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Chapter

Introduction

In a paper published in April 1965 [1], Gordon Moore discuktee future of electronics.
Among his predictions for integrated circuits was that thenber of circuit components
fabricated on a single silicon chip would double every eaghryreaching 65000 by 1975
Moore’s prediction fit the facts so well that people begaemifig to it as Moore’s Law. It is
still known as Moore’s Law, even when Moore altered his prtgs to a doubling every two
years in 1975. Since then, the spectacular rate of progressmiconductor technology has
made possible dramatic advances in computers and has leel éorterging of the embedded
(electronic) Systems-on-Chip (SoC) conéepthich in turn have significantly altered almost
all areas of human endeavor. In particular, the embeddeemghave become the electronic
engines of modern consumer and industrial devices, froronaaibiles to satellites, from
washing machines to high-definition TVs, from cellular pestio complete base stations.

Through the years, the increasingly demanding complefiggpplications have significantly
expanded the scope and the complexity of these SoCs, ieemthe available resources
provided by every new generation of technology have beed tsémplement more and
more sophisticated and diverse system features. Currdotlynodern embedded systems
in the realm of high-throughput multimedia, imaging, anghsil processing, the complexity
of embedded applications has reached a point where therpenice requirements of these
applications can no longer be supported by embedded systesesl on a single process-
ing component. Thus, the emerging embedded SoC platforengareasingly becoming
multiprocessor platforms (MPSoCs) encompassing a vaofdtardware (HW) and software
(SW) components. The ever increasing requirements imply thiat, for efficiency and per-
formance, in an MPSoC different application tasks have texeruted by different types
of processing components which are optimized for the eimtwtf particular tasks. It is
a common knowledge that higher performance is achieved Bdaated (customized and
optimized) HW IP core because it works more efficiently thaogpammable processors.

1 At that time, no chips had been manufactured with more thazo@fponents.
2 Embedded systems are application domain specific infoomgiiocessing systems that are tightly coupled to
their environment.
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Evidently, highest efficiency and performance is achieved®SoCs consisting of only
dedicated IP cores. However, dedicated IPs lack flexibilittnaking design modifications,
a feature playing an important role in the time-to-markehpetition. Therefore, most of to-
day’s MPSoCs are heterogeneous in nature, i.e., a constelf programmable processors
and dedicated IPs, delivering high flexibility and high penfiance at the same time.

The long design cycle and the ever increasing time-to-ntg@messure impose clear require-
ments for systematic and, moreover, automated design ehefthgies for building heteroge-
neous MPSoCs. In such methodologies, the intrinsic contipnt power is not only used
effectively and efficiently, but also the time and effort tesign a system containing both
hardware (HW) and software (SW) remains acceptable. Aghambedded systems have
been designed for decades, the systematic design of suesywith well defined method-
ologies, automation tools and technologies has gainedtetteprimarily in the last 10-15
years. For example, a well adopted approach to deal withntteedded SoC design complex-
ity is the Top-Down methodology which allows the designersitanage design complexity
at different (hierarchical) levels of implementation distaCurrently, this approach is suc-
cessfully used together with the hardware/software (HWY8@Vdesign methodology where
HW and SW are designed (almost) independently and condlyrérhis allows hardware
and software integration testing during the early stagelesign resulting in reduced number
of design cycles, and consequently, in reduced overalyddsine. Nowadays end, applying
the Top-Down and the HW/SW co-design methodologies withstigoort of electronic de-
sign automation (EDA) tools, is the most efficient desigrigguphy offering benefits such
as reduced design time, design reuse, flexibility in makiegjgh changes, faster exploration
of alternative architectures, and increased productivity

Unfortunately, most of the current methodologies for nuticessor system design are still
based on descriptions at register transfer level (RTL) sfgieabstraction created by hand
using, for example, VHDL or C. Such methodologies were ¢iffean the past when SoC
platforms based only on a single processor or processascegsor architectures were con-
sidered. However, applications and platforms used in méngday’s new system designs
are mainly based on heterogeneous multiprocessor platforis a consequence, the de-
signs are so complex that traditional design practices aneinadequate, because creating
RTL descriptions of complex MPSoCs is error-prone and tomesuming even by using the
Top-Down methodology. In addition, the complexity of highed, computationally intensive
applications in the multimedia domain further exacerbdtedglifficulties associated with the
traditional hand-coded RTL design and HW/SW co-design oditlogies. To execute an
application on a MPSoC, the system has to be programmedhvidjgerformed in several
steps. First, the application is partitioned into tasksdBe, tasks are assigned (mapped on)
to processors (programmable and/or non programmablegllfsibased on the mapping, the
MPSoC is programmed, which requires writing program codeéxh of the programmable
processors using languages such ast@/CThe program code includes code implementing
the tasks’ behavior and code for synchronization the datzement between the tasks (pro-
cessing components, respectively). In recent years, af lattention has been paid to the
building of MPSoCs. However, insufficient attention hasrbpaid to the development of
concepts, methodologies, and tools for efficient programgnoif such systems, so that the
programming still remains a major difficulty and challengg [Today, system designers ex-
perience difficulties in programming MPSoCs because theamegpplication is specified by
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Figure 1.1: The Implementation Gap.

an application developer, typically as a sequential pnogr@does not match the way multi-
processor systems operate, i.e., multiprocessor systenaic processing components that
run in parallel.

1.1 Problem statement

For all the reasons stated above, we conclude that:

1) The use of an RTL specification as a starting point for rpuditessor system design
methodologies is a bottleneck. Although the RTL specifaratias the advantage that the
state of the art synthesis tools can use it as an input to aitoaily implement an MPSoC,
we believe that a multiprocessor system should be specifiadchegher level of abstraction.
This is the only way to solve the problems caused by the lowll@letailed) RTL specifica-
tion. The concept of system-level design of embedded systetnich raises the abstraction
level of the design process above RTL to cope with design éaxiip, has been around for
several years already and has shown a lot of potential. Besfpihis, system-level design of
(heterogeneous) MPSoCs still involves a substantial nuofbehallenging design tasks. For
example, MPSoCs need to be modeled and simulated to stuthnsyehavior in order to
evaluate a variety of different design options. Once a gawodiitlate has been found, it needs
to be implemented, which involves the synthesis of its deciirral components. However,
moving up from the detailed RTL specification to a more alostsgistem-level specification
opens (typically a large) gap between the deployed systerl-bpecifications and actual
physical implementations. We calliitrpl enent at i on gap which is illustrated in Fig-
ure 1.1. Indeed, on the one hand, the RTL specification is detgiled and close to an
implementation, thereby allowing an automated synthestis fpom RTL specification to im-
plementation. This is obvious if we consider the current owrcial synthesis tools where
the RTL-to-netlist synthesis is very well developed andtedfit. On the other hand, the com-
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plexity of today’s embedded systems forces us to move todmitgvels of abstraction when

designing a system, but currently, there exists no matutkadelogies, techniques, and tools
to move down from the high-level system specification to apl@mentation. Therefore, the

implementation gap has to be closed by devising a systemati@automated way to convert
a system-level specification effectively and efficienthatoRTL specification.

2) Programming multiprocessor systems is a tedious, @name, and time consuming pro-
cess. On the one hand, the applications are typically spddify application developers
as sequential programs using imperative programming kgegisuch as CAG- or Matlab.
Specifying an application as a sequential program is welgtieasy and convenient for ap-
plication developers. However, the sequential nature oh @pecification does not reveal
the available concurrency in an application because onipglesthread of control is con-
sidered. Also, memory is global and all data resides in timeesmemory source. On the
other hand, system designers need parallel applicaticrifg@gions, because when an ap-
plication is specified using a parallel model of computaiipoC)3, the programming of
multiprocessor systems could be done in a systematic andhated way. This is so because
the multiprocessor platforms contain processing compisrtéat run in parallel, and a par-
allel MoC represents an application as a composition of goeat tasks with a well defined
mechanism for inter-task communication and synchrororati

The facts discussed above suggest that to program an MPg&i€rsdesigners have to par-
tition an application into concurrent tasks starting frorseguential program (delivered by
application developers) as a reference specification. ;theg have to assign the application
tasks to different processdrand to write specific program code for each programmable pro-
cessor. Partitioning of an application into tasks consuarlesof time and effort because the
system designers have to study the application in ordeetatify possible task- and/or data-
level parallelism that is available, and to reveal it. Mare@g an explicit synchronization for
data communication between the application tasks is neettdd information is not avail-
able in the sequential program and has to be specified by gigraes explicitly. Therefore,
an approach and tool support are needed for applicatioitipaitg and code generation, i.e.,
(C/C++) code for each processor of an MPSoC, to allow systemati@atamated program-
ming of MPSoCs. Currently, for a wide range of processores,phth from C/G+ to final
executable code is fully automated.

In this dissertation, we address the issues of design, anogand implementation of MPSoCs
in a specific way which allows us to devise a particular solutf closing the implementation
gap. A motivation and an overview of the solution is preseimehe next section.

1.2 Solution approach

In this section, we give an overview of the solution approaehpropose in order to close
the implementation gap described in Section 1.1. The idgaitcach would be a tool (or
set of tools) that could automatically identify a set of apgion tasks and map them onto
a multiprocessor platform guaranteeing the correct fonetity and timing with optimal re-

3 A model of computation is the definition of the set of allowebperations used in computation.
4 This step may also involves SW/HW partitioning decisions.
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source utilization. This tool should take a design desinipat the pure functional level
together with performance and other constraints, and derisg a target platform, it should
produce optimized implementation. The ideal situationdsfuolfilled (yet) for the general
case, however, in this dissertation we present our metbggiah which the issues of au-
tomated design, programming, and implementation of MPSo€sddressed in a particular
way, focusing on a particular application domain. Based®aharacteristics, we make some
assumptions (see section “Scope of work”) which enablediévelopment of techniques to
close the implementation gap.

As we mentioned already, the state of the art Top-Down and$W¢o-design methodolo-
gies have been a topic of interest for years, but the propostidodologies lack productivity
and effectiveness when targeting MPSoCs design. In additicese methodologies fail in
raising the level of abstraction above RTL. Therefore, a degign philosophis needed to
address the aforementioned design challenges. At the saregwe believe that this new
design philosophy must exploit the great potential and theatages of the Top-Down and
HW/SW co-design methodologies (see Section 1) that they fdf single-processor systems
design.

In this dissertation we propose a methodology, implemeintadool-flow called D\EDALUS
[3,4], for automated design, programming, and implemémaif MPSoCs starting at a high
level of abstraction. The methodology is built on the conaapPlatform-Based Design
(PBD) [5] being a promising new approach to master the evawigig complexity of today’s
embedded systems. The main idea is starting from a fundspeaification of an application
and a description of an MPSoC at system level, to refine amdlate them to lower RTL
descriptions in a systematic and automated way. The prdpus¢hodology is illustrated in
Figure 1.2. It starts with an application written as a setjaeq’ program which represents
the required system behavior at functional level. IREDALUS, there are specifications at
three additional levels of abstraction, namely as8eM-LEVEL, RTL-LEVEL, and GATE-
LEVEL.

Definition 1.2.1 (System level)
System level is a level of abstraction above RTL includinthbmardware and software.

The SrsTEM-LEVEL specification in BEDALUS consists of three parts written in XML
format:

1. Application Specificatiordescribing an application in a parallel form as a set of com-
municating application tasks.

2. Platform Specificationrdescribing the topology of a multiprocessor platform. Type
of platforms we consider is presented in Section 2.1.5.

3. Mapping Specificationdescribing the relation between all application taska pli-
cation Specificatiomnd all components iRlatform Specification

The application specification captures the initial appiarain a parallel form. For this pur-
pose, we use the Kahn Process Network (KPN) [6] model of caatiom, i.e., a network
of concurrent processes communicating via FIFO channets. applications specified as
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Figure 1.2: AEDALUS System Design Flow.

parameterized static affine nested loop progrants (a class of programs discussed in Sec-
tion 2.3.1), KPN descriptions can be derived automatidafiyising the PI$EN tool [7], see
the top right part in Figure 1.2. In case the application desdit in this class of programs,
the application specification needs to be derived by handce pratform and the mapping
specifications can be created manually or can be generatemhatically. Specifying a mul-
tiprocessor platform by hand is a simple task that can bepadd in a few minutes, because
the high-level platform specification does not contain aetaills about the MPSoC com-
ponents and, e.g., their physical interfaces. Describingapping in XML format is even
simpler than writing a platform specification.

The components in the platform specification are taken frditorary of IP components, see
the left part of Figure 1.2. The library consists of preddigeneric parameterized com-
ponents which constitute the platform model in theeEDALUS design flow. The platform
model is a key component in the proposed solution approacause it allows alternative
MPSoCs to be easily built by instantiating components, ecting them, and setting their
parameters in an automated way. The components in theylibrarrepresented at two lev-
els of abstraction: High-level models are used for consittg@nd modeling multiprocessor
platforms at system level. Low-level models of the compaseane used in the translation of
the multiprocessor platforms to RTL, ready for final implertaion.

The platform and the mapping specifications can be geneeattnatically as a result of
a design space exploration. For this purpose, we use #saI®e tool [8] (see the top of
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Figure 1.2) developed at the University of Amsterdam. AsutnfseSAME uses the KPN
application specification and the high-level models of theponents from our library. The
output is a set of pairs, i.e., a platform specification anda@ping specification, each pair
representing an optimal mapping of the initial applicatiorto a particular MPSoC in terms
of performance and given certain constraints.

The SrsTEM-LEVEL specification of an MPSoC is systematically and automai¢edns-
lated to RTL-LEVEL in several steps. In the beginning, the platform specificats used
to construct a platform instance. The platform instancenigfastract model of an MPSoC
because, at this stage, no information about the targetqaiydatform is taken into account.
The model defines only the key system components of the ptatiad their attributes. Then,
the abstract platform model is refined to an elaborate (eeffaparameterized RTL model
which is ready for an implementation on a target physicatfpten. The refined system
components are instantiated by setting their parametessdban the target physical plat-
form features. Finally, program code for each programmpimeessor in the multiprocessor
platform is generated in accordance with the applicatioth m@apping specifications. The
described 8STEM-LEVEL to RTL-LEVEL translation is performed by thesam tool [9],
see Figure 1.2. Details about the platform model aseAi are given in Chapter 2.

As output, ESPAM delivers a hardware (synthesizable VHDL code) descriptiban MP-
SoC and software (C/€+) code to program each processor in the MPSoC. The hardware
description, namely a RTL-£VEL specification of a multiprocessor system, is a model that
can adequately abstract and exploit the key features ofjattphysical platform at the reg-
ister transfer level of abstraction. It consists of two paft) Platform topology a netlist
description defining in greater detail the MPSoC topoldg)yHardware descriptions of IP
cores containing predefined and custom IP cores (processorspnesnetc.) used iRlat-
form topologyselected fronkibrary IP Cores Also, it generates custom IP cores needed as
a glue/interface logic between components in the MPSa&PAR converts the XML appli-
cation specification to efficient CAG- code including code implementing the functional be-
havior together with code for synchronization of the comination between the processors.
This synchronization code contains a memory map of the MP&ao@ read/write synchro-
nization primitives. The generated program €#Ccode for each processor in the MPSoC is
given to a standard GCC compiler to generate executable code

A commercial synthesizer can convert the generated haedR@L -LEVEL specification to

a GATE-LEVEL specification, thereby generating the target platform-geatel netlist, see
the bottom part of Figure 1.2. ThisABE-LEVEL specification is actually the system im-
plementation. The current version o6BAM facilitates automated multiprocessor platform
synthesis and programming targeting Xilinx FPGA technglagd thus, we use development
tools (a GCC compiler and a VHDL synthesizer) provided byin%il[10] to generate the fi-
nal bit-stream file that configures a specific FPGA. We use #@4 platform technology
for prototyping purpose, however, the generated FPGA MPiggilementations may also
be the final system implementation if, e.g., certain systeguirements are met. In addition,
the results we obtain from prototyping are used for val@@talibration of the high-level
models in order to improve accuracy of the design space eqo process. The techniques
in the EspAM tool are flexible enough to target other physical platforantelogies.
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With DAEDALUS, we propose a model-driven design methodology and belowigdight
its key characteristics:

e To address the challenges associated with the programriM@80Cs presented in
Section 1.1, in the proposed design methodology we use #glarmdel of compu-
tation, namely the Kahn Process Network (KPN) MoC [6], toresent an application
as a set of (concurrent) application tasks. These tasksuateef mapped onto pro-
grammable (ISA) and non-programmable (dedicated IPs)gsiocg components of
an MPSoC. Exploiting the KPN MoC, we propose techniques fogmamming the
ISA processors in an automated way.

e DAEDALUS facilitates design of heterogeneous systems where bogngmronable and
non-programmable processors are used as processing centporin case of non-
programmable processing components, we propose an appimaautomated inte-
gration of predefined (third-party) dedicated IP cores. Rrcore can be created by
hand or it can be generated automatically frérdescriptions using high-level synthe-
sis tools like, e.g., the PICO tool from Synfora [11]. High#l (behavioral) synthesis
is out of the scope of this dissertation and theeDALUS system design methodology.

e To facilitate automated implementation of MPSoCs, we haentified a platform
model which captures very well the operational semantiagh@®PN MoC. This al-
lows system-level platform descriptions to be refined aaddiated to detailed RTL
descriptions in an automated way. The good match betweeKRiNMoC and our
platform model results in efficient implementations wherN§Rare executed on such
platforms;

e Our PBD methodology starts with application, platform, andpping specifications
at system level. By applying our techniques, the systeratimodels are translated
to HW platform descriptions at RTL, and SW code executed emptilocessors of the
platform. From RTL to final implementation,AEDALUS utilizes state of the art (com-
mercial) synthesis and compiler tools;

e By using the proposed application and platform models, &ydespace exploration at
system level is enabled. It allows evaluating the perforeeant different application
to platform mappings and alternative HW/SW partitionin@ich exploration result
in a number of promising system design candidates, eachedkdfiyn an application, a
platform, and a mapping specification.

The PBD concept and the KPN MoC are motivated in the follovgagtions. Our platform
model is discussed in detail further in this dissertation.

1.2.1 Platform-based design at system level

The concept of a platform encapsulates the notion of reasditating the adaptation of a
common design to a variety of different (domain specific)lapgions [5, 12]. The platform-
based design at system level is a powerful approach thahkegsotential of addressing the
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MPSoC design challenges, in both HW and SW design, in a unied We chose PBD
because this approach:

e Includes both hardware and embedded-software design;
e Favors the use of high levels of abstraction for the initedign specification;
e Facilitates effective design exploration;

e Achieves detailed implementation by refinement.

The principles of PBD in our approach consist of startindghathighest level of abstraction,
i.e., System-level in Figure 1.1, which includes applicatind platform specification, hiding
unnecessary details of an implementation. In PBD, impogarameters of the implementa-
tion are summarized in an abstract model(s) and design spaderation is limited to a set

of available components, i.e., the IP library in Figure E@rthermore, the design is carried
out as a sequence of refinement steps that go from the ing&ification towards the final

implementation using platforms at various levels of alustoa.

Below, we give definitions associated with the PBD approdcbun design methodology
presented in this dissertation.

Definition 1.2.2 (Platform)

The platform is dibrary of componentshat can be assembled to generate a design. The
library containsprocessingolocks that carry out the appropriate computation and edso-
municationblocks andmemoryblocks that are used to interconnect the processing blocks.

Definition 1.2.3 (Platform model)

The platform model includes the library of components, agfihes the way the components
can be assembled assuming particular (inter-componemtyemication and synchronization
mechanisms.

Definition 1.2.4 (Platform instance)

A platform instance is a set of components that is selectad the the platform and whose
parameters are set. The components in a platform instaa@anected in accordance with
the platform model.

Definition 1.2.5 (Platform instance refinement)
Refinement s a process of adding (implementation) detatlse original platform instance.

The refined platform instance does not necessarily reprageral implementation, however,
it is closer than the original platform instance since ittedms more details about the target
implementation.

Definition 1.2.6 (Mapping)
In the proposed methodology, mapping is an assignment dicafipn tasks to processing
components of a platform instance.
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The notion of a platform is associated with a set of potesidlitions to a design problem
where each platform instance implements a design pointaigarticular solution. Therefore,
we need to capture the process of mapping functionality, what the system is supposed
to do, to platform computational, communication, and mgnoomponents that will be used
to build a platform instance. This process is an essengglfsir refinement, which provides
a mechanism to proceed towards implementation by closiagrtiplementation gap in a
structured way. In addition, taking into account the MPSe@Sigh challenges, we advocate
that in order to allow systematic and automated system degigere the fundamental steps
of functional partitioning, allocation of computationakources, integration, and verification
are supported,

1. Applications have to be specified in some parallel modeloofhputation (MoC), at a
high level of abstraction;

2. Platform instances have to be specified in a parameteaizsilact form (a platform
model);

3. Methods have to be provided to map the former onto thelatte

A well known principle in designing complex systems is fieparation of concernitially
introduced by Edsger Dijkstra in his essay from 1974 "On the of scientific thought” [13].
Separation of concerns is one of the key principles in sofvemgineering and object ori-
ented programming. However, it is an important principlé®BD as well [14]. The main
goal is to design systems so that different kinds of concarasdentified and separated (op-
timized independently) in order to cope with complexitydda achieve the required quality
factors such as robustness, adaptability, maintaingkalitd reusability. The principle can be
applied in various ways. For instance, in PBD, it is impott@nkeep communication and
computation components well separated as different methogl usually needed and used
to represent and to refine these components. Communicdags p fundamental role in
determining the properties of models of computation. Sgbsetly, special care is needed
in defining the communication mechanism of a platform modeaesit may help or hinder
design/components reuse and performance.

Based on the foregoing discussion, we state that the PBDst&¢raylevel is an attractive
candidate to form the basis for new design methodologiesceMer, if linked to the Top-
Down and HW/SW co-design methodologies at RTL, it resulis gynergy that can be very
productive. In our case, we create this link by closing thplementation gap. In addition,
the main goals of reduced design time, design re-use, flexilsi making design changes,
faster exploration of alternative platform instances amgpings, and increased productivity,
can not be achieved without tools supporting this new desigthodology. Therefore, in our
approach we are equally interested in developing techsifpre

e Raising the design abstraction to system level by utilizimg platform-based design
concept to deal with design complexity;

e Automated translation of the system-level models to RTlcdpsons, therefore, clos-
ing the implementation gap in a systematic and automated way



1.2 Solution approach 11

1.2.2 Kahn Process Network model of computation

As discussed in Section 1.1, programming multiprocessstesys is a tedious, error-prone,
time consuming process and we argued that in order to faeilén automated programming,
a parallel MoC is required for application representation.

But what should this MoC be ?

Many parallel MoCs exist [15], and each of them has its owrci§jgecharacteristics. Evi-
dently, to make the right choice of a parallel MoC, we needke into account the application
domain we target. In this dissertation, we consider onladiaiw dominated applications in
the realm of multimedia, imaging, and signal processingrsurally contain tasks commu-
nicating via streams of data. Such applications are verymetieled by using the parallel
data-flow MoC called Kahn Process Network (KPN) [6, 16].

Gilles Kahn defined a formal model for networks of concurigoicesses that communicate
through unbounded First-In First-Out (FIFO) channelsyiag streams of data tokens [6,
16]. Processes produce tokens and send them along a conatiomichannel where they
are stored until the destination process consumes them.mbaomation channels are the
only method processes may use to exchange information.debr@annel there is a single
process that produces tokens and a single process thateessokens. Multiple producers
or multiple consumers connected to the same channel ardloaed. Kahn requires the
execution of a process to be suspended when it attempts watgetfrom an empty input
channel. At any given point, a process is either enabledisritocked waiting for data on
only one of its input channels. When enabled, a process magsamonly one channel at a
time and when blocked on a channel, a process may not ac¢esschannels.

Kahn showed that requiring processes to block when attegyptiread from empty channels
allows processes to be represented as continuous functiena complete partial order (the
set of streams of data elements with a prefix order). A progyaph can be represented as a
collection of equations that have a unique minimum solutiwt corresponds to the history
of all tokens produced on all streams. Thus, systems thgtikalen’s model are determinate:
the history of tokens produced on the communication charaeiniquely determined by the
equations representing the program graph and does not diepetine execution order [6].
This implies that as long as blocking reads are enforcedrdbelts of a computation are
unique and correct whether the processes are executedhsiediyeconcurrently, or in par-
allel. The number of tokens produced, and their values, eterchined by the definition of
the system and not by the scheduling of operations. How#wemumber of data elements
that must be buffered on the communication channels duriegwgion does depend on the
execution order and is not completely determined by the KEfiiion.

Because process networks expose parallelism and make auication explicit, they are

well suited for targeting MPSoC implementations of a varieft signal processing and sci-
entific computation applications such as embedded sigrthlmage processing. Many re-
searchers [8,17-21] have already indicated that KPNs dwbsifor efficient mapping onto

multiprocessor platforms. In addition, we motivate ourickoof using the KPN MoC by

observing that the following characteristics of a KPN catetadvantage of the parallel re-
sources available in multiprocessor platforms:
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e The KPN model isleterminate Irrespective of the schedule chosen to evaluate the
network, the same input/output relation always exists.sives a lot of scheduling
freedom that can be exploited when mapping process netvearics multi-processor
architectures;

e Distributed Control: The control is completely distributed to the individual pesses
and there is no global scheduler present. As a consequeistd@yudting a KPN for
execution on a number of processing components is a sinmgke ta

e Distributed Memory:The exchange of data is distributed over FIFO channels. eTher
is no notion of a global memory that has to be accessed by ptauftrocesses (pro-
cessors). Therefore, resource contention is greatly extliicystems with distributed
memory are considered;

e Simple synchronizatiorithe synchronization between the processes in a KPN is done
by a blocking read mechanism on FIFO channels. Such synizaitgon can be realized
easily and efficiently in both hardware and software.

1.3 Scope of Work

In this section, we outline the assumptions and restristi@garding the work presented in
this dissertation. Most of them are discussed in furtheaiijethere appropriate, throughout
the dissertation.

Applications

One of the main assumptions is that we consider only datadlomwinated applications in
the realm of multimedia, imaging, and signal processingt taturally contain tasks com-
municating via streams of data. The streams can represgyam of information, such as
audio samples, image blocks, or video frames. Typically,dtieams have one source and
one sink, and must be non-lossy. Usually, reordering of datas (tokens) in streams is
not acceptable. The transformations that are performeatanstreams can be quite complex
and their granularity is design-dependent. These tramsftons may consume data from any
number of streams and produce data to any number of streamb. &pplications are very
well modeled by using the KPN data-flow model of computatiéh [We consider KPNs
that are input-output equivalent to static affine nesteg lpmgrams. The properties of such
programs are discussed in Section 2.3.1. We are interasthisisubset of KPNs because
they are analyzable at design time, e.g., FIFO buffer sindeaecution schedules are decid-
able. Moreover, such KPNs can be derived automatically fifeercorresponding sequential
programs [7,22-24].
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Application and platform models

The KPN choice as an application model is very importantesibnfluences the platform
model and the work/techniques presented in this dissentakiPNs assume unbounded com-
munication buffers. Writing is always possible and thus acpss blocks only on reading
from an empty FIFO. In the physical implementation, howettee communication buffers
have bounded sizes, and therefore, a blocking write symétaion mechanism is used as
well. The problem of deciding whether a general Kahn Probesgsiork can be scheduled
with bounded memory is undecidable [25, 26]. However, inaage this is possible because
the process networks are derived by using thesBNltool from static affine nested loop pro-
grams (SANLPs), which programs require finite amount of mgntmexecute. In SANLPs,
loop bounds, variable indexing functions, and conditiopressions are all affine functiohs
of loop iterators and (static) parameters. This enablels prmgrams to be modeled in terms
of polyhedral domains, i.e., to represent a KPN, we use m@olydl descriptions. Therefore,
the process networks we consider in this dissertation axealy polyhedral process net-
works(PPNs¥, being a subset of the Kahn process networks. In additioongpute buffer
sizes of the FIFO channels (see Section 3.3.5) such thatdodkafree execution of the con-
sidered KPNs on our platform instances is guaranteed. Thedsting of process networks
using bounded memory has been discussed in [25, 27]. Alsarrder of tools and libraries
have been developed for executing KPNs [28, 29]. In contoagtese approaches, the plat-
form model we propose and use to construct (multiprocegdatiorm instances does not
require scheduling and run-time deadlock detection anoluien. Instead, the processing
components in our platform model are self-scheduled falgwhe KPN operational seman-
tics using a blocking read/write synchronization mechanise., the KPNs are self-scheduled
when executed on the MPSoCs. The main objective in devisiagltatform model was to
allow building of MPS0oCs which execute KPNs efficiently. hetproposed approach, we do
not target particular processing components design r#tlerintegrating such (taken from
an IP library) in MPSoCs. Therefore, the main goal in ordeadhieve efficient KPN exe-
cution, is to enable efficient data communication betweenptiocessing components, i.e.,
a communication with minimum communication overhead. Weieed this by taking the
main characteristics of the KPN MoC (see Section 1.2.2) agdcount when devising the
platform model.

Multiprocessor platform instances — MPSoCs topology and eecution model

With respect to the proposed application and platform mgaet consider MPSoCs in which
the processing components, i.e, programmable processthiaradW IP cores, communicate
data only through distributed memory units. Each memory cam be organized as one or
several FIFOs. The data communication among the processimgonents is realized by
blocking read and write implemented in software and hardw&uch MPSoCs match and
support very well the KPN operational semantics, therelesing high performance when
KPNs are executed. If the number of processing componergpiatform instance is less

5 Affine functions represent vector-valued functions of tiwerf: f(x1,.yzn) = A1z + ... + Apzn + b
6 For brevity, in this dissertation, we keep the notation 'KBicause both, the PPNs and the KPNs, obey the
same semantics. Some details about PPNs are given in SBa@idrand Section 3.3.1.
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than the number of processes of a KPN, then some of the progable processors execute
more than one process. These processes are scheduled afedimmp and the generated
program code for a given processor does not require/utdizeperating system. In our
approach, we do not consider (high-level, behavioral)lsgsis of HW IP cores. Instead, we
propose an automated integration of predefined (third¢yp&tV IPs into (heterogeneous)
MPSoCs. We do not impose restrictions on how the IP coresraaed, i.e., by hand or
by employing high-level design tools. In order an IP core ¢oallded to the components
library, however, an IP core has to implement the computaifamnly a single KPN process.
We do not support sharing of an IP core between several KPbepses, i.e., more than one
KPN processes to be implemented by a single dedicated IRtidwlal requirements for the
considered IP cores and their interfaces are discussedctin8e.4.3. The programmable
processors and the HW IP cores in our platforms can be cogghacttrossbar, point-to-point,
or shared bus communication topologies. Details are giv&ection 2.1.5.

Tool inputs

The input to the PIBEN tool is an application written as a static affine nested loop p
gram (SANLP) in C. SANLP is a sequential program with somérie®ns, discussed in
Section 2.3.1. These restrictions allow for automatedved&dn of KPNs from SANLPs as
described in Section 2.3.1. The BEN tool partitions a SANLP into processes only at func-
tion boundaries, i.e., the programmer divides the SANLB fanctions, thus guiding the
granularity of the automatically derived processes. Mamyliaations in the considered do-
main (see above) can be represented as SANLPs. TheNttool accepts as an input three
specifications: an application specification, a platforrac#iication, and a mapping spec-
ification. The application specification is a KPN either ded by PNsEN or a manually
created. The platform specification is restricted in thesseéhat it must contain only compo-
nents taken from the library of predefined parameterizedbmmants. The library allows and
ensures that many alternative (multiprocessor) platfarsteinces can be constructed and all
of them fall into the class of MPSoCs we consider (see abovikg mapping specification
gives the relation between processes and processing cemgoBased on this,¥AM de-
termines automatically the most efficient mapping of FIF@rufels onto distributed memory
units. The platform and the mapping specifications can ketedemanually or automatically
generated by theEsSAME tool as a result of a design space exploration.

