
G
eneralized Strictly Periodic Scheduling A

nalysis, Resource O
ptim

ization, and Im
plem

entaion of A
daptive Stream

ing A
pplications - Sobhan N

iknam

Generalized Strictly Periodic Scheduling Analysis,
Resource Optimization, and Implementation of

Adaptive Streaming Applications

Sobhan Niknam

Generalized Strictly Periodic Scheduling Analysis,
Resource Optimization, and Implementation of

Adaptive Streaming Applications

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus Prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 25 augustus 2020
klokke 15:00 uur

door

Sobhan Niknam
geboren te Tehran, Iran

in 1990

Promotor: Dr. Todor Stefanov Universiteit Leiden
Second-Promotor: Prof. dr. Harry Wijshoff Universiteit Leiden

Promotion Committee: Prof. dr. Akash Kumar TU Dresden
Prof. dr. Jeroen Voeten TU Eindhoven
Prof. dr. Paul Havinga Universiteit Twente
Prof. dr. Frank de Boer Universiteit Leiden
Prof. dr. Aske Plaat Universiteit Leiden
Prof. dr. Marcello Bonsangue Universiteit Leiden

The research was supported by NWO under project number 12695 (CPS-3).

Generalized Strictly Periodic Scheduling Analysis, Resource Optimization,
and Implementation of Adaptive Streaming Applications
Sobhan Niknam. -
Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright c� 2020 by Sobhan Niknam. All rights reserved.
This dissertation was typeset using LATEX.

ISBN: 978-90-9033402-8
Printed by Ipskamp Printing, Enschede.

To my family

Contents

Table of Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Design Requirements for Embedded Streaming Systems . . . 2
1.2 Trends in Embedded Streaming Systems Design 4

1.2.1 Multi-Processor System-on-Chip (MPSoC) 4
1.2.2 Model-based Design . 6

1.3 Two Important Design Challenges 8
1.4 Research Questions . 9

1.4.1 Phase 1: Analysis . 10
1.4.2 Phase 2: Resource Optimization 11
1.4.3 Phase 3: Implementation 12

1.5 Research Contributions . 13
1.5.1 Generalized Strictly Periodic Scheduling Framework . 13
1.5.2 Algorithm to Find an Alternative Application Task Graph

for Efficient Utilization of Processors 13
1.5.3 Energy-Efficient Periodic Scheduling Approach 14
1.5.4 MADF Implementation and Execution Approach . . . 14

1.6 Thesis Outline . 15

2 Background 17
2.1 Dataflow Models of Computation 18

2.1.1 Cyclo-Static/Synchronous Data Flow (CSDF/SDF) . . 18
2.1.2 Mode-Aware Data Flow (MADF) 20

viii Contents

2.2 Real-Time Scheduling Theory 23
2.2.1 System Model . 23
2.2.2 Real-Time Periodic Task Model 23
2.2.3 Real-Time Scheduling Algorithms 24

2.3 HRT Scheduling of Acyclic CSDF Graphs 28
2.4 HRT Scheduling of MADF Graphs 30

3 Hard Real-Time Scheduling of Cyclic CSDF Graphs 35
3.1 Problem Statement . 35
3.2 Contributions . 36
3.3 Related Work . 37
3.4 Motivational Example . 38
3.5 Our Proposed Framework . 40

3.5.1 Existence of a Strictly Periodic Schedule 41
3.5.2 Deriving Period, Earliest Start Time, and Deadline of Tasks 45

3.6 Experimental Evaluation . 46
3.7 Conclusions . 49

4 Exploiting Parallelism in Applications to Efficiently Utilize Proces-
sors 51
4.1 Problem Statement . 52
4.2 Contributions . 53
4.3 Related Work . 54
4.4 Background . 57

4.4.1 Unfolding Transformation of SDF Graphs 57
4.4.2 System Model . 58

4.5 Motivational Example . 59
4.6 Proposed Algorithm . 63
4.7 Experimental Evaluation . 67

4.7.1 Homogeneous platform 70
4.7.2 Heterogeneous platform 73

4.8 Conclusions . 76

5 Energy-Efficient Scheduling of Streaming Applications 77
5.1 Problem Statement . 77
5.2 Contributions . 78
5.3 Related Work . 79
5.4 Background . 80

5.4.1 System Model . 81
5.4.2 Power Model . 81

Contents ix

5.5 Motivational Example . 81
5.5.1 Applying VFS Similar to Related Works 82
5.5.2 Our Proposed Scheduling Approach 84

5.6 Proposed Scheduling Approach 87
5.6.1 Determining Operating Modes 91
5.6.2 Switching Costs oHL, oLH , eHL, eLH 92
5.6.3 Computing QH and QL 95
5.6.4 Memory Overhead . 96

5.7 Experimental Evaluation . 98
5.7.1 Experimental Setup . 98
5.7.2 Experimental Results . 99

5.8 Conclusions . 102

6 Implementation and Execution of Adaptive Streaming Applications103
6.1 Problem Statement . 104
6.2 Contributions . 104
6.3 Related Work . 105
6.4 K-Periodic Schedules (K-PS) . 106
6.5 Extension of the MOO Transition Protocol 107
6.6 Implementation and Execution Approach for MADF 110

6.6.1 Generic Parallel Implementation and Execution Approach110
6.6.2 Demonstration of Our Approach on LITMUSRT 112

6.7 Case Studies . 115
6.7.1 Case Study 1 . 116
6.7.2 Case Study 2 . 119

6.8 Conclusions . 122

7 Summary and Conclusions 123

Bibliography 127

Summary 137

Samenvatting 139

List of Publications 141

Curriculum Vitae 143

Acknowledgments 145

List of Figures

1.1 Samsung Exynos 5422 MPSoC [70]. 6
1.2 Overview of the research questions and contributions in this

thesis using a design flow. 10

2.1 Example of an MADF graph (G1). 20
2.2 Two modes of the MADF graph in Figure 2.1. 20
2.3 Execution of two iterations of both modes SI1 and SI2. (a) Mode

SI1 in Figure 2.2(a). (b) Mode SI2 in Figure 2.2(b). 22
2.4 Execution of graph G1 with two mode transitions under the

MOO protocol. 22
2.5 Execution of graph G1 with a mode transition from mode SI2 to

mode SI1 under the MOO protocol and the SPS framework. . . . 31
2.6 Execution of graph G1 with a mode transition from mode SI2

to mode SI1 under the MOO protocol and the SPS framework
with task allocation on two processors. 33

3.1 A cyclic CSDF graph G. The backward edge E5 in G has 2 initial
tokens that are represented with black dots. 39

3.2 The SPS of the CSDF graph G in Figure 3.1 without considering
the backward edge E5. Up arrows are job releases and down
arrows job deadlines. 39

3.3 The GSPS of the CSDF graph G in Figure 3.1. 40
3.4 Production and consumption curves on edge Eu = (Ai, Aj). . . 41

4.1 An SDF graph G. 58
4.2 Equivalent CSDF graphs of the SDF graph G in Figure 4.1 ob-

tained by (a) replicating actor A5 by factor 2 and (b) replicating
actors A3 and A4 by factor 2. 58

xii List of Figures

4.3 A strictly periodic execution of tasks corresponding to the actors
in: (a) the SDF graph G in Figure 4.1 and (b) the CSDF graph G0
in Figure 4.2(a). The x-axis represents the time. 60

4.4 Memory and latency reduction of our algorithm compared to
the related approach with the same number of processors. . . . 71

4.5 Total number of task replications needed by FFD-EP and our
proposed algorithm. 72

4.6 Memory and latency reduction of our algorithm compared to
EDF-sh [92] for real-life applications on different heterogeneous
platforms. 74

5.1 An SDF graph G. 82
5.2 The (a) SPS and (b) scaled SPS of the (C)SDF graph G in Fig-

ure 5.1. Up arrows represent job releases, down arrows repre-
sent job deadlines. Dotted rectangles show the increase of the
tasks execution time when using the VFS mechanism. 83

5.3 Our proposed periodic schedule of graph G in Figure 5.1. In this
schedule, graph G periodically executes according to schedules
of operating mode SI1 and operating mode SI2 in Figure 5.2(a)
and Figure 5.2(b), respectively. Note that this schedule repeats
periodically. o12 = 5 and o21 = 0. 86

5.4 Normalized energy consumption of the scaled scheduling and
our proposed scheduling of the graph G in Figure 5.1 for a wide
range of throughput requirements. 87

5.5 (a) Switching scheme, (b) Associated energy consumption of
the switching scheme and (c) Token production function Z(t). 88

5.6 Input and Output buffers. 90
5.7 Token consumption function Z0(t). Note that, oHL + oLH =

o0HL + o0LH = dH!L + dL!H. 97
5.8 Normalized energy consumption vs. throughput requirements. 100
5.9 Total buffer sizes needed in our scheduling approach for differ-

ent applications. Note that the y axis has a logarithmic scale. . . 101

6.1 (a) An MADF graph G1 (taken from Section 2.1.2). (b) The
allocation of actors in graph G1 on four processors. 108

6.2 Two modes of graph G1 in Figure 2.1 (taken from Section 2.1.2
with modified WCET of the actors). 108

6.3 Execution of both modes SI1 and SI2 under a K-PS. 109

List of Figures xiii

6.4 Execution of G1 with two mode transitions under (a) the MOO
protocol, and (b) the extended MOO protocol with the allocation
shown in Figure 6.1(b). 109

6.5 Mode transition of G1 from mode SI2 to mode SI1 (from (a)
to (f)). The control actor and the control edges are omitted in
figures (b) to (f) to avoid cluttering. 111

6.6 MADF graph of the Vocoder application. 117
6.7 The execution time of control actor Ac for applications with

different numbers of actors. 119
6.8 CSDF graph of MJPEG encoder. 120
6.9 (a) The video frame production of the MJPEG encoder applica-

tion over time for the throughput requirement of 5.2 frames/sec-
ond. (b) Normalized energy consumption of the application for
different throughput requirements. 121

List of Tables

2.1 Summary of mathematical notations. 17

3.1 Benchmarks used for evaluation. 47
3.2 Comparison of different scheduling frameworks. 48

4.1 Throughput R (1/time units), latency L (time units), memory
requirements M (bytes), and number of processors m for G
under different scheduling/allocation approaches. 63

4.2 Benchmarks used for evaluation taken from [23]. 68
4.3 Comparison of different scheduling/allocation approaches. . 69
4.4 Runtime (in seconds) comparison of different scheduling/allo-

cation approaches. 73

5.1 Operating modes for graph G 85
5.2 Benchmarks used for evaluation. 99

6.1 Performance results of each individual mode of Vocoder. . . . 116
6.2 Performance results for all mode transitions of Vocoder (in ms). 118
6.3 The specification of modes SI1 and SI2 in MJPEG encoder appli-

cation . 121

List of Abbreviations

BFD Best-Fit Decreasing

CDP Constrained-Deadline Periodic

CSDF Cyclo-Static Data Flow

DSE Design Space Exploration

DVFS Dynamic VFS

EDF Earliest Deadline First

EE Energy Efficient

FFD First-Fit Decreasing

FFID-EDF First-Fit Increasing Deadlines EDF

FIFO First-In First-Out

GSPS Generalized Strictly Periodic Scheduling

HRT Hard Real-Time

IDP Implicit-Deadline Periodic

MADF Mode-Aware Data Flow

MCR Mode Change Request

MoC Model of Computation

MOO Maximum-Overlap Offset

MPSoC Multi-Processor System-on-Chip

xvii

xviii List of Tables

PE Performance Efficient

RM Rate Monotonic

RTOS Real-time Operating System

SDF Synchronous Data Flow

SPS Strictly Periodic Scheduling

SRT Soft Real-Time

TDP Thermal Design Power

VFS Voltage-Frequency Scaling

WCET Worst-Case Execution Time

WFD Worst-Fit Decreasing

Chapter 1

Introduction

IN the last few decades, tremendous developments in the field of electronics
have made a significant impact on human lives. Nowadays, electronic

systems have become an inevitable part of our modern-day life. They are
prevalent and exist almost everywhere around us, even sometimes without
noticing their presence, from our smartwatch, cell-phones, tablets to our cars
and home appliances, improving the quality of our life from almost every
aspect. For instance, thanks to the electronics technology, the patients’ health
status, e.g., vital signals such as ECG, EEG, and skin temperature, can be
remotely monitored on a daily basis and accessed by hospital physicians
using wearable health-care monitoring devices to diagnose medical symptoms like
epilepsy or sleep disorders, e.g., e-Glass [77] for detection of epileptic seizures,
while the patients can do their normal activities with no need of staying at
a hospital or using a conventional clinical setting. As another example, we
can refer to advanced driver-assistance systems, supporting vehicle drivers on
the road and improving their safety and comfort. Examples of such systems
include the active cruise control, which autonomously adjusts the distance to
the front car, the collision avoidance, which warns and prompts the driver to
prevent a collision with incoming unexpected obstacles, e.g., a pedestrian, and
if needed autonomously brakes shortly before the collision when the driver is
not responsive to the given warning, the rearview system, which increases the
field of view for the driver, and many others.

In all of the above cases, each electronic system is enclosed into a larger en-
tity like a device, product, or another system for which it provides a dedicated
functionality. These electronic systems are known as embedded systems. Em-
bedded systems are widespread in the world and use 98% of all processors
according to recent studies [36, 48]. The global market for embedded systems

2 Chapter 1. Introduction

was valued over $165 billion in 2015 and it is anticipated to be nearly $260
billion by 2023 [1]. In this market, automotive and health-care embedded
systems have gained the first- and second-largest share due to the increasing
demand for smart vehicles and portable medical devices, respectively [1].

Different from general-purpose systems such as Personal Computers (PC),
embedded systems are application-domain specific because they perform
specific functions tightly coupled with the environment where they operate.
They collect environmental information using sensors, process it, and perform
an action accordingly using actuators. An important class of embedded sys-
tems is embedded streaming systems. Typically, these systems run software
programs, called streaming applications, that process a continuous infinite,
stream of data items coming from the environment. In these applications, data
items in the stream are processed in-order using the same set of operations.
Processing each data item takes a limited time and there is a little control
flow between the operations. As a result, a continuous infinite, stream of data
items are produced and fed into the environment. Examples of streaming
applications include a wide range of applications from different application
domains such as image processing, video/audio processing, network protocol
processing, computer vision, navigation, digital signal processing, and many
others. For instance, a popular streaming application, widely used in our daily
life, on mobile phones, is watching a movie from YouTube. In such applica-
tion, a video stream is continuously being received over the internet using a
software defined radio protocol like WLAN, 3G, or 4G. Simultaneously, video
and audio decoding like MPEG-4 and MP3 are performed on the received
data stream and the decoded video and audio streams are continuously being
played on the screen and speaker, respectively.

1.1 Design Requirements for Embedded Streaming
Systems

In general, embedded systems are subjected to a wide range of strict design
requirements compared to general-purpose systems. Some of these design
requirements are common among all classes of embedded systems, including
embedded streaming systems, while others are dependent on the environment
where the embedded systems are deployed. In this section, we introduce
explicitly the non-functional design requirements, i.e., timing, cost, and energy
efficiency, that are considered in this thesis. Functional requirements, such as
deadlock-free execution, etc., are implicitly considered as well.

For many embedded systems, the timing is a critical design requirement. In

1.1. Design Requirements for Embedded Streaming Systems 3

such systems, the correct behavior depends not only on producing the correct
output but also on whether the output is produced before a deadline. This
timing requirement for the correct behavior of embedded systems is called
a real-time requirement and a system with real-time requirements is called
a real-time system. Regarding the criticality of a failure to satisfy the real-
time requirements, the real-time systems can be classified into the following
categories:

• Soft Real-Time (SRT) Systems: not always satisfying the real-time re-
quirements does not lead to a system failure but only degrades the
system performance provided that the deadline misses are within a
certain threshold which the system can tolerate.

• Hard Real-Time (HRT) Systems: not always satisfying the real-time
requirements leads to a system failure, which can have catastrophic
consequences in safety- or life-critical systems.

