
Energy-Efficient Scheduling of
Throughput-Constrained Streaming Applications

by Periodic Mode Switching

Sobhan Niknam, Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, The Netherlands
Email: {s.niknam, t.p.stefanov}@liacs.leidenuniv.nl

Abstract—In this paper, we address the problem of energy re-
duction when scheduling streaming applications with throughput
constraints on homogeneous multiprocessor systems with voltage
and frequency scaling capability. We propose a novel periodic
scheduling framework which allows streaming applications to
switch their execution periodically between a few energy-efficient
schedules at run-time in order to meet a throughput constraint
at long run. Using such periodic switching, we can benefit
from adopting Dynamic Voltage and Frequency Scaling (DVFS)
techniques to exploit available static slack time in the schedule
of an application efficiently. The experimental results, on a set of
real-life streaming applications, show that our novel scheduling
approach can achieve up to 68% energy reduction depending
on the application and the throughput constraint compared to
related approaches.

I. INTRODUCTION

Streaming applications have become prevalent in embedded
systems in several application domains, such as image pro-
cessing, video/audio processing, and digital signal processing.
These applications usually have high computational demands
and tight performance constraints, such as throughput con-
straints. Therefore, to handle the ever increasing computational
demands and satisfy throughput constraints, Multi-Processor
System-on-Chip (MPSoC) has become a standard platform
that is widely adopted in embedded systems design. To ex-
ploit the available parallelism in a MPSoC and guarantee
the application throughput, several Models of Computation
(MoCs) have been proposed to parallelize streaming appli-
cations running on a MPSoC, e.g., Synchronous Dataflow
(SDF) [1] and Cyclo-Static Dataflow (CSDF) [2]. Within a
parallel MoC, a streaming application is represented as a task
graph with concurrently executing and communicating tasks.
As streaming MPSoC-based embedded systems operate very
often using stand-alone power supply such as batteries, energy
efficiency has become one of the primary design criterion of
such embedded systems in order to prolong the operational
time without replacing/recharging the batteries. Furthermore,
energy-efficient design decreases the heat dissipation of the
system which, in return, improves the system reliability [3].

Given the above discussion, designing a streaming MPSoC-
based embedded system brings two interrelated challenges.
The first challenge is how to assign and schedule the tasks of
an application to a MPSoC such that all the timing constraints
are guaranteed. The second challenge is how to achieve energy
efficiency of the MPSoC. To address the first challenge, self-
timed scheduling has been widely considered as the scheduling

This research is supported by the Dutch Technology Foundation STW under
the Robust Cyber Physical Systems program (Project 12695).

policy (e.g., [4], [5]) for streaming applications modeled as
data-flow graphs to guarantee the throughput constraints. The
analysis techniques for self-timed scheduling, however, neces-
sitate a complex design space exploration (DSE) to determine
the minimum number of processors needed to schedule the
applications and the assignment of tasks to processors. More-
over, self-timed scheduling is not able to guarantee temporal
isolation between applications running on the same platform.
In contrast, a technique has been recently presented in [6]
that can convert an initial streaming application to a periodic
real-time task set. As a result, this conversion enables the
designer to employ many algorithms from the classical hard
real-time multiprocessor scheduling theory [7] to guarantee
throughput constraints and temporal isolation among differ-
ent applications, using fast schedulability tests. In addition,
these algorithms facilitate the computation of the number of
processors required to schedule the applications using several
fast approaches, instead of performing a complex and time-
consuming design space exploration. Therefore, because of the
advantages of [6] over the self-timed scheduling, we adopt
[6] in this paper as a primary technique for scheduling the
streaming applications.

To address the energy efficiency challenge, mentioned
above, Voltage and Frequency Scaling (VFS) has been tradi-
tionally adopted as an efficient and commonly-used technique
when the Processing Elements (PEs) in a MPSoC are capable
of operating at different discrete supply voltage and operating
frequency levels [3]–[5], [8]–[10]. The general idea behind
these approaches is to exploit available static slack time in the
schedule of an application in order to slow down the execution
of running tasks by using the VFS technique to reduce
the energy consumption while still meeting the throughput
constraint. However, to the best of our knowledge, applying
the VFS technique in the context of [6], considered in this
paper, to achieve energy-efficiency has not been studied yet.
Therefore, in this paper, we investigate how the scheduling
framework presented in [6] can be combined efficiently with
the VFS technique to achieve energy-efficiency. To do so, we
first show in the motivational example in Section IV that a
straightforward way of applying VFS similar to [3]–[5], [8]–
[10] is not energy efficient in the context of [6]. Therefore,
we introduce a novel energy-efficient periodic scheduling
framework which combines VFS and [6] in a sophisticated
way, thereby achieving energy efficiency. In this framework,
the execution of an application is periodically switched at
run-time between a few off-line determined energy-efficient
schedules, called operating modes, to meet the throughput
constraint at long run. As a result, this framework can reduce
the energy consumption significantly by exploiting static slack
time more efficiently using Dynamic VFS (DVFS), where

multiple operating frequencies are computed at design-time
for the PEs to be used at run-time.

The specific novel contributions of this paper are the fol-
lowing:

• A simple scheme has been devised for determining a
set of discrete operating modes of a system at different
operating frequencies where each operating mode pro-
vides a unique pair of throughput and minimum power
consumption to achieve this throughput.

• With such set of discrete operating modes and a
given throughput constraint, we have devised an energy-
efficient periodic scheduling framework which allows the
streaming applications to switch their execution periodi-
cally between operating modes at run-time to meet the
throughput constraint at long run. Using this specific
switching scheme, we can benefit from adopting the Dy-
namic Voltage and Frequency Scaling (DVFS) technique
to exploit the available static slack time in the scheduling
of an application efficiently.

• The experimental results, on a set of 6 real-life streaming
applications, show that our scheduling approach can
achieve up to 68% energy reduction depending on the
application and the throughput constraint compared to the
straightforward way of applying VFS similar to related
works.

The reminder of the paper is organized as follows: Section
II gives an overview of the related work. Section III intro-
duces the preliminary materials needed for understanding the
contributions of this paper. Section IV gives a motivational
example. Section V presents the proposed scheduling frame-
work. Section VI presents the results of the evaluation of our
proposed framework. Finally, Section VII ends the paper with
conclusion.

II. RELATED WORK

Several approaches aiming at reducing the energy consump-
tion of streaming applications have been presented in the past
decade. Among these approaches, [3]–[5], [8]–[10] are the
closest to our work. These approaches have a common goal
to reduce the energy consumption of a system by exploiting
the static slack time in the schedule of throughput-constrained
streaming applications using per-task [3], [8], per-core [4], [5],
[9], [10] or global [9] VFS.