1.4 Research Contributions

The work presented in this dissertation focuses on the dggiggramming, and implemen-
tation of multiprocessor systems (MPSoCs) starting froghlfsystem) level of abstraction.
Below, we outline our main contributions:
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Closing the implementation gap

In this dissertation, we present our methods and techni@Jiésr systematic and automated
multiprocessor system design, programming, and impleatient They bridge the gap be-
tween thesystem-levedpecification and thRTL specification in a particular way which we
consider as the main contribution of the dissertation. &hmasthods and techniques have
been implemented in a tool calledsBam (Embedded System-level Platform synthesis and
Application Mapping). More specifically, with &AM a system designer can specify a mul-
tiprocessor platform instance at a high level of abstraciioa short amount of time, say a
few minutes. Then, EPAM refines this specification to a real implementation, i.e.,

1. Generates a synthesizable (RTL) HW description of the &FP&nd

2. Generates SW code for each processor,

in an automated way, thereby closing in a particular way itin@eémentation gap mentioned
earlier. This reduces the design and programming time framths to hours. As a con-
sequence, an accurate exploration of the performanceashative multiprocessor platform
instances becomes feasible at implementation level in &taws.

System-level platform model matching the KPN programming épplication) model

Our methods and techniques to closing the implementatipragabased on the underlying
programming model and system-level platform model we usecaR that ESPAM targets
data-flow dominated (streaming) applications for which e the Kahn Process Network
(KPN) [6] model of computation as a programming (applicatimodel. By carefully exploit-
ing and efficiently implementing the simple communication @ynchronization features of
a KPN (see Section 1.2.2), we have identified and developed afgeneric parameter-
ized components which we call a platform [9]. The platfornd dne way its components
can be connected and synchronized comprise our platforneindé consider the platform
model an important contribution of this dissertation besgathe set of components allows
system designers to specify (construct) fast and easilyyrat@rnative multiprocessor plat-
form instances that are implemented and programmedd®al. The approach we propose
is general enough and allows for building heterogeneous dMBSi.e., different types of
programmable processors and dedicated (third-party) HWoles, connected together in
different communication topologies. In addition, the goodtch between the KPN MoC
and the platform model results in efficient implementatisien KPNs are executed on the
considered MPSoCs.

Computing minimum KPN FIFO sizes that guarantee maximum peformance

The automated MPSoC design and programming is enabled by tie KPN MoC. How-
ever, deriving a KPN specification is a time consuming preeasl confirmation of this fact
can be found in the many system-level design approachesskahe KPN model [28-36].
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The KPN model has been widely studied in our group at Leidebétided Research Center
(LERCY for almost a decade. The work presented in [37] is the first@agh, known in the
literature, to derive a KPN specification from a static affirested loop program (SANLP).
Several years of research in this direction resulted inrtiegles implemented in the @1-
PAAN tool [22, 24] for automated translation of SANLPs writtenNtatlab to KPN specifi-
cations. Although these techniques are very advanced,dbeyt address the problem of
what the buffer sizes of the communication FIFO channelsilshioe. This is a very impor-
tant problem because if the FIFO buffers are undersizesl|¢his to a deadlock in the KPN
behavior.

Recently, we have developed techniquesifoprovedderivation of KPNs [7] from appli-
cations specified as sequential C programs. These techmimoglemented in the PBEN
tool [7], allow for automated computation of efficient buff@zes that guarantee deadlock-
free execution of our KPNs. In addition, in this dissertatiee present an approach to com-
pute minimum buffer sizes that guarantee maximum perfoomavhen KPNs are executed
onto the considered MPSoCs. This is another important itbarion of this dissertation be-
cause we are interested in high-performance multiproceystems and with our approach,
the highest (theoretical) performance is achievable v@ttuced memory requirements.

Systematic mapping of application tasks to processing cose

The decision of mapping application tasks to processingpmorants is crucial in order to

achieve high performance of the MPSoCs at reduced cost.n#fieguthat the data commu-

nication is efficient and does not introduce communicatieerbead, the maximum perfor-
mance is achieved when every task is executed on a sepaoatspor. However, this may
introduce large resource overhead because due to task efatadknces, most of the time
processors may stay idle waiting for data. Therefore, thpgae of the mapping is to group
tasks and assign them to processing components in a wapévatimber of processing com-
ponents is minimized and the workload is balanced betwesodmponents without (or with

reasonable) penalty in the overall performance.

Mapping application tasks to processors in an ad-hoc mamagrlead to efficient imple-
mentations, however, it heavily depends on the expertigdeofiesigner. In addition, for
large design space, e.g., an application consisting of ragplication tasks and a platform
that offer different types of processing components, thetrafficient mapping can be easily
overlooked. This motivated us to research techniques threaasystematically mapping of
application tasks to processing cores in an MPSoC. We direiseapproach which exploits
the properties of our application and platform models taamarthe design space in a sys-
tematic way. More precisely, we defined mapping rules usedgate mappings that require
fewer number of processing cores without compromising tiéexed system performance.
Moreover, the proposed approach can be effectively usedrtiplement the techniques in
the SEsAME tool for reducing the design space that need to be travensémidesign space
exploration process.

7 Leiden University, The Netherlands
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1.5 Related Work

Systematic and automated application-to-platform mappiss been widely studied in the
research community. The closest to our work is the Systeas@d) design methodology
presented in [38]. The proposed methodology consists ofitonreated design space explo-
ration, performance evaluation, and automatic platforsebdasystem generation. But unlike
DAEDALUS, [38] does not allow for automated parallelization of apations (it requires ap-
plications to be specified by hand in SystemC), nor designespaploration at application
level. Similarly to our approach, the input for the desigmvfia [38] contains an executable
application specification (written in SystemC), a targeth@ecture template (in both ap-
proaches built from components taken from a componentrifpi@nd mapping constraints
of the SystemC modules (in our methodology we have a mappimggga relation between
the application and the architecture). In order to autorttegelesign process, the SystemC
application has to be written in a synthesizable subset sfe®yC, called SysteMoC [39],
whereas our restriction of the initial C program is to be a $RNsee Section 2.3.1). The
synthesizable subset of SystemC is required because fdPtbere generation the authors
use high-level synthesis tools, e.g, Mentor CatapultC oteFGynthesizer which is a major
difference with our concept for heterogeneous MPSoCs desitstead, in this dissertation
we propose an approach for dedicated IP core integrati@dmasan HW Module generation
consisting of a wrapper around a predefined IP core.

The Eclipse work [40] defines a scalable architecture tetafita designing stream-oriented
multiprocessor SoCs using the KPN model of computationégifpand map data-dependent
applications. The Eclipse template is slightly more gentdyan the templates presented in
this dissertation. However, the Eclipse work lacks an aatech design and implementa-
tion flow. In contrast, our work provides such automatiomtstg from a high-level system
specification.

Recent work related to multi-processor system design fta-dteeaming applications is the
MAMPS flow presented in [41]. Applications in MAMPS are débed as SDF graphs in
xml format. These graphs express topological featureswithout capturing any functional
behavior. This is a major difference withABDALUS design flow in which applications are
specified as fully-functional sequenti@lprograms, automatically parallelized (as KPNs) by
the PNGEN tool. The functional specification of an application enalfldly-automated pro-
gramming of the target multi-processor systems. That ssBE¢PAM tool generates software
code includingcomputation code implementing the functional behavior atehtrol code
for synchronization of the communication between the msoes of an MPSoC. In contrast,
the automated software code generation in MAMPS includéstbe control code, i.e., the
model of the SDF actor execution and arbitration. Anoth&ernce with the BEDALUS
design flow is that the work presented in [41] targets only bgemeous MPSoCs comprised
of MicroBlaze processors [42] connected point-to-pointthrough dedt&tFO links while
DAEDALUS supports homogeneous and heterogeneous MPSoCs with girgcesmponents
being MicroBlaze processorsPower PC processors [43], and/or dedicated HW IP cores.
Moreover, the connections between the processing compooan be either point-to-point,
crossbar, or shared bus. The work in [41] focuses on muliild-) applications executed on
the same platform. In addition, the authors take into actthenfact that these applications
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may not always run simultaneously by considering multipde-uases. With BEDALUS,
multiple applications can be mapped on the same platfornvehier, DAEDALUS does not
support “use-cases” as defined in [41].

In our automated design flow for MPSoC programming and impl&ation, we use a paral-
lel model of computation to represent an application and ap mhonto alternative MPSoC
architectures. A similar approach is presented in [44]rayer et al. propose a design flow
concept that uses a high-level parallel programming madabstract hardware/software in-
terfaces in the case of heterogeneous MPSoC design. Detaifgesented in [45] and [46].
In [45] a design flow for the generation of application-sfiechultiprocessor architectures is
presented. This work is similar to our approach in the semsevie also generate multipro-
cessor systems based on instantiation of generic parameeterchitecture components as
well as communication controllers to connect processocetomunication networks. How-
ever, many steps of the design flow in [45] are performed mignues a consequence, a full
implementation of a system comprising 4 processors coadquint-to-point takes around
33 hours. In contrast, our design flow is fully automated afllamplementation of a sys-
tem comprising several processors connected point-totivia a crossbar or a shared bus,
takes around 2 hours.

The Polis environment [47] provides an automated designgtawing from high-level spec-
ifications and targeting optimized machine code for recaméile architectures. It uses a
model of computation (MoC) called Extended Finite State Maes (EFSM). This is a ma-
jor difference from our work since we use the KPN MoC. The EF®EMC is well suited for
control dominated applications whereas the KPN MoC is moisalsle for stream oriented
applications.

C-HEAP is a top-down design methodology presented in [18feherates instances of an
architecture template containing multiple processingasy local cache memories, global
shared memory, and a communication network. This work iflairto our approach in the
sense that we also generate platform instances based omatforma model. In their work
however problems with the cache coherence are reportedurlagproach we do not use
global shared memory and local cache memories, thus meroatgtion is avoided.

System-level semantics for system design formalizatiggrésented in [48]. It enables de-
sign automation for synthesis and verification to achieveqaired design productivity gain.
Using Specification, Multiprocessing, and Architecturedels, a translation from behavior
to structural descriptions is possible at system level sfralstion. Our approach is similar
but in addition, it defines and uses application and platforodels that allow an automated
translation from the system level to the RTL level of abstoac

In [46] Gauthier et al. present a method for the programmihIBSoCs by automatic
generation of application-specific operating systems (@) automatic targeting of the ap-
plication code to the generated OS. In the proposed methedOS is generated from a
OS library and includes only the OS services specific to th@iegtion. The input to the
code generation flow consists of structural informationulibe MPSoC, allocation infor-
mation (memory map of the MPSoC), and high-level task dpsors. By contrast, in our
programming approach we do not use operating systems. Ebrpacessor of a MPSoC
our tool generates sequential code that contains contmat@immunication, synchronization,
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and task scheduling) and application specific code. Anatiegor difference is that in our
approach the allocation information (the memory map of a MBSand the task descriptions
are generated automatically.

The Multiflex system presented in [49] is an applicatiorptatform mapping tool. It tar-
gets multimedia and networking applications and integratgystem-level design exploration
framework. Multiflex uses Symmetric Multi Processing (SMiRH Distributed System Ob-
ject Component (DSOC) programming models. SMP supportswoant threads accessing
shared memory. DSOC model supports heterogeneous disttibamputing using message
passing. The MultiFlex tools map these models onto the SR SoC platform architec-
ture. The relation to our work is thatseAm also targets the mapping of multimedia and
data streaming applications onto a particular MPSoC platfé\ design space exploration is
included in our design flow as well. However, in our design fluesuse Kahn Process Net-
works as the parallel programming model instead of SMP an@©®8sed in Multiflex. The
benefit of using KPNs is related to the KPN model propertias #flow us to derive KPNs
in an automated way from applications specified as sequ@ntigrams. Multiflex does not
support at all automatic derivation of SMP or DSOC. In [49)sidn time of 2 man-months
is reported for a MPEG4 multiprocessor system. The desige thcludes manual appli-
cation partitioning, automated architecture exploratod optimization. In this paper, we
show that by using our design flow a complete design inclugiaditioning, exploration,
implementation, and programming of a similar multiprocess/stem (a JPEG encoder) is
achieved within 2 hours.

There are several approaches for HW design based on the ABt&h@ard such as Handel-C
and SpecC. Handel-C is a C-based hardware descriptiondgegiommercialized by Celox-
ica [50]. In contrast to our approach for multiprocessotays design, Handel-C targets
dedicated HW implementations on FPGAs. To express pasafiednd event sensitivity in
Handel-C, a designer has to use annotations (congiaici the programming code. In our
approach, a designer specifies an application as a seduaotigam using a subset of the
ANSI C standard without any special annotations. The palish is revealed by our PGEN
tool and determined by the granularity of the function caled by the designer. Another
difference is that Handel-C is based on Hoare’s commumgaequential processes (CSP)
model [51] while we use the KPN MoC. In both models, processgsmunicate through
channels, yet the synchronization is different. In Har@elata transfer can only complete
when both the source and destination are ready for it. In tAbl Khodel, a channel is or-
ganized as a FIFO buffer where write and read operationsiperih parallel as long as the
buffer is not full or empty, leading to more independent laraxecution of the processes.

The SpecC language, as introduced in [52], is a modelingulage for the specification and
design of embedded systems at system level. In [52] the muinopose a design methodol-
ogy based on a library of reusable components that inclumesal steps such as partitioning,
scheduling, communication refinement, code generatiois i$tsimilar to our methodology

and design flow in the sense that we also use a library of prestbfiomponents and our
methodology includes similar steps. The main differencsyédver, is that SpecC is an ex-
tension of the C programming language implying that thegiesi has to study it, although
he/she might be familiar with the ANSI C standard. Also, wihecC the designer has to
specify the possible parallelism of an application in anliekpvay. In contrast, the appli-
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cation specification in our methodology is a C program wmitiising a subset of the ANSI
C standard, i.e., SANLP explained in Section 2.3.1. In aalditthe parallelization and the
communication refinement steps in our design methodologyaatomated by the R&EN
and EspAM tools.

A method for automatic generation of embedded softwaredsemted in [53]. The proposed
design flow consists of several software refinement stepsra@icnediate models to gener-
ate efficient ANSI C code from system specification writte i8LDL language. This work
is similar to our work in the sense that ous®aM tool generates efficient CAS- code for
processors in a MPSoC. The difference is that some of thevadtrefinement steps in [53]
have to be performed manually whereas our software geoerigtifully automated. More-
over, we generate software for processors in a MPSoC gidrtm an application specified
as sequential program in the widely accepted C languages3hd designer has to specify
an application using the specific SLDL language.

The Task Transaction Level (TTL) interface presented in jS4a design technology for
programming of embedded multi-processor systems. A nasting application program-
ming interface (API) is provided for parallel execution tfemming applications in a shared
memory space. The interaction between application tasgsri®rmed by using communi-
cation primitives with different semantics, allowing bkaeg or non-blocking calls, in-order
or out-of-order data access, and direct access of data iarmehto avoid unnecessary data
movement. Our programming approach is similar to TTL in teese that we also target
streaming applications and we also use communication fivesi However, in our approach
we consider only MPSoC architectures with distributed menib@cause such architectures
give better timing performance compared to shared memahjtactures. TTL is more flexi-
ble because it supports many communication primitives lggamming a MPSoC by using
TTL requires a lot of manual work which is hard (in some casesempossible) to au-
tomate. In [6] Kahn proved that by using infinite FIFO queubs, blocking read in-order
mechanism is sufficient to realize communication and syswiation in any streaming ap-
plication modeled as a process network. Due to practicabres blocking write is needed as
well because a FIFO implementation can not have an infirige $iowever, using a blocking
write mechanism and finite memory resources may lead to deladf a KPN when executed.
Therefore, we developed techniques for computing FIFGssmeh that a deadlock-free ex-
ecution of our KPNs on our platforms is guaranteed — see @e8t3.5. In this sense, the
blocking read and write, both in-order, form the minimum sketommunication primitives
realizing the communication mechanism of a process netwdrn targeting real imple-
mentations. Other communication/synchronization meisias add more flexibility but at
a certain price. In comparison with TTL, our platform modepports only the two basic
primitives which allows us to fully automate the programmof MPSoCs as we will show
in this dissertation.

A recent work describing an exploration framework for buntgl efficient FPGA multipro-
cessor systems for data-flow and stream oriented applitaiopresented in [55, 56]. This
framework explores architectures and allocates applinatisks to maximize throughput.
The architecture topologies are limited to a networkMfcroBlaze processors intercon-
nected using buses (the slow On-chip Peripheral Bus — ORBlliaect FSL links. This work
is related to our work in the sense that (for prototyping) \e® darget FPGA multiproces-
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sor systems for data-flow and stream oriented applicatisimsyul/icroBlaze processors.
However, we have developed a different concept of how to eohprocessors into a ho-
mogeneous or heterogeneous multiprocessor system. Oceorelies on communication
controllers and memories for communication and synchatditin between processors that
allow to connect not onl/icroBlaze processors using buses and FSL links but also to
connectMicroBlaze processors, HW IP cores, and@ower PC processors connected in a
point-to-point network or, e.g., via a crossbar. In additiour concept is fully implemented,
i.e., our ESPAM tool generates automatically a synthesizable (RTL) spetiéin of a mul-
tiprocessor system along with the program code executedaoh processor. In [55, 56],
the authors do not discuss if they generate automatically-&hthesizable multiprocessor
systems and how the systems are programmed.

Companies such as Xilinx and Altera provide approaches asid tools attempting to fa-
cilitate efficient implementations of processor-basedesys on FPGAs. These tools are
the Embedded Development Kit (EDK) [10] for Xilinx chips, cathe System On a Pro-
grammable Chip (SOPC) builder [57] for Altera chips. A recsarvey of multiprocessor
solutions [58] shows that these state-of-the-art toolpsttpnly processor-coprocessor sys-
tems and shared memory bus-based multiprocessor systeicts @gm not always meet the
performance requirements of todays (streaming) appdicatiln contrast, our work proposes
a platform model that supports different communicatiorotogies (not only a shared bus)
and allows different types of processors to be connectediarbgeneous multiprocessor
platforms. In addition, we use a parallel model of compotato represent an application
and to map it onto multiprocessor platforms. Exploiting fieperties of our platform and
application models allows for automated MPSoC synthegismaplementation, application
dependent self-scheduling of the platform resources, alhddutomated MPSoC program-
ming.

SPIRIT [59] is a consortium which aims at "Enabling InnovatlP Re-use and Design Au-
tomation”. It defines several standards, e.g., IP-XACT, amel of the main purposes of this
consortium is to provide a well-defined XML Schema for metdadhat documents the char-
acteristics of IPs. While the consortium is focused maimtlee general IP-XACT standard,
we target automated IP core integration in our multiprogesgstems. IP-XACT allows to
use general interfaces for connection between the IPs,enfbeeach interface a reference
bus definition is required. Depending on the complexity ofraerface, a bus definition may
require a lot of error-prone and time consuming manual wémkorder to simplify and au-
tomate the IP core integration in our MPSoCs, we define anga@tipnly two interfaces,
i.e., one data interface and one control interface, thaPacore has to provide. We do not
consider this as a limitation of our approach because 1pethdsrfaces allow an efficient
IP core integration in the multiprocessor platforms we @dgrsand 2) the two interfaces are
sufficient for integration of IP cores performing computas in the domain we are interested
in, i.e., multimedia, image, and signal processing.

There are several initiatives such as VISA [60] and OCP-IR §ming at specifying "open”
interface standards, which will ease the integration éffequired to incorporate IP cores
into a system-on-chip (SoC). The Open Core Protocol (OCi)ekea bus-independent in-
terface between IP cores that reduces design time, deslgrarid manufacturing costs. The
OCP is equivalent to VSIA's proposed Virtual Component iifgee (VCI). While the VCI
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addresses only data flow aspects of core communication§Glieis a superset of VCI that
also supports configurable sideband control signalingestdrness signals. Although OCP
and VCI could remove some of our IP interfacing issues, we atause these interfaces in
our DAEDALUS framework because in many cases they do not comply with oum gaal,
which is, to integrate IPs in our multiprocessor systemsuchsa way that the highest pos-
sible overall system performance is achieved for a givetiggtppn. Indeed, the main focus
of OCP or VCl is to guarantee interoperability and re-usghdf a wide variety of IP cores
in a "plug-and-play” fashion but this is achieved at the exgeeof more general, application-
independent, and relatively slow interfaces and protoctiisour approach, we provide a
mechanism to integrate third-party dedicated HW IP corés lieterogeneous systems by
means of HW modules generated bgfam. Each HW module contains a wrapper around
a third-party IP core. Our IP wrappers developed B8PEM are not meant to be as general
as OCP and VCl, i.e., our wrappers support efficient intégmatf the specific type of IPs
defined in Section 2.4.3. This fact and the fact that our weappre customized for every
application, i.e., they are automatically generated atingrto the KPN specification of an
application, guarantee that the highest possible overstiém performance is achieved.

1.6 Dissertation Outline

The remaining part of this dissertation is organized a®¥al Chapter 2 presents the ap-
proach we propose to close the implementation gap betweesystem and the RTL abstrac-
tion levels of description introduced in Section 1.1. Theler describes in great details the
models, methods, and techniques we have developed anchirepled in the EPAM tool for
systematic and automated multiprocessor system desiggirgmming, and implementation.
First, we motivate the choice of the target multiprocesgstesns with a discussion about
the mechanism for efficient data communication and syndhation between the process-
ing components allowing efficient execution of KPNs. Them,imtroduce the system-level
platform model used in &AM to construct (abstract) MPSoC instances at system level and
present how these instance are translated MPSoC desns@tdRTL. This is followed by
a discussion about the automated programming of the MPSo€wa give details on how
EsPAM converts processes to software code for every processdnamageneous MPSoC.
In this chapter, we also present the approach for buildirigrogeneous MPSoCs withsE
PAM where both programmable processors and dedicated IP caresed as processing
components.

Exploiting the fact that we target MPSoCs executing appibes modeled as Kahn process
networks, in Chapter 3, we propose techniques for mappioggsses to processing com-
ponents, i.e., mapping rules, which aim at utilizing as M&SoC components as possible
without compromising the performance of the system whewueel. By applying the map-
ping rules, the design space is effectively pruned to a seisisting of the most promising
design points from which, based on certain criteria, thégihes can choose the best one for
final implementation. First, we explain what system perfance means when we consider
MPSoCs that execute KPNs. Next, we comment on the factotsaffect system perfor-
mance. Then, after presenting the mapping rules, we distwsshe rules can be applied in
practice considering the KPN application model we use.
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In Chapter 4, we present three case studies that we conduoteder to demonstrate, val-
idate, and evaluate the methods and techniques for autdrivilRSoC design presented in
Chapter 2 in terms of overall design time, achieved perfoicea and HW resource uti-
lization. In addition, we comment on the accuracy of the ltesobtained by performing
high-level system simulations (during the DSE process) mamed to real implementation
numbers. The first case study illustrates a complete designilth DAEDALUS for a JPEG
encoder application, starting from a sequential prograrfopming system-level DSE with
SESAME, synthesizing design instances witls#am, and prototyping them by using com-
mercial synthesis and compiler tools. In the second cashy,stve address heterogeneous
MPSoCs where both programmable processors and dedicatedd®are used as processing
components in MPSoCs executing a JPEG encoder, a Sobel etlgdiah, and a Discrete
Wavelet Transform. We illustrate the approach, discusseskiction 2.4, for integrating of
predefined IP cores into heterogeneous systems by usingatitally generated IP Modules.
The purpose of the last case study is to pustlEDALUS “to the limit” in order to check how
large and complex systems can be designed using the propeseddology and considering
the constraints imposed by the FPGA technology we curressgyfor prototyping.

Finally, we conclude this dissertation in Chapter 5 with msary of the presented research
work along with some concluding remarks.
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Chapter

Embedded System-level Platform
synthesis and Application Mapping
— ESPAM

In this chapter, we motivate and present in detail the platfimodel and the target MPSoCs
we consider, together with methods and techniques for sygte and automated multipro-
cessor system design, programming, and implementatiorsél methods and techniques
bridge in a particular way the gap between the system lewtltl@ register-transfer level
(RTL) of design abstraction introduced in Section 1.1. Tppraach is implemented in the
Espamtool (Embedded System-level Platform synthesis and Appiia Mapping) which is
the core tool in the BEDALUS design flow presented in Section 1.2.

This chapter is organized as follows. First, we motivatecth@ce of the target MPSoCs. This
is done by a discussion about the mechanism for efficientaatamunication and synchro-
nization between the processing components allowing efficexecution of KPNs. Then,
in Section 2.1.5, we introduce the system-level platforndelased in EPAM to construct
(abstract) MPSoC instances at system level. In Sectionv@e2present how the abstract
high-level platform instance is refined and translatedesystically and automatically to an
MPSoC instance at RTL. This is followed by a discussion inti®a.3 about the automated
programming of the MPSoCs generated byPEM. It includes a brief introduction of the
static affine nested loop programs (SANLP) and the autong@adration of KPNs using the
PNGENtool. Furthermore, we present details on hosrPEM converts processes in this KPN
model to software code for every processor in a homogened®Sd@. In Section 2.4, we
present our approach for building heterogeneous MPSoCsavitoeh programmable proces-
sors and dedicated IP cores are used as processing compowentonclude the chapter in
Section 2.6.
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2.1 The Multiprocessor Platform

The advancement from single core to multi-core processagpected to continue resulting
in many-core chips with up to hundreds or thousands of cogeslpip. This progress raises
new important questions concerning new designing and progring paradigms. Connect-
ing the cores, determining the right memory subsystem,rérgsuoherence and consistency
of data, all require a deep understanding of issues and ative\application of ideas. In this
section, we address these issues in a particular way by atiotivand defining the type of
multiprocessor platform we consider. We target data-flomigated (streaming) applications
which we model in an explicit parallel form using the Kahn ¢&ss Network (KPN) model
of computation. At the same time, we target high-perforneanaltiprocessor systems to ex-
ecute these applications. Therefore, the main objectiiedsvise a multiprocessor platform
for efficient execution of applications specified as Kahrcpss networks, and subsequently,
to enable automated multiprocessor systems design andnmepltation. We achieve this by
exploiting the properties and the operational semantica KPN, and translating it to the
topology and the execution model, i.e., the communicati@hsynchronization mechanism,
of the target multiprocessor platform. More precisely hiis tsection we discuss the MPSoC
memory architecture, the mechanism for data communicatizhinter-processor synchro-
nization, and the MPSoC interconnect topology and protocol

2.1.1 Multiprocessor memory architecture

Increasing the number of the processing components in arokPiScreases the possibility
of more computation to be carried out in parallel. Howeverjitreasing the number of
the processing components, the access to data becomesthim ottleneck that limits the
available parallelism and the achieved overall perforrearespectively. At the heart of the
trouble is the so-called memory wall, i.e., the disparityween how fast a processor can
operate on data and how fast it can get the data it needs. sTthis major factor limiting the
performance of systems when they rely on a single memonedHhagtween the processing
cores and used to load and store data. Increasing the numhpesagssing components in
such shared memory MPSoCs only exacerbates this probleerefbine, boost in memory
bandwidth is needed which can be achieved only by consiglefiffierent memory units,
distributed between different processing components.s€gquently, in this dissertation we
propose MPSoC platform with distributed memory architeztu

A multiprocessor system with distributed memory can delhigher performance compared
to a shared memory system. However, a major drawback oflaist#d memory systems
arises when it comes to program them due to difficulties aatamtwith multiprocessor syn-
chronization and validity of data located in different gaot the distributed memory. We ad-
dress this importantissue, and in Section 2.3, we preseymach for automated program-
ming of the target MPSoCs. Automated programming of MPSa@ distributed memory is
facilitated by the fact the KPN MoC we use as an applicatiodehalso assumes distributed
memory, i.e., data is stored either in private memory of psses or in communication FIFO
channels.
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2.1.2 Data communication and synchronization mechanism

The applications in the multimedia domain we target, areroftharacterized by having a
complex array index manipulation scheme and a large nunfloata accesses [62] where a
processing component needs to generate the addressesnoéary locations in order to
retrieve and store data. Address calculations often imviihear and polynomial arithmetic
expressions which have to be calculated during programuéixec Memory address com-
putation can significantly degrade the performance an@asz power consumption [63, 64].
Therefore, it is very important to carry out the memory asessand the related address com-
putations in an effective way.

With respect to this, accessing the memory in a FIFO-like meais the most efficient way
because, in this case, address computation is limited orihctement operation, and conse-
guently, the address generators are comprised by simpfeersu Moreover, FIFO commu-
nication has proven to be very efficient and it has been widsegd in digital signal/image
processing and multimedia systems for decades. Theréfiditee MPSoC platform we pro-
pose, data between the processing components is comnmathtbabugh FIFO buffers. This
matches very well the KPN operational semantics, thusjigatd minimal communication
overhead when KPNs are executed on the target MPSoCs. Thia¢isynchronization be-
tween the processing components is realized by simple inigalead and blocking write
operations on empty and full FIFO buffers, respectively.attdition, this synchronization
mechanism enables an important feature of the consider&bmplatform, i.e., being self-
synchronizing in a local-synchronous, global-asynchemfashion.

Another benefit of using FIFOs for communication betweercgssing components is that
the simple FIFO interface, i.e., a data bus and two contgiads only (empty and read
signals, or full and write signals, respectively) faciita efficient heterogeneous MPSoC
design in which different types of processing componentsroanicate data through FIFO
channels. We exploit this property in the approach we ptesedection 2.4 for dedicated IP
core integration in heterogeneous MPSoCs.

2.1.3 Platform interconnect protocol

Recall that we target multiprocessor systems which alldigient execution of KPNs. Since
a KPN is a set of concurrently executing processes commiimicdata among them, pro-
viding efficient data communication (with low overhead) isi@al for multiprocessor sys-
tem executing KPNs. A data stream in a KPN has a source: Theegsahat writes data
to it, and a sink: The process that reads data from it. The-prigcessor communication
protocol realizing the streaming data between processngponents in an MPSoC is sim-
plest, i.e., itintroduces the lowest communication ovathevhen components are connected
point-to-point. However, point-to-point inter-processommunication links may not be al-
ways feasible in general, and sharing memories and linksldtst communication may be
necessary. Therefore, we need to devise an alternativeagipto connect processing com-
ponents (by sharing communication memories and links) tighobjective to reduce the
interconnection complexity in a way that keeps the commatiaoa overhead low. In the con-
sidered MPSoCs, data communication between the processingonents is materialized
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in a communication structure which allows for point-to4uoishared bus, crossbar, or even
network-on-chip communication topologies. We do not adte@ny of these communica-
tion topology types, though each and every type has its ofigiezfcy merits. Consequently,
the MPSoC (communication) performance depends on the giepef the used communi-
cation topology type and the corresponding communicatiolsgynchronization mechanism.
Considering the distributed memory and the FIFO commuigicah the target MPSoCs as
well as the KPN model, below we motivate the communicationtma@ism we propose which
leads to low overhead and reduced complexity of the comnatinit structure.

Data between the processing components is communicatedgtindedicated (distributed)
memories, i.e., communication memories (CM), in which tbexmunication FIFOs are lo-
cated. All CMs in an MPSoC are connected through a commuaitatructure. In order
to achieve data communication with low overhead in the taw#feSoCs, we devised an ap-
proach that keeps the communication and synchronizatioloas as possible to the KPN op-
erational semantics because it guarantees the highesbleoassmmunication performance.
More precisely, we propose a request-based mechanismdessing communication mem-
ories through the communication structure. In this apgnpacprocessing component is
connected to a CM, being itecal CM, and all other CMs are seen asnoteCMs of that
processing component because the remote CMs are accassipldrough the communi-
cation structure. Hence, a processing component has & diteess only to its local CM.
Consequently, we consider that each processing compoaentiite only to its local com-
munication memory and has to rely on the communication &trado read data from all
other communication memories. Thus, a processing compaaeralways write if there is
room in its local CM. If this CM is large enough, the procegsiomponent may never block
on writing, which mimics the infinite FIFOs of the KPN model.

