, programming, and implementation. These
methods and techniques bridge the gap between the system-
level specification and the RTL specification in a particular
way that we consider as the main contribution of this paper.
More specifically, with ESPAM, a system designer can spec-
ify a multiprocessor system at a high level of abstraction in
a short amount of time, for example, a few minutes. Then,
ESPAM refines this specification to a real implementation, i.e.,

generates a synthesizable (RTL) hardware (HW) description of
the system and software (SW) code for each processor in a
systematic and automated way, thereby closing in a particular
way the implementation gap mentioned earlier. This reduces
the design and programming time from months to hours. As
a consequence, an accurate exploration of the performance
of alternative multiprocessor platforms becomes feasible at
implementation level in a few hours.

Our methods and techniques to closing the implementa-
tion gap are based on the underlying programming model
and system-level platform model we use. ESPAM targets data-
flow-dominated (streaming) applications for which we use the
Kahn Process Network (KPN) [2] MoC as a programming
(application) model. Many researchers [3]–[8] have already
indicated that the KPNs are suitable for the efficient mapping
onto multiprocessor platforms. In addition to that, by carefully
exploiting and efficiently implementing the simple communica-
tion and synchronization features of a KPN, we have identified
and developed a set of generic parameterized components that
we call a platform model. We consider our platform model
an important contribution of this paper because our set of
components allows system designers to quickly and easily
specify (construct) many alternative multiprocessor platforms
that are systematically and automatically implemented and pro-
grammed by our tool ESPAM. The automated programming of
our multiprocessor platforms is enabled by using a parallel pro-
gramming model, namely KPN MoC. However, decomposing
an application into a set of concurrent tasks is one of the most
time-consuming jobs imaginable [1]. Fortunately, our program-
ming approach integrates a tool that we have developed for the
automatic derivation of KPN specifications from applications
specified as sequential C programs [9].

C. Scope of Work

In this section, we outline the assumptions and restrictions
regarding our work presented in this paper. Most of them are
discussed in detail, where appropriate, throughout this paper.
1) Applications: One of the main assumptions for our work

is that we only consider data-flow-dominated applications in
the realm of multimedia, imaging, and signal processing, which
naturally contain tasks communicating via streams of data.
Such applications are very well modeled by using the parallel
data flow MoC called KPN. The KPN model we use is a
network of concurrent autonomous processes that communi-
cate data in a point-to-point (P2P) fashion over bounded first-
in–first-out (FIFO) channels using a blocking read/write on an
empty/full FIFO as the synchronization mechanism.
2) Multiprocessor Platforms: We consider multiprocessor

platforms in which only programmable processors are used
as processing components, and they communicate data only
through distributed memory units. Each memory unit can be
organized as one or several FIFOs. The data communication
and synchronization among processors are realized by blocking
read and write SW primitives. Such platforms very well match
and support the KPN operational semantics, thereby achieving
high performance when the KPNs are executed on the plat-
forms. Moreover, supporting the operational semantics of a
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KPN in our platforms, i.e., the blocking mechanism, allows
the processors to be self-scheduled. It means that there is
no need for a global scheduler component in our platforms.
The processors in our platforms can be connected either by a
crossbar switch (CBS), or a P2P network, or a shared bus (ShB).
If the number of processors in a platform is less than the number
of processes of a KPN, then some of the processors execute
more than one process. For each of those processors, we do
not use a multithreading operating system (OS) to execute the
processes mapped onto it in order to avoid execution overheads
due to context switching. Instead, our tools schedule these
processes at compile time and generate a program code for a
given processor which code does not require/utilize an OS.
3) Tool Inputs: Our ESPAM tool accepts three specifications

as input, i.e., platform specification, application specification,
and mapping specification. The platform specification is re-
stricted in the sense that it must specify a platform that consists
of components taken from a predefined set of components.
This set ensures that many alternative multiprocessor platforms
can be constructed, and all of them fall into the class of plat-
forms we consider (see above). The mapping specification can
specify one-to-one and/or many-to-one mappings of processes
onto processors. Based on this mapping, ESPAM automatically
determines the most efficient mapping of FIFO channels onto
distributed memory units. The application specification is a
KPN derived from an application written as a static affine
nested loop program (SANLP) in C. SANLP is a sequential pro-
gram with some restrictions, see Section IV-A. The restrictions
allow us to develop tools for the automated derivation of KPNs
from SANLPs, as described in Section IV. The automated
partitioning of a SANLP into processes can be done only at
function boundaries, i.e., the programmer divides the SANLP
into functions, thus guiding the granularity of the automatically
derived processes. Many applications in the domain we con-
sider (see above) can be represented as SANLPs.

D. Related Work

The Compaan/Laura design flow presented in [3] is very
similar to the work described in this paper. It uses KPNs as an
application model for the automated mapping of applications
that target field-programmable gate array (FPGA) implemen-
tations. A KPN specification is automatically derived from a
sequential program written in Matlab [10], [11] and imple-
mented as a network of dedicated HW IP cores on an FPGA
[12]. A major difference with our approach is that systems con-
taining programmable processors are not considered in [3] and
[10]–[12]. Although the KPN model we use is the same as
in [10] and [11], we have developed different and improved
techniques for the automated derivation of KPNs [9]. First
and importantly, our techniques allow for the automated com-
putation of efficient buffer sizes of the communication FIFO
channels that guarantee deadlock-free execution of our KPNs.
In contrast, the computation of the buffer sizes of FIFOs is not
considered at all in the work presented in [10] and [11]. Second,
we start from a fully functional application specification written
as a SANLP in C, which allows our tools to automatically
generate fully functional KPNs in C or C++ and to program

fully automatically our multiprocessor platforms. In contrast,
with the tools presented in [10] and [11], a fully automated
programming is not considered.

The Eclipse work [13] defines a scalable architecture tem-
plate for designing stream-oriented MPSoCs using KPN MoC
to specify and map data-dependent applications. The Eclipse
template is slightly more general than the templates presented
in this paper. However, the Eclipse work lacks an automated
design and implementation flow. In contrast, our work provides
such automation starting from a high-level system specification.

The system-level semantics for system design formalization
is presented in [14]. It enables design automation for synthesis
and verification to achieve a required design productivity gain.
Using Specification, Multiprocessing, and Architecture models,
a translation from behavior to structural descriptions is possible
at a system level of abstraction. Our approach is similar, but in
addition, it defines and uses application and platform models
that allow an automated translation from the system level to the
RTL level of abstraction.

