
Combining Task- and Data-Level
Parallelism for High-Throughput CNN
Inference on Embedded CPUs-GPUs

MPSoCs

Svetlana Minakova(B), Erqian Tang, and Todor Stefanov

LIACS, Leiden University, Leiden, The Netherlands
{s.minakova,e.tang,t.p.stefanov}@liacs.leidenuniv.nl

Abstract. Nowadays Convolutional Neural Networks (CNNs) are
widely used to perform various tasks in areas such as computer vision
or natural language processing. Some of the CNN applications require
high-throughput execution of the CNN inference, on embedded devices,
and many modern embedded devices are based on CPUs-GPUs multi-
processor systems-on-chip (MPSoCs). Ensuring high-throughput execu-
tion of the CNN inference on embedded CPUs-GPUs MPSoCs is a com-
plex task, which requires efficient utilization of both task-level (pipeline)
and data-level parallelism, available in a CNN. However, the existing
Deep Learning frameworks utilize only task-level (pipeline) or only data-
level parallelism, available in a CNN, and do not take full advantage of all
embedded MPSoC computational resources. Therefore, in this paper, we
propose a novel methodology for efficient execution of the CNN inference
on embedded CPUs-GPUs MPSoCs. In our methodology, we ensure effi-
cient utilization of both task-level (pipeline) and data-level parallelism,
available in a CNN, to achieve high-throughput execution of the CNN
inference on embedded CPUs-GPUs MPSoCs.

Keywords: Convolutional Neural Networks · Dataflow models · SDF ·
CSDF · Mapping · Hight throughput

1 Introduction

Convolutional Neural Networks (CNNs) are biologically inspired graph computa-
tional models, characterized by high degree of available parallelism. Due to their
ability to handle large, unstructured data, CNNs are widely used to perform var-
ious tasks in areas such as computer vision and natural language processing [1].
The CNNs execution typically includes two phases: training and inference [1]. At
the training phase the optimal CNN parameters are established. At the inference
phase, a trained CNN is applied to the actual data and performs the task for
which the CNN is designed. Due to the high complexity of state-of-the-art CNNs,
their training and inference phases are usually performed by high-performance

c© Springer Nature Switzerland AG 2020
A. Orailoglu et al. (Eds.): SAMOS 2020, LNCS 12471, pp. 18–35, 2020.
https://doi.org/10.1007/978-3-030-60939-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60939-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-60939-9_2

Combining Task- and Data-Level Parallelism for High-Throughput CNN 19

platforms, and provided as cloud services. However, some applications, e.g. [2–4],
require high-throughput execution of the CNNs inference, which cannot be pro-
vided as a cloud service. These applications are typically deployed on embedded
devices.

Many modern embedded devices are based on multi-processor systems-
on-chip (MPSoCs) [5]: complex integrated circuits, that consist of processing
elements with specific functionalities. Due to their specific design, MPSoCs
offer energy-efficient and high-performance solutions for applications running on
embedded devices. In addition to hosting various processing elements, capable
of running the CNN inference, such as central processing units (CPUs), embed-
ded graphics processing units (embedded GPUs), and field-programmable gate
arrays (FPGAs), MPSoCs integrate many other components, such as commu-
nication network components and video accelerators, that allow to deploy the
entire embedded application on a single chip. Therefore, MPSoCs seem to be a
promising solution for the deployment of the CNN inference phase on embedded
devices.

However, achieving high-throughput execution of the computationally-
intensive CNN inference phase on embedded CPUs-GPUs MPSoCs is a complex
task.

On the one hand, a high-throughput CNN inference execution requires effec-
tive utilization of the parallelism, available in a CNN. The parallelism avail-
able in a CNN can be divided into two different types: task-level (pipeline) and
data-level parallelism. The parallelism, available among CNN layers, hereinafter
referred as task-level parallelism [6], involves execution of several CNN layers in a
parallel pipelined fashion, where each layer may perform computations, different
from the computations, performed by other CNN layers. Utilization of this type
of parallelism allows to reduce the overall computation time, and increase the
overall CNN inference throughput, compared to sequential execution of CNN
layers [7]. The parallelism, available within a CNN layer, hereinafter referred
as data-level parallelism [6], involves the same computation, e.g., Convolution,
performed by a CNN layer over the CNN layer input data partitions. Utilization
of this type of parallelism allows to improve the CNN inference throughput by
accelerating the execution of individual CNN layers [8–12].

When the CNN inference is executed on an embedded CPUs-GPUs MPSoC,
the CNN computational workload is distributed among the heterogeneous
MPSoC processors: embedded CPUs and GPUs. The CPUs are more suitable
for handling task-level parallelism, compared to GPUs, whereas GPUs are more
suitable for handling data-level parallelism, compared to CPUs [13]. Thus, for
efficient execution of the CNN inference on an embedded MPSoC, the task-level
parallelism should be handled by the CPUs, available in an embedded MPSoC,
i.e., different CNN layers should, if possible, be executed on different CPUs,
and the overall CNN computational workload should be balanced among the
CPUs [14]. Additionally, the data-level parallelism, available within CNN layers,
should be handled by embedded GPUs, i.e., the embedded CPUs should offload
data-parallel computations within the CNN layers onto the embedded GPUs,

20 S. Minakova et al.

thereby accelerating the computations within CNN layers for further improve-
ment of the CNN inference throughput, already achieved by efficient task-level
parallelism exploitation. Thus, efficient execution of the CNN inference on an
embedded CPUs-GPUs MPSoC involves efficient exploitation of both task-level
parallelism and data-level parallelism, available in the CNN.

On the other hand, effective utilization of task- and data-level parallelism
requires proper communication and synchronization between tasks, executed on
different processors of an embedded MPSoC. In this respect, attempting to utilize
an unnecessary large amount of CNN parallelism on limited embedded MPSoC
resources, results in unnecessary communication and synchronization overheads,
that reduce the CNN inference throughput. Thus, to achieve high CNN inference
throughput, the CNN inference, executed on an embedded MPSoC, should utilize
the right amount of parallelism, which matches the computational capacity of
the MPSoC.