In addition, the FIFO communication between the processamgponents in the target MP-
SoCs and the restriction that the processing componenttheseommunication structure
only for reading data from remote CMs, allow the communaastructure to be very sim-
ple. That is, it implements connections in one directiorydrdtween communication mem-
ories and processing components. A data interface of a gso@ecomponent consists of
address, data, and control buses. However, in the propds@ddommunication mechanism
where the CMs are organized as FIFOs buffers, the addrastlesse buffers are generated
locally as a result of the memory accesses, see Section Zlhédrefore, there is no need
to propagate the address bus through the communicatiartiste, which results in reduced
number of signals that needs to be switched. Moreover, théitgctional communication
(for reading data) reduces the load on the communicationtsire because write accesses are
performed locally, and at the same time, reduces the corityleikthe switch matrix since
data buses only in one direction needs to be switched.

2.1.4 Implementation details

A simplified example of an instance of the multiprocessotfptan we propose, is depicted
in Figure 2.1. For brevity, this example of three processiogponents (UP) and memories
(CM) connected through a communication structure (Inteneat) shows only details that
matter to illustrate the main features of the MPSoC platfdiscussed above, and leading to
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Figure 2.1: Example of a target MPSoC platform instance.

efficient executions of KPNs. Communication and synchration are the essentials in any
MoC. In the KPN MoC, inter-process communication and syanotzation is by means of
blocking FIFO channels. In the proposed platform the prsiogscomponents communicate
data through (distributed) communication memories (CM§g Bigure 2.1. Each CM is or-
ganized as one or more FIFO buffers. The inter-processahsgnization in the platform is
implemented in a simple and efficient way by blocking readéwwperations on empty/full
FIFO buffers located in the communication memory. The efficy is achieved by employing
the separation of concern principle discussed in Sectidr li.e., a processing component
(active component) is used to implement the KPN processvigisa and the communica-
tion and synchronization is managed bg@nmunication controlle(CC). As illustrated in
Figure 2.1, a CC connects a communication memory to the destafithe processor (uP) it
belongs to, and to an interconnect component. In additiach €C implements the multi-
FIFO organization of a CM as well as the processors localdased protocol for accessing
the CM and the interconnect component. The latter is useddesa FIFO buffers located in
remote CMs. The usage of a CC is convenient for efficient implatation of the communi-
cation and synchronization mechanism, independent of/fhedf processing components.

Data communication and synchronization

We propose an efficient inter-processor synchronizationhaeism for data communica-
tion in our platform exploiting the fact that the target MRESexecution platform instances
execute KPNs in which the data streams are modeled in FIFGneti®s The proposed syn-
chronization policy is a simple FIFO blocking write and rgadtocol. For better efficiency,
we propose dual port communication memories, i.e., the GMEgure 2.1. In systems with
a point-to-point interconnect topology, dual port FIFOfeuimemories avoid arbitration of
memory access because a memory connects only two processimgpnents. Hence, both
components in this case can perform a FIFO operation simadiasly (via a communication
controller CC in Figure 2.1), the synchronization beingdsiag write/read operations on the
FIFO buffers.

In case the system communication topology is not pointeiiipthe memories and the com-
munication links are shared between different processimyponents. We have devised a
general approach to connect and to synchronize processmganents that communicate
data through distributed communication memories (CM) uivsisig dual port memories, one



30 Embedded System-level Platform synthesis and Applicath Mapping — ESPAM

communication memory port is dedicated to a processing oot (therefore, the memory
becomes its local CM) and the other memory port is connec¢tedygh a CC) to the com-
munication component. In this case, arbitration of memamgeas is significantly reduced
because a processing component always can access its @at) flommunication memory.
Arbitration is required when other processing componeeé&sirto access the memory using
the communication component. We have developed a reqasstdtsynchronization mech-
anism for accessing remote communication memories. A geltg component accesses a
remote CM in three steps:

1. Request a connection to a remote communication memory;(CM
2. Transfer data from the remote CM;

3. Release the connection after the data transfer is coatblet

A request to read from a FIFO located in a remote CM is generatéhe communication
component. A connection to the CM is granted only if the comimation line is currently
available and there is data in the corresponding FIFO. Whmmaection is not granted, the
processing component blocks (its execution is suspendgd)thie connection is granted.
Once the request is granted, the processing component liecaabnnection to the remote
CM. After transferring the data, the connection has to beased in order for other processing
components to be able to read data from different FIFOséaldatthe same CM. A CM is not
used by the processing components as a local memory forgmiogedata. Instead, a CM and
a communication link are used only to copy data locally fatifar processing which reduces
the load on the communication component of the system. Tdeest-based mechanism for
synchronization and data communication between proagssimponents in the MPSoC is
implemented by the proposed communication controller (dC¥ase a processing compo-
nent is a programmable processor, we propose a SW/HW implatien mechanism. It
consists of SW synchronization primitives that interadtwii\W communication controllers.

Communication controller

The structure of the communication controller (CC) we ps®@s shown in Figure 2.2. It
consists of two main parts: INTERFACE Unit and FIFOs Unit. eTINTERFACE Unit
contains a Control Module, i.e., an address decoder, fifm#rol logic, and logic to generate
read requests to the communication component, and a poydagsface 1) module that
implements the data bus protocol of a particular processimgponent. When a processing
component has to write data to its local communication mer(to), it first checks if there
is room in the corresponding FIFO by reading its status. @ffhFO is full, the processing
component blocks. Otherwise, it sends the data to the CCCbmérol Module decodes the
FIFO address sent by the processing component along witlateeand generates control
signals (select FIFO, write data, or read status) to theaibdule of the FIFOs Unit. The
latter implements the multi-FIFO behavior. For each FIF@diuthe FIFOs Unit contains
read and write counters that indicate the read and writetipnsiinto the buffer. These
counters are used as read and write address generatoreanathes are used to determine
the status (empty or full) of a FIFO. The FIFOs Unit also irtda a memory interfacé([)
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Figure 2.2: Proposed communication controller structure.

module that implements the access protocol to the commtimicaemory connected to the
CC, see the bottom part of Figure 2.2. Notice that since wsidendual-port memories and
separate read and write logic, a FIFO in a CM can be accesseekit and write operations
simultaneously by different processing components or t#E in a CM can be accessed
at the same time — one for read operation and one for writeatipar

The structure of the CC is devised in a way that if a new type pfacessing component
is to be added to the platform, then that requires changastonthe PI module of the
INTERFACE Unit of the CC. Modification is needed in order toplement the data bus
protocol of the new processing component and to translatetite interface of the Control
Module of the CC. Similarly, if a CM is implemented by anothgye of memory component,
e.g., a single-port (static or dynamic) memory, then — againly the memory interface\( I)
part of the FIFOs Unit has to be modified in order to match timéntiy characteristics and the
physical interface of the new memory component. For a sipgltmemory, thel/ I module
would also contain a simple arbiter for accessing the memaArpriority on writing is an
appropriate policy to resolve access contention.

Recall that a processing component can access FIFOs ldoadtiter CMs via a communi-
cation component only for read operations. First, the @siog component checks if there is
any data in the FIFO the processor wants to read from. Wheocaepsor checks for data, the
INTERFACE Unit sends a request to the communication compioioe granting a connec-
tion to the CM in which the FIFO is located. A connection isrgead only if a communication
line is available and there is data in the FIFO. When a coimrei not granted, the process-
ing component blocks until a connection is granted. Whenraection is granted, the CC
connects the data bus of the communication component toatee s of the processing
component and the latter reads the data from the CM wherelB@ 5 located. After the
data is read the connection has to be released in order o aller processing components
to access the same CM. When data is read from a FIFO in a CMjghals to the Read
Module of the FIFOs UnitFIFO Seland Read signals are generated by the communica-
tion component via the bottom part of themmunication component sids a response to a
request from another CC (processing component respagtigele Figure 2.2.
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2.1.5 System-level platform model

The multiprocessor platform model we propose consists dfrarly of generic parameter-
ized components and defines the way the components can Ineldsd@ssuming the (inter-
component) communication and synchronization mechandiswussed in Section 2.1.4.
The platform model is used in thesBaM tool for automated multiprocessor systems design
and implementation. To enable efficient execution of KPNWdw overhead, the platform
model allows for building MPSoCs that strictly follow the KIFsemantics. Moreover, the
platform model allows easily to construct platform instesi@t a high level of abstraction
and to refine and translate them systematically and autoatlgtio MPSoCs instances at
RTL. This is achieved by applying techniques which are preskin Section 2.2. The gen-
erated MPSoCs are compliant with the multiprocessor platfewe consider and discussed
above. In addition, the platform model allows, togethehwviiie the KPN MoC we use as
an application (programming) model, the generated platfrstances to be programmed
automatically by ErPAMm.

Platform components

To support systematic and automated synthesis of MPSoCbkawe carefully identified a
set of components which comprise the multiprocessor platfiwe consider. It contains the
following components.

e Processing Components The processing components implement the functional be-
havior of an MPSoC. The platform supports two types of prsic&scomponents,
namely programmable (ISA) processors and non-progranenebticated IP cores.
The processing components have several parameters stygigasimber of 1/0 ports
program and datmemory sizeetc.

e Memory Components Memory components are used to specify the local program
and data memories of the the programmable processors apddifysdata communi-
cation storages (buffers) between the processing comp®f@ommunication Mem-
ories). In addition, the platform supports dedicated FIFO congmis used as com-
munication memories in MPSoCs with a point-to-point togglolmportant memory
component parameters aggpe size andnumber of 1/O ports

e Communication Components A communication component determines the inter-
connection topology of a multiprocessor platform instar®eme of the parameters of
a communication component aygeandnumber of I/O ports

e Communication Controller. Compliant with our approach to build MPSoCs execut-
ing KPNs, communication controllers are used as glue lagatizing the synchroniza-
tion of the data communication between the processors diMaae level. A commu-
nication controller implements an interface between pssicey, memory, and commu-
nication components. There are two types of CCs in our hbrdarcase of a point-to-
point topology, a CC implements only an interface to the cegid FIFO components
used as communication memories. If an MPSoC utilizes a camization component,
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then the communication controller realizes a multi-FIFQawization of the commu-
nication memories. The structure of this type of commuindcetontroller was already
discussed in Section 2.1.4. Important CC parametersarder of FIFOsnd thesize
of each FIFO.

e Memory Controllers. Memory controllers are used to connect the local progragn an
data memories to the ISA processors. Every memory contiiadle a parametesize
which determines the amount of memory that can be accessagincessor through
the memory controller.

e Peripheral ComponentsandControllers. They allow data to be transferred in and out
of the MPSoC platform, e.g., a Universal Asynchronous Rec&ransmit (UART).
We have also developed a multi-port interface controlllemahg for efficient (DMA-
like) data communication between the processing coresdnyrghan off-chip memory
organized as multiple FIFO channels [65]. General off-chgimory controller is also
part of this group of library components. In additidfimerscan be used for profil-
ing and debugging purposes, e.g., for measuring execugtaysl of the processing
components.

e Links. Links are used to connect the components in our systenhg&atéorm model.
A link is transparent, i.e., does not have any type, and cosrmorts of two or more
components together.

In our approach, we do not consider the design of processimgponents. Instead, we use IP
cores (programmable processors and dedicated IPs) deddbypthird parties and propose a
communication mechanism that allows efficient data comwatitn (low latency) between

these processing components. The devised communicatiohamism is independent of

the types of processing and communication components ngbe iplatform instance. This

results in a platform model that easily can be extended vdthit@mnal (processing, commu-

nication, etc.) components.

2.2 Automated MPSoC Synthesis

Using the proposed platform model, a system designer castreah many alternative plat-
form instances at a high (system) level of abstraction byneoting processing, memory,
and communication components together using permissigeconnection rules. These plat-
form instances are then automatically synthesized (r&nstated to RTL descriptions) and
programmed by EPAM. Recall that for system designsBAM requires three input specifica-
tions: theApplication, Platform, and Mapping Specificationghe application specification
is in terms of a Kahn Process Network (KPN), the platform #jpation provides the topol-

ogy of a multiprocessor platform, and the mapping assce@teponents in the application
specification and the platform specification together. mrttapping specification, mapping
of KPN channels to communication memaories is not specifigdi@iely. This mapping is

implicit in the way processes are assigned to process@sSaetion 2.3.3. Below, we give
details about the platform specification which is followgddescription of the system-level
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1 <platform name ="myPlatform"> 25  <network name = "CB" type = "Crossbar">
<processor name = "uP1" type = "MB" <port name ="IO17>
dm ="18000" pm = "48000" > <port name = ::IOZ::/>
<port name = "IO1"> <port name ="I03"/>
</network>

5 </processor>
30 <link name = "BUS1">
<resource name ="CB" port="101" />
<resource name ="uP1" port="101" />

<processor name = "uP2" type = "MB"
dm ="20000" pm = "4000" >
<port name ="I0O1"/>

10 </processor> <{Iink>
35 <link name = "BUS2"/>
<processor name ="uP3" type = "MB" <resource name ="CB" port="102" />
dm ="6000" pm = "5000" > <resource name ="uP2" port="101" />
<port name ="IO1"/> </link>
15 <port name = "102" type = "OPB" /> 40 <link name ="BUS3"/>
</processor> <resource name ="CB" port="103" />
<resource name ="uP3" port="l01" />
<peripheral name="OMC" type="ZBTCTRL" size="1M" > <Jlink>
<port name ="I01" type = "OPB" /> <link name = "BUS4" />
20 </peripheral> 45 <resource name ="uP3" port ="l02" />

. . S <resource name ="OMC" port ="I01" />
<peripheral name="UART" type="UART" size="256 <resource name = "UART" port = "lO1" />

<port name ="I0O1" type = "OPB" /> </link>
</peripheral> </platform>

Figure 2.3: Platform specification.

to RTL MPSoC synthesis steps performed bgPEM. The XML format of the application
and the mapping specifications are discussed further, vapgnepriate, in this chapter.

2.2.1 Platform specification

For the discussions in this section, we use an example of pmadessor platform instance
containing 3 processing components. The system-levelfgiaion of this MPSoC instance
is depicted in Figure 2.3. The specification is written in XNtirmat and consists of four
parts which define processing components (three procedises2-16), peripheral compo-
nents (lines 18-24), communication (network) componenb$€bar, lines 25-29), and links
(lines 30-48). The links specify the connections of the pssors to the communication com-
ponent. Every component has an instance name and diffesesngters characterizing the
component. For example, all the processing componentd/areoBlaze programmable
processorstfpe = “M B*“) and every core has the prograpm() and data {m) memory
size specified. The memory size affects the way the memotgryis synthesized and opti-
mized which is explained further in this chapter. Every gssor has one porf(1) which
represents the local memory bus (LMB) of a processor. Thistgpe is the default type in
EspaMm, therefore, in the platform specification it can be omittecbcessor P3 has another
port specified {O2) which is of type on-chip peripheral bu® P B). This type represents the
processor’s peripheral bus and it is used to connect pedapbemponents to the processor.
In our example there are two peripherals, i.e., an off-chgmary controlletrOM C and a
universal asynchronous receive transthidl RT'. The right part of Figure 2.3 specifies the
connections between the components, i.e., the processc®anected to the communica-
tion component and the peripherals are connected to praceBs.
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Note that in the specification, a designer does not have ®dake of memory structures,
interface controllers, and communication and synchrditimgorotocols. Our EPAM tool
takes care of this in the platform synthesis process by imeiging our general approach
to connect and synchronize processing cores of arbitrgngstyia a communication com-
ponent and communication controllers as discussed in@e2tlL. In this way, unnecessary
details are hidden at the beginning of the design, keepmglbistraction of the input platform
specification very high.

2.2.2 Platform synthesis

The automated translation of the high-level specificatiorRTL descriptions of an MPSoC
goes in several steps. They are illustrated in Figure 2.zamdrouped in:

e Models initialization. Using the platform specification, an MPSoC instance is exbat
by initializing an abstract platform model insBAM. Based on the application and
the mapping specification, three additional abstract nsoale initialized: application,
schedule, and mapping models.

e Platform synthesis. ESPAM elaborates and refines the abstract platform model to a
detailed parameterized platform model, compliant withagpproach discussed in Sec-
tion 2.1. Based on the application and the mapping modelayanpeterized process
network model is created as well.

e Platform generation. Parameters are set ancd®AM generates a platform instance
implementation using the RTL version of the components inliowary. In addition,
EsPAM generates program code for each programmable processor.

Models initialization consists of two steps, i.e., initi@hg the internal models in &AM that
capture platform, application, and mapping informatiomg aunning a consistency check
on the models in order to detect errors and to facilitateezttby-construction MPSoC de-
signs. Platform synthesis is comprised of several stepsedls Whese are platform and
mapping models elaboration, process network synthesi¥, @M platform instance refine-
ment steps. As a result of the platform elaboratiospkv creates a detailed parameterized
model of a platform instance. After the elaboration, a refiaat (optimization) step is ap-
plied by EsSpPAM in order to improve resource utilization and efficiency. ur approach, the
mapping specification gives the relation between KPN pis®and processing components
only. Then, BPAM determines automatically the most efficient mapping of Ftih@nnels to
communication memories. This is done in the mapping eldlmoratep, in which the map-
ping model is analyzed and augmented with the mapping of [El&Dnels to communication
memories. The PN synthesis is a translation ofApproximated Dependence GrafhDG)
model and theschedule Tre¢STree) model into a (parameterized) process network model
The platform generation consists of setting parametepswtéch completely determines a
platform instance, and code generation step which gerssharelware and software descrip-
tions of an MPSoC. Each of these steps is described belowail.déutomated programming
and SW code generation are discussed in Section 2.3.
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Figure 2.4: System-level to RTL MPSoC synthesis steps padd by ESpAm.

Models initialization

Models initialization is the first step in $°AM for implementing an MPSoC. In this step,
EsPAM constructs a platform instance from the input platform #ftion by initializing an
abstract platform model. This is done by instantiating amhecting the components in the
specification using abstract components from the libraitye @bstract model represents an
MPSoC instance without taking target execution platforrmaiieinto account. The model
includes key system components and their attributes asedifirthe platform specification.
A graphical representation of an abstract MPSoC instandepscted in Figure 2.5(a). It
consists of 3 processing componeni’(, vP2, anduP3) connected to a crossbar' 3)
communication component, and two peripheral componéntg ¢ andU ART') connected
touP3.
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There are three additional abstract models §p/&v which are also created and initialized,
i.e., an application model, a schedule model, and a mappotgmsee the top of Figure 2.4.
The application specification consist of two annotated lgsape., a KPN represented by
an Approximated Dependence GraphDG) and aSchedule Tre¢STree) representing one
valid global schedule of the KPN. Consequently, the ADG d@&dSTree models in §°AM

are initialized, capturing in a formal way all the inforn@tithat is present in the application
specification. The mapping model is constructed and iiigdl from the mapping specifica-
tion. The objective of the mapping model irsBAM is to capture the relation between the
KPN processes in an application and the processing compoimean MPSoC instance on
the one hand, and the relation between FIFO channels and goimation memories on the
other. The mapping model ind2AM contains important information which enables the gen-
eration of the memory map of the system in an automated waig. ila crucial part of the
automated MPSoC programming thas#am provides. Recall that after initialization, the
mapping model contains information about the mapping oiRBl processes to processing
components only. Mapping of communication channels igedl&o the way processes are
mapped to processing components, and therefore, the ntpppahannels can not be arbi-
trary. This is performed by &AM automatically, i.e., during the mapping model elaboration
step, BSPAM analyses the mapping model and determines the mapping 6f éh&nnels to
communication memories.

After initializing the internal models, &AM runs a consistency check on the constructed
platform model (instance) and cross-consistency checkdmat the platform, the application
and the mapping models. The consistency check on the piatfoto find incorrect connec-
tions as well as to check whether all the used componentsatrefthe library. In addition,

all the ports connected to the same link have to be of the sgpee ¢.g., local memory bus
type or peripheral bus type. The cross-check guaranteestbaery processing component
in the mapping model corresponds a processing componengiplatform model, and the
processes in the mapping model correspond to the processies application model, re-
spectively. In addition, every process has to be assignedpimcessing component. The
consistency check is an important step towards correatamgtruction designs.

Platform model elaboration

In this step, BEPAM elaborates the abstract platform model to a detailed pdesined model.
The details in this model come from additional componenteddy ESPAM in order to con-
struct a complete system. The elaborate step is illustiatedyure 2.5(b). For brevity, only
one processon(P3) is shown. First, EPAM generates the processors’ memory subsystem,
i.e., it automatically attaches memorie® £ M) and memory controllersM{C's) to each
processor. In addition, based on the type of the processstaritiated in the first step, the
tool automatically synthesizes, instantiates, and casratnecessary communication con-
trollers (CC's) and communication memorigS {/s) compliant with our approach discussed
in Section 2.1. Also, EPAM provides an infrastructure for observability and contriolhe
generated platform instances. For example, when execdétays are to be measured, a
timer (I'M R) peripheral component is connected to every processongusners or not in
our MPSoCs is controlled by a flag in thesBam tool when synthesizing a platform.
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Figure 2.5: An MPSoC instance at different levels of detailESPAM.

Since in the elaborate stesBAM uses abstract models of the components, the created elab-
orate model is still abstract in the sense that no targeifipesues are considered.

Process network synthesis

This step is a translation of th&pproximated Dependence GrafADG) model and the
Schedule Tre€STree) model into a (parameterized) process network (Pddetn The start-
ing point for this PN synthesis step is the information cagdun the ADG and the STree.
This information is enough to generate a set of process mksnwith different topologies
and degree of exploited parallelism which is determinedhgymhapping model. The process
network model is created gradually by creating the PN togglfollowed by creating the PN
behavior. The topology of the process network is createdrbyping nodes and edges of
the ADG into processes and channels in the PN. The groupibgssd on the information
delivered by the mapping model. The behavior of the PN istetkasing procedures [66—68]
that operate on the PN model and use the information from TneeS The sequential behav-
ior of a process [6] implies that the function calls that hawée executed inside a process
are executed in a sequential order. In this PN synthesis step order is derived from the
STree in a way that the PN execution is deadlock free. Foildetaout the process network
synthesis, we refer to [66].
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Mapping model elaboration

Elaboration of the mapping model is required in order to gateean assignment of FIFO
channels to communication memories. Since the initialimeghping model gives only the
relation between the processes and the processing contgpmapping of FIFO channels to
memories is implicit. The latter is performed automatighly EspAM following the principle
that a processor can write only to its local communicatiomosy. As a result, the mapping
model is augmented with channels which give the relatioweeh the FIFO channels from
the application model and the communication memories ipkagorm model. Recall that a
communication controller (CC) organizes a communicati@mrary as multiple FIFO chan-
nels. Therefore, the created FIFO mapping is used for datgrrmportant CC parameters,
i.e., the number of channels of each CC and the size of eacinehaThis information is
further used in the generation of the memory map of the system for generation of the
physical read and write addresses of the FIFO channelsr{deddn Section 2.3.3).

Platform model refinement

After elaboration, the constructed platform model corganough information to proceed
with the generating of the system implementation at RTL. Elsv, based on the type of
the components used to build a platform instance, a refinefaptimization) of the detailed

parameterized platform model is applied bgram in order to improve resource utilization
and efficiency. The refinement step includes program andmataory refinement and com-
paction in case of processing components with RISC ardhitecmemory partitioning, and
building the communication topology in case of point-tarfpd1PSoCs.

Memory refinement and compaction.To keep the abstract model and the elaborate proce-
dure general, we assume that a processor has a continuaessidgace used for program
and data. Therefore,4PAM instantiates initially a single memory and a memory cotgrol
connected to the data bus of the processor as shown in Figh(l®).2However, processors
with a RISC architecture have separate program and datassldpaces and use dedicated
instruction and data busses for independent access togonagrd data. This is the case with
the MicroBlaze processor we use in the example. ThereforgpAM refines the processor
memory system by instantiating and connecting to the psmresn additional memory con-
troller and a memory. This is followed by the memory compatstep which exploits the
dual-port feature of the memory component we considerAiM combines the program and
the data memories of a programmable processor into a sirgeany unit, i.e., one memory
portis connected to the instruction bus and the other todlkeelals of a processor. Because of
the dual port feature, the memory can still be accessed sinedusly allowing the processor
to fetch opcode and data without compromising performance.

Using the proposed refinement, a single memory gives therappty for better utilization
of the available memory resources. Considétl from the example. It requires 18 KB
of memory for data and 48 KB for program (see Figure 2.3). H@#rea single memory
component, may have a size which is only a power of 2. ThesefeaPAM would instantiate
32 KB for data and 64 KB for the program memory«aP1 if separate memories would be
used. This means that 30 KB more than the required amountwiames dedicated ta P3.
By combining program and data into a single memory, only oeenary of 64 KB is used
which is exactly the required amount of memory.
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Figure 2.6: Point-to-Point Platform Synthesis Example.

Memory partitioning. The memory compaction alone does not lead to optimal memory
utilization if we consider, e.g., processaP2. It requires 20 KB of data and 4 KB of program
memories. Even if both memories are combined (requiring B% EsPAM would instantiate

32 KB which is 8 KB more that the required amount. To cope wiik tssue, EPAM applies
another refinement on the memory system, i.e., it autonigtigartitions the memory using
multiple controllers and memories. For processBe, ESPAM partitions the memory system
into two memories (16 KB and 8 KB) each having a size which i®agr of 2, using two
program and two data memory controllers. Note that this eefient of the memory system
does not depend on the type of the processor.

As a result of the memory refinement steps described aboses thay be several program
and data memory controllers connected to a processor ardas@hysical memories com-
prising its program and data address space. These refinete@st as illustrated in Fig-
ure 2.5(c), lead to better utilization of the memory researwhich is very important in
multiprocessor embedded system design. In [69], we maderthertant observation that
the available on-chip memory (of an FPGA) is the only majatdalimiting the size of an
MPSoC that can fit on a single chip. Therefore, without pagipecial attention to the mem-
ory distribution between the processors in an MPSoC, it tsanmatter of how efficient the
system is implemented but whether it can be implemented.aBwglapplying the proposed
refinement steps, memory savings can be substantial (apdnttrease with the number of
processors) allowing to build larger MPSoCs.

Synthesis of a point-to-point communication topologyln case of a point-to-point commu-
nication topology, the number of direct connections betwie processing components in
an MPSoC is the same as in the Kahn process network it exeSite® there is no commu-
nication component such as a crossbar or a bus, there is ringlficommunication links,
and consequently, there are no requests for granting ctansc Therefore, no additional
communication delay is introduced in the platform instanBecause of this, the highest
possible communication performance can be achieved inrsuttiprocessor platforms.

Under the conditions that each communication memory (CMjaias only one FIFO chan-
nel and each processing component writes data only to itd @l (in compliance with the
approach discussed in Section 2.1.4), tlse /&M tool synthesizes a communication topology
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with point-to-point connections in the following automateay. First, for each process in
the KPN, ESPAM instantiates a processor together with the processor’'sanesystem and
a communication controller (CC). This is done in the plationodel elaboration step of the
MPSoC synthesis as previously described. The memory reéinestep is applied as well.
Then, EspaM finds all the channels which a process writes to. For everk shannel, the
tool instantiates a CM and assigns the channel to this CMallliyirEsPAM connects the CM
to the already instantiated CC of the corresponding pracess

In Figure 2.6(b), we give an example of a point-to-point riputicessor platform instance
generated by EPAM. The MPSoC implements the KPN depicted in Figure 2.6(a) ekach
process is executed on a separate processor. There areliare®ls that have to be assigned
to three CMs. Following the procedure aboveA&M finds thatC H1 andC H2 are written

to by processA — see Figure 2.6(a). Assume that procdss assigned to be executed onto
processon P1 (processB onto processon P2, andC onto uP3 respectively). Therefore,
CMs corresponding t@'H1 and CH2 are instantiated and connected to communication
controllerCC1 of processonP1. Similarly, a CM corresponding t&'H 3 is instantiated
and connected t6'C2 of uP2. Proces¥ is assigned ta P3 and since process only reads
data fromC' H1 andC H 3 no more CMs are instantiated and connected. The commuoricati
controller ofuP3 (C'C3) is simply connected to the already instantiated CMs cpording

to CH1 andCH3. Similarly, CC2 is connected to the CM correspondingdd2. Notice
from Figure 2.6(b) that a CC is connected to more than one Clle&a CM contains only
one FIFO, itis implemented as a dedicated FIFO component fhe library which is more
efficient than using the pair CC — CM. In order to connect onenore dedicated FIFO
components to a processor, as in the case of a point-to-painmunication topology, we
use a simplified version of the communication controller Y@€scribed in Section 2.1.4.
The simplified controller only translates the processoa dhais signals to FIFO input/output
signals.

Setting parameters and external interface

Setting the parameters of the components in the platformeinoainpletes a platform in-
stance which allows an MPSoC description to be generatadyrfr final implementation.
Important parameters that are set at this step are:

e Memory size. Sets the size of the program and data memory componentsd Baske
mapping information, the size of the FIFO buffers in everynoounication controller
are set as well;

e Address space of the programmable processor8ased on the size of the program
and data memories,4PAM sets proper addresses of all memory controllers of a pro-
cessor as well as the address of the communication comteslteall peripheral com-
ponents;

e Memory map of the system.Based on the MPSoC topology and the addresses of the
communication controllers, #°AM sets the memory map of the system, i.e., the values
of the physical read and write addresses of each FIFO chétied eystem are defined.
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Figure 2.7: The target MPSoC platform instance generatdgsmam.

In addition, based on the target physical platform featUEs®AM instantiates and connects
to the platform instance external interface componentizieg a connection between the
platform instance and its environment, e.g., a host PC. dlfowss for sending of reset, start,
or stop commands to the MPSoC, as well as reading the stathe &MPSoC, reading and
writing to the MPSoC memories, etc. If we consider again thdgrm specification example
in Figure 2.3, a graphical representation of the final platf;nstance generated bysBAM

is shown in Figure 2.7. It consists of three processor subsyssynthesized bydpAm as
previously discussed in this section together with somerexl interface components. There
are additional {'1 N) controllers connected to the data bus of each processicatitty that

a processor has finished an execution. This information lisaed by a speciabtatus
entity which generates the status of the MPSoC instancdlfsdep part in Figure 2.7). The
other part of the interface\{ U X) realizes an access to an external memory attached to the
multiprocessor system.

Code generation: HW description of a platform instance geneated by ESPAM

The final step in the platform synthesis process performefldnam to convert the system-
level specifications to RTL descriptions is the actual platf instance generation, i.e., hard-
ware and software descriptions of the system as illustiatBdyure 2.4. The HW description
generated by EPAM consists of two parts:

e Platform topology. This is a netlist description defining the multiprocessatfolrm
topology that corresponds to the platform instance syizbddy ESPAM, e.g., the in-
stance in Figure 2.7. This description contains the compisra the platform instance
with the appropriate values of their parameters, and theections between the com-
ponents in the form compliant with the input requirementhefcommercial tool used
for low-level synthesis.
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e Hardware descriptions of the MPSoC componentsTo every component in the plat-
form instance corresponds a detailed description at RTimeSof the descriptions are
predefined (e.g., processors, memories, etc.), @amhi selects them from the library
of components and sets their parameters in the platfornshetlowever, some de-
scriptions are generated bygBaM, e.g., an IP Module used for integrating a third party
IP core as a processing component in an MPSoC (discussedtinib2.4). Based on
the application specification, the IP Module descriptiogéserated by EPAM every
time an MPSoC instance is synthesized.

In EspaM, a software engineering technique calléditor [70] is used to visit the PN and
platform model structures and to generate code. This cadbeaxpressed in any program-
ming language, i.e., &AM generates VHDL for the HW part and Cf€ for the SW part
of the MPSoC description. The C/@ software generated bydeam for each processor in
the system consists of code implementing the functionadbientogether with code for syn-
chronization of the communication between the proces3drs.program code generated by
EspaM is given to a standard GCC compiler to generate executaldke fow each processor.
The automated MPSoC programming and software code gemeratdiscussed in the next
section.

2.3 Automated Programming of MPSoCs

In this section, we present in detail our approach for syatenand automated programming
of MPSoCs synthesized withdeam. Recall that we use the KPN MoC as programming
model in ESPAM. Such model is created automatically by thedW tool from sequential,
static affine nested loop programs (SANLP). In order to progan MPSoC, EPAM converts
this KPN model to software (C/Et) code includingcomputation code implementing the
functional behavior andontrol code for synchronization of the communication between the
processors. The synchronization code contains a memonyifrtag MPSoC, i.e., physical
addresses of the FIFO channels, and read/write synchtamizarimitives. These primi-
tives interact with the communication controllers, andetibgr, they implement the blocking
read/write synchronization mechanism. The primitivesiaserted automatically by $PAM

in the places of the processors’ code where read/write atoesFIFO is performed.