For instance, in a video system which is an example of a SRT system, to watch
a video smoothly through YouTube, a huge amount of data should be received
regularly over the internet and processed in a short period of time. Otherwise,
the video is played slow-motion, blurry, and jerky which greatly degrades the
user experience. In contrast, in a HRT system such as the collision avoidance
system found in a smart car, the collected data from camera and laser sensors
mounted on the car must be processed always within a pre-defined and fixed
time interval, such that the car can detect an incoming obstacle and react in
time to avoid a collision. Otherwise, catastrophic consequences can happen,
e.g., loss of human life. In the case of embedded streaming systems, timing
requirements that are typically considered and guaranteed are throughput
and/or latency. The throughput represents the rate at which the output
is produced by a streaming application, whereas the latency represents the
elapsed time between the arrival of a data item to the application and the
output of the processed data item by the application.

For high-volume embedded systems, especially in consumer electronics,
keeping the cost of a system competitive in mass markets is extremely impor-
tant for survival [57]. Therefore, embedded system designers should make
efficient use of hardware resources (i.e., processors, memories, etc.), either
by reducing the amount of resources needed to implement a required func-
tionality or by utilizing the available resources on a single hardware platform
efficiently by running as many required applications as possible. In the lat-
ter case, different applications may share resources. Such resource sharing,
however, should not affect the timing requirements and guarantees for the
different applications. This property is known as temporal isolation, that is, the

4 Chapter 1. Introduction

ability to start or stop applications at run-time without violating the timing
requirements of other concurrently running applications on a shared hardware
platform.

Usually, embedded systems operate using stand-alone power supply such
as batteries. As frequently replacing/recharging the batteries is not desirable/-
possible for many embedded systems, the energy efficiency is another important
design requirement in order to prolong the operational time of such systems
on a single battery charge.

1.2 Trends in Embedded Streaming Systems Design

At the beginning of this chapter, we have introduced the embedded systems
and explained their importance in our daily life. We have also pointed out,
in Section 1.1, the set of non-functional design requirements for embedded
streaming systems, considered in this thesis. In this section, therefore, we
discuss the current trends in designing embedded streaming systems to satisfy
the aforementioned design requirements.

1.2.1 Multi-Processor System-on-Chip (MPSoC)

Traditionally, embedded (streaming) systems were implemented on top of
uniprocessors for a long period of time. Following the same trend as in
general-purpose systems, the embedded (streaming) systems designers relied
on enhancing the computational power of uniprocessors by scaling up their op-
erational clock frequency as well as employing advanced micro-architectural
innovations, such as pipelining, branch prediction, out-of-order execution,
cache memory hierarchy and others, to satisfy the tight timing requirements,
i.e., high throughput and/or low latency, in streaming applications [41]. This
enhancement of the computational power had been driven by the fast devel-
opment of the technology node which had enabled chip manufacturers to
produce thinner and faster transistors, the fundamental elements in digital
electronic circuits, and made it possible to integrate more and more transis-
tors on a chip, as the result of the Moore’s Law1 coupled with the Dennard
scaling2 [68]. However, by reaching a technology node below 100 nanometers,

1Moore’s Law refers to Moore’s prediction in 1965 that the number of transistors on a chip
doubles every 18 months.

2In 1974, Dennard et al. [30] postulated that the power density in a chip remains roughly
constant by scaling the transistor size from one technology node to another, widely known as
"Dennard Scaling", i.e., the power consumption of transistors scales down as long as their size is
reduced.

1.2. Trends in Embedded Streaming Systems Design 5

the Dennard’s Scaling fails due to the extremely increased leakage power con-
sumption of transistors, i.e., the consumed power caused by currents that leak
through transistors when transistors are idle. In addition, when the size of
transistors decreases, their density increases on a chip resulting in increased
on-chip power density which leads to overheating issues and makes on-chip
thermal hotspots [73]. To avoid the overheating issues, the power consump-
tion of chips is constrained severely with a safe power level, called thermal
design power (TDP), provided by chip manufacturers [59]. To keep the power
consumption within the TDP budget, uniprocessors have to operate at a lower
operational clock frequency instead of the maximum possible frequency [59].
Moreover, the usage of many micro-architectural innovations in uniprocessors
quickly reached the point of diminishing return in performance and increased
design complexity. As a consequence, chip manufacturers were forced to look
for an alternative to the uniprocessor paradigm.

As a solution to enhance the system performance even further while cop-
ing with the aforementioned high power consumption, chip manufacturers
have shifted their design scheme towards multi-processor platforms in order
to effectively utilize the growing number of transistors on a chip. In such
platforms, the issue of increased power consumption has been partially re-
solved by replacing a complex processor running at a high operational voltage
and clock frequency with multiple relatively simpler processors running at
a lower operational voltage and clock frequency. In this way, the system
performance can be enhanced through parallel processing while keeping the
power and complexity under control. Nowadays, due to the advances in
the chip fabrication technology, embedded system designers can integrate
all components, including multiple processors, memories, interconnections,
and other hardware peripherals, necessary for an application into a single
chip, the so-called Multi-Processor System-On-Chip (MPSoC) [44]. Indeed,
MPSoCs are a suitable way of implementing embedded streaming systems as
they can provide high-performance, timing guaranteed, low-cost, compact,
light, and low power/energy products. To further reduce the power/energy
consumption, MPSoC platforms are usually armed with a Voltage and Fre-
quency Scaling (VFS) mechanism [71]. In general, a VFS mechanism trades
performance for power/energy consumption by adjusting the voltage and
operating frequency of processors.

An example of an MPSoC is the Samsung Exynos 5 Octa (5422) [70], shown
in Figure 1.1, which can be found in the Samsung Galaxy S5 mobile phones.
This MPSoC is based on the big.LITTLE architecture [40] and has one cluster
of four performance-efficient ARM Cortex-A15 cores and one cluster of four

6 Chapter 1. Introduction

Cortex-A15 cluster

core0

2GB DRAM

On-chip bus interconnect

core1

core2 core3

2MB L2-Cache

Cortex-A7 cluster

core0 core1

core2 core3

512KB L2-Cache

GPU

ARM
MALI-T628

128KB
L2-Cache

Figure 1.1: Samsung Exynos 5422 MPSoC [70].

energy-efficient Cortex-A7 cores. Additionally, it has the ARM Mali-T628 GPU
containing 6 cores for graphical processing and 2GB DRAM on-chip memory.
All the processors are connected through an on-chip bus interconnect. For
the Cortex-A15 cluster, the frequency can be varied between 200 MHz to
2000 MHz whereas for the Cortex-A7 cluster, it can be varied between 200
MHz to 1400 MHz, with a step of 100 MHz in both clusters. Note that the
voltage is adjusted by the firmware automatically according to pre-set pairs of
voltage-frequency values.

1.2.2 Model-based Design

To satisfy the tight timing requirements of streaming applications (introduced
in Section 1.1), the computational capacity of MPSoC platforms (introduced
in Section 1.2.1) must be efficiently exploited. To facilitate this, streaming
applications must be expressed primarily in a parallel fashion. The common
practice for expressing the parallelism in an application is to use parallel
Models of Computation (MoCs) in which the application is specified, at a
high level of abstraction, as a set of parallel or concurrent tasks with specific
communication and synchronization semantics. In particular, a parallel MoC
defines, in a formal way, the rules by which the tasks of an application compute,
communicate, and synchronize among each other. As a consequence, adopting
MoCs during a design process enables system designers to reason about both
functional and non-functional properties of an application. A design process
which exploits MoCs is called Model-based Design.

In the past three decades, a variety of parallel MoCs have been pro-
posed [43, 53]. This variety enables designers to choose the most suitable

1.2. Trends in Embedded Streaming Systems Design 7

parallel MoCs for the considered application domain. For streaming applica-
tions, that are the main focus of this thesis, dataflow MoCs have been identified
as the most suitable parallel MoCs [88]. Within a dataflow MoC, a streaming
application is modeled as a directed graph, where the graph nodes repre-
sent the application tasks and the graph edges represent data dependencies
among the tasks. Thus, the parallelism is explicitly specified in the model.
In general, dataflow MoCs differ among each other by their expressiveness,
analyzability, and implementation efficiency [86]. The expressiveness of a model
indicates what type of applications the model is capable of modeling and
how compact the model is. The analyzability of a model is determined by the
availability of design-time analysis techniques for checking (non-)functional
requirements of the modeled application, e.g., liveness3, boundedness4, and
throughput/latency, as well as by the computational complexity of the analy-
sis techniques. Finally, the implementation efficiency of a model is influenced
by the complexity of the scheduling problem and the code size of the resulting
schedules. Basically, the expressiveness and analyzability are inversely related,
meaning that, MoCs with high expressiveness exhibit low analyzability, and
vice versa. Similarly, MoCs with high expressiveness generally have lower
implementation efficiency. Therefore, there is no a single MoC which performs
superior among all existing MoCs in all of the three aforementioned criteria.
Consequently, designers have to choose a suitable MoC depending on their
needs. A detailed and complete comparison of different dataflow MoCs is
provided in [86, 93].

In this thesis, we use two well-known dataflow MoCs to specify streaming
applications, namely, Synchronous Data Flow (SDF) [52] and its generaliza-
tion Cyclo-Static Data Flow (CSDF) [16], due to their high analyzability. For
these MoCs, various powerful analysis methods have been developed over the
past two decades to evaluate liveness/boundedness [34], to compute through-
put/latency [9,10,19,35,56,78,82], buffer sizes [9,10,78,85,91], and so on. These
MoCs are mainly suitable and used to specify streaming applications with
static behavior. But, modern streaming applications may exhibit adaptive/dy-
namic behavior at run-time. For example, a computer vision system processes
different parts of an image continuously to obtain information from several
regions of interest depending on the actions taken by the external environ-
ment [94]. To model such adaptive behavior while having a certain degree of

3An application is live if each task of the application can execute infinitely, i.e., no deadlock
occurs.

4An application is bounded if the application can execute infinitely with a bounded amount of
memory needed for communication/synchronization among its tasks, i.e., no buffer overflow
occurs.

8 Chapter 1. Introduction

analyzability, in this thesis, we use a more expressive dataflow MoC, namely,
Mode-Aware Data Flow (MADF) [94], which is proposed and deployed as
an extension of the CSDF MoC, as well. MADF can capture the behavior of
an adaptive streaming application as a collection of different static behaviors,
called modes, which are individually analyzable at design-time. The formal
definitions of the aforementioned dataflow MoCs are given in Chapter 2.

1.3 Two Important Design Challenges

Although dataflow MoCs resolve the problem of explicitly exposing the avail-
able parallelism in an application, two challenges remain, namely, how to
execute the tasks of a dataflow-modeled application spatially, i.e., task map-
ping5, and temporally, i.e., task scheduling, on an MPSoC platform such that all
timing requirements are satisfied while making efficient utilization of avail-
able resources (e.g, processors, memory, energy, etc.) on the platform. More
precisely, the task mapping determines how tasks are distributed among the
processors whereas the task scheduling determines the time periods in which
each task is executed on a processor. These two challenges have been iden-
tified as two of the most urgent design challenges needed to be solved for
implementing embedded systems [58,75]. To address these challenges, several
scheduling policies have been proposed for streaming applications, specified
using dataflow MoCs and executed on MPSoC platforms. For a long period of
time, self-timed scheduling was considered as the most appropriate scheduling
policy for streaming applications [51]. Under self-timed scheduling, a task
executes as soon as possible when its input data is ready. This scheduling policy,
however, has two significant drawbacks: 1) it does not provide temporal iso-
lation (introduced in Section 1.1) among applications concurrently running
on a shared MPSoC platform; 2) it needs a complex design space exploration
(DSE) to determine the minimum number of required processors and the map-
ping of tasks to these processors in an MPSoC platform such that all timing
requirements are satisfied.

In contrast, many scheduling algorithms from the classical hard real-time
scheduling theory for multiprocessors [21, 29] have the following attractive
properties: 1) the minimum number of processors needed to schedule a certain
set of tasks and their mapping on processors can be calculated in a fast, yet
accurate analytical way; 2) temporal isolation among different applications
is guaranteed; 3) fast admission and scheduling decisions for new incoming
applications can be performed at run-time. In these scheduling algorithms,

5Also referred as tasks allocation in the literature. Both are used interchangeably in this thesis.

1.4. Research Questions 9

the tasks of an application are specified using a real-time task model. The most
influential example of such a task model is the periodic real-time task model [54]
in which a task is invoked in a strictly periodic way, with a constant interval
between invocations. Each task invocation has a constant execution time which
must be completed before a certain deadline. These scheduling algorithms,
however, typically assume sets of independent periodic or sporadic tasks. Thus,
such a simple task model is not directly applicable to streaming applications
that have data-dependent tasks.

In recent years, several approaches [8–10, 78, 79] have been proposed to
bridge the gap between the dataflow MoCs that support data-dependent tasks
and the classical hard real-time scheduling theory which mainly considers
independent periodic/sporadic tasks. Using these approaches, the dependent
tasks of an application, specified by an acyclic CSDF graph, can be converted
to a set of real-time periodic tasks. Therefore, this conversion enables the
utilization of many scheduling algorithms from the classical hard real-time
scheduling theory that offer properties such as temporal isolation and fast
calculation of the number of processors needed to guarantee the required per-
formance. Motivated by the above discussion, we use the approach proposed
in [8] as a basis and research driver in this thesis.

1.4 Research Questions

After introducing some important requirements, trends, and challenges in
the design of embedded streaming systems in Section 1.1, Section 1.2, and
Section 1.3, respectively, in this section, we formulate the specific research
questions addressed in this thesis concerning the design of embedded stream-
ing systems. Recall that we consider the scheduling framework proposed
in [8], namely the so-called strictly periodic scheduling (SPS) framework, as
the basis and research driver in this thesis. To easily introduce the research
questions, addressed in this thesis, and the logical connection between them,
a design flow which incorporates the SPS framework, as the main component,
is illustrated in Figure 1.2. The design flow involves three phases, namely,
analysis, resource optimization, and implementation, each of them highlighted
with a different color. The rectangular boxes represent the input(s)/output(s)
to/from each phase of the design flow, whereas the ellipsoid boxes represent
the operations performed in the phases. The dashed lines and boxes denote
the research questions and contributions of this thesis, respectively. In the
following subsections, we shortly explain each phase of the design flow and
introduce the research question belonging to each phase.

10 Chapter 1. Introduction

Acyclic (C)SDF

Cyclic (C)SDF

Analysis Model: MADF MADF HRT Scheduling Analysis

Sets of periodic tasks

Task Scheduling (Ch. 5)

Using FreeRTOS on FPGA in [7]

Using LITMUSRT on Odroid XU4 platform (Ch. 6)

New sets of periodic tasks and
no. processors/memory needs

R
es

ou
rc

e
O

pt
im

iz
at

io
n

An
al

ys
is

Im
pl

em
en

ta
tio

n

 Task Replication (Ch. 4)

 The SPS framework [8]

User Input
(e.g., scheduler, platform,
 throughput requirment)

The GSPS framework
 (Ch. 3)

2
3

4

RQ1?

RQ3?

RQ2(A)?
RQ2(B)?

1

Energy [25,55,80]
No. Processors [23]

Figure 1.2: Overview of the research questions and contributions in this thesis using a design
flow.

1.4.1 Phase 1: Analysis

The input to the first phase of the design flow is an adaptive streaming applica-
tion specified using the MADF MoC [94]. Note that if the application has static
behavior, its MADF specification has only one mode which is specified by a
(C)SDF graph. Then, a HRT scheduling analysis is performed on the (C)SDF
specification of each mode of the application using the SPS framework [8]. The
result of this analysis is a derived set of periodic tasks for each mode of the
application. To verify whether the timing requirements of the application are
satisfied, a HRT analysis for the application execution during mode transitions,
when the application’s behavior is switching from one mode to another one,
is provided in [94].

The SPS framework, however, as mentioned in Section 1.3, only accepts,
as input, streaming applications specified as acyclic CSDF graphs, thereby
enabling the utilization of many scheduling algorithms from classical hard
real-time scheduling theory only for acyclic CSDF graphs. Consequently, these
well-developed hard real-time scheduling algorithms cannot be applied to
many streaming applications that are specified as cyclic CSDF graphs, i.e.,
graphs where the tasks have cyclic data dependencies. Thus, we formulate

1.4. Research Questions 11

the first research question addressed in this thesis as follows.
RQ1: How to apply the hard real-time scheduling theory to streaming

applications, specified as CSDF graphs, with cyclic dependencies?