The approaches in [3], [8], [9], formulate the energy op-
timization problem as mixed integrated linear programming
(MILP) problem to integrate the VFS capability of PEs with
application scheduling. Compared to these approaches our
approach mainly differs in two aspects. First, these approaches
consider streaming applications modeled either as a Directed
Acyclic Graph (DAG) [3], [9] or a Homogeneous SDF (HSDF)
graph [8] derived by applying a certain transformation on
an initial SDF graph. Therefore, these approaches can not
be directly applied to streaming applications modeled with
a more expressive MoCs, e.g. (C)SDF as considered in this
paper. In addition, transforming a graph from SDF to HSDF
is a crucial step in [8] where the number of tasks in the
streaming application can exponentially grow. This growth
of the application in terms of number of tasks can lead to
time-consuming analysis and significant memory overhead
for storing the tasks code. In contrast, our approach directly
handles a more expressive MoC, such as (C)SDF. Second,
the approach in [9] uses per-core VFS where the off-line
computed operating frequencies of PEs are fixed at run-time
and can not be changed. In contrast, our approach uses DVFS
where a sequence of frequency changes that is computed off-
line is used on the PEs during execution at run-time while

guaranteeing the throughput constraint. As a result, the DVFS
technique enables our approach to exploit the available static
slack time in the application’s schedule more efficiently for
better energy reduction. The approaches in [3], [8] use a
fine-grained DVFS, i.e., per-task VFS, where the operating
frequency of PEs can be changed before executing each task.
Fine-grained DVFS, like in [3], [8], can be beneficial only
when the overhead of DVFS is negligible. In contrast to
these approaches, we adopt a coarse-grained DVFS where the
operating frequencies of PEs are changed at the granularity of
graph iterations to avoid large overhead associated with the
operating frequency changes.

The approaches in [4], [5], [10] perform energy minimiza-
tion directly on an SDF graph. [5] and [10] perform design
space exploration at design time to find an energy-efficient
task mapping of an SDF graph scheduled in self-timed manner
on a MPSoC platform with per-core VFS capability such that
a throughput constraint is guaranteed. In [4], the authors pro-
posed heuristics to find per-core VFS for a given task mapping
and static order schedule such that the throughput constraint
is met. However, as shown in the motivation example in
Section IV, applying VFS in a similar way as in [4], [5],
[10] for streaming applications scheduled using the framework
presented in [6] and considered in this paper, is not energy-
efficient. Compared to the approaches in [4], [5], [10], our
approach is different in two aspects. First, these works use
self-timed scheduling which analysis techniques suffer from a
complex design space exploration (DSE). In contrast, we use
the scheduling technique in [6] that can benefit from using fast
analysis using existing real-time theories [7]. Second, these
works used per-core VFS to exploit the static slack time in the
application’s schedule. In contrast, our approach uses a coarse-
grained DVFS technique. As a result, the PEs are able to run
periodically at lower operating frequencies by exploiting the
available static slack time more efficiently which yields lower
energy consumption.

III. PRELIMINARIES

In this section, we first introduce the CSDF MoC (Sec-
tion III-A) and the system model (Section III-B) considered in
this paper. Then, we review the Strictly Periodic Scheduling
(SPS) framework [6], which we use to schedule tasks in a
CSDF graph (Section III-C) and present the energy model
(Section III-D) used in this paper.

A. Cyclo-Static Dataflow (CSDF)

A CSDF graph is defined as a directed graph G = (V,E),
where V is a set of tasks and E is a set of edges. Task τi ∈V
represents computation and edges represent FIFO channels to
transfer data tokens between tasks. Each task τi ∈V may con-
sume/produce a varied but predefined number of data tokens
in its consequent executions, called consumption/production
sequence. It has been proven in [2] that a valid static schedule
of a CSDF graph can be generated at design-time if the
graph is consistent and live. A CSDF graph is said to be
consistent if a non-trivial solution exists for the repetition
vector ~q = [q1,q2, . . . ,qi]. An entry qi indicates the number
of invocations of task τi in one iteration of the graph. For
more details, we refer the reader to [2].

B. System Model

The considered MPSoC platforms in this work are homoge-
neous, i.e., a platform contains a set Ψ = {Ψ1,Ψ2, · · · ,Ψm} of
m identical PEs with distributed memories. The considered
scheduling algorithms on each PE are dynamic scheduling
algorithms, such as Partitioned Earliest Deadline First (EDF)

τ1 τ2

,
(2)

τ3
(2)(1)

e2e14 2 1 3

Fig. 1: A simple example of a (C)SDF graph G. The worst
case execution times of the tasks at the maximum operating
frequency are shown between parentheses.

[11]. We assume that each PE supports only a discrete set
θ = { fmin = f1, f2, · · · , fn = fmax} of n operating frequencies
and different PEs can operate at different frequencies at the
same time. Without loss of generality, we assume that the
operating frequencies in the set θ are in ascending order, in
which f1 is the lowest operating frequency and fn is the highest
operating frequency.

C. Strictly Periodic Scheduling (SPS) framework

In [6], the real-time strictly periodic scheduling (SPS)
framework for acyclic CSDF graphs is proposed. In this
framework, the tasks in an acyclic CSDF graph are converted
to a set of real-time periodic tasks by deriving the minimum
period (Ti) and earliest start time (Si) of each task τi. As a
result, this conversion enables the designer to apply the well-
developed hard real-time scheduling theories [7].

In this framework, the earliest start time (Si) of task τi is
calculated such that τi is never blocked on reading data tokens
from any FIFO channel connected to it during its periodic
execution. The minimum period (Ti) of tasks is also derived
by the following expression:

Ti =
lcm(~q)

qi

. s, ∀τi ∈V, (1)

s =

⌈

maxτ j∈V{C j.q j}

lcm(~q)

⌉

, (2)

where lcm(~q) is the least common multiple of all repetition
entries in ~q and C j is the worst-case execution time of task
τ j. In general, the derived periods of tasks must satisfy the
following condition:

q1T1 = q2T2 = · · ·= qnTn = α (3)
where α is the graph iteration period, also called hyper period,
representing the duration needed by the graph to complete one
iteration.

With the given and computed parameters, mentioned above,
task τi is characterized by a tuple τi = {Ci,Si,Ti}, where Ci

is the worst-case execution time of the task, Ti is the task’s
period and Si is the start time of the task. The throughput of
each task τi can be computed as 1/Ti. The throughput R of a
graph G when its tasks are scheduled as strictly periodic tasks
is determined by the period of the output task (Tout) and is
equal to

R = 1/Tout . (4)

In this paper, we only consider implicit-deadline tasks, which
have relative deadline Di equal to their period Ti. Each task
invocation releases a job. The kth job of task τi is denoted by
τi,k which arrives to the system at time instant ri,k = Si+kTi for
all k ∈N0. Similarly, the absolute deadline of τi,k is di,k = Si+
(k+ 1)Ti, which coincides with the arrival of job τi,k+1. The

utilization of task τi is given by ui =
Ci
Ti

. The total utilization of

task set Π j containing all assigned tasks to processing element
Ψ j is denoted by U j = ∑τi∈Π j

ui.