In our automated design flow for MPSoC programming
and implementation, we use a parallel MoC to represent an
application and to map it onto alternative MPSoC architectures.
A similar approach is presented in [15]. Jerraya et al. propose a
design flow concept that uses a high-level parallel programming
model to abstract hardware/software interfaces in the case of
heterogeneous MPSoC design. The details are presented in
[16] and [17]. In [16], a design flow for the generation of
application-specific multiprocessor architectures is presented.
This paper is similar to our approach in the sense that we
also generate multiprocessor systems based on the instantia-
tion of generic parameterized architecture components as well
as communication controllers (CCs) to connect processors to
communication networks. However, many steps of the design
flow in [16] are manually performed. As a consequence, a
full implementation of a system comprising four processors
connected P2P takes around 33 h. In contrast, our design flow
is fully automated, and a full implementation of a system
comprising eight processors connected P2P, or via a crossbar
(CB) or ShB, takes around 2 h.

In [17], Gauthier et al. present a method for the programming
of MPSoCs by the automatic generation of application-specific
OS and the automatic targeting of the application code to the
generated OS. In the proposed method, the OS is generated
from an OS library and includes only the OS services spe-
cific to the application. The input to the code generation flow
consists of structural information about the MPSoC, allocation
information (memory map of the MPSoC), and high-level task
descriptions. By contrast, in our programming approach, we
do not use OSs. For each processor of an MPSoC, our tool
generates a sequential code that contains control (for communi-
cation, synchronization, and task scheduling) and application-
specific code. Another major difference is that in our approach
the allocation information (the memory map of a MPSoC) and
the task descriptions are automatically generated.

The Multiflex system presented in [18] is an application-to-
platform mapping tool. It targets multimedia and networking
applications, and integrates a system-level design exploration
framework. The relation to our work is that ESPAM also targets
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the mapping of multimedia and data streaming applications
onto a particular MPSoC platform. A design space exploration
is included in our design flow as well. However, in our design
flow, we use KPNs as the parallel programming model instead
of the symmetrical multiprocessing (SMP) and distributed sys-
tem object component (DSOC) used in Multiflex. The benefit
of using KPNs is related to the KPN model properties that
allow us to derive KPNs in an automated way from applications
specified as sequential programs. Multiflex does not support
at all the automatic derivation of SMP or DSOC. In [18], a
design time of two man-months is reported for an MPEG4
multiprocessor system. The design time includes manual ap-
plication partitioning, automated architecture exploration, and
optimization. In this paper, we show that by using our design
flow, a complete design including partitioning, exploration,
implementation, and programming of a similar multiprocessor
system is achieved within 2 h.

A method for the automatic generation of embedded software
is presented in [19]. The proposed design flow consists of
several software refinement steps and intermediate models to
generate an efficient ANSI C code from system specifica-
tion written in a system level design language (SLDL). This
paper is similar to our work in the sense that our ESPAM

tool generates an efficient C/C++ code for processors in
MPSoC. The difference is that some of the software refinement
steps in [19] have to be manually performed, whereas our
software generation is fully automated. Moreover, we generate
software for processors in MPSoC starting from an applica-
tion specified as a sequential program in the widely accepted
C language. In [19], a designer has to specify an application
using the specific SLDL language.

The Task Transaction Level (TTL) interface presented in [20]
is a design technology for the programming of embedded mul-
tiprocessor systems. Our programming approach is similar to
TTL in the sense that we also target streaming applications and
we also use communication primitives. TTL is more flexible in
the sense that it supports many communication primitives, but
programming MPSoC by using TTL requires a lot of manual
work that is hard (in some cases even impossible) to automate.
In comparison, our programming model supports only two
basic primitives, i.e., blocking read and blocking write, both
in order. We do not see this as a limitation compared to TTL
because these two primitives are sufficient to realize com-
munication and synchronization in any streaming application.
Moreover, supporting only two basic primitives allows us to
fully automate the programming of MPSoCs as we will show
in this paper.

Companies such as Xilinx and Altera provide approaches and
design tools that attempt to facilitate the efficient implementa-
tions of processor-based systems on FPGAs. These tools are
the Embedded Development Kit [21] for Xilinx chips and the
System On a Programmable Chip builder [22] for Altera chips.
A recent survey of multiprocessor solutions [23] shows that
these state-of-the-art tools support only processor–coprocessor
systems and shared memory bus-based multiprocessor systems,
which cannot always meet the performance requirements of
today’s (streaming) applications. In contrast, this paper pro-
poses a platform model that supports different communication

Fig. 1. System design flow.

topologies (not only ShB) and allows different types of proces-
sors to be connected in heterogeneous multiprocessor plat-
forms. In addition, we use a parallel MoC to represent an
application and to map it onto multiprocessor platforms. Ex-
ploiting the properties of our platform and application models
allows for automated MPSoC synthesis and implementa-
tion, application-dependent self-scheduling of the platform
resources, and fully automated MPSoC programming.

II. DESIGN FLOW: OVERVIEW

In this section, we give an overview of our system design
methodology, which is centered around the ESPAM tool that
we have developed to close the implementation gap and the
programming problem described in Section I-A. This is fol-
lowed by a description of our system-level platform model and
platform synthesis in Section III. In Section IV, we present
our techniques for the automated derivation of KPNs and for
computing the FIFO sizes. Then, in Section V, we discuss the
automated programming of multiprocessor platforms, and in
Section VI, we present the results that we have obtained using
ESPAM. Section VII concludes this paper.

Our system design methodology is depicted as a design flow
in Fig. 1. There are specifications at three different levels of
abstraction in the flow, namely SYSTEM LEVEL, RTL LEVEL,
and GATE LEVEL. The SYSTEM-LEVEL specification consists
of the following three parts written in eXtensible Markup
Language (XML) format.

1) Application Specification describes an application as a
KPN, i.e., a network of concurrent processes commu-
nicating via FIFO channels. For applications initially
specified as parameterized SANLPs in C, KPN descrip-
tions can be automatically derived by using our translator
tool [9].

2) Platform Description describes the topology of a mul-
tiprocessor platform. The platforms we consider are
presented in Section III. Specifying a multiprocessor
platform is a simple task that can be performed in a few
minutes, because ESPAM requires a high-level platform
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specification that does not contain any details about the
physical interfaces of the components.

3) Mapping Specification describes the relation between
all processes in the Application Specification and all
components in the Platform Specification. In our case,
describing the mapping in XML format is even simpler
than describing a multiprocessor platform.

The platform and the mapping specifications can be written
by hand or automatically generated after performing a design
space exploration. For this purpose, we use the SESAME tool
[5]. The input of SESAME is the KPN application specifica-
tion. The output is a platform specification and a mapping
specification that together represent the best mapping of an
application onto a particular multiprocessor platform in terms
of performance.