1.4.2 Phase 2: Resource Optimization

The inputs to the second phase of the design flow are sets of periodic tasks,
derived in the first phase, and some user inputs such as the platform on
which the tasks will execute, the (hard) real-time scheduling algorithm used to
schedule the tasks on the platform, and timing requirements (e.g., throughput).
Then, in this phase, the number of required processors on the platform and
the task mapping for each mode of the application are analytically computed
using the scheduling algorithm, selected by the user, such that all timing
requirements are satisfied. The outputs of this phase are a new derived
sets of periodic tasks along with their task mapping, number of processors
required to satisfy the timing requirements, and the memory needed for data
communication/synchronization among the tasks.

Regarding the design requirements, mentioned in Section 1.1, in this phase,
further improvements can be performed on the tasks mapping and scheduling
to more efficiently utilize the limited resources, i.e., the number of proces-
sors and energy budget, available on the platform. To this end, several task
mapping and scheduling approaches using the SPS framework have been
proposed in [23, 25, 55, 80]. As the computational capacity of the processors is
underutilized under partitioned scheduling algorithms6 due to the capacity
fragmentation issue, i.e., no single processor has sufficient remaining capacity
to schedule any other task in spite of the existence of a total large amount
of unused capacity on the platform, a mapping and scheduling approach
is proposed in [23] to more efficiently exploit the computational capacity of
the processors by allowing only certain tasks to migrate between multiple
processors while the rest of the tasks are statically allocated on the processors.
Although this approach can result in better processor utilization, it increases
the memory needs and latency of the application significantly. Thus, we
formulate the second research question addressed in this thesis as follows.

RQ2(A): How to alleviate the capacity fragmentation issue introduced
by partitioned scheduling algorithms and reduce the number of processors
required for an application with a given throughput requirement while im-
posing less overhead on the memory needs and latency of the application?

6Where periodic tasks of an application are statically mapped on the processors, as intro-
duced in Section 2.2.3 on page 24.

12 Chapter 1. Introduction

To achieve energy efficiency, [25, 55, 80] propose energy-efficient task map-
ping and scheduling approaches using the VFS mechanism mentioned in
Section 1.2.1. The general idea behind these approaches is to efficiently exploit
available idle (i.e., slack) times in the schedule of an application in order to
slow down the execution of running tasks of the application by using the VFS
mechanism to reduce the energy consumption while satisfying the through-
put requirement of the application. By using the SPS framework, however,
only a set of application throughputs can be guaranteed for the application.
Therefore, given a required application throughput that is not in the set of
guaranteed throughputs by the SPS framework, the mapping and schedule
that provide the closest higher throughput to the required one must be selected
from the set. This, however, reduces the amount of slack time in the schedule
of the application that can be potentially exploited using the VFS mechanism
to reduce the energy consumption. Thus, we formulate the third research
question addressed in this thesis as follows.

RQ2(B): How to exploit more slack times in the schedule of an appli-
cation with a given throughput requirement using the VFS mechanism to
achieve more energy efficiency?

1.4.3 Phase 3: Implementation

Finally, the third phase of the design flow, shown in Figure 1.2, is to im-
plement and execute the analyzed application on an MPSoC platform. The
inputs to this phase are the MADF-modeled application, the selected MP-
SoC platform, scheduling algorithm, and timing requirements by the user,
and the sets of periodic tasks derived in the second phase along with their
task mapping, number of required processors, and memory needs for data
communication/synchronization among the tasks. Note that since the SPS
framework converts an application into a set of real-time periodic tasks, the
implementation and execution of the application must be performed on top of
a real-time operating system (RTOS) which provides real-time multiprocessor
scheduling algorithms (e.g., Earliest Deadline First (EDF) or Rate Monotonic
(RM)) needed to schedule the periodic tasks on the MPSoC platform. In this
regard, [7] adopts the FreeRTOS [72], which is an open-source RTOS, and
proposes an implementation and execution approach for static streaming ap-
plications, specified as acyclic (C)SDF graphs, running on a Xilinx FPGA board.
Concerning adaptive streaming applications, modeled and analyzed with the
MADF MoC, however, no attention has been paid so far at this implementa-
tion phase. Thus, we formulate the fourth research question addressed in this
thesis as follows.

1.5. Research Contributions 13

RQ3: How to implement and execute an adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform, such
that the properties of the analyzed model are preserved?

1.5 Research Contributions

To address the research questions, outlined in Section 1.4, this thesis provides
four research contributions represented as the dashed boxes in Figure 1.2. We
summarize these research contributions in the following sub-sections.

1.5.1 Generalized Strictly Periodic Scheduling Framework

To address research question RQ1, we propose a novel scheduling framework,
called Generalized Strictly Periodic Scheduling (GSPS), published in [64]
and presented in Chapter 3, that can handle cyclic (C)SDF graphs. To this
end, we first propose a sufficient test to check for the existence of a strictly
periodic schedule for a streaming application modeled as a cyclic (C)SDF
graph. If a strictly periodic schedule exists for the application, the tasks of the
application are converted to a set of periodic tasks by computing their periods,
deadlines, and earliest start times. As a consequence, this conversion enables
the utilization of many well-developed HRT scheduling algorithms [21, 29] on
streaming applications modeled as cyclic (C)SDF graphs to benefit from the
properties of these algorithms such as HRT guarantees, fast admission control,
temporal isolation, and fast calculation of the number of required processors.
The experimental results, on a set of real-life benchmarks, demonstrate that our
approach can schedule the tasks in an application, modeled as a cyclic CSDF
graph, with guaranteed throughput equal or comparable to the throughput
obtained by existing scheduling approaches while providing HRT guarantees
for every task in the application thereby enabling temporal isolation among
concurrently running tasks/applications on a multi-processor platform.

1.5.2 Algorithm to Find an Alternative Application Task Graph
for Efficient Utilization of Processors

To address research question RQ2(A), we propose a novel algorithm, pub-
lished in [63] and presented in Chapter 4, to find an alternative application
task graph that exposes more parallelism, particularly in the form of data-level
parallelism, while preserving the same application behavior and throughput.
This is needed due to the fact that a given initial application task graph is not

14 Chapter 1. Introduction

the most suitable one for a given MPSoC platform because the application
developers, providing the initial graph, typically focus on realizing certain
application behavior while neglecting the efficient utilization of the avail-
able resources on MPSoC platforms. Therefore, the main innovation in our
proposed algorithm is that by using the unfolding graph transformation, intro-
duced in Section 4.4.1, we propose a method to determine a replication factor
for each task of an application, specified as an acyclic SDF graph, such that
the distribution of the workloads among more parallel tasks, in the obtained
graph after the transformation, results in a better resource utilization, which
can alleviate the capacity fragmentation introduced by partitioned scheduling
algorithms, hence reducing the number of required processors. The experi-
mental results, on a set of real-life streaming applications, demonstrate that
our approach can reduce the minimum number of processors required to
schedule an application while imposing considerably less overhead, i.e., an
average of up to 31.43% and 44.09% less overhead in terms of memory needs
and application latency, respectively, compared to related approaches while
satisfying the same throughput requirement.

1.5.3 Energy-Efficient Periodic Scheduling Approach

To address research question RQ2(B), we propose a novel energy-efficient
periodic scheduling approach, published in [62] and presented in Chapter 5.
In this approach, the execution of an application, specified as a CSDF graph, is
periodically switched at run-time between a few off-line determined energy-
efficient schedules in order to satisfy the application throughput requirement
in a long run. As a result, this approach can reduce the energy consumption
significantly by exploiting slack times in the schedules of the application more
efficiently using a Dynamic VFS (DVFS) mechanism, where multiple voltage
and operating frequencies are selected at design-time for the processors to
be periodically switched at run-time. The experimental results, on a set of
real-life streaming applications, show that our novel scheduling approach can
achieve up to 68% energy reduction depending on the application and the
throughput requirement compared to related approaches.

1.5.4 MADF Implementation and Execution Approach

To address research question RQ3, we propose a generic parallel implementa-
tion and execution approach, published in [65] and presented in Chapter 6,
for adaptive streaming applications, specified and analyzed using the MADF
MoC. Our implementation and execution approach conforms to the analysis

1.6. Thesis Outline 15

model and its operational semantics. We demonstrate our approach using
LITMUSRT [22] which is one of the existing real-time extensions of the Linux
kernel. To show the practical applicability of our parallel implementation and
execution approach and its conformity to the analysis model, we present a
case study where we implement and execute a real-life adaptive streaming
application on the Odroid XU4 platform [66] with LITMUSRT. Odroid XU4
features the MPSoC shown in Figure 1.1.

1.6 Thesis Outline

Below, we give an outline of this thesis, summarizing the contents of the
following chapters.

Chapter 2 presents an overview of the dataflow MoCs considered in
this thesis, some relevant analysis techniques from the hard real-time (HRT)
scheduling theory, and the HRT scheduling analysis of (C)SDF and MADF
graphs. All of these concepts and techniques are necessary to understand the
contributions of this thesis.

Chapter 3 to Chapter 6 contain the main contributions of this thesis. Each
chapter is organized in a self-contained way, meaning that each chapter con-
tains a more specific introduction to the addressed problem, a related work,
the proposed solution approach, an experimental evaluation, and a concluding
discussion.

Chapter 3 presents our novel HRT scheduling framework, called GSPS,
for streaming applications modeled as cyclic (C)SDF graphs. This chapter is
based on our publication [64].

Chapter 4 presents our novel algorithm to optimize the number of pro-
cessors needed for executing streaming applications modeled as acyclic SDF
graphs under partitioned scheduling algorithms. This chapter is based on our
publication [63].

Chapter 5 presents our energy-efficient periodic scheduling approach for
streaming applications modeled as (C)SDF graphs. This chapter is based on
our publication [62].

Chapter 6 presents the final contribution of this thesis, which is our parallel
implementation and execution approach for adaptive streaming applications
modeled as MADF graphs. This chapter is based on our publication [65].

Finally, Chapter 7 ends this thesis by providing a summary of the research
works done in this thesis along with some conclusions.

16 Chapter 1. Introduction

Chapter 2

Background

THIS chapter is dedicated to an overview of the background material
needed to understand the novel research contributions of this thesis

presented in the following chapters. We first provide a summary of some
mathematical notations used throughout this thesis in Table 2.1.

Symbol Meaning
N The set of natural numbers excluding zero
N0 N [{0}
Z The set of integers
|x| The cardinality of a set x
dxe The smallest integer that is greater than or equal to x
bxc The greatest integer that is smaller than or equal to x

x̂ The maximum value of x
x̌ The minimum value of x
~x The vector x

lcm The least common multiple operator
mod The integer modulo operator

xV An x-partition of a set V (see Definition 2.2.1)

Table 2.1: Summary of mathematical notations.

Then, in Section 2.1, we present the dataflow MoCs that are used in this
thesis. In Section 2.2, we present some results and definitions from the hard
real-time (HRT) scheduling theory relevant to the context of this thesis. Finally,
in Section 2.3 and 2.4, we describe the HRT analysis for the adopted dataflow
MoCs.

18 Chapter 2. Background

2.1 Dataflow Models of Computation

As mentioned in Section 1.2.2, dataflow MoCs have been identified as the
most suitable parallel MoCs to express the available parallelism in streaming
applications. In this section, we present the dataflow MoCs considered in
this thesis, that is, the CSDF and SDF MoCs are given in Section 2.1.1 and the
MADF MoC is given in Section 2.1.2.

2.1.1 Cyclo-Static/Synchronous Data Flow (CSDF/SDF)

An application modeled as a CSDF [16] is defined as a directed graph G =
(A, E). G consists of a set of actors A, which corresponds to the graph nodes,
that communicate with each other through a set of communication channels
E ✓ A⇥A, which corresponds to the graph edges. Actors represent compu-
tations while communication channels represent data dependencies among
actors. A communication channel Eu 2 E is a first-in first-out (FIFO) buffer
and it is defined by a tuple Eu = (Ai, Aj), which implies a directed connection
from actor Ai (called source) to actor Aj (called destination) to transfer data,
which is divided in atomic data objects called tokens. An actor receiving an
input data stream of the application from the environment is called input
actor and an actor producing an output data stream of the application to the
environment is called output actor.

An actor fires (executes) when there are enough tokens on all of its input
channels. Every actor Ai 2 A has an execution sequence [fi(1), fi(2), · · · , fi(fi)]
of length fi, i.e., it has fi phases. This means that the execution of each
phase 1 f fi 2 N of actor Ai is associated with a certain function
fi(f). As a consequence, the execution time of actor Ai is also a sequence
[Ci(1), Ci(2), · · · , Ci(fi)] consisting of the worst-case execution time (WCET)
values for each phase. Every output channel Eu of actor Ai has a predefined
token production sequence [xu

i (1), xu
i (2), · · · , xu

i (fi)] of length fi. Analogously,
token consumption from every input channel Eu of actor Ai is a predefined
sequence [yu

i (1), yu
i (2), · · · , yu

i (fi)], called consumption sequence. Therefore, the
k�th time that actor Ai is fired, it executes function fi(((k� 1) mod fi) + 1),
produces xu

i (((k� 1) mod fi) + 1) tokens on each output channel Eu, and
consumes yu

i (((k� 1) mod fi) + 1) tokens from each input channel Eu. The
total number of produced tokens by actor Ai on channel Eu during its first n
invocations and the total number of consumed tokens from the same channel
by Aj during its first n invocations are Xu

i (n) = Ân
l=1 xu

i (((l� 1) mod fi) + 1)
and Yu

j (n) = Ân
l=1 yu

j (((l � 1) mod fj) + 1), respectively.
An important property of the CSDF model is the ability to derive a schedule

2.1. Dataflow Models of Computation 19

for the actors at design-time. In order to derive a valid static schedule for a
CSDF graph at design-time, it has to be consistent and live.

Theorem 2.1.1 (From [16]). In a CSDF graph G, a repetition vector~q = [q1, q2, · · · ,
q|A|]

T is given by

~q = Q ·~r with Qik =

(
fi i f i = k
0 otherwise

(2.1)

where~r = [r1, r2, · · · , r|A|]
T is a positive integer solution of the balance equation

G ·~r =~0 (2.2)

and where the topology matrix G 2 Z|E |⇥|A| is defined by

Gui =

8
><

>:

Xu
i (fi) i f actor Ai produces on channel Eu

�Yu
i (fi) i f actor Ai consumes f rom channel Eu

0 otherwise.
(2.3)

Theorem 2.1.1 shows that a repetition vector and hence a valid static sched-
ule can only exist if the balance equation, given as Equation (2.2), has a non-
trivial solution [16]. A graph G that meets this requirement is said to be
consistent. An entry qi 2 ~q = [q1, q2, · · · , q|A|]

T 2 N|A| denotes how many
times an actor Ai 2 A executes in every graph iteration of G. If a deadlock-free
schedule can be found, G is said to be live. When every actor Ai 2 A in G has
a single phase, i.e., fi = 1, the graph G is a Synchronous Data Flow (SDF) [52]
graph, meaning that the SDF MoC is a subset of the CSDF MoC.

For example, Figure 2.2(b) shows a CSDF graph. The graph has a set
A = {A1, A2, A3, A4, A5} of five actors and a set E = {E1, E2, E3, E4, E5} of
five FIFO channels that represent the data dependencies between the actors.
In this graph, there is one input actor (i.e., A1) and one output actor (i.e., A5).
Each actor has different number of phases, an execution time sequence, and
production/consumption sequences on different channels. For instance, actor
A1 has two phases, i.e., f1 = 2, its execution time sequence (in time units)
is [C1(1), C1(2)] = [1, 1] and its token production sequence on channel E4 is
[0, 1]. Then, according to Equations (2.1), (2.2), and (2.3) in Theorem 2.1.1, we
can derive the repetition vectors~q as follows:

G =

2

66664

1 �1 0 0 0
0 1 �1 0 0
0 0 1 0 �1
1 0 0 �1 0
0 0 0 1 �1

3

77775
,~r =

2

66664

1
1
1
1
1

3

77775
, Q =

2

66664

2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

3

77775
, and~q =

2

66664

2
1
1
1
2

3

77775

20 Chapter 2. Background

A1 A2 A3 A5
[1[1], 1[0]] [p2[1]]

A4
[1[0], 1[p6]]

[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

[p2[1]]
E1

[1[p4]] [1[p4]]

[1[1]][1[1]]

IC

E22

E2 E3

E4 E5

E44 E11

E55
E33

Figure 2.1: Example of an MADF graph (G1).

A1
1 A2

1 A3
1 A5

1

[1,1] [4,4] [1]E1 E2 E3

[1,0] [1,1] [1,1] [1] [1] [2,0]

[1,1]

(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2

A4
2

[1,1] [8] [1]

[3]

E1 E2 E3

E4 E5
[1][1]

[0,1]
[1,0] [1] [1] [1] [1] [1,0]

[0,1]

[1,1]

(b) CSDF graph G2
1 of mode SI2.