This section is organized as follows. First, we discuss thsscof static affine nested loop
programs we consider as well as how we derive KPNs from sudiL®&. Then, for the
sake of clarity, we explain the main steps in theP&Em programming approach by going
through an illustrative example. First, we give an exampl@put application and mapping
specifications for EPAM. Next, from these example specifications we show how the SW
code for each processor in an MPSoC is generated, and pmseditV synchronization and
communication primitives inserted in the code. Finally,explain how the memory map of
the MPSoC is generated.
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2.3.1 Automated Derivation of Process Networks

The techniques we have recently developed for derivatidtRMs were implemented in the
PNGEN tool [7]. The input to PNSEN is a SANLP written inC' and the output is a KPN
specification in XML format — see Figure 1.2. Below, we intnod the SANLPs with their
restrictions and explain how a KPN is derived based on a neeHldata-flow analysis. We
have modified the standard data-flow analysis in order tovelé¢PNs that have less inter-
process communication FIFO channels compared to the KPNgedeby using previous
work [22,24].

SANLPs and modified data-flow analysis

SANLPs are programs that can be represented in the well+kipalytope model [71]. That
is, a SANLP consists of a set of statements and function, eallsh possibly enclosed in loops
and/or guarded by conditions. The loops need not be peyfeetited. All lower and upper
bounds of the loops as well as all expressions in conditimgisaaray accesses have to be
affine functions of enclosing loop iterators and static pegers. The parameters are sym-
bolic constants, i.e., their values may not change duriegettecution of the program. The
above restrictions allow a compact mathematical reprasientof a SANLP through sets and
relations of integral vectors defined by linear (in)equesit existential quantification and the
union operation. In particular, the set of iterator vecforavhich a function call is executed
is an integer set called thiteration domain The linear inequalities of this set correspond
to the lower and upper bounds of the loops enclosing the fomaall. For example, the
iteration domain of functiofr1 in Figure 2.8(a) is(i | 0 <7 < N — 1}. Iteration domains

for (inti=0; i<N; i++) b_1
bli] = F1(); -
for (iinti=0; i<N; i++) {

if (i>0) tmp = b[i-1]; b
else tmp = bl[i; @
c™

F2(bfi], tmp, &c[i] );
(a) Example of a SANLP (b) Corresponding KPN

Figure 2.8: SANLP fragment and its corresponding KPN.

form the basis of the description of the processes in our KPNeah as each process corre-
sponds to a particular function call. For example, therewaoefunction calls in the program
fragment in Figure 2.8(a) representing two applicatiokdanamelyF1 andF2. Therefore,
there are two processes in the corresponding process medwshown in Figure 2.8(b). The
granularity ofF1 andF2 determines the granularity of the corresponding processas
FIFO channels are determined by the array (or scalar) aes@sshe corresponding function
call. All accesses that appear on the left hand side or in dnead-of &) expression for
an argument of a function call are considered toaviée accessesAll other accesses are
considered to beead accesses
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To determine the FIFO channels between the processes, wparfaym standard array data-
flow analysis [72]. That is, for each execution of a read of@naf a given data element in
a function call, we need to find the source of the data, i.e.ctirresponding write operation
that wrote the data element. However, to reduce commuait&iFO channels between
different processes, in contrast to the standard data-fiakysis and in contrast to [22, 24],
we also consider all previous read operations from the samaibn call as possible sources
of the data. That is why we call our approach a modified arrag-tlaw analysis. The
problem to be solved is then: given a read from an array elemérat was the last write to or
read from that array element? The last iteration of a funatill satisfying some constraints
can be obtained using Parametric Integer Programming (P8}) where we compute the
lexicographicamaximunof the write (or read) source operations in terms of the titesaof
the “sink” read operation. Since there may be multiple fiorctalls that are potential sources
of the data, and since we also need to express that the sqecaion is executed before the
read (which is not a linear constraint, but rather a disjiomobdf . linear constraints, wherne

is the shared nesting level), we actually need to perforrmabrau of PIP invocations.

For example, the first read access in function Ealbf the program fragmentin Figure 2.8(a)
reads data written by function cdiltL, which results in a FIFO channel from procéskto
process=2, i.e., channeb in Figure 2.8(b). In particular, data flows from iteration of
functionF1 to iterationi, = i, of functionF2. This information is captured by the integer
relation

DE1_F2 = {(iw,iy) | ir = 1w A0 <iy <N —1}

For the second read access in function €& after elimination of the temporary variable
t np, the data has already been read by the same function callift@s written. This
results in a self-loop channkel 1 from F2 to itself described as

DF2_F2 = {(iwyix) | iw =iz = 1A 1 <ip <N =13 U {(iw, i) | i = ix = 0}

In general, we obtain pairs of write/read and read operatsoich that some data flows from
the write/read operation to the (other) read operationse&lpairs correspond to the channels
in our process network. For each of these pairs, we furth@imb union of integer relations

U Dj(iw, i) € ZM x 27,
j=1

with n; andns the number of loops enclosing the write and read operatéspactively, that
connect the specific iterations of the write/read and readaijpns such that the first is the
source of the second. As such, each iteration of a given neaation is uniquely paired off
to some write or read operation iteration.
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2.3.2 Automated programming — input specification

Recall that the input to &AM consists of platform instance, application, and mappirgsp
ifications. The platform specification was already discdsseSection 2.2 and an example
was given in Figure 2.3. In this section, we give an examplapyglication and mapping
specifications. We will use this example also in our disaussibout the program code gen-
erated by BpPAM in the next section. Consider an application specified asM &dhsisting
of five processes communicating through seven FIFO chanAetgaphical representation
of the application is shown in Figure 2.11(a). Part of theregponding XML application
specification for this KPN is shown in Figure 2.9(a). Redadittthis KPN in XML format is
generated automatically by our BN tool using the techniques presented in Section 2.3.1.
For the sake of clarity, we show only the description of pesdel and channeFIFO1 in
the XML code. The other processes and channels of the KPNpaafied in an identical
way. P1 has one input port and one output port defined in lines B-Bexecutes a function
calledcompute (line 9). The function has one input argument (line 10) anel output argu-
ment (line 11). There is a strong relation between the fonairguments and the ports of a
process given at lines 4 and 7. The information how many tifmestioncompute has to be
fired during the execution of the application is determingdlparameterizeteration do-
main (see Section 2.3.1) which is captured in a compact (matobdpfat lines 12-15. There
are two matrices representing the function domain whiclhesponds to a nestddr-loop
structure. It originates from the structure of the initsthtic and affine) nested loop program.
In this particular example, there is only ofa-loop with indexk and parameteN. The
parameter is used in determining the upper bound of the [6bp.range of the loop index

is determined at line 13. This matrix represents the follgxivo inequalities:

k-2 >
—k+2N -1 >
and therefore2 < k < 2N — 1. In the same way, the matrix at line 14 determines the range
of parameterV, i.e.,3 < N < 384. Similar information for each port is used to determine at
which iterations an input port has to be read and conseqguantivhich iterations, an output
port has to be written. However for brevity, this informattis omitted in Figure 2.9(a).
Lines 19-24 show an example of how the topology of a KPN isi§ieelc F'/ F'O1 connects
processe#’1 and P3 through porte1 andp4.

An example of a mapping specification is shown in Figure 3.9¢{tassumes an MPSoC with
four processing components, namely1, «P2, uP3, anduP4, and five KPN processes:
P1, P2, P3, P4, and P5. The XML format of the mapping specification is very simple.
Process4 is mapped onto processeP1 (see lines 3-5), process&2 and P5 are mapped
onto processor P2 (lines 7-10), proces®3 is mapped for execution on processdt3, and
finally, processP1 is mapped on processaP4. In the mapping specification, the mapping
of channels to communication memories is not specified. IRéna this mapping is related
to the way processes are mapped to processors, and thetbfraapping of channels to
communication memories can not be arbitrary. The mappinchahnels is performed by
EspamM automatically which is discussed in the next section.
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1 <application name ="myKPN"> 1 <mapping name ="myMapping" >
<process name ="P1">
<port name ="p2" direction = "in" /> <processor name = "uP1" >
<var name ="in_0" type = "myType" /> <process name = "P4"/>
5 <Iport 5  </processor>
<port name ="p1" direction = "out" />
<var name = "out_0" type = "myType" /> <processor name = "uP2" >
</port <process name = "P2" />
<process_code name = "compute" > <process name = "P5" />
10 <arg name ="in_0" type = "input" /> 10 </processor>
<arg name = "out_0"type = "output" />
<loop index ="k" parameter = "N" > <processor name = "uP3" >
<loop_bounds matrix ="[1, 1,0,-2; 1,-1,2,-1]"> <proces name ="P3" />
<par_bounds matrix = "[1,0,-1,384; 1,0, 1, -3]" /> </processor>
15 </loop 15 .
<lprocess_code <processor name = ul':’l4 ">
<lprocess> <process name = "P1"/>
. </processor>
<!-— other processes omitted ——>
<channel name = FIFO1 size = "1"> </mapping>
20 <fromPort name = "p1"/>
<fromProcess name = "P1" />
<toPort name ="p4" />
<toProcess name = "P3" />
</channel>
<!-— other channels omitted ——>
</application>
(a) Application specification (b) Mapping specification

Figure 2.9: Example of Application and Mapping Specificasio

2.3.3 Code generation: SW code for processors

EsPAM uses the initial sequential application program, the smoading KPN application
specification, and the mapping specification to generataatically software (C/€+) code
for each processor. The code for a processor containg-ol code and:omputation code.
The computation code transforms the data that has to be processed by a ppesssit
is grouped into function calls in the initial sequential gram. ESPAM extracts this code
directly from the sequential program. Thentrol code (for-loops,if-statements, etc.)
determines the control flow, i.e., when and how many timea deding and data writing
have to be performed by a processor as well as when and howtmas/thecomputation
code has to be executed in a processor. dhégrol code of a processor is generated by
Espam according to the KPN application specification and the maggpecification as we
explain below.

According to the mapping specification in Figure 2.9(b),q@ssP1 is mapped onto pro-
cessoruP4 (see lines 16-18). Therefore,sBaM uses the XML specification of process
P1 shown in Figure 2.9(a) to generate thewtrol C' code for processarP4. The code is
depicted in Figure 2.10(a). At lines 4-7, the type of the dedasferred through the FIFO
channels is declared. The data type can be a scalar or monglecotgpe. In this exam-
ple, it is a structure of 1 boolean variable and a 64-elemeayyaf integers, a data type
found in the initial sequential program. There is one patam@’) that has to be declared
as well. This is done at line 8 in Figure 2.10(a). Then, atdid®-19 in the same figure,
the behavior of processarP4 is described. In accordance with the XML specification of
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1 #include 'I“primitives.h" N 1 void read(int* port, void* data, int length ) {
#include "memoryMap.h int *req_&_rd = 0xE0000000; // Address in a CC
struct myType int *isEmpty =req_&_rd + 1;

5 bool f?;gyp { *req_&_rd = 0x80000000 | (port); // Write a request

int data[64]; 5 for (int |:.o; |§Iength; |++.- ) { _
/I reading is blocked if a FIFO is empty
o - . while (*isEmpty ) { }
int N=384; (byte* data)[i] = *req_&_rd; // read from a FIFO
10 void main() {
myType in_0;
myType out_0;

10 *req_&_rd = OX7FFFFFFF&(inPort);
}

void write( int* port, void* data, int length ) {

for (int k=2; k<=2*N-1; k++){ int *isFull = port + 1;
r 2, &in izeof(myT - 15 for (iinti=o; i<length; i++) {
1 Ci?g,(,&e'(ﬁ: 60,{;)5?00()‘ yType)): /1 writing is blocked if a FIFO is full

. . . while (*isFull) { }
) write( pl, &out_0, sizeof(myType) ); *port = (byte* data)[i]; // write to a FIFO
19} 20 }

(a) Control code for processarP4 (b) Read and write communication primitives

Figure 2.10: Source code generated [BpPEM.

processP1 in Figure 2.9(a), the functiomompute is execute@ « N — 2 times. Therefore, a
for-loop is generated in theain routine for processai P4 in lines 14-18 in Figure 2.10(a).
Thecomputation code in functiorcompute is extracted from the initial sequential program.
This code is notimportant for our example, hence, it is ne¢gihere for the sake of brevity.
The functioncompute uses local variables:_0 andout_0 declared in lines 11 and 12 in Fig-
ure 2.10(a). The input data comes frdnd F'O2 through portp2 and the results are written
to FIFO1 through poripl — see Figure 2.11(a). Therefore, before the function caliAm
inserts aread primitive to read fromF' 7 F'O2 initializing variablein_0 and after the func-
tion call, EspAM inserts awrite primitive to send the results (the value of variablg_0) to
FIFO1 as shown in Figure 2.10(a) at lines 15 and 17. When severaépses are mapped
onto one processor, a schedule is required in order to giggranproper execution order of
these processes onto one processor. T$mal tool automatically finds a local static sched-
ule from the STree model (see Section 2.2.2) based on th@igigptechnique for processes
presented in [23].

SW communication and synchronization primitives

Recall that the FIFO channels are mapped onto the commioricaemories of our MPSoC
platform instances and the multi-FIFO organization of a oamication memory is realized
by the corresponding communication controller (CC) as idlesd in Section 2.1.4. A FIFO
channel is seen by a processor as two memory locations ieitsntnication memory ad-
dress space. A processor uses the first location to readéhes sif the FIFO. The status
indicates whether a FIFO is full (data cannot be written) mipty (data is not available).
This information is used for the inter-processor synchration. The second location is used
to read/write data from/to the FIFO buffer, thereby, raatizinter-processor data transfer.
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The described behavior is realized by the SW communicatidrsgnchronization primitives
interacting with the HW communication controllers. The eamhplementing theead and
write primitives used in lines 15 and 17 in Figure 2.10(a), is showigure 2.10(b). Both
read and write primitives have 3 parameteisit, data, andlength. Parameteport is the
address of the memory location through which a processoacesss a given FIFO channel
for reading/writing. Parameteluta is a pointer to a local variable ardngth specifies the
amount of data (in bytes) to be moved from/to the local vaeiat/'from the FIFO channel.

The primitives implement the blocking synchronization imagism between the processors
in the following way. First, the status of a channel that kabe read/written is checked.
A channel status is accessed using the locations definedes B and 14. The blocking
is implemented by while loops with empty bodies in lines 7 4@d A loop iterates (does
nothing) while a channel is full or empty. Then, in lines 8 d®&lthe actual data transfer is
performed.

Thereadprimitive in Figure 2.10(b) implements also the read retjoeschanism for access-
ing remote CMs using a communication component as discussBdction 2.1.4. This is
done in several steps. Variabtg & _rd, initialized at line 2, is a pointer to the communica-
tion controller. This pointer is used to writead request$o the CC and to readatafrom a
remote CM. The request data has a special format which caedveat line 4. It consists of
the addresort) of the requested FIFO and a read request flag located at thiesigoificant
bit of the request word. The physical addresses of the FIR@ai MPSoCs are discussed in
the next section. Setting the request flag at line 4 trigdergeneration of a read request by
the CC to the communication component. At the same time, thas3erts the status of the
requested FIFO temptyuntil the connection to the remote memory is grahtdthis blocks
the processor in therhile-loop at line 7. When the connection is granted, the CC prafesg
the actual status of the FIFO, and the processor reads th@eidorming the synchronization
in the same way as described in the previous paragraph. Geakata has been transferred,
the connection is released which is done at line 10 by clgdha request flag in the CC.

Note that the request mechanism for reading data is usedroMi?SoCs utilizing a commu-
nication component (e.g. a crossbar or a bus). TherefofdP8oCs with a point-to-point
communication topology, there are no read requests genkedatthis case, theadsynchro-
nization primitive used by EPAM has a simplified structure which is identical to tate
primitive in Figure 2.10(b).

Memory map generation

Each FIFO channel in our MPSoCs has separate read and write poprocessor accesses
a FIFO for read operations using thead synchronization primitive. The parametesrt
specifies the address of the read port of the FIFO channel éztessed. In the same way,
the processor writes to a FIFO using the write synchrorongirimitive where the parameter
port specifies the address of the write port of this FIFO. The FIR@naels are implemented
in the communication memories (see Section 2.1.5), thezetioe addresses of the FIFO ports
are located in the processors’ address space where the adpation memory segment is

1Recall that a connection is granted if the communicatioa isravailable and there is data in the requested FIFO.
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(a) Kahn Process Network (b) Example Platform

Figure 2.11: Mapping Example.

defined. The memory map of a MPSoC generated $yA contains the values defining the
read and the write addresses of each FIFO channel in thevsyste

The first step in the memory map generation is the mappinge®HIRO channels in the
KPN application specification onto the communication maes{CMs) in the multiproces-
sor platform. This mapping can not be arbitrarysFAM maps FIFO channels onto CMs
of processors in the following automated way. First, forrepeocess in the application
specification BpAM finds all the channels this process writes to. Then, from thpping
specification EPAM finds which processor corresponds to the current processapd the
found channels in the processor’s local CM. For examplesiclen the mapping specification
shown in Figure 2.9(b) which defines only the mapping of trecpsses of the KPN in Fig-
ure 2.11(a) to the processors in the platform shown in Figuk#(b). Based on this mapping
specification, EPAM maps automatically'/ FFO2, FIFO3, and FIFO5 onto the CM of
processon P1 because proced34 is mapped onto processai’1l, and proces$4 writes
to channels'I1FO2, FIFO3, and FIFO5. Similarly, FI1FO4 is mapped onto the CM of
processorP3, and '/ FO1 is mapped onto the CM afP4. Since both processé® and
P5 are mapped onto processoP2, ESPAM mapsE I FO6 and F'1 FO7 onto the CM of this
processor.

After the mapping of the channels onto the CMspPEM generates the memory map of the
MPSoC, i.e., generates values for the FIFOs’ read and wdtEesses. For the mapping
example illustrated in Figure 2.11(b), the generated mgmmap is shown in Figure 2.12.
Notice thatF'IFO1, FIFO2, FIFO4, and FIFO6 have equal write addresses (see lines
4, 6, 10, and 14). This is not a problem because writing toetli@¢BOs is done by different
processors and these FIFOs are located in the local CMs s¢ ttiéferent processors, i.e.,
these addresses are local processor write addresses.méeapglies for the write addresses
of FIFO3 and FIFO7. However, as explained in Section 2.1.5, all processorsead
from all FIFOs via a communication component. Therefore,rdad addresses have to be
unigue in the MPSoC memory map and the read addresses hawecityprecisely the CM

in which a FIFO is located. To accomplish this, a read addoéss FIFO has 2 fields: a
communication memory (CM) number and a FIFO number withirva C

Consider for examplé&'I O3 in Figure 2.11(b). Itis the second FIFO in the CM of processor
uP1, thus this FIFO is numbered witi)02 in this CM. Also, the CM of. P1 can be accessed
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1 #ifndef _MEMORYMAP_H_
#define _MEMORYMAP_H_

#define pl 0xe0000008 //write addr. FIFO1
5 #define p4 0x00040001 //read addr. FIFO1
#define p7 0xe0000008 //write addr. FIFO2
#define p2 0x00010001 //read addr. FIFO2
#define p8 0xe0000010 //write addr. FIFO3
#define p6 0x00010002 //read addr. FIFO3
10 #define p9 0xe0000008 //write addr. FIFO4
#define pl2 0x00030001 //read addr. FIFO4
#define pl0 0xe0000018 //write addr. FIFO5
#define pl3 0x00010003 //read addr. FIFO5
#define pl4 0xe0000008 //write addr. FIFO6
15 #define pll 0x00020001 //read addr. FIFO6
#define p3 0xe0000010 //write addr. FIFO7
#define p5 0x00020002 //read addr. FIFO7

19 #endif

Figure 2.12: The memory map of the MPSoC platform instancegeed by BPAM.

for reading through port 1 of the communication componBMERCONNECTs shown in
Figure 2.11(b), thus this CM is uniquely numbered with 0084 a consequence, the unique
read address af' I FO3 is determined to bexd0010002 — see line 9 in Figure 2.12, where
the first field 0001 is the CM number and the second field 0002a-1FO number in this
CM. In the same way, &AM determines automatically the unique read addresses oéshe r
of the FIFOs that are listed in Figure 2.12.

2.4 Dedicated IP core integration with ESPAM

With the foregoing discussions in this chapter, we preskats methodology for multipro-
cessor system design implemented i®PEM. It considers automated generation of homo-
geneous multiprocessor platforms, i.e., the processingponents are only programmable
(ISA) processors. However, in many cases, a homogeneotesrsysay not meet the per-
formance requirements of an application. For better perémce and efficiency, in a mul-
tiprocessor system different tasks may have to be execwytelifferent types of processing
components which are optimized for execution of partictdaks. It is common knowledge
that higher performance may be achieved by relying on destiqg@ustomized and optimized)
IP cores. Moreover, many companies already provide desticaistomizable IP cores op-
timized for a particular functionality that aim at savings@g time and increasing overall
system performance and efficiency. Therefore, our platfomadel supports also dedicated
IP cores as processing components. The idea of using deditfatcores in heterogeneous
systems is very appealing because these systems deliverfligbility and high perfor-
mance at the same time. However, two major problems emeageegly how to design and
how to program heterogeneous MPSoCs. The lack of stand@mddoces that an IP core has
to provide in order to allow seamless integration, and tlek& f automated programming
approaches for heterogeneous multiprocessor systemgxadgrbates these problems.
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With EspAM, we solve the problems mentioned above, and we provide amated de-
sign and programming of heterogeneous multiprocessoemsgstvhere both programmable
processors and dedicated IP cores are used as processipgreams. In our approach, we
developed techniques for automated generation of an IP Madhich consists of a wrap-
per around a dedicated and predefined IP core. This apprao@ghates from the general
idea implemented in Laura [74], i.e., generating of IP Madubased on the properties of
the KPN model we use. Although using the same concepsiPpald, we developed different
techniques in order to enable systematic and automatedréPirtegration and connection
to the other components of the system, i.e., programmablepsors and different commu-
nication components. The structured, highly modularized, parameterized IP Module we
propose has been devised by carefully exploiting and efifigmplementing the simple
communication and synchronization mechanisms of the KPNahaVe have identified and
developed an IP Module library which is a set of generic patanived components used by
EspAM to compose an IP Module. This is done in the same way M constructs an
MPSoC instance, i.e., by instantiating components fromBh®odule library, connecting
them, and setting their parameters in correspondenceétKPN application specification.
In addition, we defined clear interfaces of the componengnitP Module. This helped us
to devise an efficient mechanism for connecting and synéhiranthe components within an
IP Module keeping high performance of the integrated IP £0By making the IP Module
structured and modularized, its components become moepérdlent and loosely coupled.
Therefore, we are able to design and optimize each componhére IP Module separately.

We have already presented our approach to design and progngnof homogeneous MP-
SoCs. Based on that, in this section we present our approattgiment these MPSoCs with
dedicated IP cores in a systematic and automated way. The idaa in our approach is

presented in Section 2.4.2. It is followed by a discussiothertype of the IPs supported by
EspAM, and the interfaces these IPs have to provide in order tavaldomated integration.

For details about the internal structure and the implentiemaf the IP Module we refer

to [75].

2.4.1 Uniform structure of a KPN process

Our methodology and tool-flow for multiprocessor systemigiesllow automated synthe-
sis, programming, and implementation of multiprocessatfptms. As we have shown in
Section 2.3, to automatically program an MPSoC tls®A&M tool generates program code
for each processor in the system, generates the memory nthp sfstem, and generates
code that implements the synchronization and communicdtéween the processors. In
our methodology and design flow, the first step is partitigrohan application into concur-
rent tasks in the form of a Kahn process network (KPN) wheeeittiter-task communica-
tion and synchronization isxplicitly specified in each task. Such partitioning, discussed in
Section 2.3.1 and performed automatically by thed2N tool [7], allows each task (Kahn
process) or group of tasks to be compiled separately by @atdn’ compiler in order to
generate an executable code for each processor in therplatRegardless of the functional
behavior specified by processes in a KPN generated byeRiNalways ESPAM takes each
process specification and generates a specific code for eacbss where the structure of
the code is the same for all processes. This uniform stredésuthe basis of the proposed IP
Module, and below, it is explained by an example.
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1 /I Process P1

2 void main() {

3 for (int k=1; k<=L; k++) {
4 read( IP1, in_0, size );
5
6

I|p1 op1l
P2 P2 OP2 cHs PL P3

op execute(in_0, out_0);
write( OP1, out_0, size );

(a) Kahn Process Network example (b) Program code for process P1

Figure 2.13: Example of a KPN and program code.

Consider the KPN shown in Figure 2.13(a). Three proced3&sif2, andP3) are connected
through four FIFO channel(H1, CH2, CH3, andCH4). Program code representing
processP1 is shown in Figure 2.13(b). The structure of the code gerdrby ESPAM for
each process is the same and consists@DAI TROL part, aREAD part, anEXECUTEpart,
and aWRITE part. The same structure can be seen also for praégsa Figure 2.15(a).
The difference betweeR*1 and P2, however, is in the specific code in each part. For exam-
ple, the CONTROL part of P1 has only onefor-loop whereas th€ ONTROL part of P2
has twofor-loops. The blocking synchronization mechanism of our KiNsnplemented
by read/write synchronization primitives. They are the edor each process and were dis-
cussed in detail in Section 2.3. The primitives are autara#lyi generated and inserted in the
program code by EPAM in the places where a process has to read/write data frorfife@
channel. TheREAD part of P1 has one read primitive executed unconditionally whereas th
READ part of P2 has two read primitives ang-conditions specifying when to execute these
primitives.

2.4.2 |P Module — basic idea and structure

As we explained earlier, in the multiprocessor platformscamsider, the processors execute
code implementing KPN processes, and communicate databat@ach other through FIFO
channels mapped onto communication memories. Using coneation controllers, the pro-
cessors can be connected either point-to-point or via a agmuation component. We follow
a similar approach to connect an IP Module to other IP Modatgsrogrammable proces-
sors in our MPSoCs. We illustrate our approach with the examepicted in Figure 2.14.
We map the KPN in Figure 2.13(a) onto the heterogeneouspmaghown in Figure 2.14(a).
Assume that proced31 is executed by processoP1, P3 is executed by P2, and the func-
tionality of processP2 is implemented as a dedicated (predefined) IP core embeddad i
IP Module. Based on this mapping and the KPN topologpgAiv automatically maps FIFO
channels to communication memories (CMs) following the thit a processing component
only writes to its local CM. For example, proceBs$ is mapped onto processing component
uP1 andP1 writes to FIFO channel' H1. Therefore(C H1 is mapped onto the local CM of
uP1 —see Figure 2.14(a). In order to connect a dedicated IP oarthér processing compo-
nents, SPAM generates an IP Module (IPM) that contains the IP core anchpper around

it. Such an IPM is then connected to the system using comratiaiccontrollers (CCs) and
communication memories (CMs), i.e., an IPM writes direttljts own local FIFOs and uses
CCs (one CC for every input of an IP core) to read data from Bl©ated in CMs of other
processors. The IPM that realizes procE&ds shown in Figure 2.14(b).
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(a) Heterogeneous MPSoC (b) Top-level view of the IP Module

Figure 2.14: Example of heterogeneous MPSoC generatec bynNE

As explained in Section 2.3.1, our KPNs are derived autarallyiand the processes in our
KPNs have always the same structure. It reflects the KPN tipaeh semantics, i.e, read-
execute-write using blocking read/write synchronizatisechanism. Therefore, an IP Mod-
ule realizing a process of a KPN has the same structure, sindwgure 2.14(b), consisting of
READ, EXECUTE, andWRITE components. ACONTROLcomponent is added to capture
the process behavior, e.g., the number of process firingsoesynchronize the operation of
componentfREAD, EXECUTE and WRITE. The EXECUTEcomponent of an IP Module
(IPM) is actually a dedicated IP core to be integrated. ltasgenerated by &AM but it is
taken from a library. The other componeREAD, WRITE, and CONTROL constitute the
wrapper around the IP core. The wrapper is generated futlynaatically by ESPAM based
on the specification of a process to be implemented by theaxdR®I. Each of the compo-
nents in a IPM have a particular structure which we illugtrgith the example in Figure 2.15.
Figure 2.15(a) shows the specification of procB&sn Figure 2.13(a) generated bysBAm

if P2 would be executed on a programmable processor. We use théstashow the rela-
tion with the structure of each component in the IP Modulewxgated by EPAM, shown in
Figure 2.15(b), whe®2 is realized by an IP Module.

In Figure 2.15(a), the read part of the code is responsiblgédtiing data from proper FIFO
channels at each firing of proceB?. This is done by the code lines 5-8 which behave like
a multiplexer, i.e., the internal variable_0 is initialized with data taken either from port
IP1 or IP2. Therefore, the read part g?2 corresponds to the multiplexer MUX in the
READ component of the IP Module in Figure 2.15(b). Selecting tteppr channel at each
firing is determined by th#-conditions at lines 5 and 7. These conditions are realiyetid
EVALUATION LOGIC READ sub-componentin componeREAD. The output of this sub-
component controls the MUX sub-component. To evaluatétbenditions at each firing, the
iterators of thdor-loops at lines 3 and 4 are used. Therefore, tii@stops are implemented
by counters in the IP Module — see the COUNTERS sub-compané&igure 2.15(b).

The write part in Figure 2.15(a) is similar to the read parhe©nly difference is that the
write part is responsible for writing the result to propeachels at each firing aP2. This

is done in code lines 10-13. This behavior is implementechbydie-multiplexer DeMUX
sub-component in th&/RITE component in Figure 2.15(b). DeMUX is controlled by the
EVALUATION LOGIC WRITE sub-component which implements tlieconditions at lines
10 and 12. Again, to implement ther-loops, ESPAM uses a COUNTERS sub-component.
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1 /I Process P2

2 void main() { READ EXECUTE WRITE
o ) IP1
3 for (inti=2; i<=N; i++) OP1
4 for (intj=1; j<=M+i; j++) { ~ CONTROL x S
P2 g IP CORE s
¥ J 2 | or2
5 if (i-2==0)
6 read( IP1, in_0, size );
7 if (i-3>=0) READ 1
8 read( IP2, in_0, size ); EVALUATION EVALUATION
LOGIC READ LOGIC READ
9 execute(in_0, out_0); EXECUTE
10 if (-itN-1>=0) COUNTERS COUNTERS
11 write( OP1, out_0, size ); | |
12 if (i-FN==0) WRITE
13 write( OP2, out_0, size ); ][ 1[
. N,.M Done
14 } /i for } CONTROL F—’
15 } // main
(a) Program code for proce$x (b) IP Module Structure

Figure 2.15: Example of a IP Module and its components’ snec

Although, the counters correspond to the control part o€@saP2, ESPAMimplements them
in both theREAD and WRITE blocks, i.e., it duplicates thier-loops implementation in the
IP Module. This allows the operation of componeREAD, EXECUTE and WRITE to
overlap, i.e., they can operate in pipeline which leads ttebperformance of the IP Module.

The execute part in Figure 2.15(a) represents the main ctatiguin P2 encapsulated in the
function call at code line 9. The behavior inside the funttiall is realized by the dedicated
IP core depicted in Figure 2.15(b). As explained above, lfRisore is not generated by
EspPAM but it is taken from a library of predefined IP cores providgdabdesigner. An IP
core can be created by hand or it can be generated autorhyafioah C' descriptions using
high-level synthesis tools like, e.g., the PICO tool frormfaya [11]. In the IP Module, the
output of sub-component MUX is connected to the input of thedre and the output of the IP
core is connected to the input of sub-component DeMUX. Iretteanple, the IP core has one
input and one output. In general, the number of inputs/datpan be arbitrary. Therefore,
every IP core input is connected to one MUX and every IP cotpuius connected to one
DeMUX.