The SYSTEM-LEVEL specification is given as input to
ESPAM. First, ESPAM constructs a platform instance from the
platform specification and runs a consistency check on that
instance. The platform instance is an abstract model of a multi-
processor platform because, at this stage, no information about
the target physical platform is taken into account. The model
only defines the key system components of the platform and
their attributes. Second, ESPAM refines the abstract platform
model to an elaborate (detailed) parameterized RTL model that
is ready for an implementation on a target physical platform.
We call this refinement process platform synthesis. The refined
system components are instantiated by setting their parameters
based on the target physical platform features. Finally, ESPAM

generates a program code for each processor in the multiproces-
sor platform in accordance with the application and mapping
specifications.

As output, ESPAM delivers a hardware (synthesizable VHDL
code) description of the MPSoC and software (C/C++) code to
program each processor in the MPSoC. The hardware generated
by ESPAM, namely an RTL-LEVEL specification of a multi-
processor system, is a model that can adequately abstract and
exploit the key features of a target physical platform at the RTL
of abstraction. It consists of two parts: 1) platform topology,
which is a netlist description that defines in greater detail the
multiprocessor platform topology; and 2) hardware descrip-
tions of IP cores, which contains the predefined and custom IP
cores used in platform topology. ESPAM selects the predefined
IP cores (processors, memories, etc.) from the Library IP Cores
(see Fig. 1). Moreover, it generates the custom IP cores that
are needed as glue/interface logic between components in the
platform.

ESPAM converts the XML application specification to an effi-
cient C/C++ code, including a code for implementing the func-
tional behavior together with a code for the synchronization of
the communication between processors. This synchronization
code contains a memory map of the MPSoC and read/write
synchronization primitives. They are inserted by ESPAM in
the places of the processors’ code where read/write access
to a FIFO is performed. The program C/C++ code generated
by ESPAM for each processor in the MPSoC is given to a
standard GNU compiler collection (GCC) compiler to generate
the executable code. With the hardware descriptions generated
by ESPAM, a commercial synthesizer can convert the RTL-

LEVEL specification to a GATE-LEVEL specification, which
thereby generates the target platform gate level netlist (see the
bottom part of Fig. 1). This GATE-LEVEL specification is actu-
ally the system implementation. The current version of ESPAM

facilitates the automated multiprocessor platform synthesis and
programming that targets the Xilinx FPGA technology, and
thus, we use the development tools (a GCC compiler and a
VHDL synthesizer) provided by Xilinx [21] to generate the
final bit stream file that configures a specific FPGA. We use the
FPGA platform technology only for prototyping purposes. Our
ESPAM tool is flexible enough to target other physical platform
technologies.

III. PLATFORM MODEL AND SYNTHESIS

In our design methodology, the platform model is a library of
generic parameterized components. To support the systematic
and automated synthesis of multiprocessor platforms, we have
carefully identified and developed a set of computation and
communication components. In this section, we give a detailed
description of our approach to build a multiprocessor platform.
The platform model contains the following.

1) Processing Components: Currently, our platform model
supports only one type of processing component, i.e., a
programmable processor. It has several parameters, such
as type, number of I/O ports, speed, etc.

2) Memory Components: Memory components are used to
specify the processors’ local program and data memories,
and to specify the data communication storages (buffers)
between processors. Further, we will call the data com-
munication storages Communication Memories (CMs).
The important memory component parameters are type,
size, and number of I/O ports. Memory Controllers (MCs)
are used to connect the local program and the data mem-
ories to the processors.

3) Communication Components: We have developed a P2P
network, a CBS, and a ShB component with several
arbitration schemes. These Communication components
are mutually exclusive and determine the communication
network topology of a multiprocessor platform.

4) Communication Controllers (CCs) and Links: CCs are
used as glue logic that realizes the synchronization be-
tween the processors at hardware level. A CC implements
an interface between processing, memory, and communi-
cation components. Links are used to connect any two
components in our system-level platform model.

Using the components described above, a system designer
can construct many alternative platforms by simply connecting
processing, memory, and communication components. We have
developed a general approach to connect and synchronize pro-
grammable processors of arbitrary types via a communication
component. Our approach is explained below using an example
of a multiprocessor platform. The system-level specification
of the platform is depicted in Fig. 2(a). This specification,
which is written in XML format, consists of three parts
that define the processing components (four processors, lines
2–5), communication component (CB, lines 7–12), and links
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Fig. 2. Example of a multiprocessor platform. (a) Platform specification.
(b) Elaborate platform.

(lines 14–29). The links specify the connections of the proces-
sors to the communication component.

Notice that in the specification, a designer does not have to
take care of the memory structures, interface controllers, and
communication and synchronization protocols. Our ESPAM tool
takes care of this in the platform synthesis as follows: First,
the tool instantiates the processing and communication com-
ponents. Second, it automatically attaches memories and MCs
to each processor. Third, based on the type of the processors
instantiated in the first step, the tool automatically synthesizes,
instantiates, and connects all the necessary CCs and CMs to
allow the efficient and safe (lossless) data communication and
synchronization between components. The latter is guaranteed
by the fact that the operational semantics of the KPNs, i.e.,
read–execute–write using the blocking read/write synchroniza-
tion mechanism, is captured in and translated to the execution
model of the multiprocessor platforms we propose. In our ap-
proach, the processors transfer data between each other through
the CMs. Each processor writes only to its local CM and uses
the communication component only to read data from all the
other CMs. A processor blocks on writing if there is no room
in its local CM, and a processor blocks when reading the other
processors’ CMs if data is not available or the communication
resource is currently not available.

The elaborate platform generated by ESPAM is shown in
Fig. 2(b). A CC connects a CM to the data bus of the processor
(uP) it belongs to and to a communication component (CB).
Each CC implements the processor’s local bus-based access
protocol to the CM for write operations and the access to the
communication component for read operations. Each CM is
organized as one or more FIFO buffers. The interprocessor
synchronization in the platform is implemented in a simple
and efficient way by blocking the read/write operations on
empty/full FIFO buffers located in the CM.

KPNs assume unbounded communication buffers. Writing
is always possible, and thus, a process blocks only on reading
from an empty FIFO. In the physical implementation, however,
the communication buffers have bounded sizes, and therefore, a
blocking write synchronization mechanism is used as well. The
problem of deciding whether a general KPN can be scheduled

Fig. 3. Structure of the (a) CC and (b) CB components.

with a bounded memory is undecidable [24], [25]. However,
in our case, this is possible because our process networks
are derived from SANLPs that can be executed using a finite
amount of memory. The scheduling of process networks using
a bounded memory has already been discussed in [24] and [26].
Moreover, a number of tools and libraries have been developed
for executing KPNs [27], [28]. In contrast to these approaches,
our platform model does not require scheduling and run-time
deadlock detection and resolution. The processing components
in our platforms are self-scheduled following the KPN oper-
ational semantics, i.e., the KPNs are self-scheduled when exe-
cuted on our platforms. In addition, we compute the buffer sizes
of the FIFO channels (see Section IV-B) such that a deadlock-
free execution of the KPNs on our platforms is guaranteed.

