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Abstract—This paper studies real-time scheduling of mixed-
criticality systems where low-criticality tasks are still guaranteed
some service in the high-criticality mode, with reduced execution
budgets. First, we present a utilization-based schedulability test
for such systems under EDF-VD scheduling. Second, we quantify
the suboptimality of EDF-VD (with our test condition) in terms of
speedup factors. In general, the speedup factor is a function with
respect to the ratio between the amount of resource required by
different types of tasks in different criticality modes, and reaches
4/3 in the worst case. Furthermore, we show that the proposed
utilization-based schedulability test and speedup factor results
apply to the elastic mixed-criticality model as well. Experiments
show effectiveness of our proposed method and confirm the
theoretical suboptimality results.

I. INTRODUCTION

An important trend in real-time embedded systems is to

integrate applications with different criticality levels into a

shared platform in order to reduce resource cost and energy

consumption. To ensure the correctness of a mixed-criticality
(MC) system, highly critical tasks are subject to certification

by Certification Authorities under extremely rigorous and

pessimistic assumptions [1]. This generally causes large worst-

case execution time (WCET) estimation for high-criticality

tasks. On the other hand, the system designer needs to consider

the timing requirement of the entire system, but under less

conservative assumptions. The challenge in scheduling MC

systems is to simultaneously guarantee the timing correctness

of (1) only high-criticality tasks under very pessimistic as-

sumptions, and (2) all tasks, including low-critical ones, under

less pessimistic assumptions.

The scheduling problem of MC systems has been intensively

studied in recent years (see Section II for a brief review).

In most of previous works, the timing correctness of high-

criticality tasks are guaranteed in the worst case scenario at the

expense of low-criticality tasks. More specifically, when any

high criticality task executes for longer than its low-criticality

WCET (and thus the system enters the high-criticality mode),

all low-criticality tasks will be completely discarded and the

resource are all dedicated for meeting the timing constraints

of high-criticality tasks [2]–[5]. However, such an approach

seriously disturbs the service of low-criticality tasks. This

is not acceptable in many practical problems, especially for

control systems where the performance of controllers mainly

depends on the execution frequency of control tasks [6].

To overcome this problem, Burns and Baruah in [7] intro-

duced an MC task model where low-criticality tasks reduce

their execution budgets such that low-criticality tasks are

guaranteed to be scheduled in high-criticality mode with reg-

ular execution frequency (i.e., the same period) but degraded

quality1. Since the idea of reducing execution budgets to

keep tasks running is conceptually similar to the imprecise
computation model [8] [9], in this paper we call an MC system

with possibly reduced execution budgets of low criticality

tasks an imprecise mixed criticality (IMC) system.

In [7], the authors consider preemptive fixed-priority

scheduling for the IMC system model and extend the adaptive

mixed criticality (AMC) [3] approach to provide a schedu-

lability test for the IMC model. In this paper, we study the

EDF-VD scheduling of IMC systems. EDF-VD is designed

for the classical MC system model, in which EDF algorithm is

enhanced by deadline adjustment mechanisms to compromise

the resource requirement on different criticality levels. EDF-

VD has shown strong competence by both theoretical and

empirical evaluations [2], [4], [5]. For example, [2] proves

that EDF-VD is a speedup-optimal MC scheduling and in [4],

[5] experimental evaluations show that EDF-VD outperforms

other MC scheduling algorithms in terms of acceptance ratio.

The main technical contributions of this paper include

• We propose a sufficient test for the IMC model under

EDF-VD, - see Theorem 3 in Section IV;

• For the IMC model under EDF-VD, we derive a speedup

factor function with respect to the utilization ratios of

high criticality tasks and low criticality tasks - see Theo-

rem 4 in Section V. The derived speedup factor function

enables us to quantify the suboptimality of EDF-VD and

evaluate the impact of the utilization ratios on the speedup

factor. We also compute the maximum value 4/3 of the

speedup factor function, which is equal to the speedup

factor bound for the classical MC model [2].

• With extensive experiments, we show that for the IMC

model, by using our proposed sufficient test, in most cases

EDF-VD outperforms AMC [7] in terms of the number of

schedulable task sets. Moreover, the experimental results

validate the observations we obtained for speedup factor.

1In [8] [9], the output quality of a task is related to its execution time. The
longer a task executes, the better quality results it produces.
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Moreover, the schedulability test and speedup factor results

of this paper also apply to the elastic mixed-criticality (EMC)

model proposed in [6], where the periods of low-criticality

tasks are scaled up in high-criticality mode, see in Section VI.

The remainder of this paper is organized as follows: Section

II discusses the related work. Section III gives the prelimi-

naries and describes the IMC task model and its execution

semantics. Section IV presents our sufficient test for the IMC

model and Section V derives the speedup factor function for

the IMC under EDF-VD. Section VI extends the proposed

sufficient test to the EMC model. Finally, Section VII shows

our experimental results and Section VIII concludes this paper.

II. RELATED WORK

Burns and Davis in [10] give a comprehensive review of

work on real-time scheduling for MC systems. Many of these

literatures, e.g., [2] [4] [5], consider the classical MC model

in which all low criticality tasks are discarded if the system

switches to the high criticality mode. In [7], Burns and Baruah

discuss three approaches to keep some low criticality tasks

running in high-criticality mode. The first approach is to

change the priority of low criticality tasks. However, for fixed-

priority scheduling, deprioritizing low criticality tasks cannot

guarantee the execution of the low criticality tasks with a

short deadline after the mode switches. [7]. Similarly, for EDF,

lowering priority of low criticality tasks leads to a degraded

service [11]. In this paper, we consider the IMC model which

improves the schedulability of low criticality tasks in high-

criticality mode by reducing their execution time. The IMC

model can guarantee the regular service of a system by trading

off the quality of the produced results. For some applications

given in [8] [9] [12], such trade-off is preferred. The second

approach in [7] is to extend the periods of low criticality

tasks when the system mode changes to high-criticality mode

such that the low criticality tasks execute less frequently to

ensure their schedulability. Su et al. [6] [13] and Jan et al.
[14] both consider this model. However, some applications

might prefer an on-time result with a degraded quality rather

than a delayed result with a perfect quality. Some example

applications can be seen in [15] [8] [9]. Then, the approach of

extending periods is less useful for this kind of applications.

The last approach proposed in [7] is to reduce the execution

budget of low criticality tasks when the system mode switches,

i.e., the use of the IMC model studied in this paper. In [7], the

authors extend the AMC [3] approach to test the schedulability

of an IMC task set under fixed-priority scheduling. However,

the schedulability problem for an IMC task set under EDF-VD

[2], has not yet been addressed. Therefore, in this paper, we

study the schedulability of the IMC task model under EDF-VD

and propose a sufficient test for it.

III. PRELIMINARIES

This section first introduces the IMC task model and its ex-

ecution semantics. Then, we give a brief explanation for EDF-

VD scheduling [2] and an example to illustrate the execution

semantics of the IMC model under EDF-VD scheduling.