Based on the discussion above, we argue, that efficient execution of the CNN
inference on a CPUs-GPUs embedded MPSoC requires:

1. efficient handling of the task-level parallelism, available in a CNN, by CPUs;
2. CPU workload balancing;
3. efficient handling of the data-level parallelism, available in a CNN, by GPUs;
4. efficient exploitation of task- and data-level parallelism, which matches the

computational capacity of an embedded MPSoC.

However, the existing Deep Learning (DL) frameworks [7–12,15–18], that
enable execution of the CNN inference on embedded CPUs-GPUs MPSoCs, only
partially satisfy requirements (1) to (4), mentioned above. These frameworks can
be divided into two main groups. The first group includes frameworks [7] and [18],
that exploit only task-level parallelism, available in a CNN, and efficiently utilize
only embedded CPUs. Thus, these frameworks satisfy requirements (1) and (2),
mentioned above, and do not satisfy requirement (3). The second group includes
frameworks [8–12,15–17], that exploit only data-level parallelism, available in a
CNN, and efficiently utilize only embedded GPUs. Thus, these frameworks sat-
isfy requirement (3), mentioned above, but do not satisfy requirements (1) and
(2). Moreover, all frameworks [7–12,15–18] directly utilize the CNN computa-
tional model to execute the CNN inference on embedded CPUs-GPUs MPSoCs.
The large amount of parallelism, available in a CNN model, typically does not
match the limited computational capacity of embedded CPUs-GPUs MPSoC.
Thus, frameworks [7–12,15–18] do not satisfy requirement (4), mentioned above.

Therefore, in this paper, we propose a novel methodology for efficient execu-
tion of the CNN inference on embedded CPUs-GPUs MPSoCs. Our methodology
consists of three main steps. In Step 1 (Sect. 4.1), we convert a CNN model into
a functionally equivalent Synchronous Dataflow (SDF) model [19]. Unlike the
CNN model, the SDF model explicitly specifies task- and data-level parallelism,
available in a CNN, as well as it explicitly specifies the tasks communication
and synchronization mechanisms, suitable for efficient mapping and execution
of a CNN on an embedded MPSoC. Thus, a conversion of a CNN model into

Combining Task- and Data-Level Parallelism for High-Throughput CNN 21

a SDF model is necessary for efficient mapping and execution of a CNN on an
embedded CPUs-GPUs MPSoC. In Step 2 (Sect. 4.2), we propose to utilize a
Genetic Algorithm [20], to find an efficient mapping of the SDF model, obtained
on Step 1, on an embedded CPUs-GPUs MPSoC. The mapping, obtained by
the Genetic Algorithm, describes the distribution of the CNN inference compu-
tational workload on an embedded MPSoC, that satisfies requirements (1) to
(3), mentioned above. In Step 3 (Sect. 4.3), we use the mapping, obtained in
Step 2, to convert a CNN model into a final platform-aware executable Cyclo-
Static Dataflow (CSDF) application model [21]. The CSDF model, obtained in
Step 3, describes the CNN inference as an application, efficiently distributed over
embedded MPSoC processors and exploiting the right amount of task- and data-
level parallelism, which matches the computational capacity of an embedded
MPSoC. Thus, our methodology satisfies all requirements (1) to (4), mentioned
above, to take full advantage of the CPU and GPU resources, available in an
MPSoC. Moreover, as we show by experimental results (Sect. 5), our method-
ology enables high-throughput execution of the CNN inference on embedded
CPUs-GPUs MPSoCs.

Paper Contributions
In this paper, we propose a novel methodology for execution of the CNN infer-
ence on embedded CPUs-GPUs MPSoCs (Sect. 4), which takes full advantage
of all CPU and GPU resources, available in an MPSoC, and ensures high-
throughput CNN inference execution on CPUs-GPUs MPSoCs. The exploita-
tion of task-level (pipeline) parallelism, available among CNN layers, together
with data-level parallelism, available within CNN layers, for high-throughput
execution of the CNN inference on embedded MPSoCs, is our main novel con-
tribution. Other important novel contributions are: (1) the automated conver-
sion of a CNN model into a SDF model, suitable for searching for an efficient
mapping of a CNN onto an embedded MPSoC (Sect. 4.1); (2) the automated
conversion of a CNN model into a functionally equivalent platform-aware exe-
cutable CSDF model, which efficiently utilizes CPUs-GPUs embedded MPSoC
computational resources (Sect. 4.3); (3) taking state-of-the-art CNNs from the
ONNX models zoo [22] and mapping them on a Nvidia Jetson MPSoC [23],
we achieve a 20% higher throughput, when the CNN inference is executed with
our methodology, compared to the throughput of the CNN inference, executed
by the best-known and state-of-the-art Tensorrt DL framework [12] for Nvidia
Jetson MPSoCs (Sect. 5).

2 Related Work

The well-known Deep Learning (DL) frameworks, such as TensorFlow [8],
Caffe2 [9] and others [10] and some of the Deep Learning frameworks for embed-
ded devices such as [11,12,15–17] efficiently exploit data-level parallelism, avail-
able in a CNN, for efficient utilization of embedded GPUs. However, these frame-
works do not exploit task-level parallelism, available in a CNN. They execute the

22 S. Minakova et al.

CNN inference layer-by-layer, i.e., at every computational step only one CNN
layer is executed. Such layer-by-layer execution of CNN layers is performed either
on a single CPU, which utilizes GPU devices for acceleration, or on all available
embedded CPUs. Thus, at every computational step, either some of the embed-
ded CPUs are not utilized, or embedded GPUs are not utilized. Therefore, these
frameworks cannot take full advantage of all CPU and GPU resources and can-
not achieve high CNN inference throughput, typically required for the CNN
inference, executed on embedded MPSoCs [2–4]. Unlike these frameworks, our
methodology exploits together both task-level parallelism and data-level paral-
lelism, available in the CNN. In our methodology, the CNN layers are distributed
on embedded CPUs, such that the CNN workload is balanced among the CPUs,
and at every computational step several CNN layers are executed in parallel
(pipeline) fashion. At the same time, some of the computations within CNN
layers are performed on efficiently-shared embedded GPU devices. Thus, in our
methodology, at every computational step all available CPU and GPU resources
are efficiently utilized. Therefore, our methodology allows to achieve higher CNN
inference throughput, compared to the frameworks, presented in [8–12,15–17].