A. Processing Components

In our approach, we do not consider the design of processing
components. Instead, we use the IP cores developed by third
parties. Currently, for fast prototyping in order to validate our
approach, we use the Xilinx VirtexII-Pro FPGA technology.
Therefore, our library of processing components includes the
two programmable processors supported by Xilinx. These are
the MicroBlaze (MB) softcore processor and the PowerPC
(PPC) hardcore processor.

B. CM Components

We implement the CMs of a processor by using dual-port
memories. A CM is organized as one or more FIFO buffers.
A FIFO buffer in a CM is seen by a processor as two memory
locations in its address space. A processor uses the first location
to read/write data from/to the FIFO buffer, thereby realizing
interprocessor data transfer. The second location is used to read
the status of the FIFO. The status indicates whether a FIFO is
full (data cannot be written) or empty (data is not available).
This information is used for interprocessor synchronization.
The multi-FIFO behavior of a CM is implemented by the
CC described below. However, if the CM contains only one
FIFO, we use a dedicated FIFO component that simplifies the
structure of the CC.

C. CC Component

The structure of the CC is shown in Fig. 3(a). It consists
of two main parts, i.e., INTERFACE Unit and FIFO Unit.
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The INTERFACE Unit contains: 1) the Control Module, i.e.,
an address decoder, FIFOs’ control logic, and logic to generate
read requests to the communication component and 2) the
processor interface (PI) module that realizes the data bus pro-
tocol of a particular processor. The FIFO Unit implements the
multi-FIFO behavior. The FIFO Unit also includes the memory
interface (MI) module that realizes access to the CM connected
to the CC [bottom part of Fig. 3(a)].

Recall that a processor can access the FIFOs located in the
other processors’ CMs via a communication component for
read operations only. First, the processor checks whether there
is any data in the FIFO that the processor wants to read from.
When a processor checks for data, the INTERFACE Unit sends
a request to the communication component for granting a con-
nection to the CM in which the FIFO is located. A connection
is only granted when a communication line is available and
there is data in the FIFO. When a connection is not granted,
the processor blocks until a connection is granted. When a
connection is granted, the CC connects the data bus of the com-
munication component [the upper part of the communication
component side in Fig. 3(a)] to the data bus of the processor,
and the processor reads the data from the CM where the FIFO is
located. After the data is read, the connection has to be released.
This allows other processors to access the same CM.

D. CB Communication Component

Our general approach to connect processors that communi-
cate data through CM with FIFO organization allows the CB
structure, which is shown in Fig. 3(b), to be very simple. It con-
sists of two main parts, i.e., the crossbar switch (CBS) and the
CB controller. The CBS implements unidirectional connections
between CMs and processors—recall that a processor uses a
communication component only to read data. Each processor
and its local CM are connected to a CC, as shown in Fig. 2. The
CC is connected to the CB using one I and one I ′ interface, as
depicted in Fig. 3(b). Due to the unidirectional communications
and the FIFO organization of CMs, the number of signals and
busses that have to be switched by our CB is reduced. Since
the addresses for accessing CMs are locally generated by the
CCs, address busses are not switched through the CB. The CB
switches only 32-bit data buses in one direction and two control
signals per bus. These control signals are the Read strobe and
the Empty status flag for a FIFO.

E. P2P Network

In P2P networks, the topology of the platform (the number
of processors and the number of direct connections between the
processors) is the same as the topology of the process network.
Since there is no communication component such as a CB
or a bus, there are no requests for granting connections, and
there is no sharing of communication resources. Therefore, no
additional communication delay is introduced in the platform.
Because of this, the highest possible communication perfor-
mance can be achieved in such multiprocessor platforms. Under
the conditions that each CM contains only one channel and
each processor writes data only to its local CM (in compliance

Fig. 4. P2P platform synthesis example. (a) Process network. (b) P2P
architecture.

with our concept), our ESPAM tool synthesizes a P2P network
in the following (automated) way: First, for each process in
the KPN, ESPAM instantiates a processor, together with a CC.
Then, ESPAM finds all the channels that the process writes
to. For each such channel, the tool instantiates a CM and
assigns the channel to this CM. Finally, ESPAM connects the
CM to the already instantiated processor. In Fig. 4(b), we
give an example of a P2P multiprocessor platform generated
by ESPAM. The multiprocessor platform implements the KPN
depicted in Fig. 4(a), where each process is executed on a
separate processor.

IV. AUTOMATED DERIVATION OF PROCESS NETWORKS

The KPN MoC has been widely studied by our group for
more than seven years. The study resulted in techniques and
tools [3], [10], [11] for the automated translation of SANLPs
to KPN specifications. Although these techniques are very
advanced, they generate KPNs with too many FIFO channels,
which may lead to inefficient implementations. Moreover, they
do not address at all the problem of what the FIFO buffer sizes
should be. This is important because if the FIFO buffers are
undersized, this may lead to a deadlock in the KPN behavior.
Therefore, inspired by our previous work, we have recently
developed techniques, which are implemented in a translator
tool [9], for the improved derivation of KPNs. The input to
the translator tool is a SANLP written in C, and the output
is a KPN specification in XML format (see Fig. 1). In this
section, we describe the underlying techniques of our translator
tool. Below, in Section IV-A, we introduce the SANLPs and
their restrictions, and explain how a KPN is derived based on
a modified data flow analysis. We have modified the standard
data flow analysis to derive KPNs that have less interprocess
communication FIFO channels compared to the KPNs derived
by using our previous work [10], [11]. Then, in Section IV-B,
we show the techniques to compute the sizes of FIFO channels
that guarantee deadlock-free execution of our KPNs mapped
onto the multiprocessor platforms.