A. Imprecise Mixed-Criticality Task Model
We use the implicit-deadline sporadic task model given in

[7] where a task set γ includes n tasks which are scheduled

on a uniprocessor. Without loss of generality, all tasks in γ
are assumed to start at time 0. Each task τi in γ generates an

infinite sequence of jobs {J1
i , J

2
i ...} and is characterized by

τi = {Ti, Di, Li, Ci}:
• Ti is the period or the minimal separation interval be-

tween two consecutive jobs;

• Di denotes the relative task deadline, where Di = Ti;

• Li ∈ {LO,HI} denotes the criticality (low or high) of a

task. In this paper, like in many previous research works

[6] [11] [2] [4] [5], we consider a dual-criticality MC

model. Then, we split tasks into two task sets, γLO =
{τi|Li = LO} and γHI = {τi|Li = HI};

• Ci = {CLO
i , CHI

i } is a list of WCETs, where CLO
i and

CHI
i represent the WCET in low-criticality mode and the

WCET in high-criticality mode, respectively. For a high-

criticality task, it has CLO
i ≤ CHI

i , whereas CLO
i ≥ CHI

i

for a low-criticality task, i.e., low-criticality task τi has
a reduced WCET in high-criticality mode.

Then each job Ji is characterized by Ji = {ai, di, Li, Ci},
where ai is the absolute release time and di is the absolute

deadline. Note that if low-criticality task τi has CHI
i = 0,

it will be immediately discarded at the time of the switch to

high-criticality mode. In this case, the IMC model behaves

like the classical MC model.

The utilization of a task is used to denote the ratio between

its WCET and its period. We define the following utilizations

for an IMC task set γ:

• For every task τi, it has uLO
i =

CLO
i

Ti
, uHI

i =
CHI

i

Ti
;

• For all low-criticality tasks, we have total utilizations

ULO
LO =

∑
∀τi∈γLO

uLO
i , UHI

LO =
∑

∀τi∈γLO

uHI
i

• For all high-criticality tasks, we have total utilizations

ULO
HI =

∑
∀τi∈γHI

uLO
i , UHI

HI =
∑

∀τi∈γHI

uHI
i

• For an IMC task set, we have

ULO = ULO
LO + ULO

HI , UHI = UHI
LO + UHI

HI

B. Execution Semantics of the IMC Model
The execution semantics of the IMC model are similar to

those of the classical MC model. The major difference occurs

after a system switches to high-criticality mode. Instead of
discarding all low-criticality tasks, as it is done in the classical
MC model, the IMC model tries to schedule low-criticality
tasks with their reduced execution times CHI

i . The execution

semantics of the IMC model are summarized as follows:

• The system starts in low-criticality mode, and remains in

this mode as long as no high-criticality job overruns its

low-criticality WCET CLO
i . If any job of a low-criticality

task tries to execute beyond its CLO
i , the system will

suspend it and launch a new job at the next period;
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Task L CLO
i CHI

i Ti D̂i

τ1 LO 4 2 9
τ2 HI 4 8 10 7

Table I: Illustrative example

τ1
0 5 10 15 18

τ2
0 5 10 15 20

Switch

Figure 1: Scheduling of Example I

• If any job of high-criticality task executes for its CLO
i

time units without signaling completion, the system im-

mediately switches to high-criticality mode;

• As the system switches to high-criticality mode, if jobs of
low-criticality tasks have completed execution for more
than their CHI

i but less than their CLO
i , the jobs will

be suspended till the tasks release new jobs for the next
period. However, if jobs of low-criticality tasks have
not completed their CHI

i (≤ CLO
i ) by the switch time

instant, the jobs will complete the left execution to CHI
i

after the switch time instant and before their deadlines.
Hereafter, all jobs are scheduled using CHI

i . For high-

criticality tasks, if their jobs have not completed their

CLO
i (≤ CHI

i ) by the switch time instant, all jobs will

continue to be scheduled to complete CHI
i . After that, all

jobs are scheduled using CHI
i .

Santy et al. [16] have shown that the system can switch back

from the high-criticality mode to the low-criticality mode when

there is an idle period and no high-criticality job awaits for

execution. For the IMC model, we can use the same scenario to

trigger the switch-back. In this paper, we focus on the switch

from low-criticality mode to high-criticality mode.

C. EDF-VD Scheduling
The challenge to schedule MC tasks with EDF scheduling

algorithm [17] is to deal with the overrun of high-criticality

tasks when the system switches from low-criticality mode

to high-criticality mode. Baruah et al. in [2] proposed to

artificially tighten deadlines of jobs of high-criticality tasks

in low-criticality mode such that the system can preserve

execution budgets for the high-criticality tasks across mode

switches. This approach is called EDF with virtual deadlines
(EDF-VD).

D. An Illustrative Example
Here, we give a simple example to illustrate the execution

semantics of the IMC model under EDF-VD. Table I gives

two tasks, one low-criticality task τ1 and one high-criticality

task τ2, where D̂i is the virtual deadline. Figure 1 depicts the

scheduling of the given IMC task set, where we assume that

the mode switch occurs in the second period of τ2. When the

system switches to high-criticality mode, τ2 will be scheduled

by its original deadline 10 instead of its virtual deadline 7.

Hence, τ1 preempts τ2 at the switch time instant. Since in

high-criticality mode τ1 only has execution budget of 2 , i.e.,

CHI
1 , τ1 executes one unit and suspends. Then, τ2 completes

its left execution 4 (CHI
2 − CLO

2 ) before its deadline.

IV. SCHEDULABILITY ANALYSIS

In [7], an AMC-based schedulability test for the IMC model

under fixed priority scheduling has been proposed. However, to

date, a schedulability test for the IMC model under EDF-VD

has not been addressed yet. Therefore, inspired by the work

in [2] for the classical MC model, we propose a sufficient test

for the IMC model under EDF-VD.

A. Low Criticality Mode
We first ensure the schedulability of tasks when they are

in low-criticality mode. As the task model is in low-criticality

mode, the tasks can be considered as traditional real-time tasks

scheduled by EDF algorithm with virtual deadlines (VD). The

following theorem is given in [2] for tasks scheduled in low-

criticality mode.

Theorem 1 (Theorem 1 from [2]). The following condition is
sufficient for ensuring that EDF-VD successfully schedules all
tasks in low-criticality mode:

1 ≥ ULO
HI

x
+ ULO

LO (1)

where x ∈ (0, 1) is used to uniformly modify the relative
deadline of high-criticality tasks.

Since the IMC model behaves as the classical MC model

in low-criticality mode, Theorem 1 holds for the IMC model

as well.

B. High Criticality Mode
For high-criticality mode, the classical MC model discards

all low-criticality jobs after the switch to high-criticality mode.

In contrast, the IMC model keeps low-criticality jobs running

but with degraded quality, i.e., a shorter execution time. So

the schedulability condition in [2] does not work for the IMC

model in the high-criticality mode. Thus, we need a new test

for the IMC model in high-criticality mode.

To derive the sufficient test in high-criticality mode, suppose

that there is a time interval [0, t2], where a first deadline miss

occurs at t2 and t1 denotes the time instant of the switch

to high-criticality mode in the time interval, where t1 < t2.