D. Energy Model

In this paper, we use the energy model described in [12].
We use this model because the parameters of this model are
derived by performing real measurements on a real MPSoC

043

0

t

τ2

τ1

τ3
5

S1
T1

0 10 15

0 1 2

0

S2
T2

S3

job

deadline

job

release

20

5 1 2

T3

1 2 0 1 2

1

(a)

43

0

t

τ2

τ1

τ3
50 10 15

1 2

0 1 2

0

20

5

0

job

deadline

job

release

S1
T1

S2
T2

S3 T3

(b)

Fig. 2: The (a) SPS and (b) scaled SPS of the (C)SDF graph
G in Fig. 1. Up arrows represent job releases, down arrows
represent job deadlines. Dotted rectangles show the increase
of the tasks execution time when using the VFS technique.
Different jobs of each task are shown with different indexes.
Note that we adopt partitioned EDF to schedule the assigned
tasks on each PE.

platform and the model is shown to be accurate. According to
[12], the power consumption of a CMOS circuit is modeled
as follows:

P(f) = k f b + s (5)

where the first term is the dynamic power consumption and
includes all frequency-dependent components, the second term
is the static power consumption and includes all frequency-
independent components, and f is the operating frequency.
Parameters k and b are dependent on the technology process
and they are determined in [12]. After all tasks are assigned
to PEs, the power consumption of the jth PE (Ψ j), can be
computed by the following equation:

Pj = k · f b
j ·

fmax

f j
∑
∀τi∈Π j

Ci

Ti

+ s (6)

where f j is the operating frequency of Ψ j. Therefore, the en-
ergy consumption of Ψ j within one hyper-period is E j = α ·Pj

and the energy consumption of the whole system within one
hyper-period is E = ∑∀Ψ j∈Ψ α ·Pj.

IV. MOTIVATIONAL EXAMPLE

In this section, we motivate the necessity of devising a
new energy-efficient scheduling approach using VFS in the
context of the SPS scheduling framework [6]. To do so, this
motivational example consists of two parts. In the first part, we
show that a straightforward way of applying the VFS technique
in the context of the SPS framework [6] is not energy efficient.
Then, in the second part, we show how we can schedule an
application more energy efficiently using our novel periodic
scheduling framework.

A. Apply VFS similar to related works

Let us consider the simple streaming application modeled as
a (C)SDF graph in Fig. 1. This graph has three tasks (τ1,τ2,τ3)
with worst-case execution times at the maximum operating fre-
quency indicated between parentheses (C1 = 1,C2 = 2,C3 = 2)

43τ2

τ1

τ3
50 10 15

0 1 2

0

20

5

1

0

0

0

1 2

1 2 3 5

1

25 30

21

35 40 45

0 1

10

43 0 1 25

0 2

4

t

o
12

Q
1

Q
2

δm2→m1 DVFS switching time

50 55 60 65 70 75

10

2 3 54 0 1

10210

0 1 2

2

10

43 5

m1 m1 m1m2 m2

1GHzfψ 1
fψ 2

1GHz

3/4GHz

3/4GHz

1/2GHz 3/4GHz

Fig. 3: Our proposed periodic schedule of graph G in Fig. 1. In this schedule, graph G periodically executes according to
schedules of operating mode m1 and operating mode m2 in Fig. 2(a) and Fig. 2(b), respectively. Note that this schedule repeats
periodically. o12 = 5 and o21 = 0.

and production/consumption rates indicated above the corre-
sponding edges. The repetition vector of this graph, using the
theory in [2], is ~q = [q1 = 3,q2 = 6,q3 = 2], meaning that
during each graph iteration, tasks τ1, τ2, and τ3 execute 3, 6,
and 2 times, respectively.

By applying the SPS framework [6], briefly discussed in
Section III-C, for the example in Fig. 1, we can represent the
tasks as strictly periodic tasks by the following tuples: τ1 =
{C1 = 1,S1 = 0,T1 = 4}, τ2 = {2,4,2}, and τ3 = {2,10,6}.

Note that to derive the periods, s =

⌈

maxτ j∈V {C j .q j}

lcm(~q)

⌉

=

⌈

12
6

⌉

=

2 is used in Eq. (1). Based on these tuples, we can derive
the strictly periodic schedule for this application shown in
Fig. 2(a). In this schedule, for instance, task τ3 starts at time
instant 10, executes for 2 time units, and repeats its execution
every 6 time units. Since task τ3 is the output task in this
graph, the throughput of this schedule can be computed as
R = 1

T3
= 1

6
.

So far, we have assumed that the tasks run at the maximum
operating frequency of the PEs. Let us assume that each PE
can only support a discrete set θ = {1/4,1/2,3/4,1}(GHz) of
4 operation frequencies. The minimum number of processors
needed to run the schedule in Fig. 2(a) is two. Therefore,
our MPSoC consists of two PEs, Ψ = {Ψ1,Ψ2}, where we
assign task τ2 to Ψ1 and tasks τ1 and τ3 to Ψ2. In order
to make this schedule more energy efficient, we can use the
VFS technique and exploit the available static slack time in
the schedule for the purpose of slowing down the execution
of tasks by decreasing the operating frequency of PEs. For
this example, we can decrease the operating frequency of
Ψ2 to 3/4 GHz while still meeting all timing constraints,
i.e., job deadlines shown as down arrows in Fig. 2(a). This
slowing down of tasks is visualized by extending the gray
boxes with the dotted boxes in Fig. 2(a). Using the energy
model described in Section III-D, the power consumption of
this schedule is 0.61 mW . The energy consumption of this
schedule for a period of 36 time units, that is equivalent to 3
graph iterations of this schedule, is 21.96 mJ.

To further reduce the power consumption by decreasing the
operating frequency of PEs, more static slack time is needed
to be created by slowing down the application. Note that
periods computed by Eq. (1) are the minimum periods for
tasks scheduled by SPS. To slow down the application, we
can derive larger valid periods for tasks by taking any integer

s >

⌈

maxτ j∈V {C j .q j}

lcm(~q)

⌉

. We refer to this approach as task period

scaling in this paper. In this way, if we take s = 3 >

⌈

12
6

⌉

,

a new schedule can be derived using SPS, as shown in
Fig. 2(b), with throughput R = 1

T3
= 1

9
. As a result, there is

TABLE I: Operating modes for graph G

Mode α fΨ1
fΨ2

(R [Token
Time units

], P [mW]) Energy [mJ]

m1 (s = 2) 12 1 3/4 (1/6,0.61) 439.2
m2 (s = 3) 18 3/4 1/2 (1/9,0.43) 309.6
m3 (s = 4) 24 1/2 1/2 (1/12,0.36) 259.2
m4 (s = 5) 30 1/2 1/4 (1/15,0.34) 244.8
m5 (s = 8) 48 1/4 1/4 (1/24,0.31) 223.2

more available static slack time in the application’s schedule
which enables the PEs to work at lower operating frequencies
of 3/4 GHz and 1/2 GHz for Ψ1 and Ψ2, respectively. This is
visualized by extending the white boxes with the dotted boxes
in Fig. 2(b). Using the energy model in Section III-D, the
power consumption of this schedule is 0.43 mW . The energy
consumption of this schedule for a period of 36 time units,
that is equivalent to 2 graph iterations of this schedule, is
15.48 mJ. As a result, the energy consumption is reduced by
29.5% using the schedule in Fig. 2(b) corresponding to s = 3
compared to the schedule in Fig. 2(a) corresponding to s = 2
for the same period of time at the expense of decreasing the
throughput of the application from 1/6 to 1/9. By increasing
the value of scaling parameter s and scaling the periods as
much as possible such that the corresponding schedule still
meets the throughput constraint, we can apply VFS in the
straightforward way, described above, similar to the related
works [4], [5], [10]. Therefore, the maximum created static
slack time in the application’s schedule can be exploited using
the VFS technique to reduce the energy consumption as much
as possible.

