
Identifying Communication Models in Process

Networks derived from Weakly Dynamic Programs

Dmitry Nadezhkin, Todor Stefanov

Leiden Embedded Research Center, Leiden University, The Netherlands

{dmitryn,stefanov}@liacs.nl

Abstract—Process Networks (PNs) is an appealing computation
abstraction helping to specify an application in parallel form and
realize it on parallel platforms. The key questions to be answered
are how a PN can be derived and how its components can be real-
ized efficiently on a given parallel system. In this paper we present
a novel approach of communication model identification in PNs
derived from nested loops programs with data-dependent control
statements, which we call Weakly Dynamic Programs (WDP).
Identifying communication models at compile-time allows us to
select the most efficient realization of communication components
in a PN. We show how our approach is seamlessly integrated
into our existing procedure of automated PN derivation from
WDP programs. This paper can be considered as an important
complementary work that makes our automated derivation of
WDPs to PNs complete.

I. INTRODUCTION

The majority of modern applications used in the area of

multimedia, imaging and signal processing have a high com-

putational demand. To satisfy this demand, on the one hand,

new parallel hardware platforms are emerging [1]. On the

other hand, to utilize the parallel resources provided by

the platform, application designers have to draw thorough

attention to the concurrency properties of the applications.

The concurrency, however, introduces an ambiguity into the

execution flow of a program, such as data races, data inco-

herency, deadlocking and data starvation. A widely accepted

approach in dealing with concurrency is to use parallel models

of computations (MoC) [2], which bring all such variability

under control. Additionally, a model specifying the application

in a parallel form can be mapped onto the parallel platform

in a systematic and possibly automated way.

One of the models which is widely used for speci-

fying streaming applications is the Kahn Process Net-

work (KPN) model [3]. The KPN is a deterministic model

with distributed memory and control. Semantically, a KPN

is a unidirectional graph in which the nodes are processes

executing a sequential code and the edges are FIFO channels

which communicate data between processes. A process may

be in two states: firing or communicating. The former case

occurs when a data to be processed is available locally. In

the latter case, the process sends/receives data tokens to/from

other processes. Every FIFO channel implemented as a point-

to-point communication has one Producer and one Consumer

processes, thereby forming a Producer/Consumer pair (P/C

pair). An example of two P/C pairs P1/P3 and P2/P3 is shown

in Figure 1(d).

In any point-to-point communication, the firings of the Pro-

ducer process generate data tokens in a certain order. We call

it the production order. The tokens are sent to the Consumer

process over the FIFO channel. In order to fire, the Consumer

process needs the data tokens in a certain order. We call it

the consumption order. When the production and consumption

orders are the same, we say that the P/C pair communication

is in-order. Otherwise, the P/C pair communication is out-

of order. Consider, for example, Figure 1(b). It depicts the

Producer and Consumer processes, where the points on the

coordinate systems designate the firings of the processes

and the arrows reflect the data dependencies between firings.

The numbers at the points show the production/consumption

orders. Figure 1(b) shows that the production order of the

Producer process coincides with the consumption order of the

Consumer process. This is an example of in-order commu-

nication in a P/C pair. Similarly, Figure 1(e) illustrates that

the consumption order of the Consumer is reversed to the

production order of the Producer process. This is an example

of out-of-order communication.

In a P/C pair, it may occur that the Consumer process may

need to reuse in future firings a token that has just been

received from the Producer process. In such case we say that

the P/C pair communication has a multiplicity. For example,

consider the firing of the Producer and Consumer depicted

in Figure 1(c). The production and consumption orders are

the same, thus, the P/C pair communication is in-order.

Additionally, we may notice, for example, that the data token

needed for firing 3 of the Consumer process, will be needed

on firings 6 and 8. Thus, the P/C pair communication has a

multiplicity. Likewise, a P/C pair communication may be out-

of-order and has a multiplicity. An example of such P/C pair

communication is depicted in Figure 1(f). The four different

types of P/C pair communication described above, determine

four communication models between processes. They are: in-

order (IO), out-of-order (OO), in-order with multiplicity (IOM)

and out-of-order with multiplicity (OOM).

In order to implement a KPN, all communication models have

to be realized over a FIFO channel. The in-order models can

be implemented with a FIFO in a straightforward way, as the

order of writing into the FIFO channel and the order of reading

from it are the same. The out-of-order models would require a

FIFO channel augmented with a controller implementing the

reordering. In a similar manner, the models with multiplicity

would require a FIFO channel with additional memory to store



ProgramS:

for k = 1 to 4,

S1: y[k] = F1()

endfor

for i = 1 to 4,

for j = i to 4,

if j <= 2 then

S2: y[j] = F2()

endif

S3: [] = F3(y[j])

endfor

endfor

(a) SANLP

��

�
�
�
�

�
�
�
�

��

����

����

��
��
��
��

��
��
��
��

j

i

k
Producer Consumer

1

2

3

4

1

2

3

4

(b) In-order (IO)

����

���� ��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

���� ��

��

����

����

����

��
��
��
��

ConsumerProducer

j

i

k

3

4

2

1

109

1

2

3

4

5

6

7

8

(c) In-order with multi-

plicity (IOM)

P2

P3

P1

(d) PN topology

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

j

i

k
ConsumerProducer

4

3

2

1

4

3

2

1

(e) Out-of-order (OO)

�
�
�
�

�
�
�
�

��

��

��
��
��
��

����

��
��
��
��

���� ������

�
�
�
�

��
��
��
��

����

����

j

i

k
Producer Consumer

2

1

3

4
4 7 9 10

863

2 5

1

(f) Out-of-order with

multiplicity (OOM)

Fig. 1: SANLP program, P/C pair and types of communication

models.

the tokens which will be reused later.