A. Modified Data Flow Analysis

SANLPs are programs that can be represented in the well-
known polytope model [29]. That is, a SANLP consists of a
set of statements and function calls, each possibly enclosed
in loops and/or guarded by conditions. The loops need not be
perfectly nested. All the lower and upper bounds of the loops as
well as all the expressions in conditions and array accesses have
to be affine functions of the enclosing loop iterators and param-
eters. The parameters are symbolic constants, i.e., their values



NIKOLOV et al.: MULTIPROCESSOR SYSTEM DESIGN, PROGRAMMING, AND IMPLEMENTATION 549

Fig. 5. SANLP fragment and its corresponding KPN. (a) Example of a
SANLP. (b) Corresponding KPN.

may not change during the execution of the program. The above
restrictions allow a compact mathematical representation of
SANLP through sets and relations of integer vectors defined
by linear (in)equalities, existential quantification, and the union
operation. In particular, the set of iterator vectors for which a
function call is executed is an integer set called the iteration
domain. The linear inequalities of this set correspond to the
lower and upper bounds of the loops enclosing the function call.
For example, the iteration domain of function F1 in Fig. 5(a) is
{i|0 ≤ i ≤ N − 1}. The iteration domains form the basis of the
description of the processes in our KPN model, as each process
corresponds to a particular function call. For example, there are
two function calls in the program fragment in Fig. 5(a), that
represent two application tasks, namely F1 and F2. Therefore,
there are two processes in the corresponding process network,
as shown in Fig. 5(b). The granularity of F1 and F2 determines
the granularity of the corresponding processes. The FIFO chan-
nels are determined by the array (or scalar) accesses in the
corresponding function call. All accesses that appear on the left-
hand side or in an address-of (&) expression for an argument of
a function call are considered to be write accesses. All other
accesses are considered to be read accesses.

To determine the FIFO channels between the processes, we
may basically perform a standard array data flow analysis [30].
That is, for each execution of a read operation of a given data
element in a function call, we need to find the source of the
data, i.e., the corresponding write operation that wrote the data
element. However, to reduce the communication of FIFO chan-
nels between different processes, in contrast to the standard data
flow analysis and in contrast to [10] and [11], we also consider
all the previous read operations from the same function call as
possible sources of the data. That is why we call our approach a
modified array data-flow analysis. The problem to be solved is
then: given a read from an array element, what was the last write
to or read (from that function call) from that array element?
The last iteration of a function call satisfying some constraints
can be obtained using Parametric Integer Programming (PIP)
[31], where we compute the lexicographical maximum of the
write (or read) source operations in terms of the iterators of
the “sink” read operation. Since there may be multiple function
calls that are potential sources of the data, and since we also
need to express that the source operation is executed before the
read (which is not a linear constraint, but rather a disjunction
of n linear constraints, where n is the shared nesting level), we
actually need to perform a number of PIP invocations.

For example, the first read access in function call F2 of
the program fragment in Fig. 5(a) reads the data written by

the function call F1, which results in a FIFO channel from
process “F1” to process “F2,” i.e., channel b in Fig. 5(b). In
particular, the data flow from iteration iw of function F1 to
iteration ir = iw of function F2. This information is captured
by the integer relation

DF1→F2 = {(iw, ir)|ir = iw ∧ 0 ≤ ir ≤ N − 1} . (1)

For the second read access in function call F2, after the elimina-
tion of the temporary variable tmp, the data have already been
read by the same function call after it was written. This results
in a self-loop channel b_1 from F2 to itself described as

DF2→F2 = {(iw, ir)|iw = ir − 1 ∧ 1 ≤ ir ≤ N − 1}
∪ {(iw, ir)|iw = ir = 0} . (2)

In general, we obtain pairs of write/read and read operations
such that some data flow from the write/read operation to the
(other) read operation. These pairs correspond to the channels
in our process network. For each of these pairs, we further
obtain a union of integer relations

m⋃

j=1

Dj(�iw,�ir) ⊂ Z
n1 × Z

n2 (3)

where n1 and n2 are the numbers of loops enclosing the
write and read operations, respectively, that connect the specific
iterations of the write/read and read operations such that the
first is the source of the second. As such, each iteration of a
given read operation is uniquely paired off to some write or
read operation iteration.

B. Computing FIFO Channel Sizes

Computing minimal deadlock-free buffer sizes is a nontrivial
global optimization problem. This problem becomes easier if
we first compute a deadlock-free schedule and then individu-
ally compute the buffer sizes for each channel. Note that this
schedule is only computed for the purpose of computing the
buffer sizes and is discarded afterward because the processes
in our KPNs are self-scheduled due to the blocking read/write
synchronization mechanism. The schedule we compute may
not be optimal; however, our computations do ensure that
a valid schedule exists for the computed buffer sizes. The
schedule is computed using a greedy approach. This approach
may not work for process networks in general, but since we
only consider SANLPs, it does work for any KPN derived
from SANLP. The basic idea is to place all iteration domains
in a common iteration space at an offset that is computed
by the scheduling algorithm. As in the individual iteration
spaces, the execution order in this common iteration space is
the lexicographical order. By fixing the offsets of the iteration
domain in the common space, we have therefore fixed the
relative order between any pair of iterations from any pair of
iteration domains. The algorithm starts by computing for any
pair of connected processes the minimal-dependence distance
vector, i.e., a distance vector being the difference between a
read operation and the corresponding write operation. Then, the
processes are greedily combined, ensuring that all the minimal
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distance vectors are (lexicographically) positive. The end result
is a schedule that ensures that every data element is written be-
fore it is read. For more information on this algorithm, we refer
to [32], where it is applied to perform loop fusion on SANLPs.

After the scheduling, we may consider all FIFO channels
to be self-loops of the common iteration space, and we can
compute the buffer sizes with the following qualification: we
will not be able to compute the absolute minimum buffer sizes,
but at best the minimum buffer sizes for the computed schedule.
To compute the buffer sizes, we compute the number of read
iterations R(i) that are executed before a given read operation
i and subtract the resulting expression from the number of
write iterations W (i) that are executed before the given read
operation, i.e.,

#elements in FIFO at operation i : W (i) − R(i). (4)

This computation can be entirely symbolically performed using
the barvinok library [33] that efficiently computes the number
of integer points in a parametric polytope. The result is a piece-
wise (quasi-)polynomial in the read iterators and parameters.
The required buffer size is the maximum of this expression over
all read iterations, i.e.,

FIFO size = max (W (i) − R(i)) . (5)

To symbolically compute the maximum, we apply the Bernstein
expansion [34] to obtain a parametric upper bound on the
expression.

V. AUTOMATED PROGRAMMING OF MPSOCS

In this section, we present in detail our approach for the sys-
tematic and automated programming of MPSoCs synthesized
with ESPAM. This approach is a main part of our design flow
depicted in Fig. 1. For the sake of clarity, in this section, we
explain the main steps in the ESPAM programming approach by
going through an illustrative example. In the beginning, we give
an example of the input specifications for ESPAM that describe
an MPSoC. Next, from these example specifications, we show
how the SW code for each processor in the MPSoC is generated,
and we present our SW synchronization and communication
primitives inserted in the code. Finally, we explain how the
memory map of the MPSoC is generated.