Assume that J is the minimal set of jobs generated from

task set γ which leads to the first deadline miss at t2. The

minimality of J means that removing any job in J guarantees

the schedulability of the rest of J . Here, we introduce some

notations for our later interpretation. Let variable ηi denote the

cumulative execution time of task τi in the interval [0, t2]. J1
denotes a special high-criticality job which has switch time

instant t1 within its period (a1, d1), i.e, a1 < t1 < d1.

Furthermore, J1 is the job with the earliest release time

amongst all high-criticality jobs in J which execute in [t1, t2).
Moreover, we define a special type of job for low-criticality

tasks which is useful for our later proofs.

Definition 1. A job Ji from low-criticality task τi is a carry-
over job, if its absolute release time ai is before and its
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absolute deadline di is after the switch time instant, i.e.,
ai < t1 < di.

With the notations introduced above, we have the following

propositions,

Proposition 1 (Fact 1 from [2]). All jobs in J that execute
in [t1, t2) have deadline ≤ t2.

It is easy to observe that only jobs which have deadlines

≤ t2 are possible to cause a deadline miss at t2. If a job has

its deadline > t2 and is still in set J , it will contradict the

minimality of J .

Proposition 2. The switch time instant t1 has

t1 < (a1 + x(t2 − a1)) (2)

Proof: Let us consider a time instant (a1 + x(d1 − a1))
which is the virtual deadline of job J1. Since J1 executes in

time interval [t1, t2), its virtual deadline (a1 + x(d1 − a1))
must be greater than the switch time instant t1. Otherwise, it

should have completed its low-criticality execution before t1,

and this contradicts that it executes in [t1, t2). Thus, it has

t1 < (a1 + x(d1 − a1))

⇒t1 < (a1 + x(t2 − a1)) (since d1 ≤ t2)

Proposition 3. If a carry-over job Ji has its cumulative
execution equal to (di−ai)u

LO
i and uLO

i > uHI
i , its deadline

di is ≤ (a1 + x(t2 − a1)).

Proof: For a carry-over job Ji, if it has its cumulative

execution equal to (di − ai)u
LO
i and uLO

i > uHI
i , it should

complete its CLO
i execution before t1. Otherwise, if job Ji

has executed time units Ci ∈ [CHI
i , CLO

i ) at time instant t1,

it will be suspended and will not execute after t1.

Now, we will show that when job Ji completes its CLO
i

execution, its deadline is di ≤ (a1 + x(t2 − a1)). We prove

this by contradiction. First, we suppose that Ji has its deadline

di > (a1 + x(t2 − a1)) and release time ai. As shown above,

job Ji completes its CLO
i execution before t1. Let us assume

a time instant t∗ as the latest time instant at which this carry-
over job Ji starts to execute before t1. This means that at this

time instant all jobs in J with deadline ≤ (a1 + x(t2 − a1))
have finished their executions. This indicates that these jobs

will not have any execution within interval [t∗, t2]. Therefore,

jobs in J with release time at or after time instant t∗ can form

a smaller job set which causes a deadline miss at t2. Then,

it contradicts the minimality of J . Thus, carry-over job Ji
with its cumulative execution time equal to (di− ai)u

LO
i and

uLO
i > uHI

i has its deadline di ≤ (a1 + x(t2 − a1)).
With the propositions and notations given above, we derive

an upper bound of the cumulative execution time ηi of low-

criticality task τi.

Lemma 1. For any low-criticality task τi, it has

ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i (3)

Proof: If uLO
i = uHI

i , it is trivial to see that Lemma 1

holds. Below we focus on the case when uLO
i > uHI

i . If a

system switches to high-criticality mode at t1, then we know

that low-criticality tasks are scheduled using CLO
i before t1

and using CHI
i after t1. To prove this lemma, we need to

consider two cases, where τi releases a job within interval

(a1, t2] or it does not. We prove the two cases separately.

Case A (task τi releases a job within interval (a1, t2]): There

are two sub-cases to be considered.

• Sub-case 1 (No carry-over job): The deadline of a job of

low-criticality task τi coincides with switch time instant

t1. The cumulative execution time of low-criticality task

τi within time interval [0, t2] can be bounded as follows,

ηi ≤ (t1 − 0) · uLO
i + (t2 − t1) · uHI

i

Since t1 < (a1 + x(t2 − a1)) according to Proposition 2

and for low-criticality task τi it has uLO
i > uHI

i , then

ηi <
(
a1 + x(t2 − a1)

)
uLO
i +

(
t2 −

(
a1 + x(t2 − a1)

))
uHI
i

⇔ηi < (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

• Sub-case 2 (with carry-over job): In this case, before

the carry-over job, jobs of τi are scheduled with its CLO
i .

After the carry-over job, jobs of τi are scheduled with

its CHI
i . It is trivial to observe that for a carry-over job

its maximum cumulative execution time can be obtained

when it completes its CLO
i within its period [ai, di],

i.e., (di−ai)u
LO
i . Considering the maximum cumulative

execution for the carry-over job, we then have for low-

criticality task τi,

ηi ≤ (ai − 0)uLO
i + (di − ai)u

LO
i + (t2 − di)u

HI
i

⇔ηi ≤ diu
LO
i + (t2 − di)u

HI
i

Proposition 3 shows as Ji has its cumulative execution

equal to (di − ai) · uLO
i , it has di ≤ (a1 + x(t2 − a1)).

Given uLO
i > uHI

i for low-criticality task, we have

ηi ≤ diu
LO
i + (t2 − di)u

HI
i

⇒ηi ≤
(
a1 + x(t2 − a1)

)
uLO
i +

(
t2 −

(
a1 + x(t2 − a1)

))
uHI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

Case B (task τi does not release a job within interval (a1, t2]):
In this case, let Ji denote the last release job of task τi before

a1 and ai and di are its absolute release time and absolute

deadline, respectively. If di ≤ t1, we have

ηi = (ai − 0)uLO
i + (di − ai) · uLO

i = diu
LO
i

If di > t1, Ji is a carry-over job. As we discussed above, the

maximum cumulative execution time of carry-over job Ji is

(di − ai)u
LO
i , so we have

ηi ≤ (ai − 0)uLO
i + (di − ai) · uLO

i ⇔ ηi ≤ diu
LO
i

Similarly, according to Proposition 3, we obtain,

ηi ≤ di · uLO
i ≤ (a1 + x(t2 − a1))u

LO
i

⇒ηi < (a1 + x(t2 − a1))u
LO
i +

(
t2 −

(
a1 + x(t2 − a1)

))
uHI
i

⇔ηi < (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i
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Lemma 1 gives the upper bound of the cumulative execution

time of a low-criticality task in high-criticality mode. In order

to derive the sufficient test for the IMC model in high-

criticality mode, we need to upper bound the cumulative

execution time of high-criticality tasks.