The difference in realization puts the communication models

into a hierarchy. The realization of the OOM model is the

most general, as it is built of all components present in the

realizations of the other models. In other words, all P/C

pair communication models can be implemented with the

realization of the OOM model. However, the more general

a realization is, the more resources it needs and more run-

time overhead is introduced. More importantly, the IO,OO

and IOM communication models might be implemented with

simpler realization. Therefore, it is important to identify at

compile-time the communication model of a pair of processes

in order to instantiate the most efficient realization. This

paper addresses this important identification problem. The

main novel contribution of this paper is a formal procedure

for identifying communication models in process networks

derived from Weakly Dynamic Programs (WDP).

A. Related work

To the best of our knowledge, not much attention has been

devoted to automatic communication model identification.

An automatic procedure exists for communication model

identification while translating static affine nested loop pro-

grams (SANLP) into functionally equivalent KPNs [4]. In

SANLPs the memory array subscripts, loop bounds and con-

ditional control structures are affine constructs of surround-

ing loop iterators, program parameters and constants. An

example of a static program is given in Figure 1(a). In the

communication model identification procedure two integer

linear problems (ILPs) have been formulated: Reordering

Problem (RP) and Multiplicity Problem (MP). We have found

that the RP is not precise and lead to more complex realization

of communication models as will be shown in Section III-D.

Thus, one of the novel contribution of this paper is the

ProgramD:

for k = 1 to 4,

S1: y[k] = F1()

endfor

for i = 1 to 4,

for j = i to 4,

C: if y[j]<= 2 then

S2: y[j] = F2()

endif

S3: [] = F3(y[j])

endfor

endfor

(a) Weakly Dynamic Program

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

������������

�������� ��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1 2 3 4

2

1

3

9

8

1074

6

5 2

1

3

9

8

1074

6

5

j

i

j

i

S2 S3

S1

k

(b) eval(C)=true

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��

����

�� �� ��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��������������

j

k

j

i i

S3

S1
3 41 2

10974

6 83

52

1

10974

6 83

52

1

S2

(c) eval(C)=false

1

2

4

3

1 2 3 4

1

2

4

3

1 2 3 4

����

����

�� ����

����

����

���� ����

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�� ��

���� ��

S3

S1

j

k

i i

S2

j

1 2 3 4

1

2

3

4

5

6

7 9

8

10

1

2

3

4

5

6

7 9 10

8

(d) eval(C)=unknown

Fig. 2: WDP program and Dependencies examples.

formulation of a new RP.

Besides this, the major novel contribution of our paper is the

communication model identification procedure while translat-

ing to a PN a more general class of applications, which are

defined in [5] and called Weakly Dynamic Programs. In this

class of affine nested loops programs, the static constraint

is relaxed, i.e., the conditions in control structures might be

dependent on some information that is not known at compile-

time and may change at run-time. For example, the program

shown in Figure 2(a) is an affine nested loop program with a

control statement at line C that depends on the evaluation of

some data unknown at compile-time.

An approach for automatic translation of WDP programs into

equivalent KPNs has been studied in [5]. However, a compile-

time procedure for communication model identification has

not been investigated and our paper can be considered as

an important complementary work that makes the translation

of WDP to KPNs complete. Additionally, we give a new

formulation of the Reordering Problem in the context of WDP

programs.

In the following section we give a motivating example demon-

strating why it is more difficult to identify the communication

models in dynamic programs compared to static programs.

In Section III, we present a formal framework used for

communication model identification in static programs. In

Section IV we present our novel solution approach to identify

the communication models in Weakly Dynamic Programs.

Section V concludes the paper.

II. MOTIVATING EXAMPLE

The overall challenge of communication model identification

in dynamic programs is how to deal at compile-time with

uncertainties introduced by dynamic control structures. In this

section we will demonstrate that: 1) an exact communication



model identification in PNs derived from WDP programs is not

possible at compile-time; 2) an approach used for communica-

tion model identification while translating static programs into

equivalent PNs cannot directly be applied to WDP programs,

and 3) nevertheless, at compile-time, for any P/C pair we can

identify the most general communication model which can be

used to realize all possible data dependency patterns that may

occur in different instances of the dynamic program.

Consider the WDP program shown in Figure 2(a). It is

an affine nested loops program with a condition at line C

evaluating some run-time data. Depending on the evaluation,

either statement S1 or S2 produces the data for every firing

of statement S3, and therefore, the PN graph corresponding to

this WDP consists of two P/C pairs: S1/S3 and S2/S3.