Notice that the loop bounds at lines 3—4 in Figure 2.15(aparameterized. ThEONTROL
component in Figure 2.15(b) allows the parameter valuestedt/modified from outside
the IP Module at run time or to be fixed at design time. Anotharcfion of component
CONTROLIis to synchronize the operation of the IP Module componemdsta make them
to work in pipeline. Also,CONTROL implements the blocking read/write synchronization
mechanism. Finally, it generates the status of the IP Mqdlele signalDone indicates that
the IP Module has finished an execution.
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2.4.3 |IP core types and interfaces

In this section we describe the type of the IP cores that fitin® Module idea and structure
discussed above. Also, we define the minimum data and conteofaces these cores have to
provide in order to allow automated integration in MPSoGfplans designed with EPAM.

1. Inthe IP Module, an IP core implements the main compuiatf@ KPN process which
in the initial specification is represented by a functiorl.c@herefore, an IP core has
to behave like a function call as well. This means that fohdaput data, read by the
IP Module, the IP core isxecutednd produces output data after an arbitrary delay.

2. In order to guarantee seamless integration within tha-tledv of our heterogeneous
systems, an IP core must have unidirectional data intesfatcthe input and the output
that do not require random access to read and write datatbon€mory. Good ex-
amples of such IP cores are timelltimedia corest http://www.cast-inc.com/cores/. In
addition, the PICO tool [11] can generate IPs that fall ife tlass of the considered
IP cores from specifications written i@, i.e., PICO allows for synthesis of IP cores
providing the required unidirectional data interfaces.

3. To synchronize an IP core with the other components inRHdddule, the IP core has
to provideEnabl e/ Val i d control interface signals. THenabl e signal is a control
input to the IP core and is driven by tf@ONTROL component in the IP Module to
enable the operation of the IP core when input data is reau finput FIFO channels.

If input data is not available, or there is no room to storedh#put of the IP core to
output FIFO channels, theEnabl e is used to suspend the operation of the IP core.
TheVal i d signalis a control output signal from the IP and is monitdngdomponent
CONTROLIn order to ensure that only valid data is written to outplE®Ichannels
connected to the IP Module.

2.5 Discussion

Recall that the initial applications in theABDALUS system design methodology are re-
stricted to parameterized static affine nested loops pnegANLP). This restriction is
imposed by the PNEN tool in order to allow automated KPN derivation and compatabf
buffer sizes that guarantee deadlock-free KPN behaviowndder, ESPAM and the techniques
for MPSoC synthesis presented in this chapter are notetsdrio KPNs equivalent to this
class of sequential programs. The presented techniquéeagplied on more general KPNs
as well. For example, we have developed techniques for ctingaveakly dynamic nested
loop programs (WDNLP) to equivalent KPN specifications [23imilar to an SANLP, in a
WDNLP loop boundaries and variable indexing functions #fia@functions of loop iterators
and static parameters, while the expressions in conditatersents are arbitrary functions
of loop iterators, parameters, addta variables The inclusion of data variables makes the
programs dynamic. The generation of such process netwariatiautomated yet.

Recall that the SANLPs may contain parameters, but theiregamay not change during
the execution of the program, therefore, they are statiarpaters. The same is also true
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e B
1 while(1){
2 for (i=0;i<N;i++) {
3 fi(a[i], &b, &p);
4 x=f2(b);
5 if (p=true)
6 cC=X; a
7 else —
8 d=x; <l
91} N=4 N=6
N D,
(a) Sequential program (b) Equivalent KPN with dynamic parameters

Figure 2.16: Motivating example.

for WDNLPs. Similarly, most deterministic data-flow modelghether static or dynamic
and whether actor-based or process-based [76] do not duppm@mic configuration of pa-
rameters. However, many realistic streaming-data agitsithat are naturally specified in
terms of data-flow models require parameterization. Fomgte, a functiorp = f(token)

in an active entity (thread or process) may return a valugherparametep which is the
upper bound of a loogfor(i = 1,7 < p,i + +) in another active entity. The restriction
for the parameters to be static does not allow modeling oh daghavior with our KPN
model which significantly limits its expressiveness, andsamuently, the applicability of
the DAEDALUS approach to real-life applications. This motivated us tees our approach
to programs/KPNs that can deal with dynamic parameterss iShhe topic of the next sub-
section. Automated derivation of such KPNs is out of the samijithis discussion.

2.5.1 Motivating example

Consider the program shown in Figure 2.16(a). This prograyogsses an input data stream
a and produces output data strearmendd. Thewhile(1) construct at line 1 indicates that
the streams may be infinite. The data is processed in blocksrizyionsf; () at line 3 and
f2() atline 4. The size of the blocks is determined by flae-loop at line 2. In this program,
there are five data variables, {, ¢, d, andz) and two control variables, i.el, used as an
upper bound for th¢or-loop at line 2 angb, used in the evaluation of thig-condition at line

5. Values forp are produced by functiofi (). A functionally equivalent process network is
depicted in Figure 2.16(b). It consists of procesBdsand P2 that execute functiong; ()
and f5(), respectively. There is a direct relation between the cbntriables used in the
sequential program and the dynamic parameters in the KPN dyihamic parameters. In
such KPNs, if data is involved in control statements, we m®rst as a dynamic parameter.
We distinguish two types of parameters: global and localldbal parameter is an external
parameter, i.e., not produced by any process in the netwoldcal parameter is an internal
parameter, i.e., it is produced and consumed by proces$es iretwork. According to these
definitions, in the example in Figure 2.16(B),is aglobal parameter, angd is alocal param-
eter, both being dynamic (control) parameters. To trartefeparameter values between the
processes in the network, we use control (FIFO) channelthisnexample, there are three
control channels: two channels for parameéYeand one channel for parameter
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1 // Process P1 12 // Process P2
2 13 while(1) {
3 while(1) { 14 N = read_N(); // global paraneter
4 N = read_N(); // global paraneter 15 for(i=1;i<=N;i++) {
5 for(i=1;i<=N;i++) { 16 b = read_b();
6 a(i) = read_a(); 17 x = f2(b);
7 fi(ali], &b, &p); 18 p = read_p(); // local paraneter
8 wite_p(); // local paraneter 19 if( p=true )
9 wite_b(); 20 wite_x_to_c();
10 } 21 else
11 } 22 wite_x_to_d();
23 } }

Figure 2.17: Proposed structure of the processes in Figugg1).

The functionality and the structure of procesgels and P2 is shown in Figure 2.17.P1
reads and transforms a block of data (lines 6 and 7), whiehisidetermined by the value of
the global paramete¥ . Values for/NV are generated outside the network at run tifié.and
P2readN (lines 4 and 14) which is to become the upper bound in a loopih processes.
Functionf; () in processP1 outputs the local parametgi(line 8) which is of typeBoolean
and data (line 9). Proces#2 reads data (line 16), the parameter(line 18), and sends the
output of its functionf,() to one of the process outputs () depending on the value of the
local parametep (lines 19-22).

As is the case with all data-flow models, the main questior iewhether the PNs with

dynamic parameters amnsistentand can execute inounded memoryConsistency has

to do with a balancing of the production and consumption &éts in the network. When

this balancing is dependent on dynamic parameters, censistonditions may be violated.
Execution in bounded memory is a necessary condition foptbeessing of infinite streams
(non-terminating execution). Our KPNs with dynamic parsergeexecute in bounded mem-
ory and below, we address the consistency problem only.

2.5.2 Process network instance

Consider the KPN representing a producer-consumer pawrsin Figure 2.18(a)/N; and
N> are FIFO channels of the global paramet®&isfor processP1 and N, for processP2,
respectively. Each parameter can take values within a fizadea. PN{;, N>) denotes an
instance of the KPRl There is generally a relation between the parametersjsrefample
N7 andNs. Therefore, some instances P( N-) are invalid instances. For the PN network
in Figure 2.18(a), all different instances are shown in Fég2.18(b). InstanceBN (2,1),
PN(3,1),andPN(3,2) are invalid because they violate the conditidpn > N;. Similarly,

an instancePN(2,4) is invalid becauseV, is out of its range. Figure 2.18(c) shows the
structure of a process we propose to deal with dynamic paeameNetwork instances are
selected by reading parameter values at run time. For tinfgoga, we add eead parameters
phase, see line 4, prior to the actual processing at lines Bezause reading parameters
and data processing are repeated (possibly infinite nunfottmes), we call it a process
execution cyclélines 3-9). When all actors in a PN have performed an execudycle, a
network instance has performed an execution.

2 From now on, we consider the tern®&V and K PN to be equivalent.
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Range of the parameters: 1 // Execution of process P1
xecution cycle
1sN2<3 4 read_parameter( N1);
N2> N1 5 for (inti=L; i<=N1; i=i+1) {
. ) 6 read(a, x);
PN instance — PN(N1,N2): 7 execute_PL(x, &y );
PN(L,1); PN(1,2); PN(1,3); 8 write(y,b);
PN@,1); PN@,2); PN(2,3); o
PN(3,1); PN(3,2); PN(3,3); o3 Y,
(a) KPN with dynamic parameters (b) Different PN instances (c) Structure of a process

Figure 2.18: A producer-consumer example of a PN with dyegrarameters.

Definition 2.5.1 (Consistency of a PN instance)
A PN instance is consistent if after an execution, the nurobtakens written to any channel
is equal to the number of tokens read from it.

2.5.3 Preserving the consistency of our PNs with dynamic pameters

The validity of the PN instances is a necessary but not a girfficondition to preserve the

PN consistency when changing parameter values at run timelid\set of parameters corre-
sponds to a valid (and consistent) PN instance. Howevetrahsition from a valid instance

to another valid instance at an arbitrary point may violat ¢onsistency of the instances.
Therefore, we defined the following three conditions whiod sufficient to preserve consis-
tency when changing parameter values dynamically at rua.tim

C1: Parameter sets have to correspond to valid network instance
C2: A valid parameter set has to initiate a network instance aken.

C3: Processes may read new parameters from a valid set (comelipg to the selection of
a new valid network instance) after they have completed ega®execution cycle

In other words, parameter values may be changed eitherebefaafter an execution cycle
of the processes. This is taken into account by the propaseclion cycle of a process
illustrated in Figure 2.18(c).

2.5.4 Respecting the conditions

Because a PN may have many dynamic parameters distribueediisferent processes, re-
specting conditiorC'l may not be feasible. For example, NN (2, 1) discussed in Sec-
tion 2.5.2, the values of the parameters are within the fipdaiange V1, N> € [1..3]).
However, because of the conditiov, > N;, instancePN (2, 1) is not valid. SinceN; is

a parameter only foPP1 and N, is a parameter only foP2, it is not possible to check in
each process whetheNy, No) = (2,1) is a valid parameter set. Therefore, to respect the
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(N1,N2)

1 /I Process PO
2 while(1){
3 /I Read and check parameters
4 read_parameter( chl, N1);
5 read_parameter( ch2, N2);
6 par_not_OK = check( N1, N2);
7 if(par_not_ OK) goto4 ;
8 // Propagate parameters
9  write_parameter( N1, ch3);
10 write_parameter( N2, ch4);
11 }
N

/

(a) A control process ina PN (b) Structure of the control process

Figure 2.19: Introducing a control process in our PNs withaiyic parameters.

three conditions above, we introduceantrol process”0 as depicted in Figure 2.19(a). This
process reads global parameter valu¥s, (V) and propagates them to the other processes
only when the set is valid. Proce$¥) reads and writes from and to Kahn FIFO channels,
called control channelqchl, ch2, ch3, andch4). The behavior of the control process in
Figure 2.19(a) is given in Figure 2.19(b). It consists of tparts, namelyead and check
parameterglines 3-7), andoropagate parameterfines 8-10). The process body respects
conditionsC'1 andC?2 in the following way. First,P0 reads values for parametek§ and

N5 from the control channelsi1 andch2, respectively, using a blocking read synchroniza-
tion mechanism. Then, at line 6, it is checked whether tharpater values define a valid
PN instance. If not, then an error is indicated (not showéexample) and parameters are
read again (see line 7). This behavior respects conditibriNotice that a parameter set may
be not valid because of just one parameter value. Nevestheddl the parameters have to
be read again: The current PN instance is invalidated (disch and a new set of parameter
values is read again. After reading and successfully pgdbim validity check, the values
of parametersV; and N, are written (lines 9 and 10) to the control channglg and chy
which will take them to the destination procesggsand P2. Thus, the combined writing

of parameter values by the control procé¥s and the reading of these parameters by the
destination processes respects condifi@y because only a valid parameter set will cause a
process to initiate an execution cycle and, consequemtlgxacution of a PN instance.

The FIFO organization of the control channels and the blogklynchronization mechanism
(the KPN semantics) keep the right order of selecting newvoiddt instances, i.e., the or-
der in which the parameter sets are generated outside tiwenkednd written to the control
channels. Since new parameter values are read by the pesassr performing an execu-
tion cycle, parameter values selecting alternative PNaims#s may be written to the control
channels while a PN instance is being executed. In additi@proposed mechanism allows
the processes to read the parameter values independertiglobther without violating the
conditions we defined for preserving the consistency. Hewehese conditions are valid
only for consistent PN instances. Therefore, a consistehegk is required, either at design
time or at run time. In our approach, a consistency check iifopaed at design time and
only checking for selection of valid instances is performgdhe control actors at run time.
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For more details about the consistency check and our apptoateal with dynamic param-
eters at run time, we refer to [77] where the presented apprisageneralized for the SBF
MoC [78]. Although the presented PNs have to be created iilyrby hand, the proposed
structure and execution cycle of a process can be used aangeidn describing process
networks with dynamic parameters and employing such PNsailDAEDALUS design flow.

2.6 Conclusions

In this chapter, we presented our system design methodseghditues implemented in
the EspaM tool for automated multiprocessor system design, impleatem, and program-
ming. Using a platform model and specifications at systerallefzabstraction, EPAM can
automatically synthesize and program heterogeneous M®Bo&hich both programmable
processors and dedicated IP cores are used as processipgramts. This automation sig-
nificantly reduces the design time and witAEDALUS, i.e., starting from a sequential ap-
plication and going down to complete implementation, éqgan MPSoC prototyped on an
FPGA, is only a matter of hours. In addition, the high leveltaf input specifications allows
a system designer easily to construct many alternativéopias instances which are automat-
ically implemented by EPAM. As we will show in Chapter 4, this enables fast exploration
of design points at implementation level with 100% accurdigsing the early stages of de-
sign. At the same time, using high-level input specificati@less error-prone compared to
lower levels of abstraction, e.g., RTL, at which MPSoC desigre captured, analyzed, and
synthesized from.
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Chapter

Techniques for Narrowing the
Design Space

In Chapter 2, we presented methods and techniques for sytiteand automated multi-
processor system design, programming, and implementgtiariosing the implementation
gap introduced in Section 1.1. The application and the glatfmodels considered in the
presented approach, were also discussed in this chapterprdposed system-level design
methodology for systematic and automated MPSoC desigmieimented in the BEDALUS
design flow presented in Section 1.2. Designing an MPSoCD@hDALUS includes essen-
tially an MPSoC instance generation (see Chapter 2) and imgfassignment) of application
tasks to processing components of that instance. In the KRI8sign process, different num-
bers and types of processing components (from the platfoodethcan be used to construct
an MPSoC instance as well as different mappings can be anesidThis leads (usually) to
a large number of potential alternative designs. That isgrgan application specified as a
KPN, there are many different MPSoC implementation poks#ds. The set of all different
possibilities comprises the so called design space. Etlidenme of the points in this design
space will correspond to MPSoC instances that satisfy tiialirequirements and some will
correspond to MPSoCs which do not. The key issue here is taeetthe number of different
implementation possibilities to a subset, consisting efrttost promising design points from
which, based on certain criteria, the designer can cho@sbkdhkt one. Then, the question is
how to find this subset of design points. Naively, all thenp®of the design space need to be
evaluated and some of them have to be selected. Howevearsiag the whole design space
may not be always feasible. Therefore, an alternative wayatuate the design space is re-
quired. This can be achieved by a design space explorati8&)@pproach which provides
mechanisms for:

e Guided selection of a design point, i.e., a mechanism tedekly walk’ through the
design space without visiting all design points;

e Evaluation of a design point in order to accept or discardpbimt based on some
performance/cost constraints.
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Ideally, one would employ an analytic procedure for commpgiin optimal design point for
a given problem. However, in most practical situations thisot possible. An alternative
approach to find a good solution is to construct a parametsystem model, where the
set of parameters represents a design point, and to simuldt®wever, simulating many
alternative design points is costly, both in terms of therfit takes to create these design
points in the first place, and also in terms of the time it takesimulate a large number of
design points. In particular, when the design space is \@gel constructing all possible
design points quickly becomes infeasible, therefore ebettarch techniques are needed to
reduce the number of alternatives to be explored. Apart #ghaustive simulation (being a
non selective exploration), there are many ways of reaidi@ésign space exploration which
employ different kind of search strategies, e.g., from $apll climbing to more complex
methods such as genetic algorithms, simulated anneating, e

In DAEDALUS, DSE can be performed by thee SAME tool [8], illustrated at the top of Fig-
ure 1.2. The DSE is performed at system level by selectinggdgmints and simulating
high-level models of these points. Recall that witaEHDALUS, the design time for imple-
menting an MPSoC instance is significantly reduced, whicbts a DSE at implementation
level as well. Therefore, in BEDALUS a design space exploration can be performed at two
different levels of abstraction, i.e.,

e At system level through high-level simulations by using 8esAME tool;

e Atimplementation level by prototyping design points andasging actual numbers.

On the one hand, evaluation of design points at system Is\(etlatively) fast, however, the
accuracy of the results is compromised. On the other haadetults from the implementation-
level DSE are accurate, yet, the exploration process magrbeslow when many design
points have to be implemented and evaluated. ThereforeaBDBRLUS we apply the follow-
ing strategy when designing an MPSoC:

1. Perform a DSE at system level to narrow down the desigresioea few points, given
particular performance/cost constraints;

2. Perform 100% accurate exploration in the narrowed desgate by real MPSoCs
implementations and measurements of actual numbers;

3. Select the design point which leads to the best MPSoC imgieation.

The design space in theABDALUS design flow is defined by a 3-tupl@’( C, M), where
T is the set of the application tasks, i.e., the Kahn procegsas the set of the platform
components, and/ is the set of possible mappings (the element$'dd elements of”).
Although with the platform-based design approach keEDALUS, design space exploration
is limited to these three sets only, the design space is pallgrhuge and very complex, i.e.,
T andC' may be large, henckl may be extremely large.

An open issue in BEDALUS is how to 'walk’ efficiently through this large design space.
At implementation level, guidance comes froreS3\ME, i.e., we implement all the points
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selected by the system-level DSE performed by using HeaBIE tool. At system level, cur-
rently SESAME applies searching methods and techniques employing geadgbrithms to
select points from the design space for evaluation in o@select the most promising ones.
However, these methods are not tailored to the specific KPtietwee use, and consequently,
for largeT andC sets, the whole design exploration process may take umaboamount
of time.

In this chapter, we propose techniques to prune the desigeespy reducing the size of
setM . More precisely, by exploiting the fact that we target MPS@Recuting applications
modeled as Kahn process networks, we devised techniquesfmping processes to process-
ing components based on mapping rélékhe main goal when mapping an application to an
MPSoC is to minimize cost and to maximize performancetoautilize as less MPSoC com-
ponents as possible without compromising the performahitesystem when executed. By
applying the mapping rules we propose in this chapter, tegdespace is effectively pruned
by reducing the number of the possible mappings, guarargebat only the design points
delivering highest performance are considered for furélx@toration (by using the sAME
tool).

Mapping of KPNs to MPSoC instances

Mapping is a process of binding the application (KPN) andplatform models togethér
i.e., the mapping gives the relation between the processktha channels in a KPN, and the
components in an MPSoC instance. We consider two types opimgpnamelyoNE-TO-
ONE andMANY-TO-ONE.

Definition 3.0.1 (ONE-TO-ONE mapping)

In a ONE-TO-ONE mapping, each process is mapped onto only one processingorant,
and each processing component has only one process mapigeid. oA KPN channel is
mapped onto a communication memory in the MPSoC and each oaiation memory has
only one channel mapped onto it, so that all the connectimmpaint-to-point connections.

Definition 3.0.2 (MANY-TO-ONE mapping)
In a MANY-TO-ONE mapping, two or more processes are mapped onto one progessin
ponent and/or two or more channels are mapped onto one coitetion memory.

Notice that in amANY-TO-ONE mapping, assignment of several processes to a single pro-
cessing component is possible for programmable (ISA) msms only. This is because,
according to our assumptions in Section 1.3, witheDALUS we do not support sharing of

a dedicated IP core between several KPN processes.

In a ONE-TO-ONE mapping, each process is executed on a separate procegsipgment,

implying that all the parallelism expressed by a KPN is disetranslated to the multipro-
cessor platform instance. With this respemtie-TO-ONE mapping (and a given set of plat-
form components) leads to maximum performance when the MHASamplemented and

1 The proposed mapping rules do not consider mapping of FIF@retls to communication memories because
this is done automatically by €PAM (see Section 2.3.3).
2 The application and the platform models we consider wersgmted in Chapter 2.
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executed. In aMANY-TO-ONE mapping, platform computation and communication compo-
nents are shared between multiple Kahn processes and Fi&thels, respectively. This
allows for implementation of an MPSoC with less processind eommunication compo-
nents, i.e., with reduced implementation cost, howeveh additional execution overhead.
Consequently, the performance (in terms of execution tioig) MANY-TO-ONE mapping,
given the same type of platform components, can not be hitjlaerthe performance of the
ONE-TO-ONE mapping. With the techniques we propose for pruning theléetve allow
MANY-TO-ONE mappings of a KPN to MPSoC instances that do not compromiderpe
mance. More precisely, the mapping rules guarantee thasjfected, the resulting MPSoC
instances deliver performance equal to the performanckeoMPSoC corresponding to a
ONE-TO-ONE mapping for the same KPN. Hence, the MPSoC instances defined - To-
ONE mapping andMANY-TO-ONE mappings which comply with the mapping rules, form the
set of design points representing the pruned design space.

The remaining part of the chapter is organized as followsstFive explain what system
performance means in the context of MPSoCs that execute KRfith respect to this, we
introduce some terminology that we use throughout the enaptiso, in order to motivate
and clarify the devised mapping rules, we comment on thefat¢hat affect system perfor-
mance. Then, in Section 3.2, the mapping rules are presenkeéslis followed by a discus-
sion in Section 3.3 about how the rules can be applied in joecbnsidering the specific
(polyhedral) KPN application model we use. We conclude thegpter in Section 3.4.

3.1 System performance

Recall that we consider data-flow dominated applicatiorteérealm of multimedia, imag-
ing, and signal processing. These applications naturaitgists of computational tasks trans-
forming partial streams to partial streams that are passad tasks to tasks.

Definition 3.1.1 (Data token)
A data token is a packet of data that can represent any typdarfiation.

Definition 3.1.2 (Data stream)
A data stream is a sequence of data tokens.

A stream is characterized by its data (token) rate.

Definition 3.1.3 (Data rate of a streamp,;,- )
The data ratey) of a stream4tr) is determined by the time-distance between two consezutiv
data tokens in the stream.

That is, ps = T whereT is the time-distance. Usually, the time-distance is given a

an average value over some period of time. A stream has aesthatputs data tokens to
the stream, and a destination (sink) that consumes datasdkem the stream. Consider
the example in Figure 3.1. It depicts a system with one infreasm ¢n) and one output
stream ¢ut). For clarity of the discussion, we introduce systems withitiple input and
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Figure 3.1: Example of a system.

output streams further in this chapter. The environmerti®@blstem produces data tokens to
streamin at a ratep’”  and the system consumes the tokens atgdteSimilarly, the system
produces data tokens to strean at a ratep%“’ and the environment consumes the tokens
at ratep?“t . Producing/consuming data to/from a stream can be perfbemndifferent rates,

therefore, the actual rate of the stream is

Pstr = mzn(pg"’cv p:::k) (31)

where,psl” is the rate at which the sourcer¢) of the stream{¢r) produces data tokens to
the stream, ang*?"_is the rate at which the sinkk) of the stream 4tr) consumes data

snk

tokens from the stream.

Recall that we model streaming applications by using thengabcess network (KPN) data-
flow model of computation [6] where the application tasksapEesses and passing of partial
streams is over FIFO buffered channels. Therefore, wherse¢he ternsystemwe assume
an MPSoC executing a KPN. Also, we consider systems thaticoesokens from (possibly
infinite) input streams and produce tokens to (possibly it&jroutput streams. If input data
is not available when a system attempts to consume it, thempithcess connected to the
corresponding input stream is suspended, waiting for th@ da addition, we associate the
term system performance with the throughput of the system.

Definition 3.1.4 (System throughput,rs)
The throughputAs) is the sustained rate of data tokens at the output stream(s)

The data rate is given as an average value over some periagdef tn case a system has
multiple outputs, then the system throughput represeetsum of the data rates of all output
streams. If input data is not available when a system attetoptonsume it, then the rate at
which the system generates results may be reduced (due telde introduced by waiting
for the input data) which consequently may limit the perfanoe of the system. Therefore,
in order to capture the maximum (achievable) system peidac®, we introduce the term
isolatedthroughputry.

Definition 3.1.5 (Isolated system throughputy )
The isolated throughputf) is the system throughput when isolated from its environimen
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The isolated throughputindicates the (theoretical) maximperformance that can be achieved
by the system since it depends only on the system itself ard dot depend on its environ-
ment (like in case always input data is available). In additiwe express the rate of con-
suming data tokens from an input stream and the rate of piogldata tokens to an output
stream as a function of the isolated system throughjput

p?Sn = kin-Téy

t /
p%u = kout-TSa

wherek;,, andk,,; are coefficients. For example, if the system in Figure 3.1gpers down-
sampling of a signal, theh;,, > 1. Since we defined the isolated throughput of a system
with multiple output streams as the sum of the data rated otigbut streams, then the value
of the coefficients of the output streams in such systemshgilless than 1. Note that the
system in Figure 3.1 has only one output stream, therefgrge,= 1. The coefficients that
determine the streams data rate are further discussediini$8c3.4.

Based on the foregoing discussion, we can summarize thignsyserformance depends on
the rates at which both the environment and the system peodnd consume data tokens
to/from data streams. According to Definition 3.1.4, we aige system performance
with the data rate of the output streauy,; which can be expressed in the following way:

_ _ . in in out out
TS = Pout — mln(ﬂenm Ps s Ps penv)

- min(p?:zvv kin'T:/S’a kout-Tt/S’v PZT%) (32)

Recall that we are interested in techniques for narrowingrdthe design space in a way
that preserves the design points corresponding to the MR&t&hces delivering maximum
performance. We target MPSoCs executing applications fada@s Kahn process networks
and, to narrow down the design space, we propose rules fopinaprocesses to processing
components in a way that performance is not compromised.rdardo achieve this, the
mapping rules are devised by taking into account the fadhatsaffect the performance of
such systems. For motivation and better understandingahtipping rules which we discuss
in Section 3.2, we first present these factors and commerti@nrble in affecting system
performance. The performance of a KPN executed on an MPSafeicted by the:

Throughput of individual processes when executed on psitgsomponents;

Throughput of processes when merged (grouped) for execati@ single processing
component;

e Buffer sizes of the FIFO channels;

e Cycles in the KPN topology.
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Figure 3.2: System as a process network.

3.1.1 Process throughput and system performance

Below, we show how the performance of a system, i.e., a psatgtsvork executed on an MP-
SoC, depends on the performance of the individual procesises executed on processing
components. Consider the example in Figure 3.2 which repteshe system in Figure 3.1 as
a process network consisting of three procesded3, andC). We may consider every pro-
cess in this system as a subsystem that consumes data fronsirgam(s) and produces data
to output stream(s). Therefore, Equation 3.2 which was ddffor a system holds for the
processes as well and every process is characterized bglasad throughput (performance).

Definition 3.1.6 (Isolated process throughputy;, )
The isolated throughput,) of a process is its (maximum) throughput when isolated from
the process network.

Note that the isolated throughput is not a metric of a proigssff but it represents process
performance when executed on a particular processing coempo

Definition 3.1.7 (Data path)
A data path is a sequence of connected processes such tadratatan input stream is
transformed and propagated (through intermediate stie@mnas output stream.

Hence, there are two data paths in Figure 3.2, i+ (B — C)and (4 — C).

In order to express the performance of this system (prooetsgonk), we first associate the
system performances with the data rate of its output streamat (see Definition 3.1.4),
which actually is the output stream of proc&€ss Therefore, by considering proceSsas a
(sub)system, we apply Equation 3.2:

Ts = TC = pout = Min( paz, P, o, pry P, poil’). (3.3)

In the same way, by following the data paths of the system,ameexpress the rate of all data
streams. More precisely, we can apply the same approachisydesing processds and A

as subsystems. By considering proc&sas a subsystem, we associate the performapce
with the data rate of streain Tokens are consumed by the the environment of subsyBtem
at ratep?,, see Figure 3.2. Consequently, we expesas:
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py = min( pa1, P P, pi ) (3.4)

Similarly, by considering proces$ as a subsystem, we can express the rate of streams
anda? as:

par = min( plh,, P55 P45 P ), (3.5)
paz = min( plh,, PR, pK, PE)- (3.6)
Finally, we substitute Equations 3.4, 3.5, and 3.6 in Eque3i.3 and obtain:

out out

s = min( pin,, PR p%s 0F S 0% pE, Py P PETS Pl ). (B7)

That is, the throughput of the system is determined by theastrwith the lowest data rate.
This stream is referred to as the bottleneck stream. Coesgigu

Definition 3.1.8 (Bottleneck process)
The bottleneck process is the process that causes theneettistream in a system.

Therefore, system performance is limited by the isolateduhput of the bottleneck pro-
cess. Note that if the bottleneck is caused by the environftieoughy®”  or p%4t), then
the system does not have a (real) bottleneck process.

3.1.2 Throughput in case of merged processes

Recall that the isolated throughput of a procésss determined by the time-distan@é
between consecutive tokens generated by the pro@sss called also arexecution time
of processP to produce one data token. In case a@E-TO-ONE mapping in which every
process is executed on a separate processing comp@hantdetermined by the complexity
of the process and the computational power of the processingponent. However, in the
MANY-TO-ONE mappings we target, several processes are merged togethawrfcurrent
execution on a single processing component. In this casehtbughput of the merged pro-
cesses (compared to the throughput before merging) iseffes follows. Concurrent execu-
tion is achieved by interleaving the execution of the preeson the processing component
over time. This produces the appearance of simultaneoualigl® execution of the pro-
cesses. In contrast with the real parallel execution howéve concurrent execution causes
the time-distance between the generated tokens by thddndivprocesses after merging to
increase, and therefore, the isolated throughput of thegsses to drop.

Assume that processesand B in the example in Figure 3.2 are merged together. If some
fair schedule (e.g. ®UND-ROBIN) is used for the execution of the merged processes, then
the execution time can be representedbyp) = T4 + 1. Consequently,
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1
T(ap) = T , where (3.8)

/ / / /
Tap) <Ta andT(AB) <Tp

Consequently, for the example in Figure 3.2 when processmerged with procesB, the
system throughput is expressed by

. in ! ! / / ! / ! / out
TS = mln(penlu k’in'T(AB)7 kl'T(AB)7 kQ'T(AB)7 k3'T(AB)7 k4'TC7 k5'T(AB)7 kG'TC7 kout-Tc, pen’u)

Merging of processes does not affect system performanoengsas the new (compound)
process does not become the bottleneck process of the system

3.1.3 Buffer sizes and system performance

In a KPN, data is communicated through unbounded FIFO chsnfer synchronization,
the processes use a blocking read communication mechainésmf a process attempts to
consume data that is not available, the process blocks ¢iispended) until data arrives.
Blocking (on read) of the process execution means incrgdkatime-distance between con-
secutive tokens generated by the process. The increasediigtance reduces the process
throughput. As a consequence, the process is no longeraivaihtain its isolated through-
put which is in line with the discussion presented in Sec8dnl.