Figure 2.2: Two modes of the MADF graph in Figure 2.1.

2.1.2 Mode-Aware Data Flow (MADF)

MADF [94] is an adaptive MoC which can capture multiple application modes
associated with an adaptive streaming application, where each individual
mode is represented as a CSDF graph [16]. Formally, an MADF is a multigraph
defined by a tuple (A, Ac, E , P), where A is a set of dataflow actors, Ac is the
control actor to determine modes and their transitions, E is the set of edges
for data/parameter transfer, and P = {~p1,~p2, · · · ,~p|A|} is the set of parameter
vectors, where each ~pi 2 P is associated with a dataflow actor Ai 2 A. The
detailed formal definitions of all components of the MADF MoC can be found
in [94].

Here, we explain the MADF intuitively by an example. The MADF graph
G1 of an adaptive streaming application with two different modes is shown in
Figure 2.1. This graph consists of a set of five actors A1 to A5 that communicate
data over FIFO channels, i.e., the edges E1 to E5. Also, there is an extra
actor Ac which controls the switching between modes through control FIFO
channels, i.e., the edges E11, E22, E33 E44, and E55, at run-time. Each data
FIFO channel contains a production and a consumption pattern, and some
of these production and consumption patterns are parameterized. Having
different values of parameters and WCET of the actors determine different

2.1. Dataflow Models of Computation 21

modes. For example, to specify the consumption pattern with variable length
on a data FIFO channel in graph G1, the parameterized notation [a[b]] is used
to represent a sequence of a elements with integer value b, e.g., [2[1]] = [1, 1]
and [1[2]] = [2]. For the MADF example in Figure 2.1, P = {~p1 = [p1],~p2 =
[p2],~p3 = [],~p4 = [p4],~p5 = [p5, p6]}. Now let assume that the parameter
vector [p1, p2, p4, p5, p6] can take only two values [0, 2, 0, 2, 0] and [1, 1, 1, 1, 1].
Then, Ac can switch the application between two corresponding modes SI1

and SI2 by setting the parameter vector to the first value and the second
value, respectively, at run-time. Figure 2.2(a) and Figure 2.2(b) show the
corresponding CSDF graphs of modes SI1 and SI2.

While the operational semantics of an MADF graph [94] in steady-state,
i.e., when the graph is executed in each individual mode, are the same as
that of a CSDF graph [16], the transition of MADF graph from one mode to
another is the crucial part that makes MADF fundamentally different from
CSDF. The protocol for mode transitions has a strong impact on the design-
time analyzability and implementation efficiency, discussed in Section 1.2.2.
In the existing adaptive MoCs like FSM-SADF [32], a protocol, referred as
self-timed transition protocol, has been adopted which specifies that tasks
are scheduled as soon as possible during mode transitions. This protocol,
however, introduces timing interference of one mode execution with another
one that can significantly affect and fluctuate the latency of an adaptive stream-
ing application across a long sequence of mode transitions. To avoid such
undesirable behavior caused by the self-timed transition protocol, MADF em-
ploys a simple, yet effective transition protocol, namely the maximum-overlap
offset (MOO) transition protocol [94] when switching an application’s mode
by receiving a mode change request (MCR) from the external environment via
the IC port of actor Ac (see the black dot in Figure 2.1). The MOO protocol
can resolve the timing interference between modes upon mode transitions by
properly offsetting the starting time of the new mode by xo!n computed as
follows:

xo!n =

(
maxAi2Ao\An(So

i � Sn
i) if maxAi2Ao\An(So

i � Sn
i) > 0

0 otherwise,
(2.4)

where So
i and Sn

i are the start times of actor Ai in mode SIo and SIn, i.e., the
current and the new mode, respectively.

For instance, consider the valid schedules of modes SI1 and SI2 shown in
Figure 2.3(a) and (b), respectively. In these figures, H is the iteration period,
also called hyper period, that represents the duration needed by the graph to
complete one iteration and L is the iteration latency that represents the time

22 Chapter 2. Background

Actors

5 10 15

SI1

L1

H1

S21

S31

S51 Time

A11

A21

A31

A41

A51

20

H1

H1

H1

0

(a)

Actors

5 10 15

SI2

L2

S22

S32

S42

S52 Time

A22

A12

A32

A42

A52

20

H2

H2

H2

H2

H2

0

(b)

Figure 2.3: Execution of two iterations of both modes SI1 and SI2. (a) Mode SI1 in Fig-
ure 2.2(a). (b) Mode SI2 in Figure 2.2(b).

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30

x2�1=4

35 Time

L1 L2

Start of mode SI1

H2 H1

Start of mode SI2
x1�2=0

0

�2�1 �1�2

tMCR1 tMCR2

Figure 2.4: Execution of graph G1 with two mode transitions under the MOO protocol.

distance between the starting times of the input actor and the output actor.
Then, the offset x1!2 for the mode transition from SI1 to SI2 is computed by
the following equations: S1

1 � S2
1 = 0� 0 = 0, S1

2 � S2
2 = 1� 1 = 0, S1

3 � S2
3 =

5� 9 = �4, S1
5 � S2

5 = 10� 10 = 0, and is max(0, 0,�4, 0) = 0. Similarly,
the offset x2!1 for the mode transition from SI2 to SI1, using the equations
S2

1 � S1
1 = 0, S2

2 � S1
2 = 0, S2

3 � S1
3 = 4, S2

5 � S1
5 = 0, is max(0, 0, 4, 0) = 4. An

execution of G1 with the two mode transitions and the computed offsets is
illustrated in Figure 2.4, in which, the iteration latency L of the schedule of the
modes, in Figure 2.3(a) and (b), are preserved during mode transitions.

To quantify the responsiveness of a transition protocol, a metric, called
transition delay and denoted by Do!n, is also introduced in [94] and calculated
as

Do!n = so!n
out � tMCR (2.5)

where so!n
out is the earliest start time of the output actor in the new mode

2.2. Real-Time Scheduling Theory 23

SIn and tMCR is the time when the mode change request MCR occurred. In
Figure 2.4, we can compute the transition delay for MCR1 occurred at time
tMCR1 = 1 as D2!1 = 22� 1 = 21 time units.

2.2 Real-Time Scheduling Theory

In this section, we introduce the real-time periodic task model [29] and some
important real-time scheduling concepts and algorithms [29] which are instru-
mental to the contributions we present in this thesis.

2.2.1 System Model

To present the important results from the real-time scheduling theory relevant
to this thesis, we consider a homogeneous multiprocessor system composed of
a set P = {p1, p2, · · · , pm} of m identical processors. However, the results
of our research contributions, presented in this thesis, are applicable to het-
erogeneous multiprocessor systems as well. This is because the processor
heterogeneity can be captured within the WCET of real-time periodic tasks,
which will be explained in Chapter 4.

2.2.2 Real-Time Periodic Task Model

Under the real-time periodic task model, applications running on a system
are modeled as a set G = {t1, t2, · · · , tn} of n periodic tasks, that can be
preempted at any time. Every periodic task ti 2 G is represented by a tuple
ti = (Ci, Ti, Si, Di), where Ci is the WCET of the task, Ti is the period of the
task in relative time units, Si is the start time of the task in absolute time
units, and Di is the deadline of the task in relative time units. The task ti is
said to be a constrained-deadline periodic (CDP) task if Di Ti. When Di = Ti,
the task ti is said to be an implicit-deadline periodic (IDP) task. Each task ti
executes periodically in a sequence of task invocations. Each task invocation
releases a job. The k�th job of task ti, denoted as ti,k, is released at time instant
si,k = Si + kTi, 8k 2 N0 and executed for at most Ci time units before reaching
its deadline at time instant di,k = Si + kTi + Di.

The utilization of task ti, denoted as ui, is defined as ui = Ci/Ti, where
ui 2 (0, 1]. For a task set G, uG is the total utilization of G given by uG = Âti2G ui.
Similarly, the density of task ti is di = Ci/Di and the total density of G is
dG = Âti2G di.

24 Chapter 2. Background

2.2.3 Real-Time Scheduling Algorithms

When a multiprocessor system P and a set of real-time period tasks G are
given, a real-time scheduling algorithm is needed to execute the tasks on the
system such that all task deadlines are always met. According to [29], real-time
scheduling algorithms for multiprocessor systems try to solve the following
two problems:

• The allocation problem, that is, on which processor(s) jobs of tasks should
execute.

• The priority assignment problem, that is, when and in what order each job
of a task with respect to jobs of other tasks should execute.

Depending on how the scheduling algorithms solve the allocation problem,
they can be classified as follows [29]:

• No migration: each task is statically allocated on a processor and no
migration is allowed.

• Task-level migration: jobs of a task can execute on different processors.
However, each job can only execute on one processor.

• Job-level migration: jobs of a task can migrate and execute on different pro-
cessors. However, each job cannot execute on more than one processor
at the same time.

A scheduling algorithm that allows migration, either at task-level or job-level,
among all processors is called a global scheduling algorithm, while an algo-
rithm that does not allow migration at all is called a partitioned scheduling
algorithm. Finally, an algorithm that allows migration, either at task-level or
job-level, only for a subset of tasks among a subset of processors is called a
hybrid scheduling algorithm.

Depending on how the scheduling algorithms solve the priority assign-
ment problem, they can be classified as follows [29]:

• Fixed task priority: each task has a single fixed priority that is used for all
its jobs.

• Fixed job priority: jobs of a task may have different priorities. However,
each job has only a single fixed priority.

• Dynamic priority: a single job of a task may have different priorities at
different times during its execution.

The scheduling algorithms can be further classified into [29]:

• Preemptive: tasks can be preempted by a higher priority task at any time.
• Non-preemptive: once a task starts executing, it will not be preempted

and it will execute until completion.

2.2. Real-Time Scheduling Theory 25

A task set G is said to be feasible with respect to a given system P if there
exists a scheduling algorithm that can construct a schedule in which all task
deadlines are always met. A scheduling algorithm is said to be optimal with
respect to a task model and a system, if it can schedule all task sets that comply
with the task model and are feasible on the system. A task set is said to be
schedulable on a system under a given scheduling algorithm, if all tasks can
execute under the scheduling algorithm on the system without violating any
deadline. To check whether a task set is schedulable on a system under a
given scheduling algorithm, the real-time scheduling theory provides various
analytical schedulability tests. Generally, schedulability tests can be classified
as follows [29]:

• Sufficient: if all task sets that are deemed schedulable by a schedulability
test are in fact schedulable.

• Necessary: if all task sets that are deemed unschedulable by a schedula-
bility test are in fact unschedulable.

• Exact: if a schedulability test is both sufficient and necessary.

Uniprocessor Schedulability Analysis

In this thesis, we use the preemptive earliest deadline first (EDF) scheduling
algorithm [54], which is the most studied and popular dynamic-priority schedul-
ing algorithm on uniprocessor systems, as the basis scheduling algorithm. The
EDF algorithm schedules jobs of tasks according to their absolute deadlines.
More specifically, jobs of tasks with earlier deadlines will be executed at higher
priorities [21]. The EDF algorithm has been proven to be the optimal schedul-
ing algorithm for periodic tasks on uniprocessor systems [21, 54]. An exact
schedulability test for an implicit-deadline periodic task set on a uniprocessor
system under EDF is given in the following theorem.

Theorem 2.2.1 (From [54]). Under EDF, an implicit-deadline periodic task set G is
schedulable on a uniprocessor system if and only if:

uG = Â
ti2G

uti 1. (2.6)

For a constrained-deadline periodic task set, however, Equation (2.6) serves
as a necessary test. An exact schedulability test for a constrained-deadline
periodic task set on a uniprocessor under EDF is given in the following lemma.

Lemma 2.2.1 (From [13]). Under EDF, a periodic task set G is schedulable on a
uniprocessor system if and only if uG 1 and db f (G, t1, t2) (t2 � t1) for all

26 Chapter 2. Background

0 t1 < t2 < Ŝ + 2H, where db f (G, t1, t2), termed as processor demand bound

function, denotes the total execution time that all tasks of G demand within time
interval [t1, t2] and is given by

db f (G, t1, t2) = Â
ti2G

max{0,
�

t2 � Si � Di
Ti

⌫
�max{0,

⇠
t1 � Si

Ti

⇡
} + 1} · Ci,

Ŝ = max{S1, S2, · · · , S|G|}, and H = lcm{T1, T2, · · · , T|G|}.

However, this schedulability test is computationally expensive because it
needs to check all absolute deadlines, which can be a large number, within the
time interval. To improve the efficiency of the EDF exact test, a new exact test
for the EDF scheduling is proposed in [95] which checks a smaller number of
time points within the time interval.

Multiprocessor Schedulability Analysis

On multiprocessor systems, there are several optimal global scheduling algo-
rithms for implicit-deadline periodic tasks, such as Pfair [12] and LLREF [27],
which exploit job-level migrations and dynamic priority. Under these schedul-
ing algorithms, an exact schedulability test for an implicit-deadline periodic
task set G on m processors is:

uG = Â
ti2G

uti m. (2.7)

Based on the above equation, the absolute minimum number of processors,
denoted as m̌OPT, needed by an optimal scheduling algorithm to schedule an
implicit-deadline periodic task set G is:

m̌OPT = duGe. (2.8)

In the case of constrained-deadline periodic tasks, however, no optimal al-
gorithm for global scheduling exists [29]. Under global dynamic priority
schedulings, a sufficient schedulability test for a constrained-deadline periodic
task set G on m processors is [6, 31]:

dG = Â
ti2G

dti m. (2.9)

According to this test, the minimum number of processors needed by a global
dynamic priority scheduling to schedule a constrained-deadline periodic task
set G is:

m̌ = ddGe. (2.10)

2.2. Real-Time Scheduling Theory 27

The other class of multiprocessor scheduling algorithms for periodic task
sets are partitioned scheduling algorithms [29] that do not allow task migra-
tion. Under partitioned scheduling algorithms, a task set is first partitioned
into subsets (according to Definition 2.2.1) that will be executed statically on
individual processors. Then, the tasks on each processor are scheduled using
a given uniprocessor scheduling algorithm.

Definition 2.2.1. (Partition of a set). Let V be a set. An x-partition of V is a set,
denoted by xV, where

xV = {xV1, xV2, · · · , xVx},

such that each subset xVi ✓ V, and

x\

i=1

xVi = ∆ and
x[

i=1

xVi = V.

In this regard, the minimum number of processors needed to schedule a
task set G by a partitioned scheduling algorithm is:

m̌PAR = min{x 2 N | 9x-partition of G^8i 2 [1, x] : xGi is schedulable on pi}.
(2.11)

The derived x-partition of a task set, using Equation (2.11), is optimal because
of requiring the least amount of processors to allocate all tasks while guaran-
teeing schedulability on all processors. Deriving such optimal partitioning
is inherently equivalent to the well-known bin packing problem [45]. In the
bin packing problem, items of different sizes must be packed into bins with
fixed capacity such that the number of needed bins is minimized. However,
finding an optimal solution for the bin packing problem is known to be NP-
hard [46]. Therefore, several heuristic algorithms have been developed to solve
the bin packing problem and obtain approximate solutions in a reasonable
time interval. Below, we introduce the most commonly used heuristics [28,46].

• First-Fit (FF) algorithm: places an item to the first (i.e., lowest index)
bin that can accommodate the item. If no such bin exists, a new bin is
opened and the item is placed on it.

• Best-Fit (BF) algorithm: places an item to a bin that can accommodate
the item and has the minimal remaining capacity after placing the item.
If no such bin exists, a new bin is opened and the item is placed on it.

• Worst-Fit (WF) algorithm: places an item to a bin that can accommodate
the item and has the maximal remaining capacity after placing the item.
If no such bin exists, a new bin is opened and the item is placed on it.

28 Chapter 2. Background

The performance of these heuristic algorithms can be improved by sorting
the items according to a certain criteria, such as their size. Then, we obtain
the First-Fit Decreasing (FFD), Best-Fit Decreasing (BFD), and Worst-Fit De-
creasing (WFD) heuristics.