Assume, first, that the condition at line C always evaluates to

true, and, thus, all the data needed by statement S3 is produced

by statement S2 only. The data dependency relations depicted

in Figure 2(b), determine the communication model of this

P/C pair to be IO. The opposite case is when the condition

at line C always evaluates to false. Depicted in Figure 2(c),

this time, relations exist between statement S1 and S3 only.

As some data tokens will need to be reused in future firings,

the communication model is IOM. In general, the result of

condition evaluation at line C is arbitrary and unknown at

compile-time. In this case, on some firings, the data needed

by statement S3 is produced by statement S1, on other firings

by statement S2. An example of possible relations is depicted

in Figure 2(d), where the communication models of S1/S3 and

S2/S3 P/C pairs are IOM.

The three abovementioned examples of possible data depen-

dency patterns correspond to different instances of a dynamic

program, where an instance of a program is its evaluation with

particular input dataset. Therefore, the dependency patterns

in WDP programs are data dependent and are unknown at

compile-time. This makes an exact compile-time communica-

tion model identification in PNs derived from WDP programs

impossible.

In static programs, different instances of a program correspond

to one and the same single dependency pattern which is

known at compile-time. Therefore, the communication model

identification approach used for static programs cannot be

applied to dynamic programs, because in WDPs the data

dependency relation in a P/C pair is not unique and unknown

at compile-time.

Although an exact identification of communication models in

dynamic programs is not possible, still we can analytically

identify at compile-time the communication models of a P/C

pair in all possible instances of a dynamic program. Based on

this information, we can realize the communication of a P/C

pair with the most general communication model which im-

plements all possible data dependency relations. For example,

we may observe in Figure 2 that the production/consumption

orders in S1/S3 and S2/S3 pairs of the PN considered above

are the same. Thus, the communication in all P/C pairs is

in-order. Moreover, in some program instances a multiplicity

in the communication is possible and, according to the real-

ization hierarchy of communication models, the most general

model for S1/S3 and S2/S3 pairs is IOM. Therefore, we can

implement the communication in S1/S3 and S2/S3 pairs as

IOM model.

III. BACKGROUND AND NOTATIONS

In this section we formally describe the steps needed to

translate a sequential static program into an equivalent PN

specification, including the communication model identifica-

tion procedure. This is necessary in order to understand the

major contribution of this paper presented in Section IV-B, i.e.,

our novel communication model identification procedure for

weakly dynamic programs. The steps will be illustrated with

the example program given in Figure 1(a) called ProgramS.

This program is a static affine nested loops program, as

memory array indices and conditions are affine constructs of

surrounding loops iterators. In this program statements S1 and

S2 write to a one-dimensional array y and statement S3 reads

from it.

The procedure of PN derivation from a static program consists

of two steps. In the first step, a dependence analysis is applied

to the source code of a program. The goal of this analysis is to

determine if evaluation of a statement depends on evaluation

of other statements and to find these evaluations. For example,

in ProgramS, the goal of the dependence analysis is to find

whether statement S3 depends on statements S1 or S2 via

array y and at which iterations. Or in other words, for every

element of array y read at a given iteration of statement S3,

the dependence analysis finds which statement, S1 or S2, and

at what iteration, writes data to the given array element. The

result of the analysis forms the dependency relations between

iterations of statements writing/reading to/from the array. For

example, from the program code illustrated in Figure 1(a), we

can easily see, that S3 depends on S2 when 1 ≤ j ≤ 2, and

S3 depends on S1 for iterations: 2 < j ≤ 4. For dependence

analysis we use a technique called Exact Array Dataflow

Analysis (EADA) [6] which will be described in Section III-B.

In the second step of the PN derivation procedure, the topology

of the PN is built and the communication models of all P/C

pairs are identified and realized using FIFO channels. The

second step will be explained in Section III-C.

A. Notations

An iteration vector x of a statement is built of iterators of

surrounding loops. The set of values of an iteration vector

for which a statement is executed represents an iteration

domain, denoted by D(). For example, the iteration domain of

statement S2 in ProgramS is: D(S2) = {1 ≤ i ≤ 4∧ i ≤ j ≤
4 ∧ j ≤ 2}. An evaluation of a statement W on iteration x is

called an operation and denoted as 〈W, x〉. By “≺” we denote

ordering of operations. An operation 〈W, x〉 is evaluated before

an operation 〈R, y〉 according to the program sequence if: 1) x
lexicographically precedes y; or 2) if x = y and statement W
precedes statement R in the program text. As described in [6],

order “≺” can be expanded to a system of linear inequalities.

With “max” we denote the lexicographical maximum operator.