Proposition 4 (Fact 3 from [2]). For any high-criticality task
τi, it holds that

ηi ≤ a1
x
uLO
i + (t2 − a1)u

HI
i (4)

Proposition 4 is used to bound the cumulative execution of

the high-criticality tasks. Since in the IMC model the high-

criticality tasks are scheduled as in the classical MC model,

Proposition 4 holds for the IMC model as well. With Lemma

1 and Proposition 4, we can derive the sufficient test for the

IMC model in high-criticality mode.

Theorem 2. The following condition is sufficient for ensur-
ing that EDF-VD successfully schedules all tasks in high-
criticality mode:

xULO
LO + (1− x)UHI

LO + UHI
HI ≤ 1 (5)

Proof: Let N denote the cumulative execution time of all

tasks in γ = γLO ∪ γHI over interval [0, t2]. We have

N =
∑

∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

By using Lemma 1 and Proposition 4, N is bounded as follows

N ≤
∑

∀τi∈γLO

((
a1 + x(t2 − a1)

)
uLO
i + (1− x)(t2 − a1)u

HI
i

)

+
∑

∀τi∈γHI

(
a1

x
uLO
i + (t2 − a1)u

HI
i

)

⇔N ≤ (a1 + x(t2 − a1))U
LO
LO + (1− x)(t2 − a1)U

HI
LO

+
a1

x
ULO

HI + (t2 − a1)U
HI
HI

⇔N ≤ a1(U
LO
LO +

ULO
HI

x
) + x(t2 − a1)U

LO
LO

+ (1− x)(t2 − a1)U
HI
LO + (t2 − a1)U

HI
HI

(6)

Since the tasks must be schedulable in low-criticality mode,
the condition given in Theorem 1 holds and we have 1 ≥
(ULO

LO +
ULO

HI

x ). Hence,

N ≤a1 + x(t2 − a1)U
LO
LO

+ (1− x)(t2 − a1)U
HI
LO + (t2 − a1)U

HI
HI

(7)

Since time instant t2 is the first deadline miss, it means that

there is no idle time instant within interval [0, t2]. Note that

if there is an idle instant, jobs from set J which have release

time at or after the latest idle instant can form a smaller job set

causing deadline miss at t2 which contradicts the minimality

of J . Then, we obtain

N =

( ∑
∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

)
> t2

⇒a1 + x(t2 − a1)U
LO
LO + (1− x)(t2 − a1)U

HI
LO + (t2 − a1)U

HI
HI

> t2

⇔x(t2 − a1)U
LO
LO + (1− x)(t2 − a1)U

HI
LO + (t2 − a1)U

HI
HI

> t2 − a1

⇔xULO
LO + (1− x)UHI

LO + UHI
HI > 1

By taking the contrapositive, we derive the sufficient test for
the IMC model when it is in high-criticality mode:

xULO
LO + (1− x)UHI

LO + UHI
HI ≤ 1

Note that if UHI
LO = 0, i.e., no low-criticality tasks are

scheduled after the system switches to high-criticality mode,

our Theorem 2 is the same as the sufficient test (Theorem 2

in [2]) for the classical MC model in high-criticality mode.

Hence, our Theorem 2 actually is a generalized schedulability

condition for (I)MC tasks under EDF-VD.

By combining Theorem 1 (see Section IV-A) and our

Theorem 2, we prove the following theorem,

Theorem 3. Given an IMC task set, if

UHI
HI + ULO

LO ≤ 1 (8)

then the IMC task set is schedulable by EDF; otherwise, if

ULO
HI

1− ULO
LO

≤ 1− (UHI
HI + UHI

LO)

ULO
LO − UHI

LO

(9)

where

UHI
HI + UHI

LO < 1 and ULO
LO < 1 and ULO

LO > UHI
LO (10)

then this IMC task set can be scheduled by EDF-VD with a
deadline scaling factor x arbitrarily chosen in the following
range

x ∈
[

ULO
HI

1− ULO
LO

,
1− (UHI

HI + UHI
LO )

ULO
LO − UHI

LO

]
Proof: Total utilization U ≤ 1 is the exact test for EDF

on a uniprocessor system. If the condition in (8) is met, the

given task set is worst-case reservation [2] schedulable under

EDF, i.e., the task set can be scheduled by EDF without

deadline scaling for high-criticality tasks and execution budget

reduction for low-criticality tasks. Now, we prove the second

condition given by (9). From Theorem 1, we have,

x ≥ ULO
HI

1− ULO
LO

From Theorem 2, we have

xULO
LO + (1− x)UHI

LO + UHI
HI ≤ 1

⇔x ≤ 1− (UHI
HI + UHI

LO )

ULO
LO − UHI

LO

Therefore, if
ULO

HI

1−ULO
LO

≤ 1−(UHI
HI +UHI

LO)

ULO
LO−UHI

LO

, the schedulability

conditions of both Theorem 1 and 2 are satisfied. Thus, the

IMC tasks are schedulable under EDF-VD.
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V. SPEEDUP FACTOR

The speedup factor bound is a useful metric to compare

the worst-case performance of different MC scheduling algo-

rithms. The speedup factor bound for the classical MC model

under EDF-VD [2] has been shown to be 4/3. The following

is the definition of the speedup factor for an MC scheduling

algorithm.

Definition 2 (from [2]). The speedup factor of an algorithm
A for scheduling MC systems is the smallest real number
f ≥ 1 such that any task system that is schedulable by a
hypothetical optimal clairvoyant scheduling algorithm2 on a
unit-speed processor is correctly scheduled by algorithm A on
a speed-f processor.

For notational simplicity, we define

UHI
HI = c, ULO

HI = α× c

ULO
LO = b, UHI

LO = λ× b

where α ∈ (0, 1] and λ ∈ [0, 1]. α denotes the utilization ratio

between ULO
HI and UHI

HI , while λ denotes the utilization ratio

between UHI
LO and ULO

LO .
First, let us analyze the speedup factor of two corner cases.

When α = 1, i.e., ULO
HI = UHI

HI , this means that there is

no mode-switch. Therefore, the task set is scheduled by the

traditional EDF, i.e., the task set is schedulable if ULO
LO +

ULO
HI ≤ 1. Since EDF is the optimal scheduling algorithm on a

uniprocessor system, the speedup factor is 1. When λ = 1, i.e.,

ULO
LO = UHI

LO , if the task set is schedulable in high-criticality

mode, it must hold UHI
HI +ULO

LO ≤ 1 by Theorem 2. Then it is

scheduled by the traditional EDF and thus the speedup factor

is 1 as well.
In this paper, instead of generating a single speedup factor

bound, we derive a speedup factor function with respect to

(α, λ). This speedup factor function enables us to quantify

the suboptimality of EDF-VD for the IMC model in terms of

speedup factor (by our proposed sufficient test) and evaluate

the impact of the utilization ratio on the schedulability of an

IMC task set under EDF-VD.
First, we strive to find a minimum speed s (≤1) for a

clairvoyant optimal MC scheduling algorithm such that any

implicit-deadline IMC task set which is schedulable by the

clairvoyant optimal MC scheduling algorithm on a speed-s
processor can satisfy the schedulability test given in Theorem

3, i.e., schedulable under EDF-VD on a unit-speed processor.