2.3 HRT Scheduling of Acyclic CSDF Graphs

As mentioned in Section 1.3, recently, a scheduling framework, namely, the
Strictly Periodic Scheduling (SPS) framework, has been proposed in [8] which
enables the utilization of many scheduling algorithms from the classical hard
real-time scheduling theory (briefly introduced in Section 2.2) to applications
modeled as acyclic CSDF graphs. The main advantages of these schedul-
ing algorithms are that they provide: 1) temporal isolation and 2) fast, yet
accurate calculation of the minimum number of processors that guarantee
the required performance of an application and mapping of the application’s
tasks on processors. The basic idea behind the SPS framework is to con-
vert a set A = {A1, A2, · · · , An} of n actors of a given CSDF graph to a set
G = {t1, t2, · · · , tn} of n real-time implicit-deadline periodic tasks1. In partic-
ular, for each actor Aj 2 A of the CSDF graph, the SPS framework derives
the parameters, i.e., the period (Tj) and start time (Sj), of the corresponding
real-time periodic task tj = (Cj, Tj, Sj, Dj = Tj) 2 G. The period Ti of task tj
corresponding to actor Aj under the SPS framework can be computed as:

Tj =
lcm(~q)

qj
· s, (2.12)

s � š =

⇠
Ŵ

lcm(~q)

⇡
2 N, (2.13)

where lcm(~q) is the least common multiple of all repetition entries in ~q (ex-
plained in Section 2.1.1), Ŵ = maxAj2A{Cj · qj} is the maximum actor work-
load of the CSDF graph, and Cj = max1ffj{Cj(f)}, where Cj(f) includes
both the worst-case computation time and worst-case data communication
time required by a phase f of actor Aj. Note that Cj(f) includes the worst-case
data communication time in order to ensure the feasibility of the derived schedule
regardless of the variance of different task allocations. In general, the derived period
vector ~T satisfies the condition:

q1T1 = q2T2 = · · · = qnTn = H (2.14)
1Throughout this thesis, we may use the terms task and actor interchangeably.

2.3. HRT Scheduling of Acyclic CSDF Graphs 29

where H is the iteration period. Once the period of each task has been com-
puted, the throughput R of the graph can be computed as:

R =
1

Tout
(2.15)

where Tout is the period of the task corresponding to output actor Aout. Note
that when the scaling factor s = š = dŴ/ lcm(~q)e, the minimum period (Ťj) is
derived using Equation (2.12) which determines the maximum throughput achievable
by the SPS framework.

Then, to sustain the strictly periodic execution of the tasks corresponding
to actors of the CSDF graph with the periods derived by Equation (2.12), the
earliest start time Sj of each task tj corresponding to actor Aj, such that tj is
never blocked on reading data tokens from any input FIFO channel connected
to it during its periodic execution, is calculated using the following expression:

Sj =

(
0 i f prec(Aj) = ∆
maxAi2prec(Aj)(Si!j) otherwise,

(2.16)

where prec(Aj) represents the set of predecessor actors of Aj and Si!j is given
by:

Si!j = min
t2[0,Si+H]

n
t : Prd

[Si ,max{Si ,t}+k)
(Ai, Eu)

� Cns
[t,max{Si ,t}+k]

(Aj, Eu), 8k 2 [0, H], k 2 N
o (2.17)

where Prd[ts,te)(Ai, Eu) is the total number of tokens produced by a predecessor
actor Ai to channel Eu during the time interval [ts, te) with the assumption that
token production happens as late as possible at the deadline of each invocation
of actor Ai, Cns[ts,te](Aj, Eu) is the total number of tokens consumed by actor
Aj from channel Eu during the time interval [ts, te] with the assumption that
token consumption happens as early as possible at the release time of each
invocation of actor Aj, and Si is the earliest start time of actor Ai.

The authors in [8] also provide a method to calculate the minimum buffer
size needed for each FIFO communication channel and the latency of the
CSDF graph scheduled in a strictly periodic fashion. In this framework, once
the start time of each task has been calculated, the minimum buffer size of
each FIFO communication channel Eu = (Ai, Aj) 2 E , denoted with bu, is
calculated as follows:

bu = max
k2[0,H]

n
Prd

[Si ,max(Si ,Sj)+k)
(Ai, Eu)� Cns

[Sj,max(Si ,Sj)+k)
(Aj, Eu)

o
(2.18)

30 Chapter 2. Background

with the assumption that token production happens as early as possible at the
release time of each invocation of actor Ai and token consumption happens
as late as possible at the deadline of each invocation of actor Aj. Indeed, bu is
the maximum number of unconsumed data tokens in channel Eu during the
execution of Ai and Aj in one graph iteration period. Finally, the latency L of
the graph can be calculated as follows:

L = max
w2W

(Sout + gC
outTout + Dout � (Sin + gP

inTin)) (2.19)

where w is one path of set W which includes all paths in the CSDF graph from
the input actor to the output actor, Sin and Sout are the earliest start times of
the tasks corresponding to the input and output actors, respectively, Tin and
Tout are the periods of the tasks corresponding to the input and output actors,
respectively, Dout is the deadline of the task corresponding to the output actor,
and gC

out and gP
in are two constants which denote the number of invocations the

actor waits for the non-zero production/consumption on/from a path w 2W.

2.4 HRT Scheduling of MADF Graphs

Based on the proposed MOO protocol for mode transitions, briefly described
in Section 2.1.2, a hard real-time analysis and scheduling framework for the
MADF MoC is proposed in [94] which is an extension of the SPS framework,
briefly described in Section 2.3, developed for CSDF graphs. As explained in
Section 2.3, the key concept of the SPS framework is to derive a periodic task
set representation for a CSDF graph. Since an MADF graph in steady-state
can be considered as a CSDF graph, it is thus straightforward to represent
the steady-state of an MADF graph as a periodic task set (see Section 2.3)
and schedule the resulting task set using any well-known hard real-time
scheduling algorithm.

Using the SPS framework, we can derive the two main parameters for each
task to

i corresponding to an MADF actor Ai in mode SIo, namely the period
(To

i using Equation (2.12)) and the earliest start time (So
i using Equation (2.16)).

Then, the offset xo!n for mode transition of the MADF graph from mode SIo

to mode SIn can be simply computed using Equation (2.4). For instance, by
applying the SPS framework for graphs G1

1 and G2
1, shown in Figure 2.2(a) and

2.2(b), corresponding to modes SI1 and SI2 of graph G1 shown in Figure 2.1,
the task set G1

1 = {t1
1 = (C1

1 = 1, T1
1 = 2, S1

1 = 0, D1
1 = T1

1 = 2), t1
2 =

(4, 4, 2, 4), t1
3 = (1, 4, 6, 4), t1

5 = (1, 4, 14, 4)} of four IDP tasks and the task set
G2

1 = {t2
1 = (C2

1 = 1, T2
1 = 4, S2

1 = 0, D2
1 = T2

1 = 4), t2
2 = (8, 8, 4, 8), t2

3 =

2.4. HRT Scheduling of MADF Graphs 31

Tasks

�1

SI1SI2

5 10 15 20 25 30 Time

tMCR

S51

S31

S21

�2

�3

�4

x2�1=6

0
�5

Figure 2.5: Execution of graph G1 with a mode transition from mode SI2 to mode SI1 under
the MOO protocol and the SPS framework.

(1, 8, 12, 8), t2
4 = (3, 8, 8, 8), t2

5 = (1, 4, 20, 4)} of five IDP tasks can be derived,
respectively. An execution of graph G1 with a mode transition from mode SI2

to mode SI1, using the derived task sets G1
1 and G2

1, is shown in Figure 2.5, where
the offset x2!1 is computed by the following equations (see Equation (2.4)):
S2

1 � S1
1 = 0� 0 = 0, S2

2 � S1
2 = 4� 2 = 2, S2

3 � S1
3 = 12� 6 = 6, S2

5 � S1
5 =

20� 14 = 6, and is max(0, 2, 6, 6) = 6. However, this offset is only the lower
bound because the task allocation on processors is not yet taken into account.
This means, the execution of tasks using the schedule, shown in Figure 2.5, is
valid when each task is allocated on a separate processor.

In a system where multiple tasks are allocated on the same processor, the
processor may be potentially overloaded during mode transitions due to the
presence of executing tasks in both modes. To avoid overloading of processors,
a larger offset may be needed to delay the start time of tasks in the new mode.
In [94], this offset, referred as do!n, is calculated as follows:

do!n = min
t2[xo!n,So

out]
{t : upj(k) UB, 8k 2 [t, So

out] ^ 8pj 2 P}. (2.20)

This equation simply tests all time instants when tasks in both modes SIo

and SIn are present in the system and checks whether the processors are
consequently overloaded or not. If yes, the starting time of the new mode SIn,
which already was delayed by xo!n, is further delayed to do!n. Thus, do!n of
interest for the mode transition from mode SIo to mode SIn is the minimum
time t in the bounded interval [xo!n, So

out] such that the total utilization does
not exceed the utilization bound (UB), e.g., 1 for EDF, for all remaining time
instants in the interval. To compute the total utilization of all tasks allocated

32 Chapter 2. Background

on processor pj in any time instant k, the following equation is used in [94].

upj(k) = Â
to

i 2
xGj

⇣
uo

i � h(k� So
i) · uo

i

⌘

| {z }
uo

pj (k)

+ Â
tn

i 2
xGj

⇣
h(k� Sn

i � t) · un
i

⌘

| {z }
un

pj (k)

(2.21)

In this equation, the terms denoted by uo
pj

(k) and un
pj

(k) refers to the total
utilization of tasks that are allocated on processor pj and are executing in the
current mode SIo and the new mode SIn, respectively, at time instant k. h(t) is
the Heaviside step function.

For instance, consider the execution of the tasks in the schedule, shown
in Figure 2.5, on platform P = {p1, p2} with two processors and the tasks
allocation 2G = {2G1 = {t1, t3, t4, t5}, 2G2 = {t2}}. In this schedule, the
earliest start time of the new mode SI1 is at time instant 14 corresponding to
d2!1 = x2!1 = 6. Then, the total utilization of processor p1 demanded by the
tasks in the old mode SI2 at time instant 14, i.e., u2

p1
(6), can be computed as

follows using Equation (2.21):

u2
p1

(6) = Â
t2

i 2
2G1

u2
i � h(6� S2

i) · u2
i , i 2 {1, 3, 4, 5}

= u2
1 � h(6) · u2

1 + u2
3 � h(�6) · u2

3 + u2
4 � h(�2) · u2

4 + u2
5 � h(�14) · u2

5

= 0 + u2
3 + u2

4 + u2
5 =

1
8

+
3
8

+
1
4

=
3
4

.

Now, releasing task t1
1 in the new mode SI1 at time 14 would yield

up1(6) = u2
p1

(6) + u1
1 =

3
4

+
1
2
> UB = 1,

thereby leading to being unschedulable on processor p1. In this case, the
earliest start times of the new mode SI1 must be delayed by d2!1 = 8 time
units to time instant 16 as shown in Figure 2.6. At time instant 16, the total
utilization of processor p1 demanded by the tasks in the old mode SI2 is

u2
p1

(8) = Â
t2

i 2
2G1

u2
i � h(8� S2

i) · u2
i , i 2 {1, 3, 4, 5}

= u2
1 � h(8) · u2

1 + u2
3 � h(�4) · u2

3 + u2
4 � h(0) · u2

4 + u2
5 � h(�12) · u2

5

= 0 + u2
3 + 0 + u2

5 =
1
8

+
1
4

=
3
8

.

2.4. HRT Scheduling of MADF Graphs 33

Tasks

�1

SI1SI2

5 10 15 20 25 30 Time

tMCR

S51

S31

S21

�2

�3

�4

x2�1=6

0
�5

�2�1=8

35

Figure 2.6: Execution of graph G1 with a mode transition from mode SI2 to mode SI1 under
the MOO protocol and the SPS framework with task allocation on two processors.

Now, releasing task t1
1 in the new mode SI1 at time instant 16 results in the

total utilization of processor p1 as

up1(8) = u2
p1

(8) + u1
1 =

3
8

+
1
2
< 1.

Next, assuming that the new mode SI1 starts at time instant 16, the above proce-
dure should be repeated for the remaining tasks in the new mode SI1, namely
t1

3 and t1
5 , to ensure that they can start execution with S1

3 and S1
5, respectively,

without overloading processor p1. Then, if processor p1 is overloaded again,
a larger offset d2!1 is needed that can be calculated using Equation (2.20).

34 Chapter 2. Background

Chapter 3

Hard Real-Time Scheduling of
Cyclic CSDF Graphs

Sobhan Niknam, Peng Wang, Todor Stefanov. "Hard Real-Time Scheduling of
Streaming Applications Modeled as Cyclic CSDF Graphs". In Proceedings of the
International Conference on Design, Automation and Test in Europe (DATE’19), pp.
1528-1533, Florence, Italy, March 25 - 29, 2019.

IN this chapter, we present our Generalized Strictly Periodic Scheduling
(GSPS) framework, which corresponds to the first research contribution,

briefly introduced in Section 1.5.1, to address research question RQ1, described
in Section 1.4.1. The remainder of this chapter is organized as follows. Sec-
tion 3.1 introduces, in more details, the problem statement and the addressed
research question. It is followed by Section 3.2, which gives a summary of the
contributions presented in this chapter. An overview of the related work is
given in Section 3.3. A motivational example is given in Section 3.4. Then,
Section 3.5 presents our proposed GSPS framework. Section 3.6 presents the
experimental evaluation of our proposed GSPS framework. Finally, Section 3.7
ends the chapter with conclusions.

3.1 Problem Statement

Recall, from Section 2.3, that the Strictly Periodic Scheduling (SPS) frame-
work [8] has been recently proposed to convert a streaming application, mod-
eled as an acyclic CSDF graph, to a set of implicit-deadline periodic tasks.
As a result, a variety of hard real-time scheduling algorithms for periodic

36 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

tasks, from the classical hard real-time scheduling theory [21, 29] (briefly intro-
duced in Section 2.2), can be applied to schedule such streaming applications
with a certain guaranteed performance, i.e., throughput/latency, on MPSoC
platforms. These algorithms can perform fast admission control and schedul-
ing decisions for new incoming applications in an MPSoC platform using
fast schedulability analysis while providing hard real-time guarantees and
temporal isolation. In addition, these algorithms provide a fast analytical
calculation of the minimum number of processors needed to schedule the
tasks in an application instead of performing a complex and time-consuming
design space exploration needed by conventional static scheduling of stream-
ing applications, i.e., self-timed scheduling [85]. The SPS framework, however,
is limited to acyclic CSDF graphs and cannot schedule a streaming application
modeled as a cyclic CSDF graph, i.e., a graph where the actors have cyclic data
dependencies. Consequently, hard real-time scheduling algorithms cannot be
applied to many streaming applications modeled as cyclic CSDF graphs. Thus,
in this chapter, we investigate the possibility to apply scheduling algorithms
from the classical hard real-time scheduling theory to streaming applications
modeled as cyclic CSDF graphs.

3.2 Contributions

In order to address the problem described in Section 3.1, in this chapter, we
propose a novel scheduling framework, called Generalized Strictly Periodic
Scheduling (GSPS), that can handle cyclic CSDF graphs. As a consequence,
our framework enables the application of a variety of proven hard real-time
scheduling algorithms [21, 29] for multiprocessor systems on a wider range
of applications compared to the SPS framework. More specifically, the main
novel contributions of this chapter are summarized as follows:

• We propose a sufficient test to check for the existence of a strictly periodic
schedule for a streaming application modeled as a cyclic (C)SDF graph;

• If a strictly periodic schedule exists for an application, the tasks of the ap-
plication are converted to a set of constrained-deadline periodic tasks by
computing their periods, deadlines, and earliest start times. As a conse-
quence, this conversion enables the utilization of many well-developed
hard real-time scheduling algorithms [29] on streaming applications
modeled as cyclic (C)SDF graphs to benefit from the properties of these
algorithms such as hard real-time guarantees, fast admission control,
temporal isolation, and fast calculation of the number of required pro-
cessors;

3.3. Related Work 37

• We show, on a set of real-life streaming applications, that our approach
can schedule the tasks in an application, modeled as a cyclic (C)SDF
graph, as strictly periodic tasks with hard real-time guaranteed through-
put which is equal or comparable to the throughput obtained by existing
scheduling approaches.