B. Exact Array Dataflow Analysis

Consider two statements W and R, and operations 〈W, x〉 and

〈R, y〉, where the first writes to an array and the second reads

from it. To find whether the operation 〈W, x〉 is a source

for operation 〈R, y〉 we need to build a system of linear

inequalities:

QWR(y) = {x | x ∈ D(W ), (c1)
IW (x) = IR(y), (c2)
〈W,x〉 ≺ 〈R, y〉. (c3)

(1)

The first constraint (c1) states that the source iteration x has

to exist, i.e., it has to belong to the iteration domain of a W
statement. The constraint (c2) specifies that if there is a depen-

dency between two operations, both have to access the same

array element. To access an array element, operation 〈W, x〉
uses an affine indexing function IW () and operation 〈R, y〉
uses indexing function IR(). The (c3) constraint determines

an order of operations, i.e., source 〈W, x〉 has to be evaluated

before operation 〈R, y〉.

While there might be many operations satisfying system (1),

i.e., writing to the same array element, only one of them writes

data after all the others and before reading by 〈R, y〉 occurs.

In other words, the source operation is the lexicographical

maximum between all operations satisfying system QWR(y):

KWR(y) = max QWR(y). (2)

In general, there might be several statements W1,. . . ,Wm

writing to the same array. In this case, we have to consider

all pairs W1/R,. . . Wm/R. The actual source is the “last”

operation between all operations of all statements:

σ(〈R, y〉) = max {〈Wk,KWkR(y)〉 | k ∈ [1, m]}. (3)

For example, consider ProgramS. There are two statements,

S1 and S2 writing to array y. Consider two pairs S1S3

and S2S3 and let us build the following systems of linear

constraints QS1S3((i3, j3)) and QS2S3((i3, j3)) as depicted in

Table I.

QS1S3((i3, j3)) QS2S3((i3, j3))
1 ≤ k ≤ 4 1 ≤ i2 ≤ 4 ∧ i2 ≤ j2 ≤ 4 (c1)

j2 ≤ 2
k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

TABLE I: Examples of system (1) for S1S3 and S2S3

statements.

After solving the ILP problems formulated in Table I and find-

ing “max” in Equation 3, the source operation σ(〈S3, (i3, j3)〉)
for the data read by statement S3 is:

if j3 ≤ 2 then 〈S2, (i3, j3)〉
else 〈S1, (j3)〉.

(4)

The abovementioned dependency relations are illustrated in

Figure 4(b).

C. Synthesizing a PN

In this section we consider the second step of the procedure

for PN derivation from a static program, i.e., the topology of

the PN is built and the communication models of all P/C pairs

are identified.

The dependence analysis applied on the source code of a

static program allows us to specify the program in a Single

Assignment Code (SAC) form as shown in [6]. The SAC

program is functionally equivalent to the original program,

with a difference that every variable is written exactly once.

This makes possible to realize data communication between

statements with FIFO abstraction which is the communication

mechanism used in PNs. An example of the SAC form of

the program given in Figure 1(a) is illustrated in Figure 4(a).

The main difference between these programs is that statements

in the SAC program communicate point-to-point via unique

dedicated arrays y_1 and y_2 that guarantee the original data

dependencies.

From the specification of ProgramS in SAC form depicted

in Figure 4(a), we can build the topology of the PN depicted

in Figure 1(d). First, every functional statement becomes a

process in the PN. For example, in Figure 4(a), lines 1–4

determine the computational and communicational structure

of process P1; lines 5–9 determine process P2 and lines 5–6

and 10–15 determine process P3. Second, variables or arrays

that are used to communicate data between statements become

channels in the PN. For example, arrays y_1 and y_2 form

two FIFO channels to communicate data to P3 from processes

P1 and P2, respectively. Furthermore, channels connect pairs

of processes which form P/C pairs. In the example, the

P/C pairs are P1/P3 and P2/P3. Third, mapping functions

are derived which establish relationships between firings of

processes forming a P/C pair. Mapping function in a P/C

pair gives for each iteration of statement corresponding to a

Consumer process, the iteration of statement corresponding to

a Producer process. For example, for P1/P3 pair, the mapping

function is:

fP1P3 : Z
2 → Z : k = (0 1)

(

i3
j3

)

,

and for P2/P3 pair, the mapping function is:

fP2P3 : Z
2 → Z

2 :

(

i2
j2

)

=

(

1 0
0 1

) (

i3
j3

)

.

From Figure 4(b) we can identify the domains of mapping

functions fP1P3 and fP2P3. The fP1P3 function maps all

iteration points of statement S3 with j3 > 2 to the iteration

domain of statement S1. Thus, the domain of mapping function

D(fP1P3) is: i3 ∈ [1, j3], j3 ∈ [3, 4]. Analogically, the domain

D(fP2P3) of mapping function fP2P3 is: i3 ∈ [1, 2], j3 ∈
[i3, 2]. The domains of mapping functions can be derived from

Equation 3.

D. Communication Model Identification: Static Programs

Having built the topology of a PN, the last step of the PN

derivation is to identify the communication models of its FIFO



channels.

In Section I, we explained that the communication model of

a channel depends on the order of firings of the Producer and

Consumer processes. Relations between firings of processes in

a P/C pair are expressed by the mapping functions. In [7], the

ordering in the communication models of a P/C pair is defined

as follows:

Definition III.1

A P/C pair is in-order iff the mapping function f preserves the

token order, i.e., every two Consumer iteration points y1≺y2

are mapped onto two Producer iteration points x1 = f(y1)
and x2 = f(y2) such that x1�x2. If a P/C pair is not in order

we call it out-of-order.