Although communication FIFO channels are unbounded indh@dl definition of a KPN,
they must be bounded in actual implementations. Thereforgyarantee correct execution
of a KPN, a blocking write synchronization mechanism is iegpias well. Blocking on read
bounds the system performance to a performance determin#ehisolated throughput of
the bottleneck process, and blocking on write (due to finitifelp sizes) may additionally
reduce system performance. However, in this section we shatithere is a (lower) bound
on the buffer sizes that guarantees the performance detednby Equation 3.7. Consider
the example in Figure 3.3. It depicts a KPN consisting of fatacesses and four channels
as shown in Figure 3.3(a). In this discussion, we considatr ttie environment is not the
bottleneck, i.e., the data rate of the input stream (omittede figure) is higher than the rate
of the data streams in the system. We also consider thatticegses are executed on separate
processing components, i.e.QalE-TO-ONE mapping, and have equal isolated throughput.
Figure 3.3(b) represents the performance curve as a funatite buffer sizes. In this figure,
every point on the memory axis represents the sum of all Fl&@bsizes of the KPN. The
points on the performance axis)(illustrate the achieved throughput (in number of tokens
per unit of time) given particular buffer sizes.

A KPN can execute in bounded memory if a deadlock-free ei@tig obtained with partic-
ular buffer sizes. Therefore, for such process networlkegtis a point\/,,;,, representing
the amount of memory distributed between the buffers of t#&Fchannels in a way that
deadlock-free execution is achieved. It has been showndhtfiat the performance of a
KPN is a monotonic function of the FIFO buffer sizes. Thafas,any point)M, if
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(a) A KPN example
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Figure 3.3: Memory vs performance.
Memory: M,,in < M < 00,
then for the performance of the KPN, the following relatimids:
Throughputiras,,,, < 7ar < Too-
Below we show that a poilt/ < oo exists such that,; = 7. In addition, we illustrate
how different buffer sizes affect system performance. fgei3(c) shows the throughput
of the processes in case of unbounded FIFO buffers. The tickbe graph represent the

production of data tokens by the corresponding processesdgs names are given on the
left of the figure) when executed on processing componehis olitput generated by process
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D represents the time-distance between the tokens leawergyliem, and consequently, the
throughputr., of the system. For the chosen unit of time in this exampleKiil generates
7 tokens. Note that since the FIFO channels are unboundsakibyy on write does not occur
and the performance is determined by the bottleneck pre@messding to Equation 3.7.

Figure 3.3(d) illustrates the system performance cornedipg to buffer sizes equal to 4
(pointry), i.e.,a = 1,b = 1,¢c = 1, andd = 1. These are the minimum buffer sizes in this
example that guarantee deadlock-free execution of theepsawetwork,,,;,, = 4. Assume
that processed always produce data to channelandd, and proces® always consumes
data from channelsandd . In this way, setting the buffer sizes of all FIFOs to 1, letuls
temporally blocking of the processes during execution agxgain below. When process
A produces a token, it is written to FIFO buffarsandd. This enables proces3 which
reads data from and writes data té. Consequently, processreads data fromh and writes

to ¢. Until then, proces® is blocked on reading, and consequently, FIFO budfés full.
Therefore, next time procesbkattempts to write tal, it will block on writing until D reads
the data from it, see Figure 3.3(d). The blocking increasedgite-distance between tokens
generation and overall, the system performance is reducddakens for the chosen time
unit as the figure shows.

Figure 3.3(e) illustrates the system performangg (hen the size of FIFO buffef is in-
creased to 2. The way processes block in this case leads tovetpperformance compared
to point 74, however, since blocking on write still occurs, it is lesariithe performance
when using unbounded FIFOs.(). Note that the blocking on write is avoided when the
size of FIFO bufferd is increased to 3) which is illustrated in Figure 3.3(f). As a result,
the achieved performance is equal to the performance whieg usbounded FIFOs, i.e.,
Te = Too @nd further increasing the size of any FIFO buffers doesewd to better perfor-
mance. Note also that the achieved performance depends oretinory distribution between
the FIFO buffers. For example; corresponds to a memory distribution= 1,6 = 1,¢ = 1,
andd = 2. If the buffer size of channelis increased to 2, then the overall memory becomes
6, however, the achieved performancerjs see Figure 3.3(b). Note thaf = 75 which
means that the performance has not been improved with isiagethe memory from 5 to 6.
The performance of; is achieved only if the size of channél> 3.

In our example, at point; no processes block on write. Thereforgand pointM represent
the minimum buffer sizes that guarantee maximum performdetermined by the bottleneck
process. However, we assume that the processes have edai@dshroughput which in real
systems is not very likely to be the case. When the processes different throughput,
some of them may still temporally block on write. Therefoitemight be assumed that
this will lead to further drop in performance. It might be @s®d also that increasing the
buffer sizes would compensate for differences in the isdldhroughput of the processes,
and consequently, blocking on write would be avoided. Haugethis is not the case and
increasing the buffer sizes above pot where the size of channélis 3, is not needed,
see pointrg in Figure 3.3(b). What will happen during execution is thatadtokens will
fill buffers ahead of the bottleneck process and the buffites the bottleneck process will
become almost empty. It means that always the bottlenedepsowill have data to consume

3 In general, at different iterations processes of the palydieprocess networks we consider, may pro-
duce/consume data tokens to/from different FIFO channels.
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Figure 3.4: Dataflow cycle in a KPN topology.

and space where to write data. Therefore, the buffer sizegsmonding torg and point
M guarantee that the bottleneck process will sustain itaiedlthroughput and the system
performance is determined by Equation 3.7 (notwithstamthat other processes may block
on writing). In Section 3.3.5, we present how these buffeesiare computed for KPNs
derived from SANLPs.

3.1.4 Dataflow feed-back loops

In the previous sections, we showed that the performanc&@f executed on an MPSoC
is determined by the throughput of the bottleneck procedslamsize of the FIFO channels
used to communicate data between the processes. For boéthity discussion, we assumed
KPNs having a single input stream and a single output stream,that the processes are
connected in series. However, the data-flow in a KPN may faata-flow feed-back loops,
which influence the performance of the KPN in a particular wdnen executed. Consider
the example in Figure 3.4(a). It depicts a KPN containing fmocesses4, B, C, andD)
and four FIFO channels:( b, ¢, andd). The execution time of the processes to transform
a single data token i$4, 75, Tc, andTp, respectively. The network has one input)
one output ¢ut), and one data pathA(— B — C' — D). Note thatB — C — D forms a
data-flow loop, i.e., &yclein the KPN topology. Below, we show how such cycles affect
the performance. Assume that in the beginning, in order éz@be, process needs a token
from channek only, and after that, it continues reading tokens from bdthnmels: andd.
Note that procesB will block on reading from either channelor the feed-back channéif
data is not available when the process attempts to consuindiliis example, data produced
by processB enables process, and data produced by proceSsnables process. Until
then, proces® is blocked on reading from channel This introduces a delay of procebs
(compared to procesB) to start producing tokens on chanmkl The delay causes process
B to block on reading from channélafter producing a token on chanrtél The blocking
on the feed-back channélleads to a sequential execution of the processes involvétkin
cycle as illustrated in Figure 3.4(b), i.e., in this case éRecution of processes, C, and

D is performed one after another. From now on, we refer to sycles asrue cycles. The

4 Assume that proces$ produces tokens at a rate such that blocking of pro&ees reading from channel is
avoided.
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sequential execution of these processes increases thdistaace between the output tokens
generated out of the cycle (in our example, by prodeyso a value we associate with the
cycle:Teye = T + Tc + Tp. Consequently, the isolated throughput of the cyelg, ()

in Figure 3.4(a) is:

1
/ _
eye = Te+Tc+Tp'

meaning that the isolated throughput of a true cycle is lalan the isolated throughput of
any of the processes involved in the cycle. It implies alsu the isolated throughput of a
true cycle can be lower than the isolated throughput of thddmeck process. This is an
important observation because, in such a case, the thratghihe true cycle will determine
the KPN performance. Formally, according to Equation 27tlie example in Figure 3.4 we
can write:

_ . 3 i b b d d t t
Ts = min( plt,, P& Phs PBs PRy PEs PEs PDs PDs PRy PDYS Py )

However, due to the sequential execution of the processeled in the true cycle,

! !
Tecyc < Tps
! !
Teye < Tco
! !
Tcye < Tp»

and we may consider the execution of the true cycle as a samiiy, e.g., a processY C
with a throughput(.y-.. Consequently, for the KPN in Figure 3.4, we can apply Equedi7
in the following way:

. mn ! ! ! ! ’ ! ! ’ ! ! out
7s = min(peny, kin-Ta, k1.7a, k2.7, k3.7, ka.7c, ks.7¢, k6. Tp, k7.Tp, k8. T8, kout-TDs Peny)

. in / / / / out
= mln(pen’u:k’in'TAy kl'TA7k2'TCYC7 kout-TCYC7 pen’u) (39)

3.2 Rules forMANY-TO-ONE mapping generation

Based on the discussion in Section 3.1, we devised mappleg far creating ofMANY-TO-
ONE mappings that guarantee maximum performance, i.e., peéioce equal to the perfor-
mance ofoNE-TO-ONE mapping. The main idea of generatimgNY-TO-ONE mapping is

to exploit the difference in the isolated throughput of tlegesses and to merge processes
for execution on a single processing component (reducegtiplementation cost) such that
all the new (compound) processes have balanced througbmpared to each other. With
respect to this, and in order to guarantee thataaly-TO-ONE mapping results in an MP-
SoC instance that delivers performance which matches tfierpgnce of the system with
ONE-TO-ONE mapping, we propose the following mapping rules:
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1. Merge (group) processes in a way that the resulting (compoud) process does not
become a bottleneckAccording to Equation 3.7 and Equation 3.9, the overallayst
performance is determined by the bottleneck of the systesm, the process or the
true cycle that produces or consumes data tokens from teansthaving the lowest
data rate. Therefore, the performance of the MPSoC will lgatieely affected if a
compound process (created as a result of the merging) bectthragrocess causing
the lowest rate of a stream in the system, i.e., becomes ttlermexk.

2. Do not merge the bottleneck process with other processeRecall that the execution
time of the processes after merging is greater than the égedime of the processes
before merging (see Section 3.1.2). Evidently, if the leottick process is merged
(grouped) with other processes of the KPN, the resulting@ken time of the new
(compound) process will be higher than the execution timihnefottleneck process,
and consequently, the isolated throughput of the new psoailsbe lower than the
isolated throughput of the bottleneck process before mgrdihis will further reduce
the rate of the bottleneck stream, and thus, the overaksyperformance.

3. Merge (group) the processes of a true cycle on a single prossg component.We
have shown that the KPN processes involved in a true cyck $eetion 3.1.4) are
executed sequentially one after another. Therefore, thare benefit in mapping the
processes of a true cycle on separate processing compairecesthey will execute
in sequence. Moreover, an additional delay to the executme of the true cycle
will be introduced if processes of a true cycle are groupdt wther processes of the
network (see Section 3.1.2). Therefore, the most appr@paigproach is to merge the
processes of a true cycle together, keeping the sequergialiton of the cycle on a
single processing component.

4. Merge (group) processes along a data path witheighboring processesThis means
to merge only processes that have direct connections beteeh other. Merging
processes of a data path that do not have direct connectitoslices cycles in the
KPN topology after merging. As we already showed, when togskes are true cycles,
system performance is compromised.

To check whether Rule 1 is respected after merging of preseg&xjuation 3.1 has to be re-
evaluated for all the streams connected to the new procexds.thiat the rate of a strean()
accessed by a processifg) created after merging is

str _ /
pmrgd - k'Tmrgd’

wherer,,,., is the isolated throughput define by Equation 3.8. The dataakthe streams
have to be compared with the data rate of the bottleneckrstiearder to check whether
the merging has created a new bottleneck stream. If thiisdle, then the merging is not
valid. Note that mapping Rule 2 does not consider the dageofahe input stream(s). In this
way, the created mappings correspond to MPSoCs delivaran(hieoretical) maximum per-
formance. If however, the data rate of the input stream issknand it is lower than the data

rate of the bottleneck stream, then Rule 2 can be relaxedubedle bottleneck is actually
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25 tok/s 75 tok/s 25 tok/s 75 tok/s 25 tok/s

(a) One-to-one, DP(A, B, C, D) (b) Many-to-one, DP(AB, C, D) (c) Many-to-one, DP(A, BC, D)
Figure 3.5: Three design points (case 1) compliant with thpming rules.

the source of the input data (the environment) which is nadt @fathe system. In this case,
still Rules 1, 3, and 4 have to be respected. Relaxing Ruley2result in a reduced num-
ber of processing components of the MPSoC instances, arefohe, in more cost-efficient
implementations. An implication of Rule 4 is that the direahnections (FIFO channels) be-
tween the merged neighboring processes along a data paimbeself-loops after merging
which, as we will show in Section 3.3.3, are not true cyclesaddition, respecting Rule 4
improves data locality, i.e., less data is communicatedi®en the processing components in
an MPSoC which means less communication overhead.

Example illustrating the mapping rules

Below, we use an example to illustrate how the mapping rullesvehe design space to
be reduced. Consider the process network in Figure 3.5¢ajonisists of four processes
(A, B, C, and D) connected in series, three FIFO channelsi{ andc), and one input
(sn) and one output streana(t). Consequently, there is one data path in this KPN, i.e.,
A—B—C—D. Inorderto have a small design space for the purpose of trmpbe, assume
that this KPN can be mapped onto MPSoCs with only one type @fgssing components
and the connections are point-to-point. Every processnetated with two numbers, i.e.,
the process execution time and the isolated throughput wlkeauted on this processing
component. For brevity, the isolated process throughpatjisl to the rate of consuming
and producing data tokens from/to the corresponding cHgnine., all the coefficients that
determine the data rate of the streams are equal to 1. Cagrsthguhe bottleneck process in
this example is proces® with an isolated throughput 25 tokens/sec. Note that sineeet

is only one type of processing component, there is no neepdocify to which instance of

a processing component in the MPSoC a process is mappe@ om, design pointlp P) is
defined only by the number of processing components and thping To represent a design
point, we use the following notation: The design point cep@nding to aONE-TO-ONE
mapping is specified aBP(A, B, C, D), and a design point corresponding tMaNy-To-
ONE mapping is specified aB P(AB, C, D) when processed and B are merged together.
Defined in this way, the design space consists of 14 desigriqaie., there are 14 different
implementation possibilities. The possibilities rangenfrall processes mapped on a single
processing component, i.),P(ABCD), to every process mapped on a separate processing
componentDP(A, B,C, D). In this example, we consider one case to illustrate theipgun
of the design space by applying all mapping rules and oneinagkich mapping Rule 2 can
be relaxed, i.e.,
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(a) Many-to—one, DP(AD, BC) - true cycle (b) Many—-to—one, DP(AB, CD) - true cycle is avoided
Figure 3.6: Case 2: Two design points.

1. Input data rate is higher than the rate of the bottleneelast, therefore, procegsis
the bottleneck process.

2. Input data rate is lower than the rate of the bottlenedasty, therefore, procegs is
not a (real) bottleneck process.

In case 1, there are only three design points that comply thighdefined mapping rules,
i.e., do not merge the bottleneck process and do not inteodeev bottleneck processes.
These pointsDP(A, B,C, D), DP(AB,C, D), andDP(A, BC, D), are illustrated in Fig-
ure 3.5. Note that the latter two points correspond to MPSeilsthree processing com-
ponents which implies a reduced implementation cost. Fee & assume that the data
rate of the input stream is 18 tokens/sec (execution tin@s8)sec). In this case, the bot-
tleneck is not proces® but the input stream which allows for relaxing mapping Rule 2
i.e., to merge procesk with other processes as well in order to achieve more cosfeffi
implementations. This results in the following additiomiglsign points:DP(A, B,CD),
DP(AD, B,C), DP(ABC, D), DP(AD, BC), andDP(AB,CD). The latter two points
correspond to MPSoCs with only two processing componentgséd points are shown in
Figure 3.6. Note that poinbP(AD, BC) violates Rule 4. We use this design point as an
example to illustrate the importance of mapping Rule 4. Bygimg processed with D and

B with C, we create a true cycled(D-BC) in the KPN topology which is shown at the top
of Figure 3.6(a). The implication of this is that althougle texecution time of the merged
processes results in isolated throughput which is highaan the input data rate, the system
performance is limited to 11 tokens/sec. The reason is tloeggses!, B, C, andD are ex-
ecuted sequentially, one after another, as shown at therb@tart of the figure. In contrast, if
we respect Rule 4 and merge proceséegth B andC with D, see Figure 3.6(b), a true cy-
cle is avoided. The isolated throughput of the merged pse=e€ and D) matches the input
data rate, hence, this mapping is optimal, i.e., with respetbe rate of the input data stream,
maximum performance is achieved with minimum number of pssing components.
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Figure 3.7: System with multiple input and output streams.

The mapping rules for systems with multiple input and output streams

In Section 3.1, we showed that the system performance isndigted by the bottleneck pro-
cess. For brevity of the discussion, we assumed that theryste., the process network,
had a single input and a single output. The static and affiseeddoop programs (SANLP)
that we use to derive process networks however, may reskiPhts with multiple input and
output streams, and multiple data paths which have to be take account when applying
the mapping rules. Consider the example in Figure 3.7. hesgnts a KPN with three input
streams and three output streams. Also, some of the praoesssume data from two inputs
and some produce data to two outputs. Consequently, therawatiple data paths (see Def-
inition 3.1.7) in this KPN topology as well. Since in sucht®yss a single input stream may
contribute to the generation of tokens on several outpatgis and several input streams
may contribute to the generation of tokens to a single ougpream, in order to apply the
mapping rules defined is Section 3.2, we need to:

1. Identify for every output stream, a set of data paths dmuting to the generation of
tokens to that stream;

2. ldentify the bottleneck, a process or a true cycle, foreset of data paths.

That is, for KPNs with multiple output streams, we need taidg a set of bottleneck pro-
cesses (and/or true cycles) and to apply the mapping rutesdingly. The set of data paths
that has to be considered for a single output stream is ceepiy all data paths that end
at the process generating data to that stream. Considexahgpée in Figure 3.7. The set of
data paths for output streasnt1 consists of the following paths:

(A_D)v
(A_C_D)7
(B—C—D)

Data to output streamsut2 andout3 is generated by proceds, and consequently, both
streams lead to the same set of data paths:
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(A_C_E)v
(B_C_E)7
(B - E)

Consequently, to apply the mapping rules, we need to finddktéeheck (a process or a true
cycle) for every set of data paths. More precisely, we neeapfuy Equation 3.7 for every
set of data paths in order to find the stream with the lowest dse in the system and the
process which causes the lowest data rate of the strearectesby. Therefore, we need the
values of the isolated throughput of the processes, andta®f the data streams, i.e., values
of the coefficients in the equation.

3.3 Applying the mapping rules

The mapping rules proposed for pruning the design spaceesreragl for process networks.
However, pruning the design space in principal depends@dekidability of the considered
model of computation. In the previous section, we only shibweat there is a room for
pruning of the design space, i.e., by respecting the praposgpping rules, the number of
different implementation possibilities is reduced. Inardo apply the mapping rules, we
need to find the bottleneck process(es) and to identify tyakes in the KPN topology. In
order to do so, we need a mechanism to estimate the throughthe individual processes
and the processes when merged, the throughput of the trlescynd the rate of the data
streams. In addition, the presented discussion in the quewsection assumes buffer sizes
that do not affect performance (ideally, unbounded). Cqusatly, when bounded in an
implementation, we need buffer sizes that guarantee mawiprrformance. Unfortunately,
the (general) KPN MoC is not decidable at design time, tloeegfthe required information
can not be obtained (at design time). In this section, wegmtdsow the mapping rules can
be applied in practice considering specific properties efapplication and platform models
we use in the BEDALUS design flow.

To represent KPNs, we use polyhedral descriptions, thexgdee call our KPNs polyhedral
process networks (PPN). The PPNs are specific case of KRNSPPNs are static and ev-
erything about the execution of the process networks is knaixcompile time. Moreover,
the PPNs execute in finite memory and the amount of data coneated through the FIFO
channels is also known. This enables techniques to estithadaghput of the processes
when executed on processing components, to identify tralesyand their throughput, and
to calculate buffer sizes, therefore, to apply the mappidgs: The approach is explained
in the remaining part of this section. In Section 3.3.1, wespnt details about the represen-
tation of the PPNs we consider. In Section 3.3.2, we presemtpproach to calculate the
isolated throughput of processes when executed on patiptbcessing component, and the
throughput when processes are merged. This is followed bgaussion in Section 3.3.3
how to identify true cycles in the considered PPNs and hovstionate the throughput of the
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processes involved in the cycles. Computing the data rateeatreams in a PPN is discussed
in Section 3.3.4. Finally, in Section 3.3.5, we present howdmpute the minimum buffer
sizes that guarantee maximum performance for PPNs derggd$SANLPsS.

3.3.1 Polyhedral process networks (PPN)

Recall that we consider KPNs that are input-output equintaie static affine nested loop
programs (SANLPSs). Such process networks can be derived$®NLPs using the PSEN
tool. The PNsENtool partitions a SANLP into processes only at function kaanies, i.e., the
programmer divides the SANLP into functions (applicatiaskis), thus guiding/determing
the granularity of the automatically derived processe®ré&tore, the parallelism in our KPN
is expressed at the level of the application tasks as a pargdements a single application
task only. A process of a PPN consists dfiaction input ports output ports andcontrol.
The function specifies how data tokens from input streamsransformed to data tokens to
output streams. The function also has input and/or oututraents. The input and output
ports are used to connect a process to FIFO channels in ardesd data tokens initializing
the function input arguments and to write data generatedesudt of the function execution.
The control specifies how many times the function is exegutbéth input ports to read and
which output ports to write every time the function is execlitAs a result of the restrictions
imposed by the SANLPs discussed in Section 2.3.1, the dasftagorocess can be compactly
represented mathematically (using the polytope mode) jfitgrms of linearly bounded sets
of iterator vectors. A process hafPaocess DomairfD M p) which is the set of all iterator
vectors. Each iterator vector corresponds to one and orgyirtegral point in a polytope
The integral points are called algerationsbecause they correspond to the loop iterations in
the initial SANLP. A function has &unction Domain(D M) which is a subset 0D Mp.
Similarly, input and output ports to which function argurteeare bound, haviput and
Output Port Domain{DM;p and DMy p, respectively) that are subsets bfMp. The
integral points inDM;p (and D Mo p, respectively) specify the iterations in which a port is
read (written respectively). Formally,

DM ={P(p)NZ"}, (3.10)
whereP(p) is a parametric polytope,
P(p)={icQ",peZ™|Ai> Bp+C}, (3.11)

wherei is an iteration vectord, B andC' are integral matrices of appropriate dimensions,
andp is a static parameter vector with an affine range,

R(p) ={p€Z™| Dp > E}, (3.12)

where D and E are integral matrices of appropriate dimensions. ABd/r C DMp
subject toA’ > B’i + C’. In the same wayDM;p € DMp andDMpp € DMp. The

5 Actually a linearly bounded lattice. Without loss of gerlityawe assume lattice matrices to be the identity.
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number of integral points in a domailnM x is denoted byl x. For example, for a function
domainDMp, Ir represents the number of times functibris executed, and for an input
portI P, I;p represents the number of tokens consumed from the FIFO ehéhe stream
respectively) connected to this port.

To every function argument corresponds a set of input (goutlipports bound to the argu-
ment. In every execution of functiah, its input arguments have to be initialized. At different
iterations, an input argument may be initialized reading d&@m different ports bound to the
function argument. However, at any iteration only one paayrbe used to initialize an input
argument. Also, an input/output port may be bound to only iopat/output argument. At
any iteration, the value of an output argument may be writbemore than one output ports.
Formally,

1. An input argument of a function may be bound to more thaniopet port/ Pz with
the following relations:

DM;py U DMjpy U ... UDM;p, = DMp,
DMip1 N DMips N ... NDMip, =0

2. An output argument of a function may be bound to more thanartput portO P,
with the following relations:

DMop1 U DMopps U ... UDMopy, = DMp,
DMop1 N DMops N ... N DMoppm 2 0

3.3.2 Isolated average throughput of a PPN process

Recall that system performance is determined by the isbige®ughput of the bottleneck
process{p). Below, we present how to determine the value-pffor PPN processes when
targeting MPSoC execution. The isolated process througtipis determined by the execu-
tion timeT'» which is the time-distance between generation of outpu ttkiens:

Th = Tip (3.13)

The value ofr}, represents the isolated throughput of a process when eckonta partic-
ular processing component in our platform model. Therefitve throughput is determined
by both, the function that a process realizes and the typbeoptocessing component that
executes the process. Moreover, the execution filpecan vary in different iterations of
the process due to data dependent execution time of thedarichinsforming the input data
tokens. In [80], it has been shown that data streaming @uthites with varying processing
delay (in which PPN implementations result) take advantdgererage performance rather
than worst case performance. Therefore, in PPNs we usedlag¢eid average throughput of
a process which is defined by the average execution Time-g over the function domain
DMpg:
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Ir
1
Tavrg = - Z Tr; (3.14)
Fazi

wherelr is the number of integral points in the function doma&i/, i.e., the number of
iterations in which functiod is executed, an@'»; is the function execution time at iteration
1. In order to determine its value, a particular processingmanent from the platform model
has to be considered. The valueTaivrg can be obtained by executing functiéhon the
target processing component using some representatizesefafor a given function domain
and measuring execution times. In addition, due to the mmifarocess structure presented in
Section 2.4.1, always a process reads some ports (initiglizput function arguments) prior
executing the function and writes to some ports after thetfan is executed. Therefore,
the process execution timé used in Equation 3.13, includes the delgyp to read a data
token from an input FIFO, the average execution time of timetion executiorf’avrg, and
the delayTyy r to write a data token to an output FIFO in the following way:

Tp = IN.TRD + T(wrg + OUTTWR, (315)

wherel N is the number of input function arguments anti’T" is the number of output ports
to which the results are written.

Definition 3.3.1 (Isolated average throughput of a PPN procss, ) )
The isolated average throughput of a PPN process is thegg tlumughput defined by Equa-
tion 3.13, Equation 3.14, and Equation 3.15.

Defined in this way, the isolated process throughputepresents the maximum rate at which
data tokens are produced (to any output stream)i.erepresents how often a process may
execute its function and generate output data. We-fide compute the rate of the individual
output streams of a process. Details are given in Sectiad.3.3

When processes are merged (grouped together) in order taitexen a single processing
components, we assume a fam&®\D-ROBIN schedule. Therefore, according to the discus-
sion in Section 3.1.2, the isolated throughput of the preegsafter merging is

1 1

/ —
Tmerged - T

= ™) y
merged
E Tp;
i=1

whereTp; is the execution time of a procesdefined by Equation 3.15, amdis the number
of the processes that are merged.

3.3.3 Process throughput in case of dataflow loops

As we showed in Section 3.1.4, if the data dependences betweeesses in a process net-
work form a cycle, this may lead to a sequential executiorheffirocesses involved in the
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Figure 3.8: Execution of a PPN containing cycles.

cycle. We call these cycldgsue cycles. Consider the example in Figure 3.8(a). The process
network consists of four processe$, (B, C, and D). There is a cycle including processes
B, C, andD. Figure 3.8(b) shows a true cycle execution in which prodgssads in the
beginning data from processand then continues to read data from prodesd his leads to

the sequential execution of procesgg<”, andD. Therefore, according to the discussion in
Section 3.1.4,

1
e = ————————— 3.16
7-cyc TB + TC + TD ( )

whereT’s, T¢, andTp are the execution time (defined by Equation 3.15) to processlata
token of processeB, C, and D, respectively. Consequently, the processes in a true cycle
have equal throughput, i.ey = 7. = 7, = 7/

cyc*

Notice that in PPNs, not always a cycle leads to a sequendgution of processes, i.e.,
not all cycles are true cycles. If in the beginning of an exiecy a sufficient number of
data tokens are injected into the cycle, then it is not a tgdec The number of tokens
required to avoid an execution as a true cycle is equal togael than) the number of
processes involved into the cycle. For the example in Figu8ewe need to check for the
third execution of the function realized by procés$iow many tokens have been consumed
from streamu. Using the function domai M and the corresponding input port domain
DM,, this can be done in a formal way. More technically, this cardbne by computing
Ehrhart polynomials (available in the polylib library) vehi allows for counting the number
of integer points contained in a parameterized polyhedah [If process3 in Figure 3.8(a)
reads sufficient data in the beginning of the execution fraitside the cycle (from channel
a) such that it provides enough data in order all processe®tk im parallel, then the cycle
actually does not limit the performance as indicated by Eqn&.16, i.e., the processes of
the cycle will continue to execute in parallel even aftergessB starts reading data from
the feed-back channdl Therefore, the cycle is not a true cycle. This case is ii&ist in
Figure 3.8(c). In the beginning, proceBsreads 3 data tokens from channehnd feeds 3
data tokens to the cycle, respectively. This enables thalpbexecution of the 3 processes
involved in the cycle as the figure shows.

A self-loop is a special case of a dataflow feed-back looplédy& self-loop in a PPN occurs
when data produced by a process executing its function iriteragion is used by the same
function in another iteration. According to the discussidnove, a cycle is not a true cycle if
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Figure 3.9: Average data rate of consuming and producingnekrom/to data streams.

in the beginning, the process first “injects” a number of dakens equal to the number of
processes involved in the cycle, and then starts consunaitegftbom the feed-back channel.
This actually is the case of self-loops, i.e., in a self-loiy@re is only one process involved
into the cycle and data is first written to the cycle and themscoed (otherwise it will lead
to deadlock). Therefore, a self-loop is not a true cycle dedeixistence of a self-loop does
not influence the isolated throughput of the correspondinggss.

3.3.4 Data rate of the streams in a PPN

In Section 3.1.1, it was said that if a process network hagiphelinput/output streams and
multiple data paths, then in order to apply the mapping rulesieed to find a set of data
paths for every output stream, and to identify the bottlen@ocess for every set of data
paths. Recall that the bottleneck process is the processhvdoinsumes/produces tokens
from/to the stream with the lowest data rate. In Section®elexpressed the data rate of a
stream as a function of the isolated throughput of the pottest produces data to the stream
and the process that consumes data from the stream. That is,

_ : str stry __ - / /
Pstr = min(pp1, ppy) = min(k1.Tpy, k2.7py),

where,p$il = k;.7p, is the rate at which proceg3l produces data to streastr, andp$ls =
ka.Tp, is the rate at which proceg® consumes data from the same stream, respectively. If
a process of a PPN has multiple input/output ports, thenfferdnt iterations, data tokens
are consumed/produced from/to different ports (strearafhed by the port domains. We
illustrate this with an example in Figure 3.9(a) of a PPN pssc(’) with two input ports
(al, a2) and two output portsb( andb2). The process executes functidéhas the function
domainD M has 10 integral pointd{ = 10). Consuming data tokens from the input ports
is shown in Figure 3.9(b). During the function executionfreel by the domai M, the
process reads 6 tokens from peit and 4 tokens from poi2. Producing data tokens to
the output ports is shown in Figure 3.9(d): Procésgenerates 7 tokens to output pétt
and 10 tokens to pobR. Because consuming and producing tokens is applicatioarattmt,
the termp$i” actually represents an average rate of consuming/progltckens over the
function domainD M, see Figure. 3.9(c) and Figure 3.9(e). Recall that
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pET = k.h,

wherek is a coefficient and-, is the isolated throughput of proceBs In Section 3.3.2,
we have already shown how to compute the isolated throughputf a PPN process. To
find the value of coefficient, we use the corresponding port domaini/,,...) and function
domain (DMF) in the following way. Recall that the number of integral pisiin the port
domain () represents the number of data tokens produced/consurffina stream,
and the number of integral points in the function domdin) (represents the number of times
(iterations) the functior#” is executed. Therefore,

I ort
k=2
Ir
and consequently,
I or
pET = L rh, (3.17)
I

wherery, is the isolated process throughput. Always
DMport g DJ\/[Fy

and consequently, always,,+ < Ir. Therefore, the value df is between 0 and 1, and

str /
PP = Tp-

Note that ifI,,,,; = I, thenpii” = 7}, as illustrated in Figure 3.9(d). This is also the case
when a process has a single input port and/or single outptit po

3.3.5 Computing buffer sizes of the FIFO channels in PPNs

The formal definition of the KPN MoC assumes unbounded conication FIFO channels.
However, they must be bounded in actual implementationss ifitplies a major problem
when implementing a KPN because for the general KPN mod#giaizes are not decidable
at design time. Fortunately, for the considered PPNs, wesdéwan approach to compute a
minimum buffer sizes that guarantee deadlock-free exec(ifi]. Note that minimum buffer
sizes does not mean maximum performance because duringtiexedhe processes may
temporally block on write which additionally increases thecution delay of the processes
(see Section 3.1.3). As a result, it is difficult to reasoncliijirocess is the real bottleneck
of the system. Therefore, in order to apply the mapping rvesneed buffer sizes that do
not limit performance. Recall that the PPNs we considergHmite process, function, and
port domains. In particular, we can exploit the fact thatrinenber of integral points of an
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input/output port domafh(Z,..,) is finite. It means that if the corresponding FIFO channel
has size equal td,.,., then blocking on write is avoided. Consequently, if allfeu$ are set

to have sizes equal to the integral points of the correspgnplort domains, then the PPN
executes as it would have unbounded FIFO channels. That is:

Memory: Mip, < Mpae < 00,

where M,,;, corresponds to the minimum deadlock-free buffer sizes ctetpby PN-
GEN [7], and M,, ., is the memory requirements defined by the port domains. Tihen,
relation of the performance determined by different busiees of the PPN is:

Throughput:rar, .., < TMpee = Too-

Note thatM,,... corresponds to buffer sizes that do not limit performankerefore, we
can use these buffer sizes when applying the mapping rulesveter, depending on the
application, the value a¥/,,.. = Iy.-+ Can be very large and impractical to use. Fortunately,
for PPNs, we can compute buffer sizes, if they exists, cpaeding to memony/ such that

Mmin S M < Mmazn
TA’Lnin S ™ = TM, max "

The approach is presented below. First, we present the ligsicof computing minimum
deadlock-free buffer sizes. Then, we present the way we otertpuffer sizes that lead to
maximum performance.