A. Input Specification

The input to ESPAM consists of platform, application, and
mapping specifications. An example of a platform specification
is shown in Fig. 2(a). An example of an application depicted
as a KPN is given in Fig. 8(a). It contains five processes
communicating through seven FIFO channels. Part of the cor-
responding XML application specification for this KPN is
shown in Fig. 6(a). Recall that this KPN in XML format
is automatically generated by our translator tool (see Fig. 1)
using the techniques presented in Section IV. For the sake
of clarity, we only show the description of process Pr1 and
channel FIFO1 in the XML code. Pr1 has one input port and
one output port defined in lines 3–8. Pr1 executes a function

Fig. 6. Examples of application and mapping specifications. (a) Application
specification. (b) Mapping specification.

called compute (line 10). The function has one input argument
(line 11) and one output argument (line 12). There is a strong
relation between the function arguments and the ports of a
process given in lines 4 and 7. Lines 23–28 show an example
of how the topology of a KPN is specified: FIFO1 connects
processes Pr1 and Pr3 through ports p1 and p4. An example of
a mapping specification is shown in Fig. 6(b), where process
Pr4 is mapped onto processor uP1 (see lines 3–5), processes
Pr2 and Pr5 are mapped onto processor uP2 (lines 7–10), etc.
Notice that the mapping of channels to CMs is not specified.
This mapping is related to the way processes are mapped to
processors. Therefore, the mapping of channels to CMs cannot
be arbitrary. It is automatically performed by ESPAM. This is
described in Section V-D.

B. Code Generation for Processors

ESPAM uses the initial sequential application program, the
corresponding KPN application specification, and the mapping
specification to automatically generate the software (C/C++)
code for each processor. The code for a processor contains a
control code and a computation code. The computation code
transforms the data that have to be processed by a processor.
ESPAM directly extracts this code from the initial sequential
program. The control code (for loops, if statements, etc.) de-
termines the control flow, i.e., when and how many times data
reading and data writing have to be performed by a processor
as well as when and how many times the computation code has
to be executed in a processor. The control code of a processor
is generated by ESPAM according to the KPN application
specification and the mapping specification.

In our example, process Pr1 is mapped onto processor uP4
(Fig. 6(b), lines 16–18). Therefore, ESPAM uses the XML
specification of process Pr1, as shown in Fig. 6(a), to generate
the control C code for processor uP4, as depicted in Fig. 7(a). In
lines 4–7, the type of data transferred through the FIFO chan-
nels is declared. The data type can be a scalar or more complex
type (in the example, it is a structure of one Boolean variable
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Fig. 7. Source code generated by ESPAM. (a) uP4.c. (b) primitives.h. (c) memoryMap.h.

Fig. 8. Mapping example. (a) KPN. (b) Example platform.

and a 64-element array of integers as declared in the initial
sequential program). There is one parameter (see Fig. 6(a),
line 13) that has to be declared as well. This is done in line 8 of
Fig. 7(a). Then, in lines 10–19 in the same figure, the behavior
of processor uP4 is described. In accordance with the XML
specification of process Pr1 in Fig. 6(a), the function compute is
executed 2 ∗ N − 2 times. Therefore, a for loop is generated in
the main routine for processor uP4 in lines 14–18 of Fig. 7(a).
The computation code in function compute is extracted from
the initial sequential program. This code is not important for
our example; thus, it is not given here for the sake of brevity.
The function compute uses the local variables in_0 and out_0
declared in lines 11 and 12 of Fig. 7(a). The input data come
from FIFO2 through port p2, and the results are written to
FIFO1 through port p1 [see Fig. 8(a)]. Therefore, before the
function call, ESPAM inserts a read primitive to read from
FIFO2 that initializes variable in_0. After the function call,
ESPAM inserts a write primitive to send the results (the value
of variable out_0) to FIFO1, as shown in Fig. 7(a) (lines 15 and
17). When several processes are mapped onto one processor, a
schedule is required in order to guarantee a proper execution
order of these processes. The ESPAM tool automatically finds
a local static schedule based on the grouping technique for the
processes presented in [35].

C. SW Communication and Synchronization Primitives

The code of the read/write communication and synchro-
nization primitives [used in lines 15 and 17 in Fig. 7(a)] is
shown in Fig. 7(b). This code is automatically generated by
ESPAM. Both primitives have three parameters, i.e., port, data,
and length. The parameter port is the address of the memory
location through which a processor can access a given FIFO
channel for reading/writing. The parameter data is a pointer to
a local variable, and the parameter length specifies the amount
of data (in bytes) to be moved from/to the local variable to/from

the FIFO channel. Recall that a FIFO channel is seen by a
processor as two memory locations in its CM address space.
A processor uses the first location to read/write data from/to
the FIFO channel, and the second location is used to read the
empty/full status of the channel. The primitives implement the
blocking synchronization mechanism between the processors
in the following way: First, the status of a channel that has to
be read/written is checked. A channel status is accessed using
the locations defined in lines 4 and 12. The blocking is imple-
mented by while loops with empty bodies in lines 7 and 15. A
loop iterates (does nothing) while a channel is full or empty.
Then, in lines 8 and 16, the actual data transfer is performed.

D. Memory Map Generation

Each FIFO channel in our MPSoCs has separate read and
write ports. A processor accesses a FIFO for read opera-
tions using the read synchronization primitive (as described in
Section V-C). The parameter port specifies the address of the
read port of the FIFO channel to be accessed. In the same way,
the processor writes to a FIFO using the write synchronization
primitive where the parameter port specifies the address of the
write port of this FIFO. The FIFO channels are implemented in
the CMs (see Section III); therefore, the addresses of the FIFO
ports are located in the processors’ address space where the CM
segment is defined. The memory map of an MPSoC generated
by ESPAM contains the values that define the read and write
addresses of each FIFO channel in the system.

The first step in the memory map generation is the mapping
of the FIFO channels in the KPN application specification onto
the CMs in the multiprocessor platform. This mapping cannot
be arbitrary. ESPAM maps FIFO channels onto the CMs of
the processors in the following automated way. First, for each
process in the application specification, ESPAM finds all the
channels this process writes to. Then, from the mapping specifi-
cation, ESPAM finds which processor corresponds to the current
process and maps the found channels in the processor’s local
CM. For example, consider the mapping specification shown
in Fig. 6(b), which defines only the mapping of the processes
of the KPN in Fig. 8(a) to the processors in the platform
shown in Fig. 8(b). Based on this mapping specification, ESPAM

automatically maps FIFO2, FIFO3, and FIFO5 onto the CM of
processor uP1 because process Pr4 is mapped onto processor
uP1, and process Pr4 writes to channels FIFO2, FIFO3, and
FIFO5. Similarly, FIFO4 is mapped onto the CM of processor
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uP3, and FIFO1 is mapped onto the CM of uP4. Since both
processes Pr2 and Pr5 are mapped onto processor uP2, ESPAM