Now, assume that a throughput constraint of 1/8 has to
be met. Following the scaling approach, explained above, the
schedule corresponding to s = 2 with the throughput of 1/6
must be selected to meet the throughput constraint of 1/8, as
shown in Fig. 2(a). However, this schedule is not the most
energy efficient one. This is because, although the throughput
constraint of 1/8 is met, more energy than needed is consumed
as a result of delivering higher throughput, i.e, 1/6, than
needed.

B. Our proposed scheduling approach

In this section, we introduce our novel energy-efficient
scheduling for the example in Fig. 1 that meets the same
throughput constraint of 1/8 while consuming less energy
compared to the scheduling explained in Section IV-A above.
In our approach, among all possible application’s schedules
corresponding to different values of scaling parameter s to
scale periods, we select only Pareto optimal schedules and
form a set γ of schedules called operating modes. For instance,
the set γ = {m1,m2,m3,m4,m5} of five operating modes for
our example application in Fig. 1, is given in Table I. In
this table, every row shows an operating mode with the
graph iteration α , the operating frequencies of the two PEs

1

24

1

23

1

22

1

21

1

20

1

19

1

18

1

17

1

16

1

15

1

14

1

13

1

12

1

11

1

10

1

9

1

8

1

7

1

6

0.5

0.6

0.7

0.8

0.9

1

Throughput[token/time units]

N
o
rm

a
li
se
d
E
n
er
g
y

Switching
Scale

Fig. 4: Normalized energy consumption of scaling and pro-
posed periodic switching schedulings of the (C)SDF graph in
Fig. 1 for a wide range of throughput constraints.

(fΨ1
, fΨ2

), the pair of throughput and power consumption
(R,P) corresponding to this scheduling mode. In the last
column, the energy consumption of the operating modes is
given for a period of 720 time units which is the least common
multiply of their graph iterations α . As can be seen in this
column, the energy consumption of operating modes is being
reduced by slowing down the application during this common
period of time. The value of parameter s corresponding to each
operating mode is also given in the first column. For instance,
operating mode m4 is the application scheduling corresponding
to s = 5 that delivers throughput of 1/15. In this scheduling,
Ψ1 and Ψ2 must operate at frequencies of 1/2 GHz and
1/4 GHz in order to meet all task’s job deadlines. Therefore,
the power consumption of this scheduling is 0.34 mW . Finally,
the energy consumption of this scheduling mode for 720 time
units is 244.8 mJ.

Looking at set γ of operating modes in Table I, the
throughput constraint of 1/8, we consider, is between the
throughput of operating modes m1 and m2. Therefore, we
propose the idea of periodically switching the system mode
between operating modes m1 and m2 to meet the throughput
constraint. Such periodic switching schedule is depicted for
one period in Fig. 3, where the application executes for three
graph iterations according to the schedule of operating mode
m1 and two graph iterations according to the schedule of
operating mode m2. Different graph iterations are separated
by dotted and dashed lines for consecutive executions of the
application in operating mode m1 and m2, respectively, in
Fig. 3. Note that this schedule repeats periodically every 77
time units, as shown in Fig. 3 (Q1 +Q2 + o12 = 77). In one
period, output task τ3 executes 10 times in total during 77 time
units, meaning that throughput of 10/77 = 1/7.7 is delivered
at long run that is more closer to the required throughput
constraint of 1/8 compared to the throughput of 1/6 delivered
as a result of the schedule in Fig. 2(a). More importantly, the
energy consumption of our proposed novel scheduling in Fig. 3
for a period of 924 time units, which is the least common
multiply of the period of our approach (77 time units) and the
graph iteration of the schedule in Fig. 2(a) (12 time units),
is 496.68 mJ. The energy consumption of the schedule in
Fig. 2(a) in the same period of 924 time units is 563.64 mJ.
Therefore, our novel scheduling approach can reduce the en-
ergy consumption by 11.87% when the throughput constraint
of 1/8 has to be met. The energy reduction of our proposed
schedule, referred as Switching, compared to the scheduling
approach explained in Section IV-A, referred as Scale, for a
wide range of throughput constraints is given in Fig. 4. In this
figure, the x-axis shows different throughput constraints for
the example (C)SDF graph in Fig. 1 while the y-axis shows
the normalized energy consumption. From Fig. 4, we can see
that our proposed scheduling approach Switching can reduce
the energy consumption significantly compared to Scale for
a large set of throughput constraints.

Mode

λ

QLQH

Z(t)

oHL

RL.QL

ρout

oLH

Reff

RH.QH

Reff .λ

Power

PH

PL

Time

(a)

(c)

(b)

Tokens

Time

Time

Rreq

eLH

eHL

QLQH oHL oLH

QLQH oHL oLH

fswitchfswitch

mH mL mH mL

eLH

eHL

Fig. 5: (a) Switching scheme, (b) Associated energy con-
sumption of the switching scheme and (c) Token production
Function Z(t).

Note that our proposed scheduling approach uses DVFS.
This is because, PEs run at different operating frequencies in
each operating mode. Therefore, when the application switches
to execute in a different operating mode, the operating frequen-
cies of the PEs are changed accordingly. The way of changing
the operating frequencies of the PEs, for our example, is shown
by the horizontal arrows on top of Fig. 3. In this paper, we
also consider the switching time cost of DVFS in our analysis
that is shown by the boxes with dotted pattern in Fig. 3.

From the above example, we can see the necessity and
usefulness of our novel scheduling approach, presented in
detail in Section V, to obtain more energy-efficient application
scheduling when VFS is used in the context of [6].

V. PROPOSED SCHEDULING FRAMEWORK

In this section, we describe our proposed energy-efficient
scheduling framework for throughput-constrained streaming
applications. The basis of our approach is to determine a set
of operating modes where each operating mode provides a
unique pair of throughput and minimum power consumption
to achieve this throughput. Then, for a given throughput con-
straint, there may exist an operating mode whose throughput
matches the throughput constraint. In this unlikely case, we
simply select this operating mode. Otherwise, we choose
the two operating modes with the closest higher and lower
throughput to the throughput constraint and we call them
Higher operating mode (mH) and Lower operating mode (mL),
respectively. Then, we meet the throughput constraint at long
run by periodically switching the execution of the application
between these two operating modes.