Computing minimal deadlock-free buffer sizes

Computing minimal deadlock-free buffer sizes is a nontfiglobal optimization problem.
This problem becomes easier if we first compute a deadlakdchedule and then compute
the buffer sizes for each channel individually. Note thad §thedule is only computed for
the purpose of computing the buffer sizes and is discardedvedrds because the processes
in our PPNs are self-scheduled due to the blocking read/wsyihchronization mechanism.
Although the schedule we compute may not be optimal, our caatipns do ensure that a
valid schedule exists for the computed buffer sizes. Theduwle is computed using a greedy
approach. This approach may not work for process networgsieral, but it does work for
PPNs derived from the static affine nested loop programs wsider.

The basic idea is to place all iteration domains in a commenaiton space at an offset such
that the dependences in the initial program are respectée. offset is computed by the
scheduling algorithm described in [82]. By fixing the offsef the iteration domain in the
common space, we have therefore fixed the relative orderdagtany pair of iterations from
any pair of iteration domains. The algorithm starts by cotimgufor any pair of connected
processes, the minimal dependence distance vector, bedrdjfference between a read op-
eration and the corresponding write operation. Then, thegsses are greedily combined,
ensuring that all minimal distance vectors are (lexicogiegily) positive. The end result

6 In PPNs, for any input port/(P) and output port@P) connected to a FIFO channdl;p = Iop, see also
Definition 2.5.1.
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1 void main() { 0 1 iterations

for (inti=0; i<N; i++) A N_l; i
a[i]=AQ; Al i il A A
5 for (intj=1; j<=N; j++) { B | 1142 : N _,
blj]=B(alj-11); 110 10| 1|o| 1|o| 1|0
c[j1=C(b[j]);
, elil=cclin cly Ly N,
for (int k=1; k<=N; k++) 0 XJ 0 0
10 D(a[k-1],c[k]);
} D 1 2 N K

dependence distance

(a) Sequential program (b) Representation of the data dependences

Figure 3.10: Example of a sequential program for the PPNguie 3.3(a).

is a schedule that ensures that every data element is whigfme it is read. For more in-
formation on this algorithm, we refer to [82], where it is &ipg to perform loop fusion on
SANLPs.

Consider the sequential program in Figure 3.10(a). It tesalthe process network in Fig-
ure 3.3(a). Recall that we used this process network as ang&ao illustrate how buffer
sizes affect performance. For illustrative purposes, vegtiis same process network to show
how the minimum deadlock-free buffers as well as the bufferssthat guarantee maximum
performance are computed. The data dependences are dapi€tigure 3.10(b). The hor-
izontal axes illustrates the single dimension of the iteratiomains of the processes (func-
tion calls) A, B, C, and D, and the arrows show the data dependences. The value of the
dependence distances are shown next to each arrow. As atepxasvalid global sched-
ule is computed by combining processes together in a wayktdegis the distance between
write operations and the corresponding read operationgsmalh The result is shown in
Figure 3.11(a). In this figure, next to each arrow, we alsastiee FIFO channels used to
propagate the corresponding data at each iteration, dQ & is used to propagate data
between processe$ and B. In the common iteration space, the horizontal axis remtsse
the single dimension of the problem and the vertical axisaggnts the additional dimension
that orders the statements inside the inner loop.

To compute the buffer sizes, we compute the number of reeatite@sR(:) that are executed
before a given read operatioand subtract the resulting expression from the number aéwri
iterationsiV (¢) that are executed before the given read operation:

#elementsin FIFO at operationi: W (i) — R(i)

This computation can be performed entirely symbolicalingshebar vi nok library [83]
that efficiently computes the number of integer points in@peetric polytope. The result is
a piecewise (quasi-)polynomial in the read iterators amedprameters. Then, the required
buffer size is the maximum of this expression over all readhiions:

FIFO size = max( W (i) — R(i) )

7 For the scheduling of processes having domains with diffedenensions, all iteration domains are embedded
in spaces of the same dimension (i.e. the dimensions ardizag)a with a fixed coordinate value for the extra
“dummy” dimensions. This is equivalent to (virtually) addiextra loops containing only one iteration.
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(a) Schedule for minimum buffer sizes (b) Schedule for maximum performance

Figure 3.11: Two schedules for the PPN in Figure 3.3(a) usedrinpute minimum deadlock-
free buffer sizes (a), and buffer sizes guaranteeing maxiperformance (b).

To compute the maximum symbolically, we apply Bernsteinaggion [84] to obtain a para-
metricupper boundn the expression.

Below, we show how the buffer sizes are computed based orctieglale in Figure 3.11(a).
Consider FIFOa. Let the number of elements written to the FIFO by procdssefore
iteration is denoted asV§ (i) and the number of elements read from the same FIFO by
processB before iteration is denoted ast 4 (i). Then, for every iteration, : € [1, N], we
compute the differencd § (i) — R 5(¢) and assign the maximum difference as the buffer size
of FIFO channet. For example, consider the fourth iteration of the commeration spaces

(z = 3). Then,

We(3) — RA(3 3-2=1.

~—

Due to the uniform data dependences in the examplg(:) — R5(i) = 1,Vi € [1, N] and
consequently the size of FIFO chanaek max( W§(i) — R5(i) ) = 1. In the same way,
we compute the buffer sizes of the remaining FIFOs, i.e.,

size of FIFO channél = max( Wj(i) — RA(i) ) =0,
size of FIFO channel = max( W& (i) — R5(i) ) = 0,
size of FIFO channel = max( W4 (i) — RA(i) ) = 1.

Because a buffer size can not be zero, buffer sizaxe assigned to all FIFO channels being
the minimum buffer sizes that guarantee deadlock-freeugiamtof the process network (see
also Section 3.1.3).

Computing buffer sizes that guarantee maximum performance

If we look at Figure 3.11(a), we see that the scheduling @lyorscheduled processés
C, and D for execution at the same iterations of the common iteratjmace. This means
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that write and the corresponding read operations are stgubdtithe same iterations where
correctness is guaranteed by the lexicographical ordettemniolocking semantics. This leads
to the minimal buffer sizes, however, as we showed in Se@&i&rB, these buffer sizes also
lead to temporal blocking on write during the execution @& tirocesses and therefore, to
reduced performance. Recall that after procéssgrites data to channelsandd, it blocks
on writing to (the full) channet! until processD reads data from it. In order to guarantee
maximum performance, we need to compute buffer sizes sathib temporal blocking of
the execution is avoided (as in the case of unbounded FIFD8}. easily can be achieved
by modifying the scheduling algorithm in the following way¢hen processes are combined
(in the common iteration space), the algorithm ensuresthairite and read operations of a
write-read pair are scheduled at the same iterations. Fh#ie algorithm “shifts” the read
operations at further iterations with relation to the cep@nding write operations.

For the process network we use as an example, the shiftingpieteéd in Figure 3.11(b).
Once the schedule is found, the buffer sizes are computdtkisame way as we already
described:FIFO size = max( W(i) — R(i) ). For the example, this results in buffer
size1l for FIFO channels:, b, andc; and buffer size3 for FIFO channeli. As we already
discussed in Section 3.1.3, these buffer sizes avoid bigakn write. Consequently, these are
the minimum buffer sizes that guarantee maximum performdetermined by the bottleneck
process.

3.4 Conclusion

In this chapter, we presented techniques to prune the dsgage by reducing the number of
implementation possibilities of MPSoC instances wherén@dBSoC instance is defined by
an application (KPN), a platform, and a mapping. In the pressapproach, the design space
is reduced by limiting the number of possible mappings tat@sRANY-TO-ONE mappings
which deliver the same (maximum) performance asdke-To-oNE mapping for the same
application and platform. Also, in this chapter, we disedsthe factors that affects system
performance. Taking these factors into account and givektiowledge we have about our
application and platform models, we proposed mapping tthiasallow for creatingnANY -
TO-ONE mappings while keeping the performanceadE-TO-ONE mapping. In addition,
we discussed how the mapping rules can be applied in pramitgidering the KPN appli-
cation model and the polyhedral descriptions we use to sepitea KPN. An assumption of
the presented discussion in this chapter is that the FIF@raHa are bounded to sizes guar-
anteeing maximum performance. Consequently, for KPNseerirom static affine nested
loop programs, we presented how such FIFO sizes are comatudiegign time.

In this chapter, we showed that the devised mapping teckrigan effectively prune the de-
sign space without compromising the quality of the generatsults (i.e., the design points
representing MPSoC instances). Therefore, the preserdp@ing approach can be used to
complement the techniques in the S\ME tool in order to improve the design space explo-
ration in the DAeDALUS design flow.
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Case studies

In this dissertation, we proposed methods and techniquelmse the implementation gap
(introduced in Chapter 1) between the System and the RTlreadtisin levels of description.
These methods and techniques are implemented in dEpBLUS framework presented in
Section 1.2. With REDALUS, the implementation gap is closed in a particular way bexzaus
we target only embedded multiprocessor systems that exelaih-streaming applications
in the domain of multimedia and signal processing using tR&KMoC as a programming
model. DreDALUS offers a fully integrated tool-flow for very fast explorati@nd imple-
mentation of alternative MPSoCs, where design space eapdar(DSE), system-level syn-
thesis, application mapping, and system prototyping of MBSare highly automated. In
this chapter, we present three case studies which demtmttespotential and the efficiency
of our methods and techniques for automated MPSoC designnrstof overall design time,
achieved performance, and HW utilization. Also, we comnuemthe accuracy of the results
obtained by performing high-level system simulations {foiyithe DSE process) compared to
real implementation numbers.

The first case study uses a JPEG encoder application to steosteps in REDALUS to
close the implementation gap in the system-level MPSoCgdedlt illustrates a complete
flow, starting from a sequential program, performing systewel DSE with &SAME, syn-
thesizing design instances witlsBEAM, and prototyping them by using commercial synthesis
and compiler tools. In this case study, we illustrate théghetime and the efficiency, in terms
of HW resource utilization, of our approach for connectimggessing cores using commu-
nication component, memories, and controllers. In adaljitiee comment on the accuracy of
the models used in the system-level DSE process by compherachieved results with the
results we have obtained by measuring actual numbers frahmnplementations.

In the second case study, we address heterogeneous MPSefesheth programmable pro-
cessors and dedicated IP cores are used as processing antgdiie illustrate the approach,
discussed in Section 2.4, for integrating of predefined lRR€into heterogeneous systems
by using automatically generated IP Modules. We show itsieficy by implementing three
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applications, namely, the JPEG encoder application usttkifirst case study, a Sobel edge
detection, and a Discrete Wavelet Transform (DWT). In tlaisecstudy, we comment on the
design time, IP core integration time, resource utilizatid the prototyped systems, and the
obtained performance results.

The purpose of the last case study is to pustEDALUS “to the limit” in order to check how
large and complex systems can be designed using the propetkddology and considering
the constraints imposed by the FPGA technology we use. d$rctige study, we are interested
in the maximum performance that can be achieved, theref@eonsider MPSoCs with a
point-to-point communication topology only. We report d tsize, in terms of number of
processing components, and the performance achieved byasalternative homogeneous
and heterogeneous MPSoC instances. In this experimentR&oC instances realize the
JPEG encoder application exploiting both task and datdlphsen.

4.1 Experimental setup

Currently, for fast prototyping in order to validate our apgch, we use the Xilinx VirtexlI|
and Virtexll-Pro FPGA technology. Therefore, our librafypoocessing components include
the two programmable processors supported by Xilinx. Ttasethe MicroBlaze [42]
soft-core processor and thiewer PC' [43] hard-core processor. In addition, our platform
(library of components) contains several dedicated predédflP cores. Our approach for
IP core integration imposes several requirements for tieseiscussed in Section 2.4. The
communication part of our platform model contains sevesatmunication components, i.e.,

a point-to-point network, a crossbar switch, and a sharedbmponent with several arbitra-
tion schemes. Thessommunicatiortomponents are mutually exclusive and determine the
communication topology of a multiprocessor platform insi&

In the experiments presented in this chapter, we used an FRP@8typing board connected
to a Pentium based personal computer (PC) through a PCldogerThe FPGA board con-
tains 6 banks of static memory, 256K x 32bits each. The mewammbe accessed either from
the PC or the FPGA and it is used for data communication betilee PC and the FPGA
board. The PC serves only as a host to the FPGA board, i.eRGhis used to configure
the FPGA, and to organize the input and the output data &esisThe output generated by
EspaM is used to generate the bit-stream file that configures theAFBGwWhich we use a
GCC compiler and a VHDL synthesizer provided by Xilinx [10].

4.2 Homogeneous MPSo0Cs design withAEDALUS

To demonstrate the steps in theEbALUS system design flow, in this case study we use
real-life example, namely a JPEG encoder application. Tha& rabjective of this exper-
iment is to show that BEDALUS successfully closes the aforementioned implementation
gap. In this case study, we evaluate the effectiveness afdbign flow for automated MP-
SoC synthesis, programming, and implementation in termstaf design time, i.e., how
fast alternative multiprocessor systems can be syntheesmegrammed, and implemented.
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Also, we comment on the HW resource utilization of the impéeted MPSoCs employing
our approach to connect processors using a communicatiopaeent, memories, and con-
trollers. In addition, we validate, in terms of accuracy High-level simulation models used
in SESAME to explore the design space targeting MPSoCs WitixroBlaze (M B) and
PowerPC (PPC) processors, and crossbar communication topology. Weeptescom-
parison between the results obtained by running systesi-$éwulations (during the design
space exploration) and real implementations of the JPE@damapplication. The system
design steps in BEDALUS are outlined below.

1. KPN generation. Starting from a sequentiél program of the JPEG encoder, an equiv-
alent KPN specification is derived automatically by thed®N tool. Recall that the
input of PNGEN are sequential programs restricted to the class of stdiieafested-
loop programs which were discussed in Section 2.3.1.

2. System-level DSE.The derived KPN specification is used bg$S\ME to perform
system-level DSE using high-level models of the componfeois the platform model
presented in Section 2.1.5eSAME allows for quickly evaluating the performance of
different application-to-MPSoC mappings, HW/SW partiiitgs, and target MPSoC
topologies. The exploration results in a number of prongi$ilPSoC design instances,
candidates for implementation.

3. System-level MPSoC synthesiA system-level description of an MPSoC is translated
to RTL by the ESPAM tool, presented in Chapter 2. The input tef#AM is the KPN
specification and the high-level system specifications, aglatform and a mapping
for an MPSoC instance. Using these specifications and tegeiith the RTL version
of the platform components, 4eAmM automatically generates synthesizable VHDL that
implements each candidate MPSoC instance. In additierAl generates’ code for
these KPN processes that are mapped onto programmable cores

4. Final implementation. The output generated bysEAM is subsequently used by com-
mercial synthesis tools and compilers to generate the fimaleimentation of the MP-
SoC instances. Since withABDALUS we currently use the Xilinx FPGA technology,
the MPSoCs are prototyped on a Xilinx FPGA using the XilinatRirm Studio (XPS)
tool [10].

4.2.1 Designtime

As explained in Section 1.2,92AM needs three input specifications, namely an application
specified as a KPN, a platform specification, and a mappingfsgation. Table 4.1 shows
that the KPN specification of the JPEG application was ddiin@2 seconds from sequential
C code using our PNEN tool [7]. A small manual modification (taking no longer thad 3
minutes) to the initialC' code was necessary to meet thed®N tool input requirements.
Generating the KPN specification is a one-time effort sileesame specification is used for
all subsequent exploration and implementation steps.

The platform and the mapping specifications were generatesESAME after performing
design space exploration using the derived KPN specificatiche JPEG application as an
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Table 4.1: Processing Times (hh:mm:ss).

Design Tools in KPN Plat./Map. | System to Physical Manual
steps | DAEDALUS Deriv. Deriv. RTL conv. | Implement. | Modific.
Step 1 PNGEN 00:00:22 — — — 00:30:00
Step 2 SESAME — 01:26:00 — — —
Step 3 EspPAM — — 00:25:00 — —
Step 4 XPS — — — 18:29:00 —

input. We explored heterogeneous, crossbar-based MP%dforpis with up to 4 proces-
sors (M B or PPC). In our design space exploration, we used three degreageddm,
namely the number of processors in the platform (1 to 4), ype of processors\{ B ver-
susP PC), and the mapping of application processes onto the procesthis resulted in a
design space consisting of 10148 design points. In thisrerpet, the mapping rules pre-
sented in Chapter 3, are not applied. Instead, by usegpSBE and performing system-level
simulations, we exhaustively explored the resulting desigace. The reason of exploring
the whole design space is to verify the proposed mapping mitech we do in the following
way: Evaluate all design points from the design space, s#Hedest found design points,
and check whether they actually comply with the proposedpimgprules.

As illustrated in Table 4.1, the complete design space sweap 1.5 hours. We selected
11 design points that represent 11 alternative MPSoCs wéhbest found application-to-
MPSoC mappings in terms of performance of the applicatie@teted on these MPSoCs.
Then we checked, and the results confirmed that the mappitigeafelected 11 best design
points comply with the mapping rules presented in Chapteft® generated platform and
mapping specifications for each of the selected 11 desigriggdogether with the application
specification (KPN), are used bysBAM to synthesize, program, and generate 11 multipro-
cessor systems at RTL. This process took 25 minutes, see ZdblThe generated files were
automatically imported to the Xilinx Platform Studio (XP®Yl for physical implementation,
i.e., mapping, place, and route onto the FPGA. For protatyi this experiment we used an
FPGA board with the Xilinx Virtexll-Pro-20 device. It tooké XPS tool more than 18 hours
to implement the 11 MPSoCs. All tools ran on a Pentium IV maefdt 1.8GHz with 1GB
of RAM. The figures in Table 4.1 show that a complete impleratom and programming of
all 11 MPSoCs starting from high abstraction system-lepgetgications can be obtained in
just about 22 hours using our system design flow. So, a signifieduction of design time
is achieved.

4.2.2 Performance results and accuracy of the DSE numbers

Performance results are shown in Figure 4.1. The performmanmbers obtained during
design space exploration by simulations of system-leveletsfor the selected MPSoCs are
shown in Figure 4.1(a). The real performance numbers foséime MPSoCs implemented
and run on the FPGA are shown in Figure 4.1(b). In both figunesléft axis shows the
performance numbers (in clock cycles) of each alternatin®SKIC. The right axis shows
how many processors an MPSoC contains and the bottom axisdiaw many of them are
MicroBlaze processors. For example the bar with right coordinate 4 attdim coordinate
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Simulation results Prototyping results
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(a) Simulation results (SsAME) (b) Prototyping results (&PAM)

Figure 4.1: Validation experiment: simulation resultsastual measurements.

2 (4,2) represents the performance of a system that has ¢gmos where 2 of them are
MicroBlazes. It means that the other 2 afwer PC' processors. The empty points in the
figures represemnton-implementablédesign points, i.e., point (3,4) means a system with 3
processors and 4 of them to Bé&icroBlazes.

The performance numbers in Figure 4.1 show that with a 4gssar MPSoC, a performance
improvement close to the theoretical maximum# attainable. An important observation,
however, is that the performance degrades with increasiagntimber ofPower PC' pro-
cessors. This is because on the Xilinx FPGA&awver PC processor uses a single (shared)
memory for storing instructions and data, although RBlaeer PC architecture allows for us-
ing separate memories. The shared memory needs arbitvetich amortizes the efficiency
and the higher working frequency of thi&wer PC processor compared toMicroBlaze
processor. Comparing the simulation numbers with the implgation numbers, we see that
the system-level simulations adequately show the cormdopnance trends, with an aver-
age error of 13% and worst-case error of 28%. The inaccuwgéeiterms of absolute cycle
numbers are caused by the high-level modeling of the procgdsehavior (mainly of the
Power PC shared memory) and the request-based communication nmschakctually, ac-
curacy is the price we have to pay in order to achieve verysiastilations and design space
exploration.

Using EspAaM and the XPS tools, we implemented, ran, and measured therpexrfice of the
alternative MPSoCs described above in approximately 2.dass fact indicates that in a
relatively short amount of time we were able to explore thégueance of alternative multi-
processor systems through real implementations and nmezasuts of actual numbers. These
numbers are 100% accurate. Gathering these numbers is tfzesterunning cycle accurate
simulations of the MPSoCs. We do not know how much time is adddr an experienced
designer to verify an RTL simulation of several hardwirethpmnents and several processors
running in parallel and executing different programs. Hegrewe know that only setting up
and performing such simulation may take days. Of courséppaing simulation at a higher
level of abstraction is faster than implementation and meament of real performance but
the 100% accuracy of the numbers cannot be achieved as wedlahove.
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4.2.3 Synthesis results

In Table 4.2 we present the overall resource utilizationhef multiprocessor systems with
4 processors we consider in this experiment. We also préisenttilization results for the
communication controllers (CC) and a 4-port crossbar carepb(CB). The FPGA resources
are grouped into slices that contain 4-Input Look-Up talled Flip-Flops. The first row in
the table show that the multiprocessor systems utilizerat@®% of the slices in the FPGA.
Also, the last three rows show that our communication corapo(CB) together with the
CCs in each system utilize a minor portion of the FPGA slicesmly 5%. These numbers
clearly indicate that the approach to connect processooagi communication components
and communication memories, proposed in this dissertasomry efficient in terms of slice
utilization. The last column in Table 4.2 shows a relativieigh overall utilization (60%)

Table 4.2: Resource Utilization.

#Slices #4-Input LUT | #Flip-Flops | #BRAMs
4 Proc. & Crossbar| 3653 (39%) | 4748 (25%) | 2357 (12%) | 85 (60%)
4 CCs & CMs 288 (2%) 468 (2%) 116 (1%) 9 (7%)
4 Port Crossbar 397 (3%) 587 (3%) 56 (1%) —

of the on-chip memory. This high utilization is not relatedinefficiency in our approach
to connect processors via communication memories becausath JPEG system we use
a maximum of 9 BRAM blocks (out of 85) to implement FIFO buffedistributed over 4
communication memories. The high BRAM utilization is duethe fact that almost all
BRAM blocks are used for the program and data memory of the@dgssors in our MPSoCs.

4.2.4 Conclusions

In this case study, we used the JPEG encoder applicatioetitaggcrossbar-based MPSoCs.
We illustrated the design time and the efficiency of our apphg in terms of HW resource
utilization, for connecting processing cores using comitatfon component, communica-
tion memories (CMs), and communication controllers (C@spaddition, we commented on
the accuracy of the models used in the system-level DSE gso@&ased on the experiments
conducted in this case study, we conclude that the automatioieved with BEDALUS sig-
nificantly reduces the design time starting from systenellepecification and going down
to complete implementation. That is, we are able systemlgti@automatically, and quickly
to implement and to program a multiprocessor system withiro@rs. Moreover, the pre-
sented results show that the proposed approach of congguticessors through CCs and
CMs is efficient in terms of HW utilization and performancessg-up. For the JPEG en-
coder application implemented with four processors, theroanication logic utilizes only
5% of the resources and the achieved speedup is close togbeetital maximum as com-
pared to a single-processor system. Based on these regeltsnclude that the main lim-
itation on the size of a multiprocessor system that can bl dia single FPGA chip still
remains the amount of on-chip memory. Using the FPGA on-gfeémory instead of exter-
nal memories is crucial for the high-performance multigssor systems we target because
external memories are slower than on-chip BRAMs and ustiadlyexternal memories have
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to be shared between multiple processors which furthetdithe performance. In addition,
the system-level simulation results adequately show theecbperformance trends. For the
JPEG encoder application, the average error is 13% and tret-a@se error is 28%.

4.3 Heterogeneous MPSoCs design withAEDALUS

In this section, we present some of the results we have aaidiy implementing and execut-

ing three applications, namely the JPEG encoder applitased in the previous case study,
a Sobel edge detection, and a Discrete Wavelet TransformT()D@hto homogeneous and

heterogeneous multiprocessor systems. The main objexftiés experiment is to evaluate

the approach, discussed in Section 2.4, for integratingedgfined IP cores into heteroge-
neous systems by using automatically generated IP ModMlere precisely, we evaluate the

effectiveness of the proposed HW IP core integration in seofidesign time, achieved per-

formance, and HW resource utilization of the generated I lks. For prototyping purpose

we use an FPGA board with one Virtex!l-6000 device.

4.3.1 Designtime

In this case study, we started with the three application®ét DWT, and JPEG) given as
sequentialC’ programs and automatically derived tApplication Specifications.e., KPNs
using the PNSEN tool in 5 minutes. Details about the derived KPNs are preskimt [7].

For each application, the system-leRatformandMapping Specificationsere written by
hand in XML format in 10 minutes. In this experiment, eachief three homogeneous MP-
SoCs contains B/ icroBlaze processors connected via crossbar communication componen
Having all three input specifications for each applicatibe, EsPAM tool generated and pro-
grammed a homogeneous multiprocessor system at RTL, whashimyported to the Xilinx
XPS tool for physical implementation onto the prototypirg@A. The overall design and
implementation time of each homogeneous system was abdwan

We have performed similar actions as described above inr dedgenerate threbetero-
geneousnultiprocessor systems using our design flow. We had to matify the initial
system-levePlatform and Mapping Specification®r each application in order to replace
some of theMicroBlaze processors with dedicated HW IP cores. This took us less3han
minutes. For the Sobel application, we used/3croBlaze processors and 2 dedicated IP
cores. The IP cores estimate the first derivative of an imatgesity function. For the DWT
application, we used MicroBlaze processor and 4 dedicated IP cores. The IP cores are 2
Low and 2 High Pass filters. For the JPEG application, we usktidoBlaze processors
and 1 Discrete Cosine Transform (DCT) IP core. Again, theai/design and implementa-
tion time of each heterogeneous system was about an hour.

As explained above, in the heterogeneous systems we usexhkdegdicated HW IP cores.
They were written in synthesizable VHDL. For the Sobel andD&pplications, the IP cores
have a simple structure, i.e., they implement convolutiaseol operations. These IP cores
have been developed and added to the library of platform ooepts in about one working
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Figure 4.2: Experimental performance and synthesis iesult

day. For the JPEG application, we used an IP core that pesfarBCT operation. We have
downloaded this IP core from the Xilinx website [85]. In orde add this IP core to the
component library in BEDALUS, we had to make small modification related to the control
(Enabl e/val i d) interface discussed in Section 2.4.3. The DCT IP core plexy/by Xilinx
hasVal i d signal but it does not havenabl e signal. This signal was added to the IP core
and the IP core to the library within 30 minutes.

4.3.2 Performance results

The performance numbers we have obtained for the implerdemtdtiprocessor systems are
shown in Figure 4.2(a). For each multiprocessor system wasuored the exact number of
clock cycles needed to process an image of sizex128 pixels. As one may expect, the
numbers in the figure show that the heterogeneous systenevadietter performance. This
is because the dedicated HW IP cores we use, work more effictban theMicroBlaze
processors for the same functionality. What is more impattadiscuss here is the achieved
speed-up depicted in Figure 4.2(a) above the bars of thedysteeous systems in order
to show the efficiency of our approach for IP Module generatiad IP core integration.
Consider the performance results of the JPEG systems. TH@ application consists of 5
tasks, i.e., Videoln, DCT, Quantization (Q), Variabledémencoding (VLE), and VideoOut.
The left part of colummrHOMOGENEOUS Figure 4.2(b) shows how many thousands of
clock cycles it takes for &/icroBlaze processor to execute each task by processing one
data token — an image block of 8x8 pixels. The numbers in tlxé g@umn show the same
information in percentage of the overall processing timlkzet by each task. It can be seen
that the DCT is the bottleneck of the system taking more ttG# 6f the whole processing
time for one block and consequently, for the whole image s&f% mean that if the DCT is
substituted with more efficient implementation, theoi@tc the overall performance of the
system can be increased at most 2 times. The colHEREROGENEOUSN Figure 4.2(b)
shows the clock cycles and the percentage of each task pedidry the heterogeneous JPEG
system where the DCT is implemented by a very fast dedicat&dPicore and integrated
using our IP Module generation approach. In this systemD@ig utilizes less than one
percent of the whole processing time. In this case, Fig@@fishows that the overall speed-
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up compared to the homogeneous system ig «uBich is close to the theoretical maximum
2x for the heterogeneous system where only the DCT is a dedi¢Bteore. This clearly
shows the efficiency of our approach for IP core integratipgdnerating IP Modules.

4.3.3 Synthesis results

Recall that an IP Module generated by ther&M tool consists of an IP core and a wrap-
per around it where the IP core is given and only the wrappgeigerated by ErPAM, see
Section 2.4. Therefore, we present only the HW resourcialtiibn of our generated wrap-
pers in order to show how efficient our wrappers are in termgtibzed HW. In Table 4.3,
we present the resource utilization of the IP wrappers oflRixores that we used in our
experiments. Each rolfrapperl-Wrappej6n Table 4.3 corresponds to an IP wrapper.
The utilized FPGA resources are grouped into Slices thatadod-Input Look-Up tables
and Flip-Flops — see columns 2, 3, and 4, respectively. Thebeus show low HW resource
utilization which on average is 241 slices. Moreover, theoteces utilized by a wrapper
does not depend on the size of the IP core it integratesailarger IP core does not require
a larger wrapper. For example, Wrapper3 of the DCT corezaslionly 208 slices whereas
the DCT IP core itself utilizes 1369 slices. Wrapper2 of tRecbre that estimates the first
derivative in Sobel utilizes 240 slices, whereas the IP @eedf utilizes 424 slices.

Table 4.3: HW resource utilization of the IP wrappers.

#Slices | #4-Input LUT | #Flip-Flops
Wrapperl 221 371 190
Wrapper2 240 371 192
Wrapper3 208 361 147
Wrapper4 274 412 173
Wrapper5 269 390 173
Wrapper6 236 351 157

In general, the HW complexity of our wrappers is determinedy by the number of MUX
and DeMUX components, the number of counters implemerjtimgoops of a KPN process,
and the number of behavioral parameters of a KPN processhiéeapplications we used in
our experiment process images. We specified the applicatiith two nestedor-loops that
iterate through an image and we used two behavioral parasretdoop bounds, i.e., image
width and height. Since the numberfof-loops and behavioral parameters is the same for
all wrappers in our experiment, the difference in the reseutilization of our wrappers is
caused by the different input/output ports of the wrappedsiay the different input/output
ports of the IP cores they integrate.