maps FIFO6 and FIFO7 onto the CM of this processor.
After the mapping of the channels onto the CMs, ESPAM

generates the memory map of MPSoC, i.e., it generates values
for FIFOs’ read and write addresses. For the mapping example
illustrated in Fig. 8(b), the generated memory map is shown
in Fig. 7(c). Notice that FIFO1, FIFO2, FIFO4, and FIFO6
have equal write addresses (see lines 4, 6, 10, and 14). This
is not a problem because writing to these FIFOs is done
by different processors, and these FIFOs are located in the
local CMs of these different processors, i.e., these addresses
are local processor write addresses. The same applies for the
write addresses of FIFO3 and FIFO7. However, as explained
in Section III, all processors can read from all the FIFOs via
a communication component. Therefore, the read addresses
have to be unique in the MPSoC memory map, and the read
addresses have to precisely specify the CM in which a FIFO is
located. To accomplish this, a read address of a FIFO has two
fields, i.e., a CM number and a FIFO number within a CM.

Consider, for example, FIFO3 in Fig. 8(b). It is the second
FIFO in the CM of processor uP1; thus, this FIFO is numbered
with 0002 in this CM. In addition, the CM of uP1 can be
accessed for reading through port 1 of the communication
component CB, as shown in Fig. 8(b); thus, this CM is uniquely
numbered with 0001. As a consequence, the unique read ad-
dress of FIFO3 is determined to be 0x00010002—see line 9
in Fig. 7(c), where the first field 0001 is the CM number, and
the second field 0002 is the FIFO number in this CM. In the
same way, ESPAM automatically determines the unique read
addresses of the rest of the FIFOs that are listed in Fig. 7(c).

VI. EXPERIMENTS AND RESULTS

To show the effectiveness of our approach, in this section,
we present three experiments and the results we have obtained
by implementing and executing three image processing appli-
cations onto several MPSoCs using our system design flow and
the ESPAM tool presented in Section II. These applications are
a Sobel edge detection, a Discrete Wavelet Transform (DWT),
and a Motion JPEG (M-JPEG) encoder.

A. Experiment 1

In this experiment, we used our design flow to design
and program multiprocessor systems that execute the Sobel,
DWT, and M-JPEG applications. We started from SANLPs
written in C, and automatically derived the parallel application
specifications (KPNs) using our translator tool [9]. For the
Sobel and DWT applications, we used platform specifications
with three MicroBlaze processors connected P2P, and for the
M-JPEG application, a platform specification consisting of
four MicroBlaze processors was used, again connected P2P.
To show the achieved speedup, we compare the performance
of the automatically generated MPSoCs with the performance
of single-processor systems, one MicroBlaze or one PowerPC,
that execute the initial C programs for the Sobel, DWT, and
M-JPEG applications. The single-processor systems and the

Fig. 9. Performance results.

C code were designed and optimized by hand. The achieved
performance results for processing one image frame with size
128 × 128 pixels are shown in Fig. 9. The first (left most) bar
for each application shows the performance of the application
executed on a single MicroBlaze processor, the second bar
shows the performance of a single PowerPC system, and the
third (right most) bar shows the performance of our MPSoCs
with several (three or four) MicroBlaze processors, as described
above. The achieved speedup by our multiprocessor systems
compared to the single-processor systems is application de-
pendent. The MPSoC for Sobel achieves a speedup of 2.2×
compared to the single MicroBlaze system, the MPSoC for
DWT achieves a speedup of 2.1×, and the MPSoC for M-JPEG
achieves a speedup of 3.75× compared to one MicroBlaze. The
speedup is influenced by the data dependences between differ-
ent processes and the communication/computation ratio in the
KPNs that specify the applications. The dependences among
the processes in the three KPNs form an acyclic graph, which
allows all the processors to operate in parallel in a pipeline
fashion. Therefore, the achieved speedup is mainly determined
by the communication/computation ratio. The communication
in the Sobel and DWT systems takes more than 50% of the
total execution time because the processes executed on the
processors are too fine grained. In contrast, the processes in
M-JPEG are coarse grained; therefore, the processors in the
M-JPEG system spend no more than 10% of the execution time
for communication. As a result, the M-JPEG system achieved a
higher speedup.

B. Experiment 2

The main objective of this experiment is to evaluate the
effectiveness of our design flow for automated MPSoC synthe-
sis, programming, and implementation in terms of total design
time, i.e., how fast alternative multiprocessor systems can be
synthesized, programmed, and implemented. In addition, we
validate in terms of accuracy the high-level simulation models
used in SESAME [5] to explore the design space. We present a
comparison between the results obtained by running system-
level simulations (during design space exploration) and real
implementations of the M-JPEG encoder application.

As explained in Section II, ESPAM needs three input speci-
fications, namely an application specified as KPN, a platform
specification, and a mapping specification. Table I shows that
the KPN specification of the M-JPEG application was derived
in 22 s from a sequential C code using our translator tool [9].
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TABLE I
PROCESSING TIMES (IN HOURS: MINUTES: SECONDS)

A small manual modification (taking no longer than 30 min) to
the initial C code was necessary to meet the translator tool input
requirements. Generating the KPN specification is a one-time
effort since the same specification is used for all the subsequent
exploration and implementation steps.

The platform and the mapping specifications were generated
by SESAME after performing design space exploration using
the derived KPN specification of the M-JPEG application as an
input. We explored heterogeneous CB-based MPSoC platforms
with up to four processors (MicroBlaze or PowerPC). In our
design space exploration, we used three degrees of freedom,
namely the number of processors in the platform (1 to 4),
the type of processors (MicroBlaze versus PowerPC), and the
mapping of application processes onto the processors. Because
of SESAME’s efficiency and high level of abstraction modeling,
we were able to exhaustively explore the resulting design
space—which consists of 10 148 design points—using system-
level simulations. As can be seen in Table I, this design space
sweep took 1.5 h.