The frameworks, presented in [7] and [18], exploit task-level parallelism, avail-
able among CNN layers, for efficient execution of the CNN inference on an
embedded MPSoC. In these frameworks, CNN layers are distributed on the
embedded CPUs and executed in parallel (pipeline) fashion, which provides
higher CNN throughput than sequential (layer-by-layer) execution of CNN lay-
ers. However, these frameworks do not utilize embedded GPUs, available in an
MPSoC. As a consequence, these frameworks cannot increase further the CNN
inference throughput. In contrast, in our methodology, the throughput, achieved
by efficient task-level parallelism exploitation, is further increased by exploita-
tion of data-level parallelism, i.e., by exploitation of embedded GPU devices
to accelerate the computations within CNN layers. In our methodology, some
computations within CNN layers are offloaded onto embedded GPUs and per-
formed in parallel. Parallel execution of computations within CNN layers allows
to reduce the execution time of individual CNN layers and to increase the CNN
inference throughput. Therefore, our methodology ensures higher CNN inference
throughput, compared to frameworks [7] and [18].

3 Background

In this section, we describe the Convolutional Neural Network (CNN) model, the
Synchronous Dataflow (SDF) model, the Cyclo-Static Dataflow (CSDF) model,
and specific features of embedded CPUs-GPUs MPSoCs, essential for under-
standing the proposed methodology.

3.1 CNN Model

The CNN is a computational model [24], commonly represented as a directed
acyclic computational graph CNN(L,E) with a set of nodes L, also called layers,

Combining Task- and Data-Level Parallelism for High-Throughput CNN 23

Fig. 1. CNN, SDF and CSDF computational models

and a set of edges E. An example of a CNN model with |L| = 23 layers and
|E| = 24 edges is given in Fig. 1(a). The CNN model specifies the transformations
over the CNN input data, e.g. an image, required to obtain the CNN output
data, e.g. an image classification result. Every layer li ∈ L specifies a part of
these transformations. It has a layer input data Xi, a layer output data Yi, and
an operator opi, so that Yi = opi(Xi). The operator opi determines the main
difference between the CNN layer types. The most common layer types [1] are:

– convolutional with opi = conv;
– pooling with opi ∈ {maxpool, avgpool, globalmaxpool, globalavgpool};
– activation with opi ∈ {relu, thn, sigm};
– Fully Connected (FC) with opi ∈ {matmul, gemm};
– normalization with opi ∈ {Batch Normalization (BN), Local Response Nor-

malization (LRN)};

24 S. Minakova et al.

– data with opi ∈ {input, output};
– loss with opi = softmax;

The CNN layers input and output data are stored in multidimensional
arrays, called tensors [24]. In this paper, every data tensor T has the format
T [WT ,HT ,CT], where WT is the tensor width, HT is the tensor height, CT is the
number of channels. An example of layer l2 is given in Fig. 1(a). Layer l2 is a
convolutional layer. It applies operator conv to its input data tensor X

[32,32,3]
2

and produces output data tensor Y
[32,32,110]
2 . The input data tensor Xi comes

to layer li from other CNN layers, as specified by the CNN edges eji ∈ E. Each
CNN edge eji ∈ E, represents a data dependency between layers lj and li, such
that Yj ⊆ Xi. An example of a CNN edge is edge e12, shown in Fig. 1(a). Edge
e12 specifies, that the output data of layer l1 is the input data of layer l2, i.e.,
Y

[32,32,3]
1 = X

[32,32,3]
2 .

A CNN is characterized with a large amount of available task-level parallelism
and data-level parallelism. However, this parallelism is not explicitly specified in
the CNN computational model. Therefore, the number of parallel tasks, executed
to perform the CNN model functionality, and the exact communication and
synchronization mechanisms between these tasks are internally determined by
the utilized DL framework, and can vary for different frameworks. For example,
the well-known DL frameworks [8–10] represent the functionality of every CNN
layer li as multiple tasks, where the total number of tasks depends on the layer
mapping. The frameworks [7,18] represent the functionality of the same layer li
as one task or part of a task. Therefore, the task-level parallelism is not explicitly
specified in the CNN model. Analogously, the available data-level parallelism, is
not explicitly specified in the CNN model. The data-level parallelism, available
within CNN layer li can be explicitly expressed by decomposition of the layer
output data tensor Yi into a set of K output sub-tensors {Yi1, Yi2, ..., YiK}, where
(1) every Yik can be computed in parallel by operator opi, applied to the input
data sub-tensor Xik; (2) data elements within every Yik and every Xik can be
processed in parallel. However, the CNN model does not specify the data-level
parallelism explicitly, i.e., the number of output data sub-tensors K, the number
of elements within sub-tensors Xik and Yik, and other decomposition parameters
are determined by every design framework individually, and can vary for different
frameworks. For example, the Caffe2 [9] framework internally represents the conv
operator as the gemm operator, so for every Convolutional layer K = 1; The
TensorFlow framework [10] uses a convolutional operator directly, and computes
K ≥ 1 from the conv operator parameters.