3.3 Related Work

In this section, we compare our hard real-time scheduling framework with
the existing hard real-time and periodic scheduling approaches [3, 8, 18, 79, 85]
for streaming applications. In [8] and [78], the authors convert each actor
in an acyclic CSDF graph to an implicit-deadline periodic task, by deriving
the actor’s earliest start time and period. In addition, the minimum buffer
sizes of FIFO channels, that guarantee the strictly periodic execution of the
tasks, are computed in [8] and [78]. These approaches, however, are limited
to applications modeled as acyclic (C)SDF graphs. In contrast, our approach
is more general than the approaches in [8] and [78] and can schedule an
application, modeled as a cyclic (C)SDF graph, in strictly periodic fashion, if a
strictly periodic schedule exists. As a result, many well-developed hard real-
time scheduling algorithms [29] for periodic tasks can be applied to schedule
the actors in a cyclic CSDF graph to provide temporal isolation between
concurrently running applications, fast admission control of new incoming
applications, and to compute the minimum number of required processors,
using fast schedulability tests.

Ali et al. [3] propose an algorithm to convert the tasks in an application
to a set of constrained-deadline periodic tasks by extracting the tasks’ offset,
arbitrary deadline, and period. Similar to our approach, this algorithm can
deal with cyclic data dependencies in the application. However, this approach
considers streaming applications modeled as Homogeneous SDF (HSDF)
graphs derived by applying a certain transformation on initial (C)SDF graphs.
Transforming a graph from (C)SDF to HSDF is a crucial step in which the
number of tasks in the streaming application can exponentially grow, e.g.,
the HSDF graph of the application Echo [18], derived from a cyclic CSDF
graph with 38 actors, has over 42000 actors. Such exponential growth of
the application in terms of number of tasks can lead to a time-consuming
analysis. Moreover, such exponential growth results in a significant memory
overhead for storing the tasks’ code and significant scheduling overhead due
to excessive task preemptions at runtime. In addition, the derived schedule, of
a transformed (C)SDF graph to a HSDF graph, is valid if all multi-rate actors

38 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

in the (C)SDF graph are transformed to functionally equivalent single-rate
actors in the HSDF graph which requires modification of the actors’ code.
In contrast, our approach can be directly applied to streaming applications
modeled with a more expressive MoC, i.e., (C)SDF graph, which avoids the
significant memory and scheduling overheads introduced by large HSDF
graphs as well as modification of the actors’ code is not required. In addition,
our approach is faster because it avoids the exponentially complex conversion
of (C)SDF to HSDF.

In [18], the authors propose a framework to derive the maximum through-
put of a CSDF graph under a periodic schedule and to calculate the mini-
mum buffer sizes under a given throughput constraint. These are formulated
as linear programming (LP) problems and solved approximately. In [85], a
scheduling framework for exploration of the trade-off between throughput
and minimum buffer sizes of (C)SDF graphs under self-timed scheduling
is proposed. In [18], however, the calculation of the minimum number of
processors required for the derived schedule is not taken into consideration.
Moreover, the approaches in [18] and [85] do not provide hard real-time guar-
antees for every task in an application. Therefore, they do not ensure temporal
isolation among tasks/applications. As a consequence, the schedule of already
running applications has to be recalculated when a new application comes
in the system. In contrast, our approach converts the tasks in applications to
constrained-deadline periodic tasks. This conversion enables the utilization of
many hard real-time scheduling algorithms [29] to provide temporal isolation
and fast calculation of the minimum number of processors needed to schedule
the tasks under certain throughput constraint. Moreover, we propose a simple
analytical approach to test for the existence of a strictly periodic schedule and
derive the maximum throughput of a CSDF graph under the strictly periodic
schedule instead of approximately solving LP problems as done in [18].

3.4 Motivational Example

The goal of this section is to show how the actors in the cyclic CSDF graph
G, shown in Figure 3.1, can be scheduled in strictly periodic fashion using
our GSPS framework proposed in Section 3.5. First, assume that G has no
backward edge E5. Then, G has no cycles and the SPS framework [8] (described
in Section 2.3) can convert the actors in G to IDP tasks represented by the
following tuples: t1 = (C1 = 2, Ť1 = 2, S1 = 0, D1 = Ť1 = 2), t2 = (2, 3, 3, 3),
t3 = (3, 6, 4, 6), and t4 = (3, 3, 9, 3). The schedule for this periodic task set
is shown in Figure 3.2. Considering E5, however, this schedule is not valid

3.4. Motivational Example 39

[2,3]

[3]

[2]
[2,0]

[1,1]

[0,1]

[0,1,1]

[1,0,1]

[0,1,0]

[1] [1]

[1][1]

[1,2,1]
A1

A2

A4

A3

E5

E1 E3

E2 E4

Figure 3.1: A cyclic CSDF graph G. The backward edge E5 in G has 2 initial tokens that are
represented with black dots.

τ1
2

τ2
5

τ3
2

[2] [2][3] [2] τ4
2

τ5
3

[3] [2] [3] [3] τ1
2

τ2
5

τ3,1
2

[0,2]

[2,0]

τ4
2

τ5
3

[3]

[3,3,3]

τ3,0
2

e1 e2 e3 e4 e1

e2

e3

e4

e5

e6

[2]

[2] [3]

[3]
[2,1,0]

[0,1,2]

[3,3][2]

τ1 τ4
[2,3]

e1

τ3
[3]

τ2
[2]

e2

e5

e3

e4

[2,0]

[1,1]

[0,1]

[0,1,1]

[1,0,1]

[0,1,0]

[1] [1]

[1][1]

[1,2,1]

20 4

τ1

τ4

τ3

τ2

6 8 10 1412 16 18 20 22 24 26 28 30 32

20 4

τ1

τ4

τ3

τ2

6 8 10 1412 16 18

34

S1 T1

S2 T2

S3 T3

S4 T4
20 22

Figure 3.2: The SPS of the CSDF graph G in Figure 3.1 without considering the backward
edge E5. Up arrows are job releases and down arrows job deadlines.

because there is no data token available on E5 for task t1 (corresponding to
actor A1) to consume at time 8 and therefore the strict periodicity of tasks’
execution is no longer guaranteed. To solve this problem, we must ensure
that task t4 (corresponding to actor A4) can produce a data token before the
fifth firing of task t1, as shown by the dashed line in Figure 3.2. Therefore,
E5 introduces a latency constraint between tasks t1 and t4. Please note that
the derived periods of the tasks, for the schedule shown in Figure 3.2, are the
minimum periods (Ťi) by using the scaling factor s = š = dŴ/lcm(~q)e = 1
in Equation (2.12). But, there exist other longer valid periods for a task by
using any integer s > š = dŴ/lcm(~q)e = 1 in Equation (2.12). By taking
s = 3, a new schedule can be derived that can respect the latency constraint
introduced by backward edge E5 to guarantee strict periodicity of the tasks’
execution, as shown in Figure 3.3. In this schedule, the tasks are CDP tasks
that are represented by the following tuples in task set G ={t1 = (C1 = 2, T1 =

40 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

τ1
2

τ2
5

τ3
2

[2] [2][3] [2] τ4
2

τ5
3

[3] [2] [3] [3] τ1
2

τ2
5

τ3,1
2

[0,2]

[2,0]

τ4
2

τ5
3

[3]

[3,3,3]

τ3,0
2

e1 e2 e3 e4 e1

e2

e3

e4

e5

e6

[2]

[2] [3]

[3]
[2,1,0]

[0,1,2]

[3,3][2]

τ1 τ4
[2,3]

e1

τ3
[3]

τ2
[2]

e2

e5

e3

e4

[2,0]

[1,1]

[0,1]

[0,1,1]

[1,0,1]

[0,1,0]

[1] [1]

[1][1]

[1,2,1]

20 4

τ1

τ4

τ3

τ2

6 8 10 1412 16 18 20 22 24 26 28 30 32

20 4

τ1

τ4

τ3

τ2

6 8 10 1412 16 18

34

S1 T1

S2 T2

S3 T3

S4 T4
20

Figure 3.3: The GSPS of the CSDF graph G in Figure 3.1.

6, S1 = 0, D1 = 3), t2 = (2, 9, 6, 3), t3 = (3, 18, 9, 18), t4 = (3, 9, 18, 3)}. Please
note that the deadline of each task is derived with the goal of minimizing
the number of required processors to schedule the tasks. The above example
shows that the actors in the cyclic CSDF graph G can be converted to a set
of CDP tasks, thus, a variety of hard real-time scheduling algorithms [29]
can be applied to the cyclic CSDF graph G in order to provide temporal
isolation, fast admission control, and easy calculation of the minimum required
processors. For instance, for the set G of CDP tasks in Figure 3.3, dG = 2.5
and the minimum number of processors for global and partitioned First-Fit
Increasing Deadlines EDF (FFID-EDF) [29] schedulers are m̌ = 3 and m̌PAR = 3
according to Equation (2.10) and Equation (2.11), respectively. Therefore, the
goal of our GSPS framework proposed in Section 3.5 is to test for the existence
and to derive such strictly periodic schedule for an application modeled as a
cyclic CSDF graph which implies that the actors in the graph can be converted
to a set of CDP tasks.

3.5 Our Proposed Framework

In this section, we present our analytical GSPS framework for scheduling and
converting the actors in a cyclic CSDF graph to a set of CDP tasks. First, we
test for the existence of a strictly periodic schedule for a cyclic (C)SDF graph
in Section 3.5.1. Then, if a strictly periodic schedule exists, each actor Ai of
the graph is converted to a CDP task ti by deriving the period (Ti), deadline
(Di), and earliest start time (Si) of the task, in Section 3.5.2, such that all data
dependencies between the tasks are satisfied with the goal of minimizing the
number of required processors to schedule the CDP tasks.

3.5. Our Proposed Framework 41

Si Si!j

tFŤi Ťj

Ľi!j

Di = Ci

Prd
Cns

Figure 3.4: Production and consumption curves on edge Eu = (Ai, Aj).

3.5.1 Existence of a Strictly Periodic Schedule

As explained in Section 3.4, to find a strictly periodic schedule for a cyclic
(C)SDF graph, an appropriate scaling factor s � š has to be determined
such that all latency constraints introduced by backward edges are satisfied.
Therefore, to test for the existence of a strictly periodic schedule, the existence
of such scaling factor s must be tested. To do so, we need to analyze the start
times of the tasks corresponding to the actors belonging to each cycle in the
(C)SDF graph. Using Equation (2.17) and the minimum periods of the tasks
(Ťi), we can define interval Ľi!j for each edge Eu = (Ai, Aj) 2 E as follows:

Ľi!j = Si!j � Si � Di (3.1)

that is the minimum distance between the deadline (Di) of task ti correspond-
ing to actor Ai and the earliest start time (Si!j) of task tj corresponding to
actor Aj due to edge Eu. This means that task tj cannot start execution earlier
than Ľi!j time units after the deadline of task ti, i.e.,

Si + Di + Ľi!j Sj. (3.2)

Otherwise, task tj cannot find enough data tokens on edge Eu to read in
order to execute in strictly periodic fashion. The data token production and
consumption curves on edge Eu along with the Ľi!j interval are illustrated
in Figure 3.4, when Di = Ci. To execute task tj in strictly periodic fashion,
the cumulative data token production of task ti on channel Eu must always
be greater than or equal to the cumulative data token consumption of task tj

from Eu. This is ensured by shifting the consumption curve by Ľi!j time units
to the right after the deadline of task ti, as shown in Figure 3.4. In Figure 3.4,

42 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

point F is a critical point determining that the consumption curve cannot be
shifted to the left because the consumption curve will be above the production
curve. Thus task tj cannot start execution earlier than Si!j.

To compute Si!j using Equation (2.17) for edge Eu, Si must be known.
Therefore, to use Equation (2.17) for each edge independently, we assume

Si =

✓�
g

Yu
j (qj)

⌫
+ 1

◆
H, (3.3)

where g is the number of initial tokens on channel Eu, Yu
j (qj) = Â

qj
l=1 yu

j (((l �
1) mod fj) + 1) is the amount of tokens that task tj corresponding to actor Aj
consumes from Eu during one graph iteration, bg/Yu

j (qj)c is the maximum
number of graph iterations where task tj can execute before starting task ti, H
is the iteration period. This Si is sufficiently large to ensure that actual Ľi!j
can be computed. For example, using Equation (3.1), Equation (2.17), and
Equation (3.3) for G in Figure 3.1, we have Ľ1!2 = 1, Ľ1!3 = 2, Ľ2!4 = 3,
Ľ3!4 = �3, and Ľ4!1 = �7.

The Ľi!j interval is the key component in our analysis to find a strictly
periodic schedule for the actors in a cyclic (C)SDF graph. Since the Ľi!j
interval is calculated using the minimum period computed by Equation (2.12)
with scaling factor s = š, we need to find how interval Ľi!j changes by taking
scaling factor s > š. This is provided by the following lemma.

Lemma 3.5.1. The Li!j interval changes proportionally to the scaling factor s as
follows:

Li!j =
Ľi!j

š
· s (3.4)

where š is the minimum scaling factor computed by Equation (2.13) and Ľi!j is the
minimum interval computed by Equation (3.1).

Proof. Consider an arbitrary edge Eu = (Ai, Aj) 2 E where the data token
production and consumption curves can be visualized similarly to Figure 3.4.
For the minimum periods (Ťi and Ťj) of tasks ti and tj corresponding to actors
Ai and Aj computed using Equation (2.12) with s = š, we assume that the
critical point F happens after x and y executions of tasks ti and tj, respectively,
e.g., 3 executions of task ti and 2 executions of task tj in Figure 3.4, that implies

Si + Di + x · Ťi = Si!j + y · Ťj
(3.1)() x · Ťi = y · Ťj + Ľi!j (3.5)

(2.12)(=) (x · lcm(~q)
qi

� y · lcm(~q)
qj

) =
Ľi!j

š
. (3.6)

3.5. Our Proposed Framework 43

Now, we assume that after taking scaling factor s > š, a new critical point F0
exists after x0 and y0 executions of tasks ti and tj, respectively. Therefore, we
have

x0 · Ti = y0 · Tj + Li!j
(2.12)(=) (x0 · lcm(~q)

qi
� y0 · lcm(~q)

qj
) =

Li!j

s
. (3.7)

Moreover, for the previous critical point F, we know that y executions of task tj
cannot finish before finishing x executions of task ti because the consumption
curve cannot be above the production curve. Therefore, after taking scaling
factor s > š, we still have

x · Ti y · Tj + Li!j
(2.12)(=) (x · lcm(~q)

qi
� y · lcm(~q)

qj
)

Li!j

s
. (3.8)

Then, by substituting Equation (3.6) and Equation (3.7) in Equation (3.8), we
have

Ľi!j

š
 (x0 · lcm(~q)

qi
� y0 · lcm(~q)

qj
)

(2.12)(=) y0 · Ťj + Ľi!j x0 · Ťi. (3.9)

However, y0 · Ťj + Ľi!j < x0 · Ťi is not possible due to the fact that y0 executions
of task tj cannot finish before finishing x0 executions of task ti for the critical
point F0 because the consumption curve cannot be above the production curve.
Therefore, from Equation (3.9), we can only have

y0 · Ťj + Ľi!j = x0 · Ťi
(3.5)() x0 · Ťi � y0 · Ťj = x · Ťi � y · Ťj

(2.12)(=) (x0 · lcm(~q)
qi

� y0 · lcm(~q)
qj

) = (x · lcm(~q)
qi

� y · lcm(~q)
qj

). (3.10)

From Equation (3.6), Equation (3.7), and Equation (3.10) we can conclude that

Li!j

s
=

Ľi!j

š
, Li!j =

Ľi!j

š
· s.

⌅

Now, we propose a sufficient test for the existence of a strictly periodic
schedule for a cyclic (C)SDF graph by formulating a theorem and prove it by
using Lemma 3.5.1.

44 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

Theorem 3.5.1. For the tasks corresponding to actors in a cyclic (C)SDF graph G,
a strictly periodic schedule exists if for every cyclic path J = {AJ1 $ AJ2 $ · · ·$
AJx $ AJ1} 2 V in G:

x

Â
i=1

ĽJi!J((i mod x)+1) < 0. (3.11)

where V is a set of all cyclic paths in G and ĽJi!J((i mod x)+1) is computed using
Equation (3.1).

Proof. In a cyclic path J = {AJ1 $ AJ2 $ · · · $ AJx $ AJ1} 2 V and
assuming an arbitrary scaling factor sJ � š, the earliest start time SJx of task
tJx corresponding to actor AJx, when Di = Ci, 8ti 2 G, can be computed by
considering task tJ(x�1) corresponding to actor AJ(x�1), that is a predecessor
actor of actor AJx, using Equation (3.2) as follows:

SJx = SJ(x�1) + CJ(x�1) + LJ(x�1)!Jx.