We selected 11 design points out of 10 148 that repre-
sent 11 alternative MPSoC architectures with the best found
application-to-architecture mappings in terms of performance
of the application executed on these MPSoCs. The SESAME

tool generated the platform and mapping specifications for each
of the selected 11 design points. Having these specifications,
together with the application specification (KPN), our ESPAM

tool synthesized, programmed, and generated 11 multiproces-
sor systems at RTL in 25 min (see Table I). The generated
files were automatically imported to the Xilinx Platform Studio
(XPS) tool [21] for physical implementation, i.e., mapping,
place, and route onto the FPGA. For prototyping in this experi-
ment, we used an FPGA board with the Xilinx VirtexII-Pro-20
device. It took the XPS tool more than 18 h to implement the
11 MPSoCs. All tools ran on a Pentium-IV machine at 1.8 GHz
with 1 GB of RAM. The figures in Table I show that a complete
implementation and programming of all the 11 platforms start-
ing from high-abstraction system-level specifications can be
obtained in about 22 h using our system design flow. So, a sig-
nificant reduction of design time is achieved. For comparison,
we refer to [36], where the same M-JPEG encoder application
was used in a case study. In the presented work, the authors
report that only a manual partitioning of this application took
three months. The performance results of our second experi-
ment are shown in Fig. 10. The performance numbers obtained
during design space exploration by simulation of the system-
level models for the selected MPSoCs are shown in Fig. 10(a).
The real performance numbers for the same MPSoCs
implemented and run on FPGA are shown in Fig. 10(b). In
both figures, the left axis shows the performance numbers (in
clock cycles) of each alternative MPSoC. The right axis shows

Fig. 10. Validation experiment: simulation results versus actual measure-
ments. (a) Simulation results (SESAME). (b) Prototyping results (ESPAM).

Fig. 11. Performance results.

how many processors an MPSoC contains, and the bottom
axis shows how many of them are MicroBlaze processors. For
example, the bar with right coordinate 4 and bottom coordinate
2 (4,2) represents the performance of a system that has four
processors, where two of them are MicroBlazes. It means that
the other two are PowerPC processors. The empty points in the
figures represent multiprocessor systems that cannot be built in
general, i.e., point (3,4) means a system with three processors
and four of them to be MicroBlazes.

Comparing the simulation numbers with the implementation
numbers in Fig. 10, we see that the system-level simulations ad-
equately show the correct performance trends with an average
error of 13% and worst-case error of 28%. The inaccuracies
in terms of the absolute cycle numbers are mainly caused by
the high-level modeling of the processors’ behavior. Indeed,
this is the price we have to pay in order to achieve very fast
simulations and design space exploration.

C. Experiment 3

In this experiment, we used ESPAM to implement the
M-JPEG application onto 16 alternative homogeneous MPSoCs
containing up to eight MicroBlaze processors connected
through a CB or P2P. The main objective of this experiment
is to evaluate the efficiency of the automatically generated
MPSoC implementations in terms of performance and resource
utilization.
1) Performance Results: The MPSoCs contain up to eight

MicroBlaze processors connected either P2P or through a CB.
The performance numbers, depicted in the left part of Fig. 11,
indicate that for the M-JPEG application and the alternative
platforms and mappings we have experimented with, it is not
reasonable to go beyond four processors. However, in this
experiment, we also wanted to check the system complexity
that can be reached by using our approach and the ESPAM tool.
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TABLE II
RESOURCE UTILIZATION

We were able to implement and program systems containing up
to eight MicroBlaze processors. The number of the processors
is only limited by the size of the FPGA chip we used for
prototyping, i.e., a Xilinx VirtexII-6000 FPGA.

We comment below on the performance of the systems con-
taining four MicroBlaze processors. The performance speedup
achieved by these systems is depicted in the right part of
Fig. 11. The leftmost bar shows the performance of the M-JPEG
application run on one MicroBlaze from our first experiment.
We use this as a reference number. We achieved a performance
speedup of 2.60× for the system with four processors and a
CB component, and for the system with four processors and
P2P connections, the performance speedup is 3.75×, whereas
the theoretical maximum is 4×. For comparison, we also im-
plemented a multiprocessor platform with four processors con-
nected through a ShB with round-robin arbitration policy. The
achieved speedup by this multiprocessor system (the second
bar) is only 1.42×. This clearly shows that a ShB architecture
is not an efficient architecture for building high-performance
multiprocessor systems.

Using ESPAM, we implemented, ran, and measured the per-
formance of the 16 alternative MPSoCs described above in
approximately two days. This fact indicates that in a relatively
short amount of time, we were able to explore the performance
of alternative multiprocessor systems through real implemen-
tations and measurements of actual numbers. These numbers
are 100% accurate. Gathering these numbers is faster than
running cycle-accurate simulations of the MPSoCs. We do not
know how much time is needed for an experienced designer to
verify an RTL simulation of several hardwired components and
several processors running in parallel and executing different
programs. However, we know that only setting up and per-
forming such simulation may take days. Of course, performing
simulation at a higher level of abstraction is faster than the
implementation and measurement of the real performance (see
Experiment 2), but the 100% accuracy of the numbers cannot
be achieved as we showed in Experiment 2. Therefore, in our
design flow, we apply the following strategy when designing
an MPSoC: 1) We perform simulation at a high level of ab-
straction in order to do very fast design space exploration and
to narrow down the design space to a few design points, for
example, 20. 2) We perform 100% accurate exploration in the
narrowed design space by real MPSoC implementations and
measurements of the actual numbers in order to select the best
MPSoC implementation.
2) Synthesis Results: In Table II, we present the overall

resource utilization of the multiprocessor systems with four
processors that we considered in this experiment. We also
present the utilization results for the CCs, a four-port CB
component, and a four-port ShB component (BUS). The FPGA

resources are grouped into slices that contain four-input lookup
tables and flip-flops. The first three rows in the table show that
the multiprocessor systems utilize around 40% of the slices
in the FPGA. In addition, the last three rows show that our
communication component (CB or BUS) together with the CCs
in each system utilize a minor portion of the FPGA slices—only
5%. These numbers clearly indicate that our approach to
connect processors through communication components and
CMs is very efficient in terms of slice utilization. The last
column in Table II shows a relatively high utilization (61%)
of the on-chip memory. This high utilization is not related to
inefficiency in our approach to connect processors via CMs
because for each M-JPEG system we use a maximum of nine
BRAM blocks to implement FIFO buffers distributed over four
CMs. The high BRAM utilization is due to the fact that the
M-JPEG is a relatively complex application, and almost all
BRAM blocks are used for the program and data memory of
the four microprocessors in our platforms.

VII. CONCLUSION

In this paper, we have presented our system design methods
and techniques that are implemented in the ESPAM tool for
automated multiprocessor platform synthesis, implementation,
and programming. This automation significantly reduces the
design time starting from system-level specification and going
down to complete implementation. Based on our experiments,
we conclude that our ESPAM tool, together with the translator
tool [9], SESAME [5], and the XPS tool [21], is able to sys-
tematically, automatically, and quickly implement and program
a multiprocessor platform—within 2 h. The results presented
in this paper show that our approach of connecting processors
through CCs and CMs is efficient in terms of HW utilization
and performance speedup. For an M-JPEG encoder application
implemented with four processors, the communication logic
utilizes only 5% of the resources. We achieved a speedup close
to the theoretical maximum (4×) as compared to a single-
processor system.
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