A general overview of our scheme for switching the system
between the higher and lower operating modes is illustrated in
Fig. 5. The periodic execution of an application between the
higher and lower operating modes in our approach is shown
in Fig. 5(a) and the period of switching is denoted by λ .
The associated application’s energy consumption and token
production caused by our switching scheme corresponding to
Fig. 5(a) are also shown in Fig. 5(b) and Fig. 5(c), respectively.
According to Fig. 5(a), the execution of the application in

each period λ consists of four parts. In the first part, the
application executes in the higher operating mode for QH time
units where the application has throughput RH and power
consumption PH . Then, in the second part, the execution of
the application switches to the lower operating mode mL.
However, this switching can not happen immediately and it
takes some time, denoted as oHL, before the application is
able to produce tokens again in the lower operating mode.
Therefore, during the switching, the application does not have
any token production for oHL time units while consuming
the energy of eHL, as shown in Fig. 5(b) and Fig. 5(c),
respectively. After completing the switching, in the third part,
the application executes in the lower operating mode for QL

time units where the application has the throughput and power
consumption of RL and PL, respectively. Finally, in the fourth
part, the application switches again to the higher operating
mode mH for the next period of λ . However, this switching can
not happen immediately and it takes some time that is denoted
by oLH . During the switching oLH , no tokens are produced
by the application while the energy of eLH is consumed. As
a result of the switching scheme in Fig. 5, the application
generates a number of tokens in total, see the curve Z(t)
in Fig. 5(c), by executing in the higher and lower operating
modes during every period of λ and in every λ the application
effectively delivers the throughput of Re f f in the long run.
The curves corresponding to the token production Z(t) in
our switching scheme and the effective throughput of Re f f

are shown in Fig. 5(c) with a solid line and a dotted line,
respectively. The throughput constraint Rreq is also shown with
a dashed line in this figure. Therefore, to satisfy the throughput
constraint, we have to keep the effective throughput Re f f above
the throughput constraint Rreq. This ensures that the number
of produced tokens in any time instant are more or equal than
what is needed.

Considering Fig. 5(c), the effective throughput obtained by
executing the application in operating mode mH for QH time
units and in operating mode mL for QL time units is computed
by the following expression:

Re f f =
RHQH +RLQL

QH +QL +oHL +oLH
=

RHQH +RLQL

λ
(7)

where RH and RL are the throughput of the output task in the
higher and lower operating modes, respectively, and RHQH and
RLQL are the number of produced tokens in the higher and
lower operating modes, respectively. Similarly, the effective
power consumption for the same operating mode switching is
computed as follows:

Pe f f =
PHQH +PLQL + eHL + eLH

λ
=

PHQH +PLQL

λ
+

eHL + eLH

λ
(8)

where PH and PL are the power consumption of the higher
and lower operating modes, respectively, and PHQH and PLQL

are the energy consumption in the higher and lower operating
modes, respectively.

Using the periodic switching scheme, described above, we
can benefit from adopting the Dynamic Voltage and Frequency
Scaling (DVFS) technique to exploit available static slack
time in the scheduling of the application efficiently. Moreover,
PEs are now enabled to run periodically at lower operating
frequencies in the lower operating mode, as shown in Fig. 5(b).
Therefore, we can achieve significant energy reduction. The
shaded area in Fig. 5(b) shows the energy consumption
corresponding to one period λ in our scheduling approach.
Although the throughput constraint of the application is met
by our proposed approach, the mentioned energy reduction
comes at the expense of increasing the memory requirement.
This is because, the application samples the input data stream
and produces output data tokens in the higher operating mode

Algorithm 1: Operating modes determination.

Input: A CSDF graph G = (V,E).
Input: A set Ψ = {Ψ1,Ψ2, · · · ,Ψm} of m identical PEs.
Input: A set θ = { fmin = f1, f2, · · · , fn = fmax} of n discrete operating frequencies

for the PEs.
Input: A set Π = {Π1,Π2, · · · ,Πm} of task assignments on the PEs.
Output: A set γ of operating modes.

1 γ ← /0;
2 Compute s using Eq. (2);
3 while true do
4 for ∀ τi ∈V do

5 Ti =
lcm(~q)

qi
· s;

6 Γ←{τ1,τ2, · · · ,τ|v|};
7 for ∀ Ψ j ∈Ψ do
8 Compute a minimum operating frequency f j such that

U j =
fmax

f j
∑∀τi∈Π j

Ci
Ti
≤ 1;

9 R = Compute the throughput of new schedule using Eq. (4);
10 P = Compute the power consumption of new schedule corresponding to the

operating frequency set
−→
f using Eq. (6);

11 m← (R,P,Γ,
−→
f);

12 if {¬∃ mi ∈ γ :
−→
fi =
−→
f } then

13 γ ← γ +m;

14 if the operating frequency of all PEs reaches to fmin then
15 return γ;

16 s = s+1;

more frequently than in the lower operating mode. As a
consequence, this results in irregularity of sampling the input
data stream and producing the output data tokens over the time.
Therefore, to solve this irregular sampling/production problem,
we need extra memory buffers for the input and output of our
system, as shown in Fig. 6. The reason to use an output buffer,
is to gather the produced tokens and release them regularly
over the time in order to deliver the throughput constraint
in a long run. In the same manner, to regularly sample the
input data stream coming to the application, regardless of
which operating mode the application is running in, we need
an extra buffer at the input of the system. This is needed to
distribute the sampled data regularly over the input data stream
to guarantee certain sampling accuracy instead of sampling the
input data stream differently in each operating mode leading
to different accuracy in every operating mode.

According to the discussion above and looking at Fig. 5,
there are some parameters in our switching approach that
have to be determined, namely, the time duration to stay in
the higher and lower operating modes (QH ,QL), as well as
switching costs (oHL,oLH ,eHL,eLH). Therefore, in the rest of
this section, we explain how to compute these parameters.
We first explain how the operating modes are determined in
Section V-A. Then, we compute the switching costs, oHL,
eHL, oLH and, eLH and the time duration of staying in the
higher and lower operating modes, QH and QL, that are key
elements in our approach, in Section V-B and Section V-C,
respectively. Finally, we compute the memory overhead (the
inpute and output buffers in Fig. 6) associated with our
scheduling framework in Section V-D.

A. Determining operating modes

The procedure for determining the operating modes is given
in Algorithm 1. The inputs of this algorithm are a CSDF
graph, a homogeneous platform consists of m PEs, a set of
n discrete operating frequencies for the PEs, and a set of task
assignments on the PEs. The output of this algorithm is a set
of determined operating modes. First, Line 2 in this algorithm
initializes the scaling parameter s using Eq. (2). Then, we
use this initial value of s in Lines 4 and 5 to compute the
minimum period of each task in the CSDF graph G using
Eq. (1). By computing the minimum period of the tasks and
using the theory in [6], we can derive the set of strictly periodic

a0

a1

a3

a2

Output BufferInput Buffer

ReffR’eff Z(t)Z’(t)

Application

Fig. 6: Input and Output buffers.

tasks Γ in Line 6. Then, the minimum operating frequencies
of the PEs are computed in Lines 7 and 8 in such a way that
the schedulability of the assigned tasks on each PE is still
preserved. To do so, a simple utilization check is performed
where the total utilization of the assigned tasks on each PE has
to be less than 1, for partitioned EDF, for the selected operating
frequency. These operating frequencies are then stored in

frequency set
−→
f . In Lines 9 and 10, the throughput R and

power consumption P of the periodic scheduling of task set
Γ are computed using Eq. (4) and Eq. (6), respectively. Then,
in Line 11 a new operating mode m that is characterized with
the strictly periodic task set Γ corresponding to s, throughput
R, power consumption P and the set of operating frequencies
−→
f for the PEs is created. Line 12 checks a condition whether

to include the newly created mode to the set γ of operating
modes. According to this condition, an operating mode is
included to the set γ if there does not exist any operating

mode in set γ with the same operating frequency set
−→
f .