Now, by recursively computing SJ(x�1) and substituting it in the above equa-
tion, the earliest start time SJx of actor AJx is:

SJx = SJ1 +
x�1

Â
i=1

CJi +
x�1

Â
i=1

LJi!J(i+1). (3.12)

Due to the edge from actor AJx to actor AJ1, the start time SJ1 of task tJ1
corresponding to actor AJ1 is constrained by Equation (3.2) as follows:

SJx + CJx + LJx!J1 SJ1. (3.13)

By using Equation (3.4) (Lemma 3.5.1) and Equation (3.12) in Equation (3.13),
we have

SJ1 +
x

Â
i=1

CJi +
sJ

š
·

x

Â
i=1

ĽJi!J((i mod x)+1) SJ1

,
x

Â
i=1

CJi +
sJ

š
·

x

Â
i=1

ĽJi!J((i mod x)+1) 0. (3.14)

Equation (3.14) holds only if Âx
i=1 ĽJi!J((i mod x)+1) < 0, because Âx

i=1 CJi, š,
and sJ are positive numbers by definition and we can always select sufficiently
large scaling factor sJ � š. ⌅

3.5. Our Proposed Framework 45

3.5.2 Deriving Period, Earliest Start Time, and Deadline of Tasks

Recall that under our GSPS framework, every actor Ai in a cyclic CSDF is
converted to a CDP task ti = (Ci, Ti, Si, Di). Therefore, in this section, we
derive the period, deadline, and earliest start time of each task ti corresponding
to an actor Ai in a cyclic (C)SDF graph scheduled in strictly periodic fashion,
if such schedule exists according to Theorem 3.5.1.

(a) Period: Considering Equation (3.14), the minimum scaling factor sJ

that satisfies Equation (3.14) is:

sJ = š · Âx
i=1 CJi

�Âx
i=1 ĽJi!J((i mod x)+1)

.

Since there may exist several cyclic paths in the graph, the minimum scaling
factor s for the graph that guarantees strictly periodic execution of all tasks
corresponding to actors is:

s =

⇠
š · max(max

8 J2V
(

Âx
i=1 CJi

�Âx
i=1 ĽJi!J((i mod x)+1)

), 1)

⇡
.

Then, using Equation (2.12) and the above computed scaling factor s, the
periods of the tasks corresponding to actors can be derived.

(b) Deadline: Since the number of processors needed to schedule CDP
tasks depends on the total density dG of the task set G [29], our objective to
derive the deadline of the tasks corresponding to actors is to minimize dG in
order to minimize the number of processors. Therefore, we formulate our
optimization problem as follows:

Minimize dG = Â
ti2G

Ci
Di

(3.15a)

subject to: Si + Di � Sj �Li!j 8Eu = (Ai, Aj) 2 E (3.15b)

� Di �Ci, Di Ti 8ti 2 G (3.15c)

where Equation (3.15a) is the objective function and Di is an optimization vari-
able. In addition, Equations (3.15b) are the constraints given by Equation (3.2),
and Equations (3.15c) bound all optimization variables in the objective func-
tion by the WCET Ci and period Ti derived in Section 3.5.2(a). Si and Sj are
implicit variables which are not in the objective function Equation (3.15a), but
still need to be considered in the optimization procedure.

(c) Earliest Start Time: To derive the earliest start times of the tasks corre-
sponding to actors, we use the derived deadline of the tasks corresponding to

46 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

actors in Section 3.5.2(b) in the following optimization problem:

Minimize Â
ti2G

Si (3.16a)

subject to: Si � Sj �Li!j � Di 8Eu = (Ai, Aj) 2 E (3.16b)

� Si 0 8ti 2 G (3.16c)

where Equation (3.16a) is the objective function and Si is an optimization vari-
able. In addition, Equations (3.16b) are the constraints given by Equation (3.2),
and Equations (3.16c) bound all optimization variables in the objective func-
tion to be greater or equal to zero. Given that all variables in both problems
Equations (3.15) and (3.16) are integers and both the objective functions and
the constraints are convex, the problems are integer convex programming
problems [56]. To solve the problems in Equations (3.15) and (3.16), we used
CVX [38, 39], a package for specifying and solving convex programs.

3.6 Experimental Evaluation

In this section, we present experiments to evaluate our GSPS framework pro-
posed in Section 3.5. As explained earlier, our GSPS framework enables the
application of many hard real-time scheduling algorithms [29], which offer
properties such as hard real-time guarantees, temporal isolation, fast admission
control and scheduling decisions for new incoming applications, and easy and fast
calculation of the number of processors needed for scheduling the tasks, on stream-
ing applications modeled as cyclic (C)SDF graphs. However, having these
properties is not for free. Thus, the goal of these experiments is to show what
the cost is for having these properties using our GSPS framework in terms
of the maximum achievable application throughput, the application latency,
and the buffer sizes of the communication channels compared to scheduling
frameworks, such as periodic scheduling (PS) [18] and self-timed scheduling
(STS) [85], which also can be applied directly on cyclic (C)SDF graphs but do
not provide such properties. The experiments have been performed on a set
of ten real-life streaming applications, modeled as cyclic (C)SDF graphs, taken
from different sources. These applications are listed in Table 3.1. In this table,
|A| and |E | denote the number of actors and communication channels in a
(C)SDF graph, respectively.

The results of the evaluation for throughput R (one token/time units),
latency L (time units), and buffer sizes of the communication channels M
(number of data tokens) of the applications under our GSPS, PS, and STS are

3.6. Experimental Evaluation 47

Table 3.1: Benchmarks used for evaluation.

Application |A| |E | Source
Modem 16 35 [2]MP3 playback 4 4
MP3 Decoder 15 21

[87]MPEG-4 Advanced Video Coding (AVC) Decoder 4 6
MPEG-4 Simple Profile (SP) Decoder 5 10
Channel Equalizer 10 22
WLAN 802.11p transceiver 8 9 [49]
TDS-CDMA receiver 16 25 [60]
Long Term Evolution (LTE) 10 15 [76]
Echo 38 82 [18]

given in Table 3.2. The throughput, latency, and buffer sizes of the applications
under our GSPS, denoted by RGSPS, LGSPS, and MGSPS, are computed using
Equations (2.15), (2.19), and (2.18) and given in columns 2, 3, and 4 in Table 3.2,
respectively. Columns 7 and 10 show the ratio between the throughput of
our GSPS and PS and STS, respectively. Looking at column 7, we can see
that our GSPS can achieve the same throughput obtained by PS for 8 out of
10 applications. Looking at column 10, we can also see that the throughput
under our GSPS is equal or very close to the throughput under STS, that is the
optimal scheduling in terms of throughput, for the majority of the applications.
In both comparisons, the largest difference is in the case of Echo. This is mainly
because, our GSPS schedules all the phases of an actor in a CSDF graph as jobs
of a periodic task, where different job release of the task corresponds to one
of the phases of the actor. Therefore, in contrast to PS and STS, the starting
time of the execution phases of the task is delayed under our GSPS. As a
consequence, if a multi-phase actor exists in a cycle, a larger scaling factor
may be required by our GSPS to find a strictly periodic schedule that results
in a lower throughput compared to PS and STS. From these comparisons,
we can conclude that although our GSPS results in a lower throughput for
a few applications compared to PS and STS, achieving the properties of the
hard real-time scheduling algorithms is for free in terms of the maximum
achievable throughput for the majority of the applications under our GSPS.

For processor requirements under our GSPS, we compute the minimum
number of processors under global and partitioned First-Fit Increasing Dead-
lines EDF (FFID-EDF) [29] schedulers by using Equation (2.10) and Equa-
tion (2.11), denoted with m̌ and m̌PAR in Table 3.2, respectively. However, for
PS, the calculation of the number of processors was not considered in [18],
and for STS, finding the minimum number of processors requires complex

48 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

Table
3.2:C

om
parison

ofdifferentscheduling
fram

ew
orks.

A
pplication

G
SPS

PS
[18]

ST
S

[85]
R

G
SPS [

1t.u.]
L

G
SPS [t.u.]

M
G

SPS [Tkn]
m̌

m̌
PA

R
R

G
SPS

R
PS

L
G

SPS
L

PS

M
G

SPS
M

PS

R
G

SPS
R

STS

L
G

SPS
L

STS

M
G

SPS
M

STS

M
odem

1/16
64

50
10

10
1

2.78
1.25

1
2.78

1.25
M

P
E

G
-4

AV
C

1/7632
15264

6
4

4
1

1.04
1

1
1.04

1
M

P
E

G
-4

S
P

1/3960
11088

881
2

2
1

2.35
2.02

1
2.35

2.02
M

P
3

D
ecoder

1/3732288
33590592

42674
4

4
1

5.46
3.06

1
6.70

-
M

P
3

playback
1/25

46355
3958

3
4

1
1.12

1.22
0.91

1.30
-

W
LA

N
1/6

18
14

7
8

1
1.5

1.07
0.92

1.5
0.93

TD
S

-C
D

M
A

1/675000
792829

44
7

8
1

1.62
1.19

1
1.62

1.19
LTE

1/280
1284

27
5

6
1

2.99
1.28

1
2.99

1.28
C

hannelE
qualizer

1/9264
18989

24
7

7
0.91

1.57
1

0.66
-

1
E

cho
1/26882376000

80754156016
30287

13
19

0.19
15.75

1.08
0.19

-
1.08

3.7. Conclusions 49

design space exploration to find the best allocation which delivers the max-
imum achievable throughput [83]. This fact shows one advantage of using
our GSPS compared to using PS and STS when our GSPS gives the same
throughput as PS and STS.

Let us now analyze the latency and the buffer sizes of the applications.
Columns 8 and 11 give the ratio of the maximum latency of the applications un-
der our GSPS to the latency of the applications under PS and STS, respectively.
As we can see, the average latency of the applications under our GSPS is 3.8
and 2.5 times larger than the latency under PS and STS, respectively. Similarly,
the ratio of the buffer sizes of the applications under our GSPS to the buffer
sizes under PS and STS is given in columns 9 and 12, respectively. From these
columns, we can see that the buffer sizes in our GSPS are on average 1.4 and
1.21 times larger than the buffer sizes under PS and STS. Obviously, the larger
latency and buffer sizes of the channels for the applications are the main costs
in our GSPS framework to enable the utilization of hard real-time schedul-
ing algorithms on streaming applications modeled as cyclic (C)SDF graphs.
Please note that, our GSPS causes larger latency and buffer sizes because of the
minimization of the number of processors we perform using Equations (3.15),
while PS and STS cause lower latency and buffer sizes because they do not
perform such minimization. Therefore, if we also do not perform the processor
minimization and only perform minimization of the start times of the tasks us-
ing Equations (3.16) with Di = Ci, 8ti 2 G, our GSPS can achieve latency and
buffer sizes closer or equal to the latency and buffer sizes of the applications
under PS and STS.

3.7 Conclusions

In this chapter, we have presented our GSPS framework to test for the existence
of strictly periodic schedule for streaming applications modeled as cyclic CSDF
graphs. Then, if such schedule exists, our GSPS converts each task in the graph
to a constrained-deadline periodic task. This conversion enables the utilization
of many hard real-time scheduling algorithms which offer properties such as
temporal isolation and fast calculation of the required number of processors.
Finally, we show, on a set of real-life streaming applications, that strictly
periodic scheduling is capable of delivering equal or comparable throughput
to existing approaches for the majority of the applications we experimented
with.

50 Chapter 3. Hard Real-Time Scheduling of Cyclic CSDF Graphs

Chapter 4

Exploiting Parallelism in
Streaming Applications to
Efficiently Utilize Processors

Sobhan Niknam, Peng Wang, Todor Stefanov. "Resource Optimization for Real-Time
Streaming Applications using Task Replication". IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 37, No. 11, pp. 2755-2767, Nov
2018.

IN this chapter, we present our novel algorithm to derive an alternative
application specification for efficient utilization of processors, which corre-

sponds to the second research contribution, briefly introduced in Section 1.5.2,
to address research question RQ2(A), described in Section 1.4.2. The remain-
der of this chapter is organized as follows. Section 4.1 introduces, in more
details, the problem statement and the addressed research question. It is fol-
lowed by Section 4.2, which gives a summary of the contributions presented
in this chapter. Section 4.3 gives an overview of the related work. Section 4.4
introduces the extra background material needed for understanding the con-
tributions of this chapter. Section 4.5 gives a motivational example. Section 4.6
presents our proposed algorithm. Section 4.7 presents the experimental eval-
uation of our proposed algorithm. Finally, Section 4.8 ends the chapter with
conclusions.

52 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

4.1 Problem Statement

Recall, from Section 2.2, that in real-time systems, tasks can be scheduled on
multiprocessor systems using three main classes of algorithms, i.e., global,
partitioned, and hybrid scheduling algorithms, based on whether a task can
migrate between processors [29]. Under global scheduling algorithms, all the
tasks can migrate between all processors. Such scheduling guarantees optimal
utilization of the available processors but at the expense of high scheduling
overheads due to extreme task preemptions and migrations. More impor-
tantly, implementing global scheduling algorithms in distributed-memory
MPSoCs imposes a large memory overhead due to replicating the code of each
task on every processor [24]. Under partitioned scheduling algorithms, how-
ever, no task migration is allowed and the tasks are allocated statically to the
processors, hence they have low run-time overheads. The tasks on each pro-
cessor are scheduled separately by a uniprocessor (hard) real-time scheduling
algorithm, e.g., earliest deadline first (EDF) [54]. The third class of schedul-
ing algorithms is hybrid scheduling that is a mix of global and partitioned
approaches to take advantages of both classes. However, since hybrid schedul-
ing algorithms allow task migration, they still introduce additional run-time
task migration/preemption overheads and memory overhead on distributed-
memory MPSoCs. By performing an extensive empirical comparison of global,
clustered (hybrid) and partitioned algorithms for EDF scheduling, Bastoni
et al. [14] concluded that the partitioned algorithm outperforms the other
algorithms when hard real-time systems are considered.

Although partitioned scheduling algorithms do not impose any migration
and memory overheads, they are known to be non-optimal for scheduling real-
time periodic tasks [29]. This is because the partitioned scheduling algorithms
fragment the processors’ computational capacity such that no single processor
has sufficient remaining capacity to schedule any other task in spite of the
existence of a total large amount of unused capacity on the platform. Therefore,
more processors are needed to schedule a set of real-time periodic tasks using
partitioned scheduling algorithms compared to optimal (global) scheduling
algorithms.

However, for better resource usage and energy efficiency in a real-time
embedded system while taking advantages of partitioned scheduling algo-
rithms, the number of processors needed to satisfy a performance requirement,
i.e., throughput, in an application should be minimized. This can be difficult
because often the given initial application specification, i.e., the initial graph,
is not the most suitable one for the given MPSoC platform because the ap-
plication developers typically focus on realizing certain application behavior

4.2. Contributions 53

while neglecting the efficient utilization of the available resources on MPSoC
platforms. Therefore, to better utilize the resources on an underlying MPSoC
platform while using partitioned scheduling algorithms, the initial application
specification should be transformed to an alternative one that exposes more
parallelism while preserving the same application behavior and performance.
This is mainly because by replicating a task of the application, its workload is
distributed among more parallel task’s replicas in the obtained transformed
graph. Therefore, the task’s required capacity is split up in multiple smaller
chunks that can more likely fit into the left capacity on the processors and
alleviate the capacity fragmentation due to partitioned scheduling algorithms.
However, having more parallelism, i.e., tasks’ replicas, than necessary in-
troduces significant overheads in code and data memory, scheduling and
inter-tasks communication. Thus, in this chapter, we investigate the possibility
to determine the right amount of parallelism in a streaming application, mod-
eled as an acyclic SDF graph, to minimize the number of required processors
under partitioned scheduling algorithms while satisfying a given performance
requirement.

4.2 Contributions

In order to address the problem described in Section 4.1, in this chapter, we
propose a novel algorithm to find a proper replication factor for each task
in an initial application specification, such that the obtained alternative one
requires fewer processors under partitioned scheduling algorithms and a
given throughput requirement is satisfied. More specifically, the main novel
contributions of this chapter are summarized as follows:

• We propose a novel heuristic algorithm to allocate the tasks in a hard
real-time streaming application modeled as an acyclic SDF graph, which
is subject to a throughput constraint, onto a heterogeneous MPSoC such
that the number of required processors is reduced under partitioned
scheduling algorithms. The main innovation in this algorithm is that by
using the unfolding graph transformation technique in [81], we propose
an approach to determine a replication factor for each task of the appli-
cation such that the distribution of the workloads among more parallel
tasks, in the obtained graph after the transformation, results in a better
resource utilization, which can alleviate the capacity fragmentation issue
introduced by partitioned scheduling algorithms, hence reducing the
number of required processors.