According to Definition III.1, the example of communica-

tion model given in Figure 1(c) will be classified as OOM.

However, in Section I we considered this example as IOM,

because first the tokens are read in-order (see dashed box

in Figure 1(c)) and they are reused later locally. Thus, we

conclude that Definition III.1 is not precise and lead to more

complex realizations of communication models. Instead, we

present a novel formulation of ordering in communication

models as follows:

Definition III.2

A P/C pair is in-order iff the mapping function f preserves the

token order, i.e., every two Consumer iteration points y1, y2 ∈
LmP(D(f))∧y1≺y2 are mapped onto two Producer iteration

points x1 = f(y1) and x2 = f(y2) such that x1�x2. If a P/C

pair is not in order we call it out-of-order.

The LmP(D(f )) set used in Definition III.2 stands for the

Lexicographically minimal Preimage (LmP) and is defined

in Figure 3 below. It is an Integer Linear problem finding

the Consumer iteration points that read the tokens from the

Producer for the first time.

objective : subject to :

ym = minlex{y(x)},

(

y ∈ C(N),

x = f(y).

Fig. 3: The Linear minimal Preimage ILP problem.

For example, in Figure 1(c), the LmP is marked by the dashed

box and according to Definition III.2 this P/C pair is in-order.

Similarly, for our running example shown in Figure 4(b), the

LmP corresponds to the dashed box and the communication

model of a P/C pair formed by statement S2 and S3 is in-

order.

The definition of multiplicity in a P/C pair we take from [7].

Definition III.3

A P/C pair is without multiplicity iff the mapping function

f is injective, i.e., ∀ y1, y2 ∈ D(C)) s.t. y1 6= y2 ⇒ f(y1) 6=
f(y2). Otherwise we say that the P/C pair is with multiplicity.

For example, in our running example shown in Figure 4(b),

we see that there are at least two different iteration points

of S3 which correspond to a single iteration point of S1.

Therefore, the P/C pair formed by statements S1 and S3 has

a multiplicity.

1: for k = 1 to 4,

if k >= 3,

S1: y_1[k] = F1()

end end

5: for i = 1 to 4,

for j = i to 4,

7: if j <= 2,

S2: y_2[i,j] = F2()

end

10: if j <= 2,

11: in_0 = y_2[i,j]

else

13: in_0 = y_1[j]

end

S3: [] = F3(in_0)

16: end end

(a) SAC code

1

2

4

3

1 2 3 4

1

2

4

3

1 2 3 4

�
�
�
�

��

�� ����

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�� ��

��

��
��
��
��

��
��
��
��

��

S3

S1

j

k

i i

S2

j

1 2 3 4

1

2

3

4

6

7 9

8

10

5

(b) Data dependencies

Fig. 4: An example of a SAC code and dependencies.

To analytically determine the communication type of an arbi-

trary P/C pair we specify the Reordering Problem (RP) and

the Multiplicity Problem (MP) as given in Figure 5, which

correspond to Definitions III.2 and III.3, respectively.

8

>

<

>

:

y1, y2 ∈ LmP(D(f)),

y1≺y2,

f(y1)≻f(y2).

(a) Reordering Problem (RP)

8

>

<

>

:

y1, y2 ∈ D(f), (c1)

y1 6= y2, (c2)

f(y1) = f(y2). (c3)

(b) Multiplicity Problem (MP)

Fig. 5: Reordering and Multiplicity Problems in static pro-

grams.

The RP and MP problems are integer linear problems, meaning

that if, for example, there is an integer solution satisfying RP,

then the communication model is out-of-order. Otherwise, the

the communication model is in-order. Similarly, if there is an

integer solution satisfying MP, then the communication model

is with-multiplicity, and otherwise the communication model

is without-multiplicity.

IV. SOLUTION APPROACH FOR WDP PROGRAMS

In this section we formally describe our novel compile-

time procedure for communication model identification while

translating a WDP program into equivalent PN.

In Section III-D, in Definitions III.1 and III.3 we reviewed

the Reordering and Multiplicity problems which are used to

identify communication models of channels while translating

static programs into equivalent PNs. Due to the fact that

Definition III.1 leads to more complex realizations of com-

munication models, we redefined the RP in Definition III.2.

The same Definitions III.2 and III.3 of communication models

hold for Weakly Dynamic Programs (WDPs). However, for

such programs, we cannot completely build problems like in

Figure 5 and solve them at compile-time. This is because some



information is missing due to data-dependent if-conditions

and, thus, mapping functions used in formulations of the

Reordering and Multiplicity problems are not unique and

cannot be exactly determined at compile-time. This has been

shown by the example in Section II.

In the same example we explained that there might be many

instances of a dynamic program, and, therefore, in every

instance there is a unique set of mapping functions. To capture

all unknown information at compile-time our novel approach

is to define and use parameterized mapping functions with

parameters that are determined at run-time.