This is because, if there exists such an operating mode in
set γ , it corresponds to smaller s than the new operating
mode. Therefore, the tasks in the existing operating mode
have shorter periods where less unused slack time remains in
the application schedule with the same operating frequency
of the PEs. This selection strategy ensures that the static
slack time in the application schedule is exploited more
efficiently using the DVFS technique. Then, the explained
procedure from Lines 4 to 13 repeats by incrementing s in
Line 16 until the operating frequency of all PEs reaches to the
minimum available operating frequency. Finally, the set γ of
all determined operating modes is returned by this algorithm.
As an example, following Algorithm 1, the operating modes
for the (C)SDF graph in Fig. 1 are determined and listed in
the Table I.

B. Switching costs oHL,oLH ,eHL,eLH

In this section, we introduce the switching costs associated
with our proposed switching scheduling scheme and explain
the way we compute them.

(1) Time Costs: As shown in Fig. 5(a), we switch the
operating mode in our approach between mH and mL. Mode
switching has been investigated in [13] to determine when the
tasks in the new operating mode after switching are allowed
to start their execution assuming the tasks in each operating
mode are scheduled using the framework in [6] as assumed
in our paper as well. In [13], it has been shown that the tasks
in the new operating mode can not be executed immediately.
Therefore, their execution has to be offset by δ time units
according to Eq. (7.18) in [13]. As a consequence, the system
may not have any token production during the operating mode
switching. In our case, the time cost of switching from the
higher operating mode mH to the lower operating mode mL

and vice versa using the offset δ from [13], can be computed
as follows:
oHL = S

mL
out +δ mH→mL−S

mH
out , oLH = S

mH
out +δ mL→mH −S

mL
out (9)

where S
mL
out and S

mH
out are the starting time of the output task

in the lower and higher operating modes, respectively. This
time cost is exactly the elapsed time between the finishing
of the output task in one operating mode and the starting

time of the output task in the other operating mode. How-
ever, since the operating frequencies of the PEs are changed
during the switching, the computed δ offset in [13] may
not be sufficient. This is because, the time that is needed
for physically changing the operating frequencies in the PEs,
denoted by ∆, is not considered in the computation in [13].
Apparently, the operating frequency must not be changed when
the tasks in the higher operating mode are still executing in
the system. Therefore, when the operating mode is switched
from the higher operating mode to the lower operating mode,
the operating frequency of the PEs must be changed after
the end of the execution of the assigned tasks on the PEs
in the higher operating mode. Similarly, when the operating
mode is switched from the lower operating mode to the higher
operating mode, the operating frequency of the PEs must be
changed before the start of the execution of the assigned tasks
on the PEs in the higher operating mode. This ensures that
the tasks’ job deadlines in both operating modes are met. For
instance, for the proposed switching scheduling approach in
Fig. 3, the time instants of changing the operating frequencies
of Ψ1 and Ψ2 are show by the boxes with dotted pattern where
the size of these boxes denotes the frequency switching delay
∆. The δ offset in [13] is a function of the tasks utilization.
Therefore, to involve such switching delay ∆ associated with
DVFS into the δ offset, we have changed the utilization Ci/Ti

to (Ci+∆)/Ti of tasks τi in the lower operating mode that are
executing when the operating frequency change happens. As
a result, using Eq. (7.18) in [13], we can compute a sufficient
δ with the new tasks utilization to make sure that the job
deadlines of all tasks in both operating modes are still met
during operating mode switching. Clearly, the last starting
time instant of the new operating mode, using Eq. (7.18) in
[13], can be when the execution of the previous operating
mode is completely finished and the operating frequencies of
the PEs are also changed. This is the safest starting time for
the new operating mode while no extra schedulability test is
needed as there are no overlapping execution between two
operating modes. Using the method, explained above, for the
proposed scheduling approach in Fig. 3, the starting offset of
δ m1→m2 = 0 can be computed for operating mode m2 when
the operating mode is switched from m1 to m2. Similarly, the
starting offset of δ m2→m1 = 5 can be computed for operating
mode m1 when the operating mode is switched from m2 to m1.
Finally, the time cost of o12 = 5 and o21 = 0 can be computed
using Eq. (9) for the operating mode switching from m1 to m2

and vice versa, respectively, as can be seen in Fig. 3.

(2) Energy Costs: By applying sufficient δ offset, as
computed in Section V-B(1) above, tasks belonging to both
the lower and higher operating modes may be concurrently
executing on the PEs during mode switching. For instance, in
Fig. 3 tasks in both operating modes m1 and m2 execute from
time instant 26 to 36 and from time instant 67 to 77 when
the operating mode is switched from m1 and m2 and vice
versa, respectively. To meet the tasks’ job deadlines in both
operating modes, the PEs must run at the operating frequency
corresponding to the higher operating mode during operating
mode switching. Therefore, the total energy consumption of
our proposed scheduling approach is more than the summation
of energy consumption of operating modes mH and mL for the
execution intervals of QH and QL time unit, respectively. As
a result, we define eHL and eLH as extra energy consumption
when the operating mode is switched from the high operating
mode to the low operating mode and vice versa, respectively
and we computed them using the following expressions:

eHL = oHLPH (10)

Algorithm 2: Finding the less power consuming pair of
NH and NL.

Input: Rreq, mH , mL.
Output: NL, NH .

1 Prev_Power =+∞;
2 NL = 1;
3 while True do
4 Calculate NH using Eq. (14) and Rreq;
5 Power =Calculate power consumption by using Eq. (8);
6 if Prev_Power−Power

Prev_Power
×100 < 1 then

7 return NL, NH ;

8 Prev_Power = Power;
9 NL = NL +1;

eHL = (SmH
out −oLH)(PH−PL)+oLHPH = S

mH
out (PH−PL)+oLHPL

(11)
where the S

mH
out is the starting time of the output task in

the higher operating mode. These energy costs are visualized
by the hatched boxes in Fig. 5(b). These energy costs are
overestimate using the above expressions because a single time
instant is assumed for changing the operating frequency of all
PEs in each operating mode switching. This time instant is
referred by fswitch in Fig. 5(b). Note that we also include the
energy overhead of DVFS into this energy costs.