3.2 SDF Model

The SDF model [19] is a well-known dataflow model of computation, widely
used in the embedded systems community for efficient mapping of applications
on embedded devices [25], including embedded CPUs-GPUs MPSoCs. An appli-
cation, modeled as a SDF, is a directed graph G(A,C), which consists of a set of

Combining Task- and Data-Level Parallelism for High-Throughput CNN 25

nodes A, also called actors, communicating through a set of FIFO channels C.
An example of a SDF model with |A| = 23 actors and |C| = 24 FIFO channels
is given in Fig. 1(b). Every actor ai ∈ A is a task, which performs certain appli-
cation functionality, represented as a function fi. An example of SDF actor a3 is
given in Fig. 1(b). Actor a3 performs function f3 = {ReLU}. Every FIFO chan-
nel cij ∈ C represents data dependency and transfers data in tokens between
actors ai and aj . cij has data production rate Uij and data consumption rate
Vij . Uij specifies the production of data tokens into channel cij by actor ai.
Vij specifies the consumption of data tokens from channel cij by actor aj . An
example of a communication FIFO channel c36 is given in Fig. 1(b). Channel c36
transfers data between actors a3 and a6. It has production rate U36 = [112640],
specifying, that, at each firing, actor a3 produces 112640 data tokens into chan-
nel c36 and consumption rate V36 = [112640], specifying, that, at each firing,
actor a6 consumes 112640 data tokens from channel c36.

3.3 CSDF Model

The CSDF model [21] is a generalization of the SDF model, briefly introduced
in Sect. 3.2. Unlike in the SDF model, in the CSDF model, actors have cyclically
changing firing rules, and channels have cyclically changing production and con-
sumption rates. An example of a CSDF model with |A| = 5 actors and |C| = 7
FIFO channels is given in Fig. 1(c). Every actor ai ∈ A in the CSDF model per-
forms an execution sequence Fi of length Pi, where p ∈ [1, Pi] is called a phase
of actor ai. At every phase p, actor ai executes function fi(((p − 1)modPi) + 1).
An example of CSDF actor a2 is given in Fig. 1(c). Actor a2 performs execu-
tion sequence F2 = {Subnet12, Subnet22}, where Subnet12 and Subnbet22 are func-
tions. Actor a2 has P2 = 2 phases. At phase p = 1 actor a3 performs function
f(1) = Subnet12, and at phase p = 2 actor a2 performs function f(2) = Subnet22.

Instead of fixed production and consumption rates, utilized in the SDF model,
in the CSDF model every FIFO channel cij ∈ C has data production sequence
Uij of length Pi and data consumption sequence Vij of length Pj . Every element
uij(p) ∈ Uij of the production sequence specifies the amount of tokens, produced
by actor ai into channel cij at actors phase p ∈ [1, Pi]. Analogously, every ele-
ment vij(p) ∈ Vij of the consumption sequence specifies the amount of tokens,
consumed by actor aj from channel cij at actors phase p ∈ [1, Pj]. An example
of a CSDF communication channel c12 is given in Fig. 1(c). Channel c12 trans-
fers data between actors a1 and a2. It has production sequence U12 = [187200],
specifying, that actor a1 produces 187200 tokens into channel c12 at its single
phase p = 1, and consumption sequence V12 = [187200, 0], specifying, that actor
a2 consumes 187200 tokens from channel c12 at phase p = 1 and 0 tokens at
phase p = 2.

3.4 Embedded CPUs-GPUs MPSoC

We define an embedded MPSoC as a tuple MPSoC(cpu, gpu), where cpu =
{cpu1, cpu2, ..., cpun} is a set of all CPU cores, available in the MPSoC; gpu =

26 S. Minakova et al.

{gpu1, gpu2, ..., gpum} is a set of all GPU devices, available in the MPSoC, and
typically m ≤ n. An example of an embedded CPUs-GPUs MPSoC with n = 5
CPU cores and m = 1 GPU device is shown in Fig. 2.

Fig. 2. MPSoC Fig. 3. Our methodology

4 Our Methodology

In this section, we present our three-step methodology for high-throughput exe-
cution of a CNN inference on embedded CPUs-GPUs MPSoCs. Our methodol-
ogy is shown in Fig. 3. In Step 1 (Sect. 4.1), we convert a CNN model into a
functionally equivalent SDF model, suitable for efficient mapping of a CNN onto
an embedded CPUs-GPUs MPSoC. In Step 2 (Sect. 4.2), we utilize a Genetic
Algorithm to find an efficient mapping of the SDF model, obtained in Step 1,
onto the MPSoC. In Step 3 (Sect. 4.3), we use the mapping, obtained in Step 2,
to convert the CNN model into a CSDF model, representing the final platform-
aware executable CNN inference application, which takes full advantage of all
CPU and GPU resources, available in an MPSoC for high-throughput execution
of the CNN inference on the MPSoC.

Algorithm 1: CNN-to-SDF conversion
Input: CNN(L,E)
Result: G(A,C)

1 A,C ← ∅; G(A,C) ← SDF model (A,C);
2 for li ∈ L do
3 fi = opi;
4 ai ← actor (fi);
5 A ← A + ai;

6 for eij ∈ E do
7 cij ← FIFO channel (ai, aj);

8 Uij = WYi ∗ HYi ∗ CYi ;

9 Vij = WXj ∗ HXj ∗ CXj ;
10 C ← C + cij ;

11 return G(A,C)

Combining Task- and Data-Level Parallelism for High-Throughput CNN 27

4.1 CNN to SDF Model Conversion

In this section, we show how we automatically convert a CNN model, introduced
in Sect. 3.1, into a functionally equivalent SDF model, introduced in Sect. 3.2.
The conversion is given in Algorithm 1. It accepts as an input a CNN model
CNN(L,E) and generates as an output a functionally equivalent SDF model
G(A,C).

In Line 1, Algorithm 1 creates an empty SDF model. In Lines 2–5, Algo-
rithm 1 converts every CNN layer li into a functionally equivalent actor ai.
Function fi, executed by actor ai, is the operator opi, performed by layer li over
its input data tensor Xi to produce its output data tensor Yi. In Lines 6–10,
Algorithm 1 converts every CNN edge eij into FIFO channel cij . The produc-
tion rate Uij of channel cij is computed in Line 8 of Algorithm 1, and is equal to
the number of data elements in tensor Yi. The consumption rate Vij of channel
cij is computed in Line 9 of Algorithm 1, and is equal to the number of data
elements in tensor Xj . An example of the CNN-to-SDF conversion, performed
by Algorithm 1, is shown in Fig. 1, where the CNN model, shown in Fig. 1(a),
is automatically converted into the SDF model, shown in Fig. 1(b).