We introduce single assignment form called dynamic Sin-

gle Assignment Code (dSAC) which is an extension of the

SAC presented in Section III-C. We use dSAC to derive

parameterized mapping functions. The derivation of the dSAC

form is based on a modified version of parameterized de-

pendence analysis algorithm called Fuzzy Array Dataflow

Analysis (FADA) developed by Feautrier et all and described

in [8].

Additionally, we explain how to derive the topology of a

PN and how to set up parameters at run-time. Finally, we

present how to define integer linear problems used to identify

the communication model of channels in a PN derived from

dynamic programs. In the following section, we describe the

FADA algorithm as it is an important part of our solution.

A. Fuzzy Array Dataflow Analysis

Consider two statement W and R of a weakly dynamic

program. Operation 〈W, x〉 writes to and operation 〈R, y〉
reads from the same array. Moreover, let statement W be

surrounded by a data-dependent if-condition. As an example,

consider Figure 2(a): statements S2 and S3 as W and R,

respectively, and if-condition C surrounding statement S2.

In Section III-B, we explained that in order two operations

〈W, x〉 and 〈R, y〉 of a static program to be dependent, they

should comply to the system of linear inequalities (1). By

analogy to the static case, to find whether operation 〈W, x〉 is

a source for operation 〈R, y〉 in a dynamic program, we need

to build a system of linear inequalities:

QWR(y,α) = {x | x ∈ D(W ), x = α, (c1)
IS(x) = IR(y), (c2)
〈S, x〉 ≺ 〈R, y〉. (c3)

(5)

The meaning of constraints (c2) and (c3) are the same as in

system (1): operations should access the same array element

and the writing operation should occur before the reading

operation. We will explain the meaning of constraint (c1).
As statement W is surrounded by data-dependent if-condition,

exact operations of W cannot be determined at compile-

time. Thus, for any reading operation 〈R, y〉 it is impossible

to determine the exact source operation. The idea of the

FADA algorithm is to introduce a parameter which would hide

unknown information, i.e., a parameter is used to indicate at

which iteration a writing operation 〈W, x〉 may occur.

The meaning of constraint (c1) is that we do not know

exactly at which iteration points x ∈ D(W ) writing to the

array occurs. But we assume that this happens for iterations

x = α, where α is a free parameter which values have

to be determined at run-time. Because operations satisfying

system (5) are not exact, we call them approximated sources.

For example, consider possible dependency relations depicted

in Figure 2(d) between statements of ProgramD. Let us look

at iteration (i, j) = (3, 3) of statement S3. Also, assume that

result of condition evaluation at line C was true on iteration

(i, j) = (1, 3) and was false on iterations (2, 3) and (3, 3).
The source for operation 〈S3, (3, 3)〉 is 〈S2, (1, 3)〉. Thus, for

iteration (3, 3) of statement S3, α = (1, 3).
Similar to EADA, there might be many operations satisfying

system (5), but the source is the lexicographical maximum

between all such operations:

KWR(y,α) = maxQWR(y,α). (6)

In general, there might be several statements W1, . . . , Wm

writing to the same array element. For each Wk , k = [1..m],
we find approximate source. In the EADA algorithm, the

source operation computed in Equation 3 is the maximum

between all operations of all statements. However, in FADA,

we cannot compute the maximum as all approximated sources

are parameterized. Therefore, to find the source, we combine

all approximate sources as described in [8]:

σ(〈R, y〉, α) = max{〈Wk,KWkR(y)〉| k ∈ [1, m]}. (7)

For example, consider ProgramD depicted in Figure 2(a).

There are two statements S1 and S2 writing to array y and

one statement S3 which reads from it. For every pair S1S3
and S2S3 we build the systems of linear inequalities (5)

which is depicted in Table II. For pair S1S3 all operations

of statement S1 are known and thus, a parameter is not

introduced. However, for pair S2S3 we introduce parameters

αi and αj which for read operation 〈S2, (i3, j3)〉 designate

source iteration and are unknown at compile-time.

QS1S3((i3, j3)) QS2S3((i3, j3), (αi, αj))
1 ≤ k ≤ 4 1 ≤ i2 ≤ 4 ∧ i2 ≤ j2 ≤ 4∧ (c1)

i2 = αi ∧ j2 = αj

k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

TABLE II: Examples of system (5) for S1S3 and S2S3

statements.

After combining approximate sources found in S1S3

and S2S3 pairs, the source operation for statement S3:

σ(〈S3, (i3, j3)〉, (αi, αj)) is:

if i3 ≥ αi ∧ j3 == αj then 〈S2, (αi, αj)〉
else 〈S1, (j3)〉.

(8)

From Equation 8 we see that for any reading operation

〈S3, (i3, j3)〉 the source of the data can be from two different

locations. The source is in S1 when for given j3 none of

the previous evaluations of the condition at line C was true.

Otherwise, the source is in S2. Parameters αi and αj are not



known at compile-time, therefore, the exact source is unknown

at compile-time either.