C. Computing QH and QL

In our approach, we only allow the switching of operating
modes at the graph iteration boundary. This means that the
operating mode can be switched as soon as an application
graph iteration is completed. Under this assumption, the time
that an application is executed, in any operating mode, must
be a multiple of the duration of one graph iteration. Therefore,
the time that the application spends in the higher and lower
operating modes can be defined as follows:

QH = NH ·αH , NH ∈ N (12)

QL = NL ·αL, NL ∈ N (13)

where NH and NL are the number of graph iterations in the
higher and lower operating modes, respectively, and αH and
αL are the graph iteration period (hyper period) in the higher
and lower operating modes, respectively, as defined in Eq. (3).
Finally, by substituting Eq. (12) and Eq. (13) in Eq. (7) and
setting Re f f = Rreq, the number of graph iterations to stay in
the higher operating mode, NH , can be derived as follows:

NH =

⌈

αLNL(Rreq−RL)+Rreq(oHL +oLH)

αH(RH −Rreq)

⌉

(14)

Note that, in the above equation, the ceiling function is
used to derive an integer value for NH such that the effective
throughput Re f f can still meet the throughput constraint Rreq.
This fact is shown in Fig. 5(c) where our proposed effective
throughput Re f f is higher than the throughput constraint Rreq.
Using Eq. (14), we have to derive the pair of NH and NL

that satisfies the throughput constraint Rreq. Clearly, Eq. (14)
has more than one solution for the pair of NH and NL. Since
all of these solutions have the same timing constraint, i.e.,
throughput constraint, the energy minimization is equivalent
with the power minimization. Therefore, to find the less power
consuming solution that consequently results in the less energy
consumption, we can see from Eq. (8) that less power is
consumed when we have an arbitrarily large period λ . This is
because, the contribution of the switching power consumption
eHL+eLH

λ
becomes negligible in the total power consumption

Pe f f . Moreover, as the period λ is enlarged, the delivered
effective throughput Re f f using our switching scheme becomes
closer to the throughput constraint Rreq. This is because,
as NL increases in Eq. (14), the ceiling function becomes

tP

Z’(t)

Timeλ

o’HL

R’eff .λ
R’L.QL

R’H.QH

QH o’LHQL

ρ

ρin

twait

R’effTokens

Fig. 7: Token consumption Function Z
′
(t). Note that, oHL +

oLH = o
′

HL +o
′

LH = δ H→L +δ L→H .

less contributing and the pair of NL and NH can produce
the effective throughput Re f f more closely to the throughput
constraint Rreq. As a result, this leads to exploiting static slack
times in the application scheduling more efficiently leading to
further power reduction. Therefore, to find a valid solution
for NH and NL that satisfies Eq. (14) and reduces the power
consumption significantly, we search for the largest NL where
if it is further enlarged, the power reduction diminishes to less
than one percent.

Algorithm 2 presents the pseudo-code of finding the less
power consuming pair of NH and NL. The inputs of this
algorithm are the throughput constraint and the higher and
lower operating modes. The output of this algorithm is the
pair of NH and NL. First, we initialize NL = 1 in Line 2
and compute the corresponding NH using Eq. (14) in Line
4. Then, we compute the power consumption corresponding
to the derived pair of NH and NL using Eq. (8) in Line 5.
We repeat this procedure by incrementing NL in Line 9 until
further power reduction compared to the previous iteration
becomes less than one percent. This condition to terminate
the procedure is given in Line 6. Then, the pair NH and NL is
returned by the algorithm.

D. Memory Overhead

In this section, we compute the memory overhead that our
approach incurs to the system, that is, the input and output
buffers shown in Fig. 6. In order to compute the output
buffer, we should consider Fig. 5(c) which shows the variable
rate of token production Z(t) delivered by our scheduling
approach (the solid curve) and the needed constant rate of
token production Re f f (the dotted line). When the application
executes in the higher operating mode, it produces more token
than needed while in the lower operating mode it produces less
token than needed. Therefore, the purpose of using the output
buffer is to accumulate the maximum difference between the
number of produced and needed tokens over the time. This
maximum difference is given by ρout in Fig. 5(c). Therefore,
the size of the output buffer must be at least

Bout =

⌈

ρout

⌉

=

⌈

QH(RH −Re f f)

⌉

(15)

To compute the input buffer, the same method as for the
output buffer can be used. To do so, we should consider Fig. 7

which shows the rate of sampling data tokens Z
′
(t) in our

scheduling approach given by the solid curve. As can be seen,
the application samples the data tokens in the higher operating
mode more often than in the lower operating mode. To solve
such irregular sampling of the input data tokens over the time,

we introduce a constant rate of sampling data tokens R
′

e f f give
by the dotted line in Fig. 7 for the application and we compute
it as follows:

R′e f f =
R
′

HQH +R
′

LQL

QH +QL +o
′

HL +o
′

LH

(16)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

·10−7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or
m
a
li
ze
d

E
n
er
g
y

MP3

Switching
Higher mode

Scale

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

·10−5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or
m
a
li
ze
d

E
n
er
g
y

FFT

Switching
Higher mode

Scale

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·10−6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or
m
a
li
ze
d

E
n
er
g
y

H.263

Switching
Higher mode

Scale

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

·10−5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or
m
a
li
ze
d

E
n
er
g
y

DCT

Switching
Higher mode

Scale

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit] ·10−1

N
or
m
a
li
ze
d

E
n
er
g
y

Pacemaker

Switching
Higher mode

Scale

2.5 3 3.5 4 4.5 5 5.5 6

·10−2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or
m
a
li
ze
d

E
n
er
g
y

Modem

Switching
Higher mode

Scale

Fig. 8: Normalized energy consumption vs throughput constraints.

where R
′

H and R
′

L are the throughput of the input task in the

higher and lower operating modes, R
′

HQH and R
′

LQL are the
number of sampled data tokens from the input data stream in

the higher and the lower operating modes, and o
′

HL and o
′

LH are
the time overhead for the input task where no input data stream
is sampled during switching from the higher to lower operating
mode and vice versa, respectively. These time overheads
are equal to the offset δ computed in [13]. Apparently, the

constant sampling rate of R
′

e f f has to always provide sufficient
sampled data tokens in both operating modes. Thus, to be able
to guarantee this feature, the sampling of the input data stream

with the rate of R
′

e f f must be started twait time units before
the application starts executing, as shown in Fig. 7. This time
can be computed as follows:

twait =
(R
′

H −R
′

e f f)QH

R
′

e f f

(17)

Finally, the size of the input buffer must be at least

Bin =

⌈

ρin

⌉

=

⌈

twaitR
′
e f f

⌉

=

⌈

QH(R
′
H −R′e f f)

⌉

(18)

where ρin is the maximum difference between the number of
sampled and needed tokens, as shown in Fig. 7.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of our mode
switching scheduling approach in terms of energy reduction.
We compare our proposed switching scheduling approach
referred as Switching in terms of energy reduction with two
approaches: the straightforward approach of always selecting
the operating mode whose throughput is the closest higher
to the throughput constraint referred as Higher mode and the
scaling approach, referred as Scale, explained in Section IV-A,
which is the way of using the VFS technique similar to related

TABLE II: Benchmarks used for evaluation.
Application |V | |E|

Discrete cosine trans f orm (DCT) [14] 8 7
Fast Fourier trans f orm (FFT) [14] 17 16

Data modem [15] 6 5
MP3 audio decoder [15] 14 18
H.263 video decoder [15] 4 3

Heart pacemaker [16] 4 3

works [4], [5], [10] in the context of [6]. In the following, we
first explain our experimental setup in Section VI-A. Then, we
present the experimental result in the Section VI-B.