Unlike the CNN model CNN(L,E), accepted as an input by Algorithm 1, the
functionally equivalent SDF model G(A,C), generated by Algorithm 1, explic-
itly specifies both task-level and data-level parallelism, which could be exploited
during the CNN inference phase, as well as this SDF explicitly specifies the com-
munication and synchronization mechanism between the actors/tasks, needed to
execute the CNN inference properly. The task-level parallelism, available among
CNN layers, is explicitly specified in the SDF model topology, where every actor
ai ∈ A is a task, performing the functionality of CNN layer li ∈ L, and the
total number of tasks, needed to perform the CNN model functionality, is equal
to the number of actors in the SDF model. The communication and synchro-
nization between the tasks, are explicitly specified by the SDF FIFO channels,
where every channel cij ∈ C specifies, that actor ai ∈ A communicates with
actor aj ∈ A through a FIFO buffer, and the production-consumption rates of
the channels cij ∈ C determine the frequency and the order of the actors firings
- for more details see [19]. The data-level parallelism is explicitly specified in the
channels production rates. For example, production rate U36 = [112640] of FIFO
channel c36, shown in Fig. 1(b) and explained in Sect. 3.2, explicitly specifies
that, when actor a3 fires, it produces 112640 data tokens, and each token can be
obtained in parallel by executing 112640 parallel ReLU operations within each
firing of a3.

The SDF explicit specification of the tasks, that can be potentially performed
during the CNN inference, and the SDF explicit specification of the communi-
cation and synchronization between the tasks, allow to perform a search for
efficient mappings of the CNN onto an embedded CPUs-GPUs MPSoC.

4.2 Efficient Mapping

In this section, we show how we obtain an efficient mapping of a SDF
model G(A,C), generated by Algorithm 1, onto an embedded CPUs-GPUs

28 S. Minakova et al.

Table 1. Mapping example

cpu1/gpu1 cpu2 cpu3 cpu4 cpu5

a1, a2, a3, a4, a5, a6, a7 a8, a9, a10, a13 a11, a12 a14, a15, a16, a17, a18, a21, a22, a23 a19, a20

Fig. 4. Mapping chromosome example

MPSoC(cpu, gpu), defined in Sect. 3.4. In our methodology, the CNN inference
tasks, explicitly specified as SDF actors, are executed on embedded CPU cores,
that are able to efficiently handle the task-level parallelism. To efficiently utilize
the data-level parallelism, available within the tasks, some of the CPU cores
offload computations on the embedded GPUs. Since the number of embedded
GPU devices is limited, it may occur, that the efficient exploitation of task-level
parallelism, by embedded CPUs, is disrupted due to CPUs competition for the
limited embedded GPU devices. To avoid such disruption, for every embedded
GPU gpuj ∈ gpu, we allocate a single CPU core cpui ∈ cpu, which offloads
computations on gpuj .

Based on the discussion above, we define a mapping of SDF model G(A,C)
onto MPSoC(cpu, gpu), as a partition of actors set A into n subsets, where
n = |cpu| is the number of CPU cores, available in the MPSoC. We denote
such mapping as nA = {nA1,

nA2, ...,
nAn}, where each nAi ∈ nA is a subset

of actors, mapped on cpui, such that ∩n
i=1

nAi = ∅, and ∪n
i=1

nAi = A. The
first m = |gpu| number of CPU cores in mapping nA offload computations on
the corresponding embedded GPUs, i.e., the computations within every actor
ak ∈ nAj , j ∈ [1,m] are performed on gpuj , and the computations within every
actor ak ∈ nAi, i ∈ [m + 1, n] are performed on cpui. An example of mapping
5A = {5A1,

5A2,
5A3,

5A4,
5A5} of the SDF model G(A,C), shown in Fig. 1(b)

and explained in Sect. 3.2, on the embedded MPSoC, shown in Figure 2 and
explained in Sect. 3.4, is given in Table 1. Every Column in Table 1 corresponds
to a subset 5Ai, i ∈ [1, 5]. For example, Column 1 in Table 1 corresponds to subset
5A1 = {a1, a2, a3, a4, a5, a6, a7}. The actors within subset 5A1 are mapped on
cpu1, which offloads computations on gpu1. Column 2 in Table 1 describes subset
5A2 = {a8, a9, a10, a13}. Every actor ai ∈ 5A2 is mapped on cpu2. Since the
MPSoC does not have gpu2, all computations within actors in 5A2 are performed
only on cpu2.

We consider that a mapping is efficient, if it ensures that the workload is bal-
anced [14] among all embedded CPU cores, including those, that offload compu-
tations on embedded GPUs. We note, that obtaining such an efficient mapping
of an SDF graph onto a CPUs-GPUs MPSoC is a complex Design Space Explo-
ration (DSE) problem. In our methodology, to solve this problem, we propose
to use a Genetic Algorithm (GA) [20]: a well-known heuristic approach, widely

Combining Task- and Data-Level Parallelism for High-Throughput CNN 29

used for finding optimal solutions for complex DSE problems. We use a simple
GA with standard two-parent crossover, a single-gene mutation, and standard
user-defined GA parameters, such as initial offspring size, number of epochs,
mutation and crossover probabilities [20]. To utilize such a GA for searching of
an efficient mapping nA, we have to specify two problem-specific GA attributes,
namely chromosome and fitness function [20]. A chromosome is a representa-
tion of a GA solution (in our methodology a solution is a mapping) as a set of
parameters (genes), joined into a string [20]. We represent mapping nA, as a
string of length |A|, where every gene is a CPU core cpui ∈ cpu. An example
of the chromosome, corresponding to mapping 5A, shown in Table 1, is given in
Fig. 4.