1: for j = 1 to 4, 13: c1 = ctrl[j].i

ctrl[j] = (5,5) 14: c2 = ctrl[j].j

3: end 15: if i >= c1 &&

4: for k = 1 to 4, j == c2,

S1: y_1[k] = F1() in_0 = y_2[c1, c2]

end else

7: for i = 1 to 4, in_0 = y_1[j]

for j = i to 4, end

C: if y_1[j]<=2, S3: [] = F3(in_0)

S2: y_2[i,j] = F2() end

11: ctrl[j] = (i,j) end

end

(a) dSAC code

P2

P3

P1

ctrl

(b) PN from WDP

Fig. 6: An example of a dSAC and corresponding PN.

B. Communication Model Identification based on dSAC form

In this section we present the dynamic SAC (dSAC) form

which we derive from FADA analysis, and our novel commu-

nication model identification procedure based on dSAC.

Because of the approximated data dependencies our dSAC

notion is different from the classical single assignment code

(SAC) form. In the SAC form, every variable is written only

once, whereas dSAC has a property that every variable is

written at most once. This property implies that some of the

variables may not be written at all. This is because of the

data-dependent control structures in a WDP, i.e., outcome of

the conditions is unknown at compile-time.

The dSAC form of ProgramD derived from Equation 8 is

depicted in Figure 6(a). It is in dSAC form because if we

consider line1 0, we do not know at compile-time at which

iteration the elements of array y_2 will be written. The only

thing known is that they will be written at most once. The

other array y_1 has the same property as an array in SAC

form: every element is written exactly once.

Another new feature of the dSAC form is the presence of

parameters that originate from FADA analysis. For example,

in Figure 6(a) the parameters are c1 and c2 which correspond

to parameters αi and αj in Equation 8. In order to make dSAC

to be functionally equivalent to the initial WDP program, the

values of these parameters have to be changed at run-time.

Parameters are changed with the help of control variables that

store the correct value of the parameters for every iteration.

For example, dynamic change of the values of c1 and c2 is

accomplished by lines 13 and 14. The control variable ctrl

at line 11 stores the iterations for which the data-dependent

condition at line C is true. The control variables must be

initialized with values that are greater than the maximum

value of the corresponding parameters. Therefore, the control

variable ctrl is initialized with value (5,5) at lines 1–3 in

Figure 6(a). Writing to the control variables is performed just

after the functional statement F2(), see line 11 in Figure 6(a).

This guarantees that when the function is executed, the current

iteration is stored in the control variables. The values of the

control variables are propagated and assigned to the parameters

c1 and c2 at lines 13 and 14. These parameters are used to

evaluate the conditions at lines 15 and 16 which determine the

source of the data for function F3().

From the dSAC we can build the topology of the PN depicted

in Figure 6(b). Every functional statement becomes a process,

and every variable or array becomes a channel. For example,

lines 4-6 form process P1; lines 1-3 and 7-12 form process

P2; and, finally, lines 7-8, 13-21 form process P3. Processes

P2 and P3 are connected with two channels: the first one

which originate from array y_2 for transferring data, and the

second channel which originate from control variable ctrl,

to communicate the outcome of the condition at line C.

From the dSAC form and Equation 7 we derive parameterized

mapping functions which are functions of the Consumer

iteration point and vectors of parameters: f(y, α). Vector of

parameters α is used to uniformly specify a set of unique

mapping functions which exist for every instance of a dynamic

program, thus capturing the unknown information at compile-

time. Values of vector α will be determined at run-time

during the execution of a PN. The derivation of parameterized

mapping functions is our novel contribution.

For example, for the P1/P3 pair, the mapping function is:

fP1P3 : Z
4 → Z :k = (0 1 0 0) (i3, j3, αi, αj)

t.

For the P2/P3 pair, the mapping function is:

fP2P3 : Z
4 → Z

2 :(i2, j2)
t =

(

0 0 1 0
0 0 0 1

)

(i3, j3, αi, αj)
t.

The domains of the mapping functions derived from Equa-

tion 8 are: D(fP2P3) = {i3 ≥ αi ∧ j3 = αj}, D(fP1P3) =
{i3 < αi ∨ j3 6= αj}, where variables i3, αi ∈ [1, 4], and

j3, αj ∈ [i3, 4].
Finally, we use the parameterized mapping functions in a novel

procedure for communication model identification in PNs

derived from WDPs. To identify the communication model of

an arbitrary P/C pair, we specify the Reordering Problem (RP)

and the Multiplicity Problem (MP) shown in Figure 7 which

correspond to Definitions III.2 and III.3, respectively.

The meanings of all constraints in Figure 7 are the same as in

Figure 5. A major difference is that parameterized mapping

functions are used. The whole innovation in our communica-

tion model identification procedure in WDP programs is to

model unknown information at compile-time in parameterized

mapping functions.

8

>

<

>

:

y1, y2 ∈ LmP(D(f)),

y1≺y2,

f(y1, α1) ≻ f(y2, α2).