Lemma 2. Given b, c ∈ [0, 1], α ∈ (0, 1), λ ∈ [0, 1), and

max{b+ αc, λb+ c} ≤ S(α, λ) (11)

where

S(α, λ) =
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

then it guarantees

αc

1− b
≤ 1− (c+ λb)

b− λb
(12)

2A ‘clairvoyant’ scheduling algorithm knows all run-time information, e.g.,
when the mode switch will occur, prior to run-time.

Proof: Suppose that λ and α are constants and we have a
real number s ≤ 1, where max{b+αc, λb+c} ≤ s. We need to
find the minimum of s which guarantees that any b, c ∈ [0, 1]
ensure (12). First, max{b+ αc, λb+ c} ≤ s implies

b+ αc ≤ s (13)

λb+ c ≤ s (14)

Then, condition (12) can be written as follows,

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≥ 0 (15)

Inequalities (13)(14)(15) define a feasible space in three-

dimension space, respectively. In Figure 2(a), the space above

the plane is a feasible space satisfying (13), where the plane

corresponds to b+αc = s. For (14), λb+ c = s draws a plane

and the feasible space is above the plane shown in Figure

2(b). Similarly, when (15) makes its right-hand-side equal to

the left-hand-side, we draw a vertical curved surface seen in

Figure 2(c) and the space inside the vertical surface is the

feasible space (the opposite of the arrow direction). We need

to find the minimum of s in the feasible space (above the two

planes and inside the vertical surface) such that any b and c
that meet (11) satisfy (12). Since max{b + αc, λb + c} = s
is strictly increasing, to ensure (11)(12) hold for any b and c,
we somehow maximize s in the feasible space. This problem

can be transformed into another form, where, instead of

maximizing s inside of the vertical surface, we can find the

minimum value of s in the space outside the vertical surface3

which is defined by

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (16)

Then, the minimization problem is formulated as follows,

minimize s (17)

subject to b+ αc ≤ s (18)

λb+ c ≤ s (19)

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (20)

0 ≤ b ≤ 1, 0 ≤ c ≤ 1 (21)

where α and λ are constant and s, b, c are variables. If S(α, λ)
is the optimal solution of the optimization problem (17), then

Lemma 2 is proved.

Below, we prove that S(α, λ) is the optimal solution of the

optimization problem (17)4.

As stated before, the feasible solutions subject to these three

constraints must be above both planes and outside the vertical

curved surface. First assume that we have a point (b′0, c
′
0, s

′
0)

which satisfies all constraints but is not on the vertical surface.

If we connect the origin (0, 0, 0) and (b′0, c
′
0, s

′
0), this line must

have an intersection point (b∗0, c
∗
0, s

∗
0) with the vertical surface.

It is easy to observe that s∗0 < s′0 - see in Figure 2(d). This

means that any point which is not on the vertical surface can

find a point with smaller value of s on the vertical surface

3As the arrows direct
4This optimization problem is a non-convex problem and thus we cannot

use general convex optimization techniques such as the Karush-Kuhn-Tucker
(KKT) approach [18] to solve it.
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(a) plane 1 (b) plane 2 (c) vertical surface

(d) Feasible solution space

Figure 2: 3D space of optimization problem (17)

which satisfies all constraints. Therefore, the point with the

minimum s must be on the vertical surface. Similarly, the

minimum s must be on one of the two planes. Otherwise, if

it is not on any plane, we always can find a projected point

on one plane which has a smaller value of s.
We have shown above that to obtain the minimum value of s

the point must be on the vertical surface and one plane. Then,
the two planes have an intersection line and this line intersects
with the vertical surface at a point denoted by (b0, c0, s0). By
taking constraints (18)(19) and (20), we formulate a piece-wise
function of s with respect to b as follows.

s(b) =

{
(αλ2−αλ)b2+b−1
(αλ−α+1)b−1

0 < b ≤ b0
(1−α)b2+(αλ+α−1)b−α

(αλ−α+1)b−1
b0 < b ≤ 1

(22)

This function covers all points which are on the vertical sur-
face and one plane and at same time satisfy all constraints. By
doing some calculus, we know that Eq. (22) is monotonically
decreasing in (0, b0] and monotonically increasing in (b0, 1].
Therefore, the minimum value of Eq. (22) can be obtained
at (b0, c0, s0). The complete proof is given by Lemma 4 in
Appendix I. It means that we can obtain the optimal solution
of problem (17) by solving the following equation system.⎧⎪⎨

⎪⎩
b0 + xc0 = s0
λb0 + c0 = s0
λb20+(αλ−α+1)b0c0−(λ+1)b0−c0+1 = 0

(23)

By joining the first two equations we have c0 = 1−λ
1−α × b0,

and applying it to the last equation in (23) gives

(−αλ2 + αλ− α+ 1)b20 + (αλ+ α− 2)b0 + (1− α) = 0

By the well-known Quadratic Formula we get the two roots
of the above quadratic equation.

b10 =
(2− αλ− α) + (1− λ)

√−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(24)

b20 =
(2− αλ− α)− (1− λ)

√−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(25)

Figure 3: 3D image of speedup factor w.r.t α and λ

λ
α

0.1 0.3 1/3 0.5 0.7 0.9 1

0 1.254 1.332 1.333 1.309 1.227 1.091 1

0.1 1.231 1.308 1.310 1.293 1.219 1.090 1

0.3 1.183 1.256 1.259 1.254 1.201 1.087 1

0.5 1.134 1.195 1.200 1.206 1.174 1.083 1

0.7 1.082 1.126 1.130 1.143 1.133 1.074 1

0.9 1.028 1.046 1.048 1.056 1.061 1.048 1

1 1 1 1 1 1 1 1

Table II: Speedup factor w.r.t α and λ

We can prove that b20 is larger than 1 and thus should

be dropped (since we require 0 ≤ b ≤ 1), while b10 is in

the range of [0, 1]. The detailed proof is given by Lemma 5

in Appendix I. As a result, we obtain the optimal solution

(b10,
1−α
1−λ b

1
0,

1−αλ
1−λ b10) for Eq. (23). Thus, we have

S(α, λ) =
1− αλ

1− λ
b10

=
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

Therefore, Lemma 2 is proved.

Lemma 2 shows that any IMC task set that is schedulable by

an optimal clairvoyant MC scheduling algorithm on a speed-

S(α, λ) is schedulable by EDF-VD on a unit-speed processor.

Therefore, we can compute the speedup factor of EDF-VD by

1/S(α, λ).

Theorem 4. The speedup factor of EDF-VD with IMC task
sets is

f =
2(1− α)(αλ− αλ2 − α+ 1)

(1− αλ)((2− αλ− α) + (λ− 1)
√
4α− 3α2)

The speedup factor is shown to be a function with respect to

α and λ. Figure 3 plots the 3D image of this function and Table

II lists some of the values with different α and λ. By doing

some calculus, we obtain the maximum value 1.333 (4/3) of

the speedup factor function when λ = 0 and α = 1
3 , which is

highlighted in Figure 3 and Table II. We see that the speedup

factor bound is achieved when the task set is a classical MC

task set. From Figure 3 and Table II, we observe different

trends for the speedup factor with respect to α and λ.