A. Experimental setup

Benchmarks. We have performed experiments on 6 real-life
streaming applications collected from the StreamIt benchmark
suit [14], SDF3 suit [15] and the individual research article
[16], where all streaming applications are modeled as CSDF
graphs. An overview of all streaming applications is given in
Table II. In this table, |V | denotes the number of tasks in a
CSDF graph, while |E| denotes the number of communication
channels among tasks.

Architecture and Power Model. In the experiments, we
use the power model presented in Section III-D. In this model,
we adopt the power parameters of the Cortex A15 core given
in [12], where these parameters have been obtained based on
real measurements on the ODROID XU-3 platform [17]. The
overhead of DVFS is set to values taken from [18], i.e., 10µs
and 1µJ are used for the delay and energy overhead associated
with the physical change of the frequency in PEs, respectively.
We evaluate the effectiveness of our scheduling approach
on platforms with limited number of PEs. To this end, we
compute the minimum number of PEs needed to schedule each
benchmark application using a partitioned scheduling, e.g.,
First-Fit-Decreasing (FFD), when the maximum achievable
throughput is required.

B. Experimental results

All experimental results are shown in Fig. 8 and Fig. 9,
where the comparison is made for a set of selected application
throughputs as throughput constraints. In Fig. 8, we show
the different throughput constraints for the benchmarks on
the x-axis and the normalized energy consumption of all
three approaches is shown on the y-axis. As can be seen
in Fig. 8, the energy reduction varies considerably among
different applications and throughput constraints. When com-
pared to the approach Higher mode, our approach Switching
achieves significant energy reduction for all benchmarks. This
energy reduction for the Modem, Pacemaker, DCT, MP3,
FFT, and H.263 benchmarks can be up to 68.18%, 61.94%,
21.14%, 22.4%, 19.9%, and 19%, respectively. Compared to
the approach Scale, our approach Switching can still reduce
the energy consumption considerably. This energy reduction
for the Modem, Pacemaker, DCT, MP3, FFT, and H.263
benchmarks can be up to 68.18%, 61.94%, 13.1%, 13.78%,
10.7%, and 12.07%, respectively. Among all these bench-
marks, the Modem and Pacemaker are the two benchmarks
for which our approach can obtain the largest energy reduc-
tion when compared to the approach Scale. This is mainly
because the period of the tasks in Pacemaker and Modem
benchmarks are quickly increased by applying the task period
scaling approach, explained in Section IV-A. Therefore, a
fewer number of operating modes can be determined for
these benchmarks and no other application scheduling re-
mains between the operating modes. As a consequence, the
same application scheduling as the approach Higher mode
is selected in the approach Scale to meet the throughput
constraint in these benchmarks. This fact can be seen in Fig. 8
for Pacemaker and Modem benchmarks in which the result
of the approach Scale and the approach Higher mode are
overlapped on each other.

As can be seen in Fig. 8, for some throughput constraints
no energy reduction is achieved by our approach Switching
compared to approach Higher mode and approach Scale.
This happens when the throughput constraints match with the
throughput of one of the operating modes. In such cases, we
simply select the operating mode whose throughput matches
with the throughput constraint because mode switching is not
needed.

Finally, the memory overhead, discussed in Section V-D,
introduced by our scheduling approach, is given in Fig. 9.
In this figure, the x-axis shows the different benchmarks
while the y-axis shows the maximum total buffer size for
each benchmark which is the sum of the maximum size of
input and output buffers shown Fig. 6. In this figure, we
only show the maximum total buffer size collected among
all throughput constraints for each benchmark. The memory
overhead for the H.263 benchmark is 1.7 MB whereas for
the other benchmarks it is less than 83 KB. Given such
maximum memory overhead and given the size of memory
available in modern embedded systems, we can conclude that
the memory overhead introduced by our scheduling approach
is acceptable.

VII. CONCLUSION

In this paper, we propose a novel periodic scheduling
approach for streaming applications. This approach can meet
a system throughput requirement at long run by periodically
switching between two selected operating modes. Contrary to
related approach, our scheduling approach benefits from using
multiple voltage and frequency levels at run-time leading to
more efficient static slack time utilization while the throughput
requirement is still satisfied. The experimental results, on

MP3 FFT H.263 DCT PacemakerModem
100

101

102

103

104

105

106

107

B
u

f
fe

r
S

iz
e
(B
)

Fig. 9: Maximum total buffer sizes needed in our scheduling
approach for different benchmarks. Note that the y axis has a
logarithmic scale.

a set of 6 real-life streaming applications, show that our
approach reduces the energy consumption up to 68% while
meeting the same throughput requirement when compared
to related energy minimization scheduling approaches. How-
ever, for some throughput constraints that match with the
throughput of one of the operating modes, no energy reduction
can be achieved by our approach compared to the related
approaches. This is because, in such cases, we can simply
select the operating mode whose the throughput matches with
the throughput constraint instead of adopting mode switching
technique. Finally, although the throughput constraint of the
applications is met by the proposed approach, the mentioned
energy reductions come at the expense of increased memory
requirements.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[2] G. Bilsen et al. Cycle-static dataflow. Signal Processing, IEEE
Transactions on, 44(2):397–408, 1996.

[3] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-time
multiprocessor system-on-chip with optimal dvfs and dpm combination.
ACM Transactions on Embedded Computing Systems (TECS), 2014.

[4] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Throughput-constrained dvfs for scenario-aware dataflow graphs. In
RTAS, 2013.

[5] A. K. Singh et al. Mapping on multi/many-core systems: survey of
current and emerging trends. In DAC, 2013.

[6] M. Bamakhrama and T. Stefanov. On the hard-real-time scheduling of
embedded streaming applications. DAES, 17(2):221–249, 2013.

[7] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys (CSUR), 43(4):35,
2011.

[8] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and
K. Goossens. Power minimisation for real-time dataflow applications.
In DSD, 2011.

[9] P. Huang, O. Moreira, K. Goossens, and A. Molnos. Throughput-
constrained voltage and frequency scaling for real-time heterogeneous
multiprocessors. In SAC, 2013.

[10] J. Zhu, I. Sander, and A. Jantsch. Energy efficient streaming applications
with guaranteed throughput on mpsocs. In EMSOFT, 2008.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
1973.

[12] D. Liu, J. Spasic, G. Chen, and T. Stefanov. Energy-efficient mapping
of real-time streaming applications on cluster heterogeneous mpsocs. In
ESTIMedia, 2015.

[13] J. T. Zhai. Adaptive streaming applications: analysis and implementation
models. PhD thesis, Leiden Institute of Advanced Computer Science
(LIACS), Leiden University, 2015.

[14] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
PACT, 2010.

[15] S. Stuijk et al. Sdf3: Sdf for free. In ACSD, 2006.
[16] R. Pellizzoni, P. Meredith, M. Nam, M. Sun, M. Caccamo, and L. Sha.

Handling mixed-criticality in soc-based real-time embedded systems. In
EMSOFT, 2009.

[17] ODROID. “http://www.hardkernel.com/”.
[18] S. Park et al. Accurate modeling of the delay and energy overhead

of dynamic voltage and frequency scaling in modern microprocessors.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 32(5):695–708, 2013.