(a) Reordering Problem (RP)

8

>

<

>

:

y1, y2 ∈ D(f) (c1)

y1 6= y2, (c2)

f(y1, α1) = f(y2, α2). (c3)

(b) Multiplicity Problem (MP)

Fig. 7: Reordering and Multiplicity Problems for WDP pro-

grams.

The definition of the LmP set used in Figure 7(a) is given

in Figure 8(a). It is an integer linear problem similar to the

problem shown in Figure 3. The differences between the

two formulations of LmP problems are that in the problem



shown in Figure 8(a) parameterized mapping function is used

and this problem finds lexicographically minimal Consumer’s

iteration points and parameters α. For example, consider the

P2/P3 pair formed by statements S2 and S3 from the dSAC

shown in Figure 6(a). The LmP problem for the P2/P3 pair

is illustrated in Figure 8(b). The solution of this problem is

LmP(D(fP2P3)) = {(i2, j2, i2, j2) ∈ C(N) | 1 ≤ i2 ≤ j2 ≤
4}.

objective :
(ym, αm) = minlex{y(x), α(x)},

subject to :
(

y ∈ C(N),

x = f(y, α).

(a) LmP ILP problem for WDP programs

8

>

>

>

<

>

>

>

:

i3 ≥ αi, j3 = αj ,

i2 = αi, j2 = αj ,

1 ≤ i3 ≤ j3 ≤ 4,

1 ≤ i2 ≤ j2 ≤ 4.

(b) An example of LmP
problem

Fig. 8: Statement of the LmP problem with an example.

Examples of applying RP and MP problems to our running

example ProgramD depicted in Figure 2(a) are shown in Fig-

ure 9. The RP and MP problems are formulated for the P2/P3

pair formed by statements S2 and S3 from the Figure 6(a),

respectively. Clearly, the RP problem shown in Figure 9(a)

does not have an integer solution, because constraints (c3)
and (c4) contradict each other. Therefore, the communication

model of P2/P2 pair is in-order. The MP problem illustrated in

Figure 9(b) has an integer solution: for some i13 6= i23, there can

be α1
i = α2

j which satisfy (c4), and, thus, the communication

model of the channel has a multiplicity.

8

>

>

>

<

>

>

>

:

i13 = α1
i , j

1
3 = α1

j ,

i23 = α2

i , j
2
3 = α2

j ,

(i13, j
1
3) ≺ (i23, j

2
3),

(α1

i , α
1

j) ≻ (α2

i , α
2

j).

(a) RP for P2/P3 pair

8

>

>

>

<

>

>

>

:

i13 ≥ α1
i , j

1
3 = α1

j , (c1)

i23 ≥ α2

i , j
2
3 = α2

j , (c2)

(i13, j
1
3) 6= (i23, j

2
3), (c3)

(α1

i , α
1

j) = (α2

i , α
2

j). (c4)

(b) MP for P2/P3 pair

Fig. 9: Examples of RP and MP problems for P2/P3 pair.

V. CONCLUSION

In this paper we presented a novel procedure for commu-

nication models identification in PN derived from Weakly

Dynamic Programs. We used Fuzzy Array Dataflow Analysis

to analyze original WDP program and as a consequence,

we were able to specify the program in dynamic Single

Assignment Code (dSAC) which is our extension of classical

SAC. Based on dSAC, we derived parameterized mapping

functions in P/C pairs of a PN. Parameters are used to

uniformly specify a set of unique mapping functions which

exist for every instance of dynamic program, thus, capturing

unknown information at compile-time. We showed how values

of parameters are being changed at run-time during evalu-

ation of a PN. For the communication model identification,

we formulated a new Reordering Problem which uses the

Lexicographically minimal Preimage. This approach allows us

to realize communication models more efficiently. Our novel

contributions are the derivation of parameterized mapping

functions and communication model identification procedure

while translating WDPs into equivalent PNs.

REFERENCES

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Miltiprocessor System-on-chip
(mpsoc) Technology,” IEEE TCAD, vol. 27, no. 10, 2008.

[2] G. Martin, “Overview of the mpsoc design challenge,” in DAC ’06. New
York, NY, USA: ACM, 2006, pp. 274–279.

[3] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proc. of the IFIP Congress 74. North-Holland Publishing Co.,
1974.

[4] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating Affine Nested-
loop Programs to Process Networks,” in Proc. CASES’04, Washington
D.C., USA, Sep. 23-25 2004.

[5] T. Stefanov, “Converting Weakly Dynamic Programs to Equivalent Pro-
cess Network Specifications,” 2004, PhD thesis, Leiden University, The
Netherlands, ISBN: 90-9018629-8.

[6] P. Feautrier, “Dataflow Analysis of Scalar and Array References,” Journal

of Parallel Programming, vol. 20, no. 1, pp. 23–53, 1991.
[7] A. Turjan, “Compiling nested loop programs to process networks,” 2007,

PhD thesis, Leiden University, The Netherlands.
[8] P. Feautrier and J.-F. Collard, “Fuzzy Array Dataflow Analysis,” Ecole

Normale Superieure de Lyon, Tech. Rep., 1994, eNS-Lyon/LIP N
o 94-

21.