• First, given a fixed λ, the speedup factor is not a mono-

tonic function with respect to α. The relation between

α and the speedup factor draws a downward parabola.
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Therefore, a straightforward conclusion regarding the

impact of α on the speedup factor cannot be drawn.

• Given a fixed α, the speedup factor is a monotonic

decreasing function with respect to increasing λ. It is seen

that increasing λ leads to a smaller value of the speedup

factor. This means that a larger λ brings a positive effect
on the schedulability of an IMC task set.

VI. EXTENSION TO ELASTIC MIXED-CRITICALITY

MODEL

Su and Zhu in [6] introduced an Elastic Mixed-Criticality
(EMC) task model, where the elastic model [19] is used to

model low criticality tasks. When the MC system switches

to high criticality mode, low-criticality tasks scale up their

original period to a larger period such that low-criticality

tasks continue to be scheduled with a degraded service (less

frequently). Although the EMC model has been studied by

[6] [13] [14], there is not a utilization-based sufficient test for

the EMC model. Therefore, in this section, we prove that the

theories proposed in Section IV apply to the EMC model [6] as

well. Here, we use Tmax
i (≥ Ti) to denote the extended period

of a low-criticality task τi. Since, in the EMC model, the

WCETs of a low-criticality tasks are the same in two modes,

the utilization of low-criticality task τi in high-criticality mode

is computed as uHI
i = CLO

i /Tmax
i .

Proposition 5 (Lemma 1 from [6]). A set of EMC tasks is
EMC schedulable under EDF-VD if UHI

HI + UHI
LO ≤ 1.

Here, in order to keep the consistence, we use UHI
LO to

denote U(L,min) in [6]. Proposition 5 is provided in [6] to

check the schedulability of an EMC task set on a uniprocessor.

However, Proposition 5 is a necessary test. This means that

even if a given task set satisfies the condition presented in

Proposition 5, it is still possible that the task set is un-

schedulable under EDF-VD. Below, we prove that the theories

proposed in Section IV can apply to the EMC model.

First, in low-criticality mode, since the EMC model just

behaves like the classical MC model, Theorem 1 holds for

the EMC model. Then we discuss the schedulability of the

EMC model in high-criticality mode. We have the following

definition for the carry-over job of a low criticality task in the

EMC model:

Definition 3. In the EMC model, carry-over job Ji of low
criticality task τi has its release time ai < t1 and original
deadline di > t1.

Then, we prove the following proposition for a carry-over
job.

Proposition 6. For an EMC carry-over job Ji, if it completes
its execution before switch time instant t1, then its original
deadline di is ≤ (a1 + x(t2 − a1)).

Proof: Consider that carry-over job Ji completes its

execution before switch time instant t1. Suppose that Ji has

its original deadline di > (a1+x(t2−a1)). Let t∗ denote the

latest time instant at which Ji starts to execute before t1. At

time instant t∗, all jobs in J with deadlines ≤ (a1+x(t2−a1))
then have finished their execution. Therefore, these jobs do not

have any execution within interval [t∗, t2]. This implies that

jobs in J which are released at or after t∗ can form a smaller

job set and this smaller job set is sufficient to cause deadline

miss at t2. This contradicts the minimality of J . Therefore,

in this case we have di ≤ (a1 + x(t2 − a1))

Lemma 3. Lemma 1 still holds for low-criticality tasks of the
EMC model in high-criticality mode.

Proof: We can prove this lemma by doing some modifi-

cations on the proof of Lemma 1. Here, we mainly focus on

the modified part. The proof uses the same notations explained

in Section IV.

For the EMC model, we need to consider a special case

when carry-over job Ji of low-criticality task τi has its

extended deadline dmax
i > t2. Since t2 is a deadline miss,

a job with deadline > t2 will not be scheduled within [t1, t2)
-see Proposition 1. If dmax

i > t2, job Ji will not be executed

after the switch time instant t1 and the maximum cumulative

execution time of τi can be obtained as job Ji completes its

CLO
i before t1. Hence, the cumulative execution of task τi can

be bounded by,

ηi ≤ ai · uLO
i + (di − ai)u

LO
i = di · uLO

i (26)

By Proposition 6, we replace di with (a1+x(t2−a1)) in Eq.

(33)

ηi ≤ (a1 + x(t2 − a1))u
LO
i + (t2 − (a1 + x(t2 − a1)))u

HI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

(27)

The rest of the proof can follow the proof of Lemma 1. A

complete proof can be found in Appendix II.

Lemma 3 shows that Lemma 1 can still bound the cumula-

tive execution time of low-criticality tasks of the EMC model

in high-criticality mode. Moreover, since there is no difference

how the high-criticality tasks are scheduled in the EMC model

or in the classical MC model, Proposition 4 still holds for the

high-criticality tasks in the EMC model. As a result, Theorem

2 holds for the EMC model as well. Then, we can directly

obtain the following theorem,

Theorem 5. Theorem 3 is a sufficient test for the EMC model
under EDF-VD.

Since Theorem 3 is a sufficient test for the EMC model

under EDF-VD, the speedup factor results we obtained in

Section V also apply to the EMC model, i.e., the speedup

factor bound of the EMC model under EDF-VD is also 4/3
by using our proposed sufficient test.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the

effectiveness of the proposed sufficient test for the IMC model

in terms of schedulable task sets (acceptance ratio). Moreover,

we conduct experiments to verify the observations obtained in
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Section V regarding the impact of α and λ on the average

acceptance ratio. Our experiments are based on randomly

generated MC tasks. We use a task generation approach,

similar to that used in [5] [4], to randomly generate IMC task

sets to evaluate the proposed sufficient test. Each task τi is

generated based on the following procedure,

• pCriticality is the probability that the generated task is a

high-criticality task; pCriticality∈ [0, 1].
• Period Ti is randomly selected from range [100, 1000].
• In order to have sufficient number of tasks in a

task set, utilization ui is randomly drawn from the

range[0.05, 0.2].
• For any task τi, C

LO
i = ui ∗ Ti.

• R ≥ 1 denotes the ratio CHI
i /CLO

i for every high-

criticality task. If Li = HI , we set CHI
i = R ∗ CLO

i . It

is easy to see that α used in the speedup factor function

is equal to 1
R ;

• λ ∈ (0, 1] denotes the ratio CHI
i /CLO

i for every low-

criticality task. If Li = LO, we set CHI
i = λ ∗ CLO

i .

In the experiment, we generate IMC task sets with different

target utilization U . Each task set is generated as follows.

Given a target utilization U , we first initialize an empty task

set. Then, we generate task τi according to the task generation

procedure introduced above and add the generated task to the

task set. The task set generation stops as we have

U − 0.05 ≤ Uavg ≤ U + 0.05

where

Uavg =
ULO + UHI

2

is the average total utilization of the generated task set. If

adding a new task makes Uavg > U + 0.05, then the added

task will be removed and a new task will be generated and

added to the task set till the condition is met.