The fitness-function is a special function, which measures the quality of the
solutions and guides the GA-based search. During the search, the fitness func-
tion should be minimized or maximized. In our methodology, we search for a
mapping, in which the workload is balanced among all CPU cores, available in
MPSoC(cpu, gpu), i.e., the difference in execution time between every pair of
CPU cores (cpui ∈ cpu, cpuj ∈ cpu), i 	= j, is minimized. Thus, we define a
specific fitness-function φ to be minimized during the GA-based search as:

φ =
∑

∀(cpui,cpuj)∈cpu2

|τcpui
− τcpuj

| (1)

where τcpui
and τcpuj

are the total execution time of cpui and cpuj , respec-
tively. For every cpui ∈ cpu, τcpui

is computed as:

τcpui
= τ t

cpui
+ τ com

cpui
(2)

where τ t
cpui

is the time, required by cpui to execute all tasks, mapped on
cpui; τ com

cpui
is the time, required for communication of cpui with other embedded

processors. The time τ t
cpui

is computed as:

τ t
cpui

=
∑

ak∈nAi

τ(fk,cpui) (3)

where nAi is the set of all actors, mapped on cpui; fk is the function of actor
ak ∈ nAi; τ(fk,cpui) is the time, taken by cpui to execute fk, measured on the
MPSoC. The time τ com

cpui
is computed as:

τ com
cpui

=
∑

ak∈nAi

(τw ∗
∑

ckj∈C

Ukj + τr ∗
∑

cjk∈C

Vjk) (4)

where nAi is the set of all actors, mapped on cpui; ckj ∈ C is an output
channel of actor ak ∈ nAi, to where, at each firing, actor ak produces Ukj

tokens; cjk ∈ C is an input channel of actor ak, from where, at each firing, actor
ak consumes Vjk tokens; τr and τw specify the time, needed by a CPU core,
to read and write one data token, respectively. τr and τw are measured on the
MPSoC.

30 S. Minakova et al.

4.3 CNN to CSDF Model Conversion

In this section, we show how we automatically convert a CNN model, intro-
duced in Sect. 3.1, into a final executable platform-aware application, repre-
sented as a CSDF model, introduced in Sect. 3.3. The conversion is given in
Algorithm 2. Algorithm 2 accepts as inputs a CNN model CNN(L,E) and
an efficient mapping nA, obtained in Sect. 4.2, and generates a CSDF model
G(A,C), which performs the functionality of the CNN model CNN(L,E), effi-
ciently mapped on an embedded MPSoC, as specified by mapping nA. An exam-
ple of the CSDF model G(A,C), generated by Algorithm 2, using as inputs
the CNN model CNN(L,E), shown in Fig. 1(a) and explained in Sect. 3.1,
and mapping 5A, shown in Table 1 and explained in Sect. 4.2, is given in
Fig. 1(c). In Line 1, Algorithm 2 creates an empty CSDF model. In Lines 3–25,
Algorithm 2 generates the set of actors A, such that every actor ai ∈ A repre-
sents the functionality of all CNN layers, mapped on CPU core cpui, as specified
in mapping nA, where for ∀lk ∈ L, executed on cpui, ∃ak ∈ nAi. At every
phase p ∈ [1, Pi] actor ai executes function Subnetpi , implemented by means of
an existing DL framework. Every Subnetpi performs layer-by-layer execution of
layers Lp

i ⊆ L, mapped on cpui, and connected via edges Ep
i . For example, actor

a3, shown in Fig. 1(c), represents the functionality of all CNN layers, mapped
on cpu3. It executes F3 = {Subnet13}, where Subnet13 performs layer-by-layer
execution of layers L1

3 = {l11, l12}, connected via edges E1
3 = {e1112}, on cpu3.

Every edge ejs ∈ E between layers lj and ls, sequentially executed on the
same CPU core, is implemented by means of an existing DL framework, e.g. as
device memory, shared by layers lj and ls [12]. If layers lj and ls, connected via
edge ejs ∈ E, are executed on different CPU cores, the task-level parallelism is
exploited between these layers, and edge ejs is converted into a FIFO channel,
which explicitly specifies and implements communication and synchronization
between actors, executing layers lj and ls. For example, edge e811, shown in
Fig. 1(a), connects layer l8, executed by actor a2 on cpu2, and layer l11, executed
by actor a3 on cpu3. Thus, edge e811 is converted into a FIFO channel c23, shown
in Fig. 1(c), where c23 explicitly specifies and implements communication and
synchronization between actor a2, executing layer l8 and actor a3, executing
layer l11.

Between some actors, cyclic dependencies occur, that may lead to deadlocks
in the CSDF model. To avoid the deadlocks, Algorithm 2 specifies the execution
of every actor ai in one or more phases, such that at every phase p ∈ [1, Pi],
actor ai has no cyclic dependencies. For the example, shown in Fig. 1(c), a cyclic
dependency occurs between actors a2 and a3. If actor a2 would execute layers
l8 and l13 in one phase, according to the semantics of the CSDF model [21], it
would expect 187200 data tokens to be present in channel c12 and 22500 data
tokens to be present in channel c32, before it can fire. However, data in channel
c32, should be produced by actor a3, which, before it can fire, expects actor a2 to
produce 187200 data tokens in channel c23. Thus, such execution would lead to a
deadlock in the CNN inference. To avoid the deadlock, Algorithm 2 specifies the
execution of actor a2 in 2 phases. At phase p = 1, actor a2 executes only layer l8.