4.3.4 Conclusions

The purpose of the case study presented in this section vilasstoate the method and tech-
nigues implemented in&AMfor automated integration of dedicated hardwired IP car&s i
heterogeneous multiprocessor systems where both progahtamprocessors and dedicated
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IPs are used as processing components. The integratiosas loa an IP Module generation
that consists of predened dedicated IP core and a wrappemncib The proposed IP core
integration approach was applied on three real-life apfibos, i.e., a Sobel edge detection,
a Discrete Wavelet Transform, and a JPEG encoder. Baseceabthined results, we con-
clude that the IP core integration irsBAM is efficient in terms of achieved performance and
HW resource utilization.

4.4 Putting DAEDALUS to work

The previous two case studies confirm that the methods ahditpees implemented in the
DaeDALUS design flow successfully close the implementation gap thteed in Chapter 1.
Moreover, both case studies show that theeDALUS methodology is efficient in terms of
design time, HW resource utilization, and achieved redoltdoth homogeneous and het-
erogeneous MPSoC designs. Subsequently, the purpose effieement conducted in this
case study is to pushABEDALUS "to the limit“ in order to check how large and complex sys-
tems, in terms of number of processing components, we cagrdasd implement given the
constraints imposed by the FPGA technology we currentlyfoisprototyping. In addition,
we are interested to find out what is the maximum performahnaedan be achieved given
the application (in this case study, the JPEG encoder),¢biggd methodology, and the con-
straints of the used FPGA technology. Metrics in this casdysare the speed-up achieved
by the considered MPSoCs compared to the JPEG applicatemutsd on a single-processor
system and the efficiency of these MPSoCs, where

speed — up

efficiency = - .
# processing components

Based on the performance results obtained in the previcusase studies, we realized that
given the JPEG application and the components in the IP cosrs library, by exploiting
task-level parallelism only, the maximum attainable spepds around . Therefore, in
order to achieve higher speed-up, we need to consider dedfigliam as well. Data paral-
lelism means that several identical tasks (ely;T") process different data. Unfortunately,
the JPEG algorithm does not allow multiglel, £ tasks to work in parallel which becomes
the potential bottleneck of the application when consitgdata parallelism. Therefore, the
only way to achieve higher performance is to split the inmage in tiles and each tile to be
processed independently. The JPEG KPN for a single tile xploittask-level parallelism by
pipelining tasks as well as data-level parallelism by penfaog multiple DCT and( tasks

in parallel. This requires a modification (transformatiofh}he initial sequential program,
which we performed manually before using the &\ tool to generate the corresponding
KPN. By processing the input image in tiles, the performatareincrease linearly with the
number of tiles processed simultaneously, which means aigo the number of processing
components in an MPSd®e latter is limited by the available resources in the tafigeGA)
technology which is considered in the high-level desigresgploration step in EEDALUS
performed by §SAME.
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441 Simulation-level DSE

The design space considered in the following DSE experisisrdetermined by the target
MPSoC implementations and it is currently constrained by:

1. The amount of the available memory.In order to achieve high performance, in our
MPSoCs we use on-chip memory for processors’ program aradsgaiments, includ-
ing buffers for inter-processor data communication. We dbaonsider using exter-
nal (off-chip) memory because of its large latency compaoetthe on-chip memory.
Moreover, usually there is a limited number of availableeexal memory banks which
requires the external memory to be shared between seveia@gsors. This fact sig-
nificantly limits the overall MPSoC performance. We use exdémemories only for
communication with the environment (source of data andmsdn of the generated
results). An average size FPGA nowadays has around 200-B860Kn-chip mem-
ory distributed on several blocks. In our experiments, we aiilinx VirtexII-6000
FPGA, and therefore, we constrain the total MPSoC memorg tgpgto 288KB, being
the amount of on-chip memory of this FPGA.

2. The type of the processing componentsThe MPSoCs are built of components from
our library. The library is under development and curreatigitains two programmable
processorsPower PC (IBM) and MicroBlaze (Xilinx). In addition, the library con-
tains several dedicated HW IP cores. However, for the JPES®dEm we can use
only one, i.e., the Discrete Cosine Transfort({T") IP. For the considered FPGA,
Power PC' processors can not be used. Therefore, the processing cemisaf the
MPSoCs are limited tdZicroBlaze processors anfPCT HW IP cores only.

In this experiment, we assume that the image that needs torbpressed is tiled, and that
multiple JPEG encoders can process these tiles in paralhés is illustrated in Figure 4.3,
which also shows the corresponding KPN of the JPEG encogbdicapon for one tile. The
number of KPN processes and the constraints discussed edsaiein a design space con-
sisting of a huge number of design points which makes thecamprapplied in the first case
study, i.e., evaluating the whole design space, infeagibieasonable time. Therefore, in
this experiment we consider the subset of the design spdicedédy the mapping rules pre-
sented in Chapter 3. For example, we do not consider desigisga which procesd;

is merged with anyQ, VLE, or Voyr processes, and design points in which dng'T
process is merged withf LE or Voyr processes. In addition, we found that increasing
data-parallelism beyond 4 parallPICT-Q streams (see Figure 4.3) will not improve perfor-
mance as thé& L F becomes the bottleneck. Note that the proposed mapping daleot
consider any physical constraints, e.g., the amount of\h#adle memory. This was taken
into account in the performedeSAME-based exploration, in which we also varied the type
of processors in the MPSoC instances: All KPN tasks to bewgdoon aMicroBlaze,
while for the DCT, Q andV LE tasks we also assessed dedicated HW IP implementations.
Evidently, the simulation-level DSE also exploremn-implementabldesign instances. That
is, design instances that cannot be further implementeddpaf since these instances use
HW IP components that are not (yet) available in the librddR DL IP components.
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Figure 4.3: The JPEG application KPN.

Figure 4.4 shows a scatter plot with the performance restittse explored design instances
plotted against the expected memory utilization of eaclgdesstance once implemented
on the targeted FPGA. The memory utilization of the desigtainces was estimated using a
simple accumulative model that has been calibrated withbarafrom implementation-level
experiments (see Section 4.2). Since the memory utilizati@ll design points in Figure 4.4
is below 288KB, they will all fit memory-wise on the targeteB@A. But, as will be shown
further on, the real MPSoC will consist of a combination ofltiple of these (single JPEG
encoder) design instances working in parallel, which, afrse, may not necessarily fit on
the FPGA. The points in Figure 4.4 can be classified as thpstgf design instances:

1. Design instances that araplementablé¢do not use HW IPs fo€ andV LFE), but are
not part of the Pareto front;

2. Implementableesign instances that are part of the Pareto front;

3. Design instances that anen-implementablé.e., contain HW IP components for the
implementation ofy) or VLE.

Moreover, the homogeneous design instances, i.e., thiomlet only usingMicroBlaze
processors, are tagged with circles.

A number of observations can be made from Figure 4.4. Theléimgntable) Pareto optimal
solutions are all heterogeneous designs, containing otwaDCT" HW IP components.
Two of these Pareto optimal solutions are shown in Figuré@dand 4.6(d). Clearly, the
(non-implementable) design instance in which thé'l", @ andV LE tasks are all imple-
mented by a HW IP core is the fastest and most memory effidiéhen considering the ho-
mogeneous design points in Figure 4.4, another observediote made: The design points
with a memory utilization less than 75KB are the designs éxaloit task-level parallelism
only. The speed-up due to task-level parallelism levelsabfa performance of around 18



4.4 Putting DAEDALUS to work 103

40

< implementable

35
@ W implementable pareto front

Q@ A non-implementable
30 O homogeneous
8 ©
525
>
[3)
520
o
© m <>©@
‘515
@ ©
S0 & ®
s AL mo L) © ®

o

o

0 25 50 75 100 125 150 175 200 225
Memory utilization (KB)

Figure 4.4: DSE for performance/memory utilization traudfts.

Mcyclesltile. But, when data-parallelism is also expldjtthe speed-up levels off at around
7 Mcyclesttile at the cost of increased memory utilization.

As mentioned and as will be illustrated in Section 4.4.2,dBsign points in Figure 4.4 are
the building blocks for the entire system, in which multipfethese instances, possibly in a
hybrid constellation, are encoding image tiles in paralfelr example, the most optimal, but
(currently) non-implementable, system would consist oftipie JPEG encoders with HW

IPs for theDCT, Q andV LE tasks. The projected performance of this system, consigeri
the targeted FPGA, equals to an execution time of about 6 Msyo encode an image with
a 1 Mpixel resolution. For implementable solutions, theeRaoptimal design instances
from Figure 4.4 are obvious candidate building blocks fertiPSoC. Four of these building
blocks are depicted in Figure 4.6.

Figure 4.5 shows the estimated maximum performance — instefrapeed-up over a single
JPEG encoder executed on ohg&icroBlaze — for different JPEG compression MPSoCs
realized with a combination of implementable design ins¢srfrom Figure 4.4. The-axis
indicates the number of processing cores (eiffécroBlaze or HW IP) in the MPSoC, and
they-axis shows the estimated speed-up for the optimal conibmaf design instances for
a specific number of cores in the MPSoC which still adherelsgatemory constraints of the
targeted FPGA. Furthermore, a distinction is made betweemlgeneous systems (i.e., only
MicroBlazes) and heterogeneous systems (i.e., containing2iS@ HW IP components).
For example, the optimal homogeneous 4-core system is ainatiun of four sequential
JPEG design instances, i.e. a system containing féurroBlazes that all perform a full
JPEG on different image tiles in parallel. In Section 4.4tdre examples of, sometimes
hybrid, combinations of design instances will be discussed

Essentially, Figure 4.5 provides a projection of the felasystem performance, given the
constraints of the targeted FPGA. For homogeneous soljtire high-level simulations
predict that a speed-up of aroundxltd 12x is attainable. The memory utilization model
indicates that scaling the homogeneous system beyond 24 isanot possible because of the
memory constraints. For heterogeneous systems, the menooigl indicates that the system
can be scaled to 30 cores since the HW IP components only usetah of the memory
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Figure 4.5: Estimated speed-ups.

used by aMlicroBlaze. Here, the predictions show that a speed-up of around@@2x is
feasible. The results from the simulation-level DSE, apldiged in Figures 4.4 and 4.5, are
used in the next section for steering the implementatioptlBSE. These implementation-
level experiments will also provide a validation of the slation-based predictions.

Performing DSE at a high-level of abstraction by simulatan not deliver 100% accurate
performance/cost numbers but it can rapidly narrow dowl#sign space to a few promising
design points. Thus, we perform 100% accurate exploratiché narrowed design space
by generating real MPSoC prototypes and we measure thel petdarmance/cost in order

to select the optimal MPSoC designs given a set of physicpleémentation constraints.

Below, we present our implementation-level DSE resultsNB#SoCs implemented on a
Xilinx FPGA.

4.4.2 Implementation-level DSE

Due to the aforementioned implementation-level constsasome of the best design points
found by the simulation-level DSE (see Figure 4.4) couldb®implemented, e.g., all ap-
plication tasks to be realized as HW IPs. Therefore, we clensd the implementable de-
sign instances depicted in Figure 4.5. From them, we selemtéy the instances that have
efficiency above 0.8. This selection resulted in implementations ofdgeneous MPSoCs
consisting of up to 13W/icroBlaze processors and heterogeneous MPSoCs with up to 24
cores. Evidently, better performance is delivered by therdegeneous systems, however,
the homogeneous systems add more flexibility when, for el@rtmade-off between perfor-
mance and cost is needed.

Homogeneous systems

The implementation results for the homogeneous MPSoCsegiietéd in Figure 4.7. The-
axis represents the number &ficroBlaze processors in an MPSoC and theaxis depicts
the number of clock cycles (in millions) to compress one imagnsisting of 32 tiles of
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Figure 4.6: Alternative Pareto front design instances txess one tile.

128« 128 pixels each. Above the bars, we indicated the achievegdspp of the particular
MPSoC compared to a singldicroBlaze system (the leftmost bar). At the top of the figure,
we present the amount of memory utilized by each MPSoC.

As mentioned before, our JPEG encoding MPSoCs process g iimage in tiles. We
started with a singlé/icroBlaze system (processing all the tiles) and then we increased
the number of processors by selecting the best points foyrttiér simulation-level DSE.
These points exploit data-level parallelism, i.e., selv&fécroBlazes process different tiles.
This is the most efficient way to increase performance becduse increase the number
of processors that process independent tiles, then thelspgeacreases linearly with the
number of processors. To execute the JPEG application,géesiiicroBlaze processor
system requires 40KB of memory. Therefore, we were able fddment systems with up

to 7 processors on the considered FPGA (7x40=280KB), aiclyepeed-ups (see the first 7
bars in the Figure 4.7) up toc7

By exploiting only data-level parallelism, with ¥ icroBlazes processing 7 tiles in parallel,
we reached the limit of the available memory in our FPGA. Thhe question is whether
there are design points that give even better performanitk (more processors) and still
match the resource constraints. We were able to increasaithber of processors to more
than 7 by selecting points that exploit both data-level felism between tiles and also task-
level parallelism within the tiles. For this purpose, weditiee 2/ icroBlaze architecture
depicted in Figure 4.6(a), where thén and all DCT processes (see Figure 4.3) are executed
on the first processor and the remaining processes on thedsene. By exploiting task-level
parallelism, reaching linear speed-up is not possible dutata dependencies between the
tasks. However, the total memory requirement of the sysseraduced because the applica-
tion tasks are distributed, and each processor executetiamaf the initial application. As a
result, larger systems can be built, and consequenthelangerall speed-up can be achieved.
For instance, a single-processor system needs 40K to extbaud PEG encoder, while a two-
processor system — exploiting task-level parallelism -deseetotal amount of 50KB for the
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Figure 4.7: Performance results: homogeneous MPSoCs.

same application, on average 25KB per processor. Thus,igigrg the reduced memory
requirement, we were able to increase the number of proeasd to implement systems
with up to 11 MicroBlaze processors. The selected points are actually combinatibas
1-MicroBlaze system per tile and a 24icroBlaze system per tile. The MPSoCs with 8 to
11 MicroBlazes process 6 tiles in parallel. The achieved speed-ups aréneatr] e.g., 7.4

for an 8-processor MPSoC and 8.fbr an 11-processor MPSoC, but they are higher than the
speed-up of the 7-processor system.

In order to implement even larger systems, we exploited-ldatl parallelism between the
tiles and data- and task-level parallelism within the ti& selected and implemented points
representing 12 and 13 processor systems with total meneguirements that match our
physical constraints. The 12-processor system processkes 2n parallel where each tile
is processed by a 64icroBlaze architecture depicted in Figure 4.6(c). This architecture
requires 120KB of memory. The 13-processor MPSoC utilizeadditionalMicroBlaze
processor (additional 40KB), therefore, increasing thaiper of tiles processed in parallel to
3. The results are shown at the right part (the two rightmast)}of Figure 4.7. The achieved
speed-up of 12- and 1BficroBlaze systems is 9X and 10.3% respectively, compared to a
1-MicroBlaze system.

Heterogeneous systems

The implementation results for the heterogeneous MPSo€depicted in Figure 4.8. The
notation is the same as in Figure 4.7 with the only differethes thex-axis of Figure 4.8
indicates how many of the used cores &fécroBlaze processors and how maiyCT HW
IPs. By exploiting data- and task-level parallelism, we liempented heterogeneous MPSoCs
consisting of up to 24 cores. As a reference number to estithatspeed-up of each MPSoC,
we again used the number of clock cycles of th&/1eroBlaze system (see the leftmost bar
in Figure 4.7). We started with a 2-core system consisting &ficroBlaze and 1DCT IP

as depicted in Figure 4.6(b). It exploits task-level paia@m within a tile, which affects the
achieved speed-up. Although tli&CT IP core is very efficient and fast in terms of perfor-
mance, the overall speed-up is onlyX @ee the leftmost bar in Figure 4.8), which actually
is in line with Amdahl’s law. Similarly to the experimentstivithe homogeneous systems,
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Figure 4.8: Performance results: heterogeneous MPSoCs.

we continued with points that exploit data-level paradlielibetween the tiles, increasing the
number of tiles processed in parallel. The 2-core MPSoCiregi36KB of memory, i.e., the
DCT IP core reduces th&/icroBlaze memory requirement to 32KB but with an additional
4KB used for communication buffers, see Figure 4.6(b). &fae, with 288KB of memory,
we were able to implement systems with up ta8croBlazes and 8DCT IPs (16 cores,
processing 8 tiles in parallel). The achieved speed-upitigecales from 10 for 2 cores to
15.2 for 16 cores as illustrated in Figure 4.8.

Like in the previous experiment, with the given constraiatger MPSoCs can be imple-
mented (and higher speed-ups can be achieved respectiyedrploiting data-level paral-
lelism between the tiles and data and task parallelism withé tiles. The most efficient
heterogeneous MPSoC instance found by the simulatiod{¥$E to exploit data- and task-
level parallelism within a tile is depicted in Figure 4.6(dlt consists of 4MicroBlaze
processors and RCT IP cores. The total memory requirement of this system is G3K8
selected and implemented the 18-, 20-, 22-, and 24-coreragsin Figure 4.5 which actu-
ally are combinations of 2-cores per tile (2PT") and 6-cores per tile (6:PT’) platform
instances illustrated in Figure 4.6(b) and Figure 4.6(dpeetively. The 18-core system con-
sists of 11MicroBlazes and 7DCT IPs. It processes 5 tiles in parallel: 3 tiles are processed
by three 2€ PT instances and 2 tiles are processed by twdB7f instances. The speed-up
of this MPSoC is 15.2. The 20-core system processes 4 tiles in parallel: 1 tiledsgssed
by one 2€ PT instance and 3 tiles are processed by thr&@/8F instances. In total, 13
MicroBlazes and 7DCT IPs achieve a speed-up of 1%5.9The speed-up of the 22-core
system is 17.X. This MPSoC consists of 18 icroBlazes and 8 DC'T' IPs that process 5
tiles in parallel: 2 tiles are processed by twa’Z?T" instances and 3 tiles are processed by
three 6€ PT instances. The 24-core MPSoC, consisting ofM&croblazes and 8 DC'T
IPs, processes 4 tiles in parallel utilizing foulC&7 instances. The achieved speed-up by
this system is 19x compared to a W icroBlaze system.

4.4.3 Conclusions

In this section, we presented a case study demonstratingfficgency of the system de-
sigh methods and techniques proposed in this dissertaticautomated multiprocessor sys-
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tem synthesis, implementation, and programming. The lef/@utomation achieved with
DaEeDALUS significantly reduces the design time starting from systewe} specifications
and going down to complete implementation. All presentedt @Speriments and the real
implementations of 25 MPSoCs on FPGA were performed in atsimount of time, 5 days
in total. Around 70% of this time was taken by the low-levetguercial synthesis and place-
and-route FPGA tools. The obtained results confirm that ifjle-tevel MPSoC models used
in SESAME are capable of accurately predicting the overall systerfopeance. By exploit-
ing the data and task parallelism in the JPEG applicatioxs @ALUS can deliver scalable
MPSoC solutions in terms of performance and cost. We weetatdchieve a performance
speed-up of up to 20compared to a single processor system. The MPSoC perfoemanc
was limited by the available on-chip FPGA memory resourcesthe available IP cores in
DAEDALUS RTL library. To achieve higher performance speed-up, the Bfrary has to be
extended with more dedicated HW IP cores.
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Summary and Conclusions

In this dissertation, we have presented a methodology im@hted in the BEDALUS tool-
flow (see Section 1.2), for automated design, programmimgjjraplementation of MPSoCs
starting at a high level of abstraction. The methods andgcies in D\EDALUS bridge the
gap between the system level and the register-transfdrdédesign abstraction introduced
in Section 1.1, which was the main objective and it is the ntaintribution of this disser-
tation. With DAEDALUS, this (implementation) gap is closed in a particular wayaoese
we target only embedded multiprocessor systems that exdai@-streaming applications in
the domain of multimedia and signal processingaEDALUS offers a fully integrated tool-
flow for very fast exploration and implementation of alteiveaMPSoCs, where design space
exploration (DSE), system-level synthesis, applicati@pping, and system prototyping of
MPSoCs are highly automated. The main idea is starting fréometional specification of
an application and a description of an MPSoC at system levedfine and translate them to
lower RTL descriptions in a systematic and automated ways iBhachieved by applying a
model-driven, platform-based approach, where

e We use a parallel model of computation, namely the Kahn Bsobietwork (KPN)
MoC [6], to represent an application as a set of (concurig)ication tasks. Having
an application in a parallel form allows for mapping it onte tprocessing compo-
nents of an MPSoC which can be programmable (ISA) processomsell as non-
programmable, dedicated IP cores. We proposed techniquesdgramming the ISA
processors in an automated way based on the KPN MoC. Mordavesise of non-
programmable processing components, we proposed an a@pdiaraautomated inte-
gration of predefined (third-party) dedicated IP cores;

e By carefully exploiting and efficiently implementing tharghlle communication and
synchronization features of a KPN, we have identified a ptatfmodel which cap-
tures very well the operational semantics of the KPN MoC sTliows system-level
descriptions of platform instances to be refined and tréeskm detailed RTL descrip-
tions in an automated way. The good match between the KPN Ma®ar platform
model results in efficient implementations when KPNs areeterl on such platforms;
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e We use a mapping model to express the relation between thegmes and the commu-
nication channels in the application (KPN) and the procgsand memory components
of the platform. In the proposed approach, the communicatiapping is implicit, i.e,
EspPAaM analyses the mapping of processes to processing comparahtzutomati-
cally finds an optimal mapping of communication FIFO chaasraflthe application
onto memory components of the platform.

DAEDALUS provides new embedded system design/programming parattigroludes plat-
form specification in a way that the designer does not have=td with platform specific
details. Yet, D\EDALUS gives system designers the opportunity to control platfepecific
issues in order to enforce performance and cost metrisgeDBLUS uses a data-flow (KPN)
MoC to specify the application in a parallel form. This allbthe exposed parallelism to
be exploited in different ways as processes can be mappeifferedt processing cores and
the cores can be arranged in different communication tape$o Designing an MPSoC with
DaeDALUS includes essentially an MPSoC instance generation (segt€i2) and mapping
(assignment) of application tasks to processing compagrtdithat instance, where the paral-
lel KPN representation of an application is automaticablyieed from a sequential program
by the PNGEN tool. More specifically, a system designer can specify aiproitessor plat-
form instance and a mapping specification at a high level sfrabtion in a short amount of
time, say a few minutes. ThensBAM refines these specifications to a real implementation,
i.e., it generates a synthesizable (RTL) HW descriptiorhefMPSoC and it generates SW
code for each processor, in an automated way. This redueesesign and programming
time from months to hours. As a consequence, an accurateratiph of the performance of
alternative multiprocessor platform instances becomasiliée at implementation level in a
few hours.

In the design process, different number and type of platfoamponents can be used to
construct an MPSoC instance as well as different mapping$eaconsidered. This leads
(usually) to large and complex design space which represetdrge number of different
MPSoC implementation possibilities. Then, the key issue i®duce the number of differ-
ent implementation possibilities to a subset, consistindy® most promising design points
from which, based on certain criteria, the designer can sholoe best one. Traversing the
whole design space or applying general techniques for desgigce exploration may not be
always feasible (in reasonable time) for large and compéesigth space. This motivated us,
and in Chapter 3 of this dissertation, we proposed techsitpearrow down the design space
in a systematic way by exploiting the properties of the aggtion and the platform models
we use. More precisely, we defined (mapping) rules for mappfrapplication tasks to pro-
cessing components in the target MPSoCs such that less nafnpecessing components
are used without compromising the achieved system perfocenaThe proposed approach
can be used to complement the techniques in @AM E tool for reducing the design space
that need to be considered in the design space exploratimess in the REDALUS design
flow.

In this dissertation, we have presented three case stutdiesier to validate and evaluate
the proposed design methodology. That is, we have used #eestadies to demonstrate
the potential and the efficiency of our methods and techsifpreautomated MPSoC design
in terms of overall design time, achieved performance, awd tilization. Also, we have
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commented on the accuracy of the results obtained by peirigriigh-level system simula-
tions (during the DSE process) compared to real implemientaumbers. The case studies
have clearly shown that our research work presented in thé&idation can be applied suc-
cessfully on real-life industrially relevant applicat&nThe case studies, the corresponding
experiments, and the obtained results have been reporubipter 4.

With the first case study, we have illustrated a completegefiow with DAEDALUS for a
JPEG encoder application, starting from a sequential pragperforming system-level DSE
with SESAME, synthesizing design instances witls#AM, and prototyping them by using
commercial synthesis and compiler tools. The second cadg bias been used to illustrate
the method and techniques for automated integration ofcdézti hardwired IP cores into
heterogeneous MPSoCs where both programmable processbidedicated IPs are used
as processing components. The proposed IP core integeggfmoach has been applied on
three real-life applications, i.e., a Sobel edge detectdbiscrete Wavelet Transform, and a
JPEG encoder. The purpose of the last case study was to pu=baDUS “to the limit” in
order to check how large and complex systems can be desigiregithe proposed method-
ology and considering the constraints imposed by the FPGn@ogy we currently use for
prototyping.

Based on the experience we have gained by conducting thedhse studies and the results
we have obtained, we draw the following conclusions:

e The level of automation achieved withABDALUS significantly reduces the design
time starting from system-level specifications and goingmlt complete implemen-
tation. That is, starting from a sequential application gothg down to complete
implementation, e.g., to an MPSoC prototyped on an FPGAlis @ matter of hours;

e The high level of abstraction of the input specifications\a# a system designer easily
to construct many alternative platforms instances whietaatomatically implemented
by EspAM. This, and the reduced design time, enables fast explaratidesign points
at implementation level with 100% accuracy during the estdges of design;

e The proposed approach of connecting processing compatheatsggh communication
controllers and communication memories is efficient in eohHW resource utiliza-
tion and performance speed-up;

e The proposed techniques for automated integration of destidP cores by generating
IP Modules (wrappers around the IP cores) lead to efficietegiation in terms of
achieved performance and HW resource utilization;

e The obtained results by usingABDALUS are as good as the components in the IP
component library. Recall that in the third case study, wddaot implement the best
design points found by the design exploration process tsecte required dedicated
IP cores were not available in theaBDALUS IP component library;

e The devised mapping techniques can effectively prune thgydepace by preserving
the MPSoC instances that deliver highest performance.
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The name DAEDALUS

Finally, we conclude this dissertation with the story

of Daedalus from the ancient Greek mythology, g

which motivated us for the name of the proposed N

system design flow. BEDALUS means cunning ™

worker (in Latin) and he was an innovator in many . M e

arts. The myth goes that Daedalus built a labyrint
for King Minos, but afterward lost the favor of th
king, and was shut up in a tower on island of Cret
Daedalus contrived to make his escape, but co
not leave Crete by sea because the king kept st
watch on all the vessels leaving the island. “Min
may control the land and sea,” — said Daedalus —
"but not the regions of the air. | will try that way.”
Daedalus set to work to fabricate wings for him=
self and his young son Icarus. He tied feathers .
gether, from smallest to largest as the larger o
he secured with thread and the smaller ones w
wax. When both were prepared for flight, Daedalus Daedalus and Icarus,

warned Icarus not to fly too high, because the heat by Charles Paul Landon, 1799.

of the sun would melt the wax, nor too low because the sea foanidvmake the wings wet
and they would no longer fly. “Keep near me and you will be $afeaid Daedalus to Icarus,
and the father and son flew away. However Icarus, exultingsiahility to fly, began to leave
the guidance of his father and rose upward into the air. Theitd sun softened the wax
which held the feathers together, they came off and Icallimfe the sea.

The analogy: with the BEDALUS system design flow, we propose new, disruptive technol-
ogy which is based on the following assumptions:

e Itis meant for data-flow (streaming) applications;

e Applications specified in the form of static affine nestedolpoograms;

e Targets distributed memory MPSoC implementations, utiizommunication mem-
ories and communication controllers;

e The results are as good as the components in the IP library.

The DAEDALUS design flow makes system-level design "take-off*. Howetee, assump-
tions need to be well understood and respected in order id &adling into the sea"!
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Samenvatting

De dissertatie gaat over methoden en middelen voor het opéne/an multiprocessor sys-

temen die zijn geintegreerd in een enkele chip, voor de exiwg van signalen en beelden
in ingebedde multimedia toepassingen. Deze toepassingerek het best worden gekarak-
teriseerd als een verzameling van rekentaken die datassi¥ein in de vorm van datastromen.
In de meeste van deze toepassingen zijn doorstroomsnelliaderuciaal belang waardoor

rekentaken snel en, indien mogelijk, gelijktijdig moetearden uitgevoerd. Deze eisen lei-
den vanzelf tot implementatiestructuren die bestaan uérdexe, vaak ongelijke, processoren
die autonoom rekenen en zijn aangesloten op een commu@isytichronisatie, en geheugen
infrastructuur voor de uitwisseling van data.

De complexiteit van zulke ingebedde multiprocessor systeheeft een niveau bereikt waar-
bij het noodzakelijk is geworden om het programmeren vae dggtemen methodologién te
onderbouwen met het oog op een systematische en autoneatisehering van deze belan-
grijke stap in het proces van systeemontwerp.

De dissertatie beschrijft een nieuwe ontwerpmethodo]agienals de methoden en tech-
nieken voor de praktische uitvoering ervan. Deze zijn @gireerd in het ontwerppakket
DaeDALUS dat het onderwerp is van het eerste hoofdstuk. Met dit pakketeen on-
twerp — inclusief de programmering en de implementatie -eraatisch worden uitgevoerd,
uitgaande van een abstracte specificatie. MetmnLUs wordt de afstand tussen abstracte
en gedetailleerde specificatie automatisch overbrugd. B#haden en technieken in het
DAEDALUS ontwerp pakket omvattegxploratievan de ontwerpruimtesynthes@p systeem
niveau,afbeeldenvan functionele specificatie modellen (toepassingen) xt@®inctionele
implementatie modellen (architecturen),@ototypereervan het ontworpen multiprocessor
chip-systeem.

De toepassingen worden gespecificeerd in termen van daiasprocesnetwerken, in het bij-
zonderKahn Proces Netwerkedie goed passen bij de beoogde datastroom applicaties. De
multiprocessor architecturen worden gespecificeerd meaarvan componenten die beschik-
baar zijn in een bibliotheek van componenten voor de evigleat synchronisatie van func-
ties, en de communicatie en opslag van data. De organisatiel® processornetwerk is
zo gekozen dat procesnetwerken met de hoogst mogelijkéafieekunnen worden doorg-
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erekend. Abstracte specificaties van toepassing (prowesrig en architectuur (processor-
netwerk), en de abstracte relatie tussen deze twee spgesitaalles wat nodig is om het
chip-systeem — software en hardware — te implementerenjkean specifieke details is niet
nodig.

Het tweede hoofdstuk behandelt de specificatie van eenpmggssor architectuur organ-
isatie, de relatie tussen processen en processoren, enedbéngflvan het procesnetwerk
uitgaande van een specificatie van de toepassing in de vanneesa traditioneel sequen-
tieel programma. Deze drie componenten vormen samen deetesthip-systeem specifi-
catie. De DAEDALUS methode en de &AM techniek zorgen daarna voor een verfijning van
deze specificatie tot een implementatiespecificatie op ikeain van synthetiseerbaregis-

ter transfercode, en processor code. Mesi#aM kan de ontwerp- en programmeertijd van
multiprocessor chip-systemen worden gereduceerd vandeadnt uren.

Een gegeven toepassing kan op vele manieren abstract wgedpecificeerd als een pro-
cesnetwerk, een processornetwerk, en de relatie tusseriwlez netwerken. Het is daarom
noodzakelijk de verzameling van mogelijke specificatidstdeiden tot een paar specificaties
die veelbelovend zijn in termen van gekozen optimalisatteria. Het derde hoofdstuk stelt

methoden en technieken voor het achterhalen van degespecificaties op een systema-
tische manier. Voor de voorbeelden die in de dissertatie gggeven werd als criterium

gekozen het minimaliseren van het aantal processoren zdageestatie van het resulterend
chip-systeem te compromitteren.

Het laatste hoofdstuk geeft gevalsstudies aan de hand arader methoden en technieken
worden gevalideerd. Omdat het ontwerptraject in korte kgesh worden doorlopen is het
mogelijk een relatief groot aantal alternatieve fysiekplementaties te evalueren en de re-
sultaten daarvan te vergelijken met deze die gedurendestimate exploratie van de ontwer-
pruimte zijn verkregen. Op die manier kan het exploratiepsoverder gekalibreerd worden.
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