A. Comparison with AMC [7]
To date, the modified AMC given in [7] is the only related

work considering the schedulability of the IMC model under

fixed-priority scheduling. Therefore, in the first experiment,

we compare EDF-VD by using our proposed test to the AMC

approach in [7] in terms of average acceptance ratio. In this

experiment, R is randomly selected from a uniform distribu-

tion [1.5, 2.5]. With different λ and pCriticality settings, we

vary Uavg from 0.4 to 0.95 with step of 0.05, to evaluate the

effectiveness of the proposed sufficient test in terms of the

average acceptance ratios. We generate 10,000 task sets for

each given Uavg . Due to space limitations, we only present

the experimental results when pCriticality= 0.5. Results with

different pCriticality settings can be found in Appendix III.

The results are shown in Figure 4, where the x-axis denotes

the varying Uavg and the y-axis denotes the acceptance ratio.

In the figures, let EDF-VD and AMC denote our proposed

schedulability test and the one proposed in [7], respectively. In

most cases, EDF-VD outperforms AMC in terms of acceptance

ratio. We observe the following trends:

1) When Uavg ∈ [0.5, 0.8], EDF-VD always outperforms

AMC in terms of acceptance ratio. However, if Uavg >
0.8 and λ = 0.3 or 0.5, AMC performs better than EDF-

VD. The same trend is also found for the classical MC

model under EDF-VD and AMC, see in [4].

2) By comparing sub-figures in Figure 4, we see that the

average acceptance ratio improves when λ increases.

This confirms the observation for the speedup factor

we obtained in Section V. The increasing λ leads to a

smaller speedup factor. As a result, it provides a better

schedulability. We need to notice that when λ increases,

not only EDF-VD improves its acceptance ratio but the

acceptance ratio of AMC [7] also improves.

B. Impact of α and λ

Above, we compare our proposed sufficient test to the

existing AMC approach. In this section, we conduct exper-

iments to further evaluate the impact of λ and α (1/R) on

the acceptance ratio. In this experiment, we select Uavg =
{0.65, 0.7, 0.75, 0.8, 0.85} to conduct experiments. We fix

Uavg to a certain utilization and vary λ and α to evaluate

the impact.

We first show the results for λ. The results are depicted in

Figure 5, where the x-axis denotes the value of λ from 0.2

to 0.9 with step of 0.1 and the y-axis denotes the average

acceptance ratio. R is randomly selected from a uniform

distribution [1.5, 2.5] and pCriticality= 0.5. Similarly, 10,000

task sets are generated for each point in the figures. A clear

trend can be observed that the acceptance ratio increases as λ
increases. This trend confirms the positive impact of increasing

λ on the schedulability which we have observed in Section V.

Next we conduct experiments to evaluate the impact of α
on the schedulability. Similarly, we fix Uavg and vary α to

carry out the experiments. Due to α = 1
R , if α is given,

we compute the corresponding R to generate task sets. The

results are depicted in Figure 6, where λ = 0.5. The x-

axis denotes the varying α from 0.1 to 0.9 with step of 0.1.

while the y-axis denotes the average acceptance ratio. First,

from Table II, we see that with increasing α the speedup

factor first increases till a point. This means within this range

the scheduling performance of EDF-VD gradually decreases.

After that point, the speedup factor decreases which means

the scheduling performance of EDF-VD gradually improves.

The experimental results confirm what we have observed for

α in Section V. The acceptance ratio gradually decreases till

a point and then it increases.

VIII. CONCLUSIONS

In this paper, the imprecise mixed-criticality (IMC) model

from [7] is investigated. A sufficient test for the IMC model

under EDF-VD is proposed and the proposed sufficient test

later applies to the EMC model as well. Based on the proposed

sufficient test, we derive a speedup factor function with respect

to the utilization ratio α of all high-criticality tasks and the

utilization ratio λ of all low-criticality tasks. This speedup

factor function provides a good insight to observe the impact

of α and λ on the speedup factor and enables us to quantify
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(a) λ = 0.3 (b) λ = 0.5 (c) λ = 0.7

Figure 4: Varying Uavg with different λ and pcriticality=0.5

Figure 5: Impact of λ

Figure 6: Impact of α

the suboptimality of EDF-VD for the IMC/EMC model in

terms of speedup factor. Our experimental results show that

our proposed sufficient test outperforms the AMC approach in

terms of acceptance ratio. Moreover, the extensive experiments

also confirm the observations we obtained for the speedup

factor.
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APPENDIX I

Lemma 4. The minimum value of piece-wise function (22)
given in Section V is obtained when b = b0.

s(b) =

{
(αλ2−αλ)b2+b−1
(αλ−α+1)b−1 0 < b ≤ b0

(1−α)b2+(αλ+α−1)b−α
(αλ−α+1)b−1 b0 < b ≤ 1

(28)

Proof: For case of 0 < b ≤ b0, its derivative is

s′(b) =
α(λ− 1)(λ(αy − α+ 1)b2 − 2λb+ 1)

((αλ− α+ 1)b− 1)2

The denominator is obviously positive. For the numerator,

since the discriminant of λ(αλ − α + 1)b2 − 2λb + 1 = 0
is (2λ)2−4λ(αλ−λ+1), which is negative since 0 < λ < 1,

so we know λ(αλ − α + 1)b2 − 2λb + 1 > 0. Moreover,

we have λ − 1 < 0, so putting them together we know the

numerator is negative. In summary, s′(b) is negative and thus

s(b) is monotonically decreasing with respect to b in the range

b ∈ (0, b0].
For case of b0 < b ≤ 1, we can compute the derivative of

s(b) by

s′(b) =
(1− λ)((λy − x+ 1)b2 − 2b− (λy − x− 1))

((λy − x+ 1)b− 1)2

The denominator is obviously positive. For the numerator, we

focus on (xλ−x+1)b2−2b−(xλ−x−1) part. The following

equation

(xλ− x+ 1)b2 − 2b− (xλ− x− 1) = 0

has two roots b1 = 1 and b2 = 1+(x−xλ)
1−(x−xλ) , which is greater than

1, so we know (xλ−x+1)b2−2b−(xλ−x−1) is either always

positive or always negative in the range of b ∈ (b0, 1). Since

we can construct (xλ−x+1)b2−2b− (xλ−x−1) > 0 with

x = λ = b = 0.5, so we know (xλ−x+1)b2−2b−(xλ−x−1)
is always positive. Moreover, since 1− x > 0, the numerator

of s′(b) is positive, so overall s′(b) is positive, and thus s(b)
is monotonically increasing with respect to b in the range of

b ∈ (b0, 1].
In summary, we have proved s(b) is monotonically decreas-

ing in (0, b0], and monotonically increasing in (b0, 1], both

with respect to b, so the smallest value of s(b) must occur at

b0.