Combining Task- and Data-Level Parallelism for High-Throughput CNN 31

Algorithm 2: CNN-to-CSDF conversion
Input: CNN(L,E), nA
Result: G(A,C)

1 A,C ← ∅; G(A,C) ← CSDF model (A,C);
2 Eout = ∅;
3 for nAi ∈ nA do
4 Fi = ∅; p = 1;
5 Q = ∅; visited = ∅;
6 for lk : ak ∈ nAi ∧ lk /∈ visited do
7 Lp

i , E
p
i ← ∅;

8 Q = Q + lk;
9 while Q �= ∅ do

10 lj = Q.pop();
11 Lp

i = Lp
i + lj ;

12 visited = visited + lj ;
13 if ∃ejs ∈ E : as /∈ nAi then
14 for ejs ∈ E do
15 Eout = Eout + ejs;

16 break;

17 else
18 for ejs ∈ E, ls /∈ visited do
19 Q = Q + ls;
20 Ep

i = Ep
i + ejs;

21 Subnetpi = new Subnet (Lp
i , E

p
i);

22 Fi = Fi + Subnetpi ;
23 p = p + 1;

24 ai ← actor (Fi);
25 A = A + ai;

26 for eij ∈ Eout do
27 ak ∈ A : li ∈ Lg

k; ar ∈ A : lj ∈ Lz
r ;

28 ckr ← FIFO channel (ak, ar);

29 ukr(p) =

{
WYi ∗ HYi ∗ CYi , if p = g

0, otherwise

30 vkr(p) =

{
WXj ∗ HXj ∗ CXj , if p = z

0, otherwise

31 return G(A,C)

It consumes data only from channel c12, and produces data to channel c23, such
that actor a3 can fire. At phase p = 2, actor a2 consumes data only from channel
c32, and executes layers l9, l10 and l13. Thus, at every phase p = [1, 2], actor a2 has
no cyclic dependencies, and no deadlock occurs in the CSDF model execution.

In Lines 5–23, Algorithm 2 performs a mapping-aware Breadth-First Search
(BFS) [26] over the CNN model graph and determines functions Subnetpi , p ∈
[1, Pi], executed by actor ai. In Line 7, for every not-visited layer lk, mapped
on cpui, Algorithm 2 creates an empty set of layers Lp

i and an empty set of

32 S. Minakova et al.

edges Ep
i . In Line 8, it adds layer lk to the BFS queue [26] Q, and starts BFS.

In Lines 10–12, Algorithm 2 extracts layer lj from Q and adds lj to Lp
i . In

Line 13, Algorithm 2 checks, if layer lj , mapped on cpui, has at least one child
layer ls, which is not mapped on cpui. If the condition in Line 13 is met, to
avoid the deadlocks, which can occur in a CSDF model, as discussed above,
Algorithm 2 stops adding layers to Lp

i and goes to Lines 14–15, where it adds
every output edge of layer lj to the list of outer edges Eout, utilized in Lines
26–30 of Algorithm 2 for CSDF channels generation. If every child layer ls of
layer lj is mapped on cpui (condition in Line 13 of Algorithm 2 is not met), in
Lines 18–20, Algorithm 2 adds every connection ejs to the set Ep

i , and every
layer ls to Q and continues BFS.

In Line 21, Algorithm 2 creates function Subnetpi , which performs layer-by-
layer execution of layers Lp

i , connected via edges Ep
i . In Line 22, Algorithm 2

adds function Subnetpi to execution sequence Fi of actor ai. When all layers,
mapped on cpui, are visited, Algorithm 2 adds actor ai, which executes Fi, to
the CSDF model actors set (see Lines 24–25).

In Lines 26–30, Algorithm 2 converts every outer edge eij ∈ Eout into a CSDF
channel ckr, specifying and implementing communication and synchronization
between actor ak ∈ A executing layer li, and actor ar ∈ A executing layer lj .
For example, for edge e78, shown in Fig. 1(a), Algorithm 2 creates FIFO channel
c12, shown in Fig. 1(c), where actor a1 executes layer l7, and actor a2 executes
layer l8.

5 Experimental Results

In this section, we present our results from an experiment, where real-world
CNNs from the ONNX models zoo [22], are mapped and executed on the NVIDIA
Jetson TX2 embedded CPUs-GPUs MPSoC [23]. We compare the CNN infer-
ence throughput, which we measure, when the CNN is mapped on the NVIDIA
Jetson TX2 by: (1) the popular ARM CL framework [27], which, on the NVIDIA
Jetson MPSoC, can exploit only task-level parallelism, available in the CNN; (2)
the best-known and state-of-the-art for the NVIDIA Jetson TX2 MPSoC, Ten-
sorrt DL framework [12], which exploits only data-level parallelism, available in
the CNN; (3) our methodology, explained in Sect. 4, which exploits both task-
and data-level parallelism, and uses the ARM CL framework to implement CNN
layers on embedded CPUs, and the Tensorrt framework to implement CNN lay-
ers on embedded GPUs. For every CNN in the experimental results: (1) The
throughput is measured on the platform as an average value over 100 CNN
inference executions; (2) original (float32) data precision is utilized, so that the
baseline CNN accuracy is preserved; (3) The dataset parameters, such as size
and precision of input data samples, as well as the batch size are obtained from
the ONNX model representation. (4) The GA, utilized for efficient mapping
search (see Sect. 4.2) is executed with initial population size 1000, number of
epochs = 500, mutation probability = 5%. If for 50 epochs no improvements are
achieved by the GA, the GA stops. The experimental results are given in Table 2.

Combining Task- and Data-Level Parallelism for High-Throughput CNN 33

Column 1 in Table 2 lists the CNNs. Columns 2–4 in Table 2 show the CNN
inference throughput in frames per second (fps) for ARM CL, Tensorrt, and our
methodology, respectively. Columns 2 and 4 in Table 2 show, that the through-
put, achieved by the ARM CL framework is much lower than the throughput,
achieved by our methodology. This difference occurs because our methodology
exploits both task- and data-level parallelism, available in the CNN, whereas
the ARM CL framework, executing the CNN inference on the NVIDIA Jetson
MPSoC, does not offload computations on the embedded GPU, available in the
MPSoC, and, therefore, does not efficiently exploit the data-level parallelism,
available in the CNN. Columns 3 and 4 in Table 2 show, that our methodology
achieves up to 20% higher inference throughput, than the Tensorrt framework.
This difference occurs because our methodology exploits both task- and data-
level parallelism, whereas Tensorrt executes the CNN inference layer-by-layer,
and exploits only data-level parallelism, available in the CNN.