Lemma 5. If 0 < α < 1 and 0 ≤ λ < 1, then

b10 =
(2− αλ− α) + (1− λ)

√−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
> 1 (29)

b20 =
(2− αλ− α)− (1− λ)

√−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
∈ [0, 1] (30)

Proof: We start with proving b10 > 1. We first prove b10 ≥
0 by showing both the numerator and dominator are positive.

For simplicity, we use N1 and M1 to denote the numerator and

denominator of b10 in (29), and N2 and M2 the numerator and

denominator of b20 in (30). Note that the following reasoning

relies on that α ∈ (0, 1), λ ∈ [0, 1).

1) N1 > 0. First, we have

N1 ×N2

= (2− αλ− α)2 − (1− λ)2(−3α2 + 4α)

= 4αλ(1− λ)(1− α) + 4(1− α)2

> 0

Moreover, it is easy to see N2 > 0. Therefore, we can

conclude that N1 is also positive.

2) M1 > 0. 2(−αλ2+αλ−α+1) = 2(αλ(1−λ)+(1−α)),
which is positive.

In summary, both the numerator and the denominator of b10 in

(29) are positive, so b10 ≥ 0. Next we prove b10 ≤ 1 by showing

N1 −M1 ≤ 0:

N1 −M1

= (λ− 1)(
√
−3α2 + 4α+ α(2λ− 1))

which is negative if λ ≥ 0.5 (since λ − 1 < 0 and√−3α2 + 4α+α(2λ−1) ≥ 0). So in the following we focus

on the case of λ < 0.5. Since λ < 0.5, we know α(2λ − 1)
is negative, so we define two positive number A and B as

follows

A =
√
−3α2 + 4α (31)

B = α(1− 2λ) (32)

so N1 −M1 = (λ − 1)(A − B). Since λ − 1 < 0, we only

need to prove A − B > 0, which is equivalent to proving

A2 − B2 > 0 (as both A and B are positive): A2 − B2 > 0,

which is done as follows:

A2 −B2 =− 3α2 + 4α− α2(2λ− 1)2

=4α(1− α) + 4α2λ(1− λ)

>0

so we have A−B > 0 and thus N1−M1 = (λ−1)(A−B) < 0.

In summary, we have proved N1 −M1 < 0 for the cases of

both λ ≥ 0.5 and λ < 0.5, so we know b10 ∈ [0, 1].
Next we prove b20 > 1, by showing N2 −M2 > 0

N2 −M2

= (1− λ)(
√
−3α2 + 4α− α(2λ− 1))

If λ ≤ 0.5, then
√−3α2 + 4α − α(2λ − 1) > 0, and since

1 − λ > 0 we have N2 −M2 > 0. If λ > 0.5, we let C =
α(2λ− 1) > 0 and also use A as defined above, N2 −M2 =
(1 − λ)(A − C). To prove A − C > 0, it suffices to prove

A2 − C2 > 0, as shown in the following:

A2 − C2 = − 3α2 + 4α− α2(2λ− 1)2

= 4α− (3 + (2λ− 1)2)α2

> 4α− 4α2 (λ < 1 ,so 2λ− 1 < 1)

> 0

By now we have proved N2 −M2 for both cases of λ ≤ 0.5
and λ > 0.5, so we known b20 > 1.
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(a) λ = 0.3 (b) λ = 0.5 (c) λ = 0.7

Figure 7: Varying UB with different λ and pcriticality=0.3

APPENDIX II

The following is the complete proof of Lemma 3.

Proof: We use the same notations explained in Section IV.

When uLO
i = uHI

i , it is trivial to see that Lemma 1 holds for

the EMC model. Now we focus on the case when uLO
i > uHI

i

To prove this case, we need to consider two cases where low-

criticality task τi releases a job within interval (a1, t2] or it

does not.

• Case 1 (τi releases a job within interval (a1, t2]): If there

is no carry-over job , the proof is the same as we have

proved for the IMC model (see the proof of Sub-case

1 in Lemma 1). Here, we focus on the case that there

is a carry-over job. Let Ji denote the carry-over job
with absolute release time ai, original deadline di, and

maximum deadline dmax
i . Here, we consider two cases,

dmax
i > t2 and dmax

i ≤ t2.

– dmax
i > t2: since t2 is a deadline miss, a job with

deadline > t2 will not be scheduled within [t1, t2)
-see Proposition 1. If dmax

i > t2, job Ji will not

be executed after the switch time instant t1 and the

maximum cumulative execution time of τi can be

obtained as job Ji completes its CLO
i before t1.

Hence, the cumulative execution of task τi can be

bounded by,

ηi ≤ ai · uLO
i + (di − ai)u

LO
i = di · uLO

i (33)

By Proposition 6, we replace di with (a1+x(t2−a1))
in Eq. (33)

ηi ≤ (a1 + x(t2 − a1))u
LO
i + (t2 − (a1 + x(t2 − a1)))u

HI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

(34)

– d max
i ≤ t2: in this case, the cumulative execution of

low-criticality task τi can be bounded as follows:

ηi ≤ aiu
LO
i + (t2 − ai)u

HI
i

(Since ai < t1

and t1 < (a1 + x(t2 − a1)) from Proposition 2)

⇒ηi ≤
(
a1 + x(t2 − a1)

)
uLO
i +

(
t2 −

(
a1 + x(t2 − a1)

))
uHI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

(35)

• Case 2 (τi does not release a job within interval (a1, t2]):
For low-criticality task τi, let Ji denote the last release

job before a1, where ai(< a1) and di are the absolute

release time and deadline of Ji, respectively. Moreover,

let dmax
i (> di) denote the new absolute deadline of job

Ji as the system switches to high-criticality mode. Here,

there are two cases, di ≤ t1 and di > t1. For di ≤ t1,

the cumulative execution of task τi can be computed as

follows:

ηi = di · uLO
i (36)

For di > t1, if dmax
i ≤ t2, then the maximum cumulative

execution can be bounded as follows:

ηi ≤ ai · uLO
i + (dmax

i − ai)u
HI
i

⇒ηi ≤ ai · uLO
i + (t2 − ai)u

HI
i (since dmax

i ≤ t2)

Since ai < t1 ≤ (a1 + x(t2 − a1)) by Proposition 2, we

obtain

ηi ≤ (a1 + x(t2 − a1))u
LO
i + (t2 − (a1 + x(t2 − a1)))u

HI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

(37)

If dmax
i > t2, our reasoning is similar to the case

discussed in Case 1. The maximum cumulative execution

happens to that Ji completes its execution before t1.

Similarly, in this case, its cumulative execution can be

upper bounded by

ηi ≤ aiu
LO
i + (di − ai)u

LO
i

By Proposition 6, we obtain

ηi ≤ (a1 + x(t2 − a1))u
LO
i + (t2 − (a1 + x(t2 − a1)))u

HI
i

⇔ηi ≤ (a1 + x(t2 − a1))u
LO
i + (1− x)(t2 − a1)u

HI
i

The above discussion proves that Lemma 1 still holds for low-

criticality tasks of the EMC model.

APPENDIX III

Experimental results between EDF-VD and AMC is de-

picted in Figure 7, where pCriticality= 0.3.
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