Table 2. Experimental results, average over 100 runs

CNN CNN inference throughput (fps)

ARM CL Tensorrt Our methodology

bvlc alexnet 3.2 106 112

VGG 19 1.2 13 18

bvlc googlenet 5 115 140

tiny yolo v2 2.6 38 45

inception v1 3.2 115 136

resnet18 7.7 138 143

densenet121 3 52 72

Emotion FER 55 325 401

6 Conclusions

We propose a novel methodology, which exploits both task- and data-level par-
allelism, available in a CNN, and takes full advantage of all CPU and GPU
resources, available in a MPSoC, to achieve high-throughput CNN inference
execution. We evaluated our proposed methodology by mapping a set of real-
world CNNs on a NVIDIA Jetson embedded CPUs-GPUs MPSoC. The evalu-
ation results show, that taking real-world CNNs from the ONNX models zoo
and mapping them on a NVIDIA Jetson MPSoC, a 20% higher throughput is
achieved, when the CNN inference is executed with our methodology, compared
to the throughput of the CNN inference, executed by the best-known and state-
of-the-art Tensorrt DL framework for NVIDIA Jetson MPSoCs.

Acknowledgements. This work has received funding from the European Unions
Horizon 2020 Research and Innovation project under grant agreement No. 780788.

34 S. Minakova et al.

References

1. Alom, Md.Z., et al.: The history began from AlexNet: a comprehensive survey on
deep learning approaches. CoRR, abs/1803.01164 (2018)

2. Diamant, A., et al.: Deep learning in head and neck cancer outcome prediction.
Sci. Rep. 9, 27–64 (2019)

3. Do, T., et al.: Real-time self-driving car navigation using deep neural network. In:
GTSD, pp. 7–12 (2018)

4. Shvets, A., et al.: Automatic instrument segmentation in robot-assisted surgery
using deep learning. bioRxiv (2018)

5. Grant, M.: Overview of the MPSoC design challenge. In: DAC (2006)
6. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates Inc.,

Sebastopol (2007)
7. Siqi, W., et al.: High-throughput CNN inference on embedded ARM big. LITTLE

multi-core processors. IEEE TCAD 39, 225–2267 (2019)
8. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-

tems. http://tensorflow.org/ (2015)
9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: MM.

ACM (2014)
10. Parvat, A., et al.: A survey of deep-learning frameworks. In: ICISC (2017)
11. Song, L., et al.: HyPar: towards hybrid parallelism for deep learning accelerator

array. In: HPCA, pp. 56–68 (2019)
12. NVIDIA TensorRT framework. https://developer.nvidia.com/tensorrt
13. Singh, A., et al.: Energy-efficient run-time mapping and thread partitioning of

concurrent OpenCL applications on CPU-GPU MPSoCs. ACM Trans. Embed.
Comput. Syst. 16, 147:1–147:22 (2017)

14. Ando, Y., Shibata, S., Honda, S., Tomiyama, H., Takada, H.: Automated identifica-
tion of performance bottleneck on embedded systems for design space exploration.
In: Schirner, G., Götz, M., Rettberg, A., Zanella, M.C., Rammig, F.J. (eds.) IESS
2013. IAICT, vol. 403, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38853-8 16

15. Kang, D., et al.: C-GOOD: C-code generation framework for optimized on-device
deep learning. In: ICCAD (2018)

16. Huynh, L.N., et al.: DeepSense: a GPU-based deep convolutional neural network
framework on commodity mobile devices. In: WearSys@MobiSys (2016)

17. Huynh, L., et al.: DeepMon: mobile GPU-based deep learning framework for con-
tinuous vision applications. In: MobiSys (2017)

18. Tang, L., et al.: Scheduling computation graphs of deep learning models on many-
core CPUs. arXiv:abs/1807.09667 (2018)

19. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75, 1235–1245
(1987)

20. Sastry, K., et al.: Genetic algorithms. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies, pp. 97–125. Springer, Boston (2005). https://doi.org/10.1007/0-
387-28356-0 4

21. Bilsen, G., et al.: Cyclo-static dataflow. IEEE Trans. Sig. Process. 44, 397–408
(1996)

22. ONNX models zoo. https://github.com/onnx/models
23. NVIDIA Jetson TX2. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2

http://tensorflow.org/
https://developer.nvidia.com/tensorrt
https://doi.org/10.1007/978-3-642-38853-8_16
https://doi.org/10.1007/978-3-642-38853-8_16
http://arxiv.org/abs/abs/1807.09667
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1007/0-387-28356-0_4
https://github.com/onnx/models
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2

Combining Task- and Data-Level Parallelism for High-Throughput CNN 35

24. Abadi, M., et al.: A computational model for TensorFlow: an introduction. In:
MAPL. ACM (2017)

25. Ha, S., Teich, J.: Handbook of Hardware/Software Codesign. Springer, Dordrecht
(2017). https://doi.org/10.1007/978-94-017-7358-4

26. Even, S.: Graph Algorithms, 2nd edn. Cambridge University Press, Cambridge
(2011)

27. ARM compute library. https://github.com/ARM-software/ComputeLibrary

https://doi.org/10.1007/978-94-017-7358-4
https://github.com/ARM-software/ComputeLibrary

	Combining Task- and Data-Level Parallelism for High-Throughput CNN Inference on Embedded CPUs-GPUs MPSoCs
	1 Introduction
	2 Related Work
	3 Background
	3.1 CNN Model
	3.2 SDF Model
	3.3 CSDF Model
	3.4 Embedded CPUs-GPUs MPSoC

	4 Our Methodology
	4.1 CNN to SDF Model Conversion
	4.2 Efficient Mapping
	4.3 CNN to CSDF Model Conversion

	5 Experimental Results
	6 Conclusions
	References