• We show, on a set of real-life streaming applications, that our algorithm

54 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

significantly reduces the number of required processors compared to the
First-Fit Decreasing (FFD) allocation algorithm with slightly increasing
the memory requirements and application latency while maintaining
the same application throughput. We also show that our algorithm
can still reduce the number of required processors compared to the
related approaches in [4, 23, 81, 92] with significantly improving the
memory requirements and application latency while maintaining the
same application throughput.

Scope of work. In this chapter, we consider that streaming applications
are modeled as acyclic SDF graphs. This restriction comes from the related
approaches that are adopted for comparison with our proposed algorithm.
These approaches can only be applied on sets of implicit deadline periodic
tasks which can be derived from acyclic SDF graphs using the SPS framework,
described in Section 2.3.

4.3 Related Work

In order to overcome the scheduling problems in global and partitioned
scheduling algorithms, briefly explained in Section 4.1, a restricted-migration
semi-partitioned scheduling algorithm, called EDF- f m, in the class of hybrid
scheduling algorithms, is proposed in [4] for homogeneous platforms. In this
scheduling algorithm, the tasks can be either fixed or migrating between only
two processors at job boundaries. The purpose of this migration is to utilize
the remaining capacity on the processors where a migrating task cannot be
entirely allocated. However, this scheduler provides hard real-time guarantees
only for migrating tasks and soft real-time guarantees for fixed tasks, i.e., fixed
tasks can miss their deadlines by a bounded value called tardiness. In [92],
another semi-partitioned scheduling algorithm, called EDF-sh, is proposed
that, in contrast to EDF- f m, supports heterogeneous platforms and allows the
tasks to migrate between more than two processors. In EDF-sh, however, both
migrating and fixed tasks may miss their deadlines.

Similarly, [20] proposes the C=D approach to split real-time periodic tasks
on homogeneous multiprocessor systems while on each processor a normal
EDF scheduler is used. In the C=D approach, a task which cannot be entirely
allocated on any processor is split up in two parts that can be entirely allocated
on different processors. However, since the task splitting is performed in
every job execution, this approach requires transferring the internal state of
the splitted tasks between processors at run-time, thereby imposing high task
migration overhead. Moreover, these approaches in [4, 20, 92] only consider

4.3. Related Work 55

sets of independent tasks. In contrast, we consider a more realistic application
model which consists of tasks with data dependencies. In addition, we use par-
titioned scheduling to allocate the tasks statically on the processors. Therefore,
since task migration is not allowed in partitioned scheduling, no extra run-
time overhead is imposed to the system by our algorithm in comparison to [20]
and no task is subjected to a deadline miss in comparison to [4,92]. Compared
to the approaches in [4, 20] that only support homogeneous platforms, our
proposed algorithm also supports heterogeneous platforms.

To allocate data-dependent application tasks to a multiprocessor platform,
many techniques have already been devised [75]. Existing approaches which
are close to our work are [8, 23, 81]. The authors in [8] propose the SPS frame-
work, briefly described in Section 2.3, to only convert each actor in an acyclic
(C)SDF graph to an implicit-deadline periodic task by deriving parameters
such as period and start time to enable the usage of all well-developed real-
time theories. In [8], however, no optimization technique for different system
design metrics, such as, throughput, latency, memory, number of processors,
etc., is proposed. In contrast, in this chapter, we propose a heuristic algorithm
on top of the SPS framework to optimize the number of required processors
when scheduling a hard real-time streaming application with a given through-
put requirement onto a heterogeneous MPSoC under partitioned scheduling
algorithms.

Using the SPS framework, the authors in [23] propose a heuristic under
the semi-partitioned scheduling algorithm in [4] to allocate tasks to processors
while taking the data dependencies into account. Although the fixed tasks
can miss their deadlines in the EDF- f m scheduling approach, a hard real-time
property can be guaranteed on the input/output interfaces of the application
with the external environment, using the proposed extension of the SPS frame-
work in [23]. In [4], the authors also propose three task-allocation heuristics
under EDF- f m to allocate independent tasks to processors in which the one
called f m-LUF requires the least number of processors. In a similar way, this
heuristic can be used while taking data dependencies into account using the
approach presented in [23]. However, in these approaches [4, 23], the deadline
misses of the fixed tasks due to task migration have significant overheads on
the memory requirements and the application latency. In contrast, we provide
hard real-time guarantees for all tasks in an application modeled as an SDF
graph. Moreover, we use partitioned scheduling and to utilize processors
efficiently, we adopt the unfolding graph transformation technique. By using
our proposed algorithm, as shown in Section 4.7, processors can be more effi-
ciently utilized while imposing considerably lower overheads on the memory

56 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

requirements and the application latency compared to the approaches in [4,23].
In addition, our proposed algorithm supports heterogeneous platforms while
the approaches in [4, 23] can only support homogeneous platforms.

In [81], the authors propose an approach to increase the application through-
put in a homogeneous platform with a fixed number of processors. This
approach considers partitioned scheduling and exploits an unfolding trans-
formation technique to fully utilize the platform by replicating the bottleneck
tasks which are the ones with the maximum workload, i.e., highest utilization,
when mapping a streaming application modeled as an SDF. However, to
satisfy a given throughput requirement under limited resources, the approach
in [81] does not always replicate the right tasks, as shown in Section 4.5. Con-
sequently, this leads to more parallelism than needed which increases the
memory requirements and application latency unnecessarily. In contrast, we
propose an algorithm that supports heterogeneous platforms. In addition, our
proposed algorithm first detects which tasks cause the capacity fragmentation
in partitioned scheduling on the processors. Note that these tasks are not
the bottleneck tasks identified and used in [81]. This is because, the bottle-
neck tasks efficiently utilize the processors’ capacity and there is no need
to replicate them. Then, using the unfolding transformation technique, we
replicate the detected tasks causing the capacity fragmentation to distribute
their workloads among more parallel tasks and utilize the platform more
efficiently with less unused capacity on the processors. As a result, shown
in Section 4.7, our proposed algorithm can reduce the number of required
processors to guarantee the same throughput while keeping a low memory
and latency overheads under partitioned scheduling in comparison to [81].

In [80], the authors use the same approach as in [81] for energy efficiency
purpose under partitioned scheduling algorithms, when there are a lot of
processors available on a cluster heterogeneous MPSoC. To reduce energy
consumption, they iteratively take the bottleneck tasks which are limiting the
processors to work at a lower frequency and replicate them. By replicating
the application tasks with heavy utilization, their utilization is distributed
among more task’s replicas while still providing the same application per-
formance. Consequently, the workload distribution of these bottleneck tasks
enables the processors to work at a lower frequency, thereby reducing the
energy consumption. In this chapter, however, we focus on and solve a totally
different problem, that is, how the unfolding transformation technique can
be exploited to reduce the number of required processors when a partitioned
scheduling algorithm is used. In our algorithm, we do not search for and take
the bottleneck task, which is taken in [80], for replication in every iteration.

4.4. Background 57

In contrast, we detect which task is responsible for fragmentation of the pro-
cessors’ capacity when using a partitioned scheduling algorithm and try to
resolve this fragmentation by replicating this task such that the number of
processors is reduced. We do not replicate the bottleneck task because it can
efficiently utilize the processor and it does not contribute to the fragmentation
of the processors’ capacity.

4.4 Background

In this section, we first introduce the unfolding transformation technique,
presented in [81], that we use to replicate the tasks in an application initially
modeled as an SDF graph. Then, we present the system model considered in
this chapter.

4.4.1 Unfolding Transformation of SDF Graphs

The authors in [81] have shown that an SDF graph can be transformed into an
equivalent CSDF graph by using a graph unfolding transformation technique
to better utilize the underlying MPSoC platform by exposing more parallelism
in the SDF graph. In fact, the intuition behind the unfolding, i.e., replication,
of an actor in the initial SDF graph is to evenly distribute the workload of
the actor among multiple of its replicas that are running concurrently. Given
a vector ~f 2 N|A| of replication factors, where fi denotes the replication
factor for actor Ai 2 A, the unfolding transformation replaces actor Ai with
fi replicas of actor Ai, denoted by Ai,k, k 2 [1, fi]. To ensure the functional
equivalence, the production and consumption sequences on FIFO channels
in the obtained CSDF graph are calculated accordingly to the production and
consumption rates in the initial SDF graph. After the replication, each replica
Ai,k of actor Ai will have the repetition

qi,k =
qi · lcm(~f)

fi
, (4.1)

where lcm(~f) is the least common multiple of all replication factors in ~f . For
example, consider the SDF graph G shown in Figure 4.1 with the repetition
vector ~q = [2, 1, 1, 1, 1, 2]T, derived using Theorem 2.1.1. After unfolding of
G with replication vector ~f = [1, 1, 1, 1, 2, 1], the CSDF graph G0 shown in

58 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

A1
[3] [6] [10]

[1] [1][2] [1]

[7] [5]

[1] [1] [1] [1]

[3]

[2] [1]

E1 E2 E3 E4 E5
A2 A3 A4 A5 A6

Figure 4.1: An SDF graph G.

[6]

[1] [1][2] [1]

[5]

[1] [1,1]

[1]

[1,0]

[0,1]

[1] [2]

[2]

[0,0,1,1]

[1,1,0,0]

[7,7] [3,3,3,3]
A1,1 A2,1 A3,1 A4,1

A5,1

A5,2

A6,1
[5]

[10][3]

(a) A CSDF graph G0

[3]

[10]

[1]

[1]

[2,2]

[1,0]

[7]

[1] [1]

[1]

[3]

[2,2] [1]
[10] [7]

[0,1]

[1]

[6,6]

[1] [1]

[1]

[0,1]

[1,0]

[5,5]
A1,1 A2,1

A3,1

A3,2 A4,2

A4,1

A5,1 A6,1

(b) A CSDF graph G00

Figure 4.2: Equivalent CSDF graphs of the SDF graph G in Figure 4.1 obtained by (a)
replicating actor A5 by factor 2 and (b) replicating actors A3 and A4 by factor 2.

Figure 4.2(a) is obtained which has the repetition vector~q0 = [4, 2, 2, 2, 1, 1, 4]T,
e.g.,

q5,1 = q5,2 =
1 · lcm(1, 1, 1, 1, 2, 1)

2
= 1.

4.4.2 System Model

The considered MPSoC platforms in this chapter are heterogeneous containing
two types of processors 1, i.e., performance-efficient (PE) and energy-efficient
(EE) processors, with distributed memories. We use PPE and PEE to denote
the sets containing the PE processors and the EE processors, respectively. We
denote the heterogeneous MPSoCs containing all PE and EE processors by
P = {PPE, PEE}. Since application tasks may run on two different types
of processors (PE and EE), the worst-case execution time value Ci for each
periodic task ti 2 G has two values, i.e., CPE

i and CEE
i , when EE and PE

processors run at their maximum operating clock frequencies supported by

1We refer to the ARM big.LITTLE architecture [40] including Cortex A15 ’big’ (PE) and
Cortex A7 ’LITTLE’ (EE) that is shown in Figure 1.1.

4.5. Motivational Example 59

the hardware platform. The utilization of task ti on a PE processor and
an EE processor, denoted as uPE

i and uEE
i , is defined as uPE

i = CPE
i /Ti and

uEE
i = CEE

i /Ti, respectively. Now, let us consider an x-partition xG of task set
G. Then, the total utilizations of the tasks allocated on a PE processor j and an
EE processor k can be calculated by:

upPE
j

= Â
ti2xGj

CPE
i
Ti

, upEE
k

= Â
ti2xGk

CEE
i
Ti

(4.2)

where xGj and xGk 2 xG represent sets of tasks allocated on PE processor j and
EE processor k, respectively.

4.5 Motivational Example

In this section, we take the SDF graph G shown in Figure 4.1 as our motiva-
tional example to demonstrate the necessity and efficiency of our proposed
algorithm, presented in Section 4.6, compared to the related approaches [81],
[23], [4], and [92] in terms of memory requirements, application latency, and
number of required processors on a homogeneous platform2, i.e., including
only PE processors, to schedule the actors in the SDF graph under a given
throughput requirement. By applying the SPS framework [8], briefly described
in Section 2.3, for graph G, the task set G = {t1 = (C1 = 3, T1 = 5, S1 =
0, D1 = T1 = 5), t2 = (6, 10, 10, 10), t3 = (10, 10, 20, 10), t4 = (7, 10, 30, 10),
t5 = (5, 10, 40, 10), t6 = (3, 5, 50, 5)} of six IDP tasks can be derived. Based
on these tuples, a strictly periodic schedule, as shown in Figure 4.3(a), can be
obtained for this graph. Using Equation (2.15), the throughput of this schedule
can be computed as R = 1

T6
= 1

5 . In this example, we consider this throughput
as the given throughput requirement. Moreover, using Equation (2.19), the ap-
plication latency L for this schedule is 55 which is the elapsed time between the
arrival of the first sample to the application, at t = 0, and the departure of the
processed sample from task t6, at t = 55. The minimum number of processors
needed for this schedule using an optimal scheduling algorithm, according to
Equation (2.8), is m̌OPT =

⌃
Âti2G ui

⌥
=

⌃ 3
5 + 6

10 + 10
10 + 7

10 + 5
10 + 3

5
⌥

= 4. How-
ever, using the partitioned EDF and the First-Fit Decreasing (Utilization) [28]
allocation algorithm, that is proven to be the resource efficient heuristic al-
location algorithm [5], 6 processors are required for this schedule with task

2In this section, we adopt a homogeneous platform because the related approaches [4,23,81]
can support only such platform. Later, in Section 4.7.2, we compare our proposed approach
and the approach proposed in [92] in terms of memory requirements and application latency
on different heterogeneous platforms for a set of real-life applications.

60 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

50 10 15 20 25 30 35

τ1

τ2

τ3

τ4

τ5

40 45 50

τ6
55 60

(a)

50 10 15 20 25 30 35

τ1
τ2
τ3
τ4

τ5,2

40 45 50

τ6
55 60 65

τ5,1

70

(b)

Figure 4.3: A strictly periodic execution of tasks corresponding to the actors in: (a) the SDF
graph G in Figure 4.1 and (b) the CSDF graph G0 in Figure 4.2(a). The x-axis represents the
time.

allocation 6G = {6G1 = {t3}, 6G2 = {t4}, 6G3 = {t1}, 6G4 = {t2}, 6G5 =
{t6}, 6G6 = {t5}}. We refer to this scheduler as partitioned First-Fit Decreas-
ing EDF (FFD-EDF) scheduler.

To reduce the number of required processors under the FFD-EDF sched-
uler while satisfying the given throughput requirement R = 1

5 , we adopt
the unfolding graph transformation technique in [81], briefly explained in
Section 4.4.1. Let us assume that the platform has only 5 processors. Then, to
schedule the application on 5 processors under FFD-EDF scheduler, our pro-
posed algorithm, explained in Section 4.6, replicates actor A5 in graph G by a
factor of 2. Figure 4.2(a) shows the CSDF graph G0 obtained after applying the
unfolding transformation on the initial graph G shown in Figure 4.1. By apply-
ing the SPS framework for graph G0, the task set G0 = {t1,1 = (3, 5, 0, 5), t2,1 =
(6, 10, 10, 10), t3,1 = (10, 10, 20, 10), t4,1 = (7, 10, 30, 10), t5,1 = (5, 20, 40, 20),
t5,2 = (5, 20, 50, 20), t6,1 = (3, 5, 60, 5)} of seven IDP tasks can be derived
which is schedulable on 5 processors under FFD-EDF scheduler, with task

4.5. Motivational Example 61

allocation 5G0 = {5G01 = {t3,1}, 5G02 = {t4,1, t5,1}, 5G03 = {t1,1, t5,2}, 5G04 =
{t2,1}, 5G05 = {t6,1}}, while satisfying the given throughput requirement of
1
5 . This is because, the workload of task t5, corresponding to actor A5 of
graph G, with u5 = 5

10 is now evenly distributed between two tasks t5,1 and
t5,2, corresponding to replicas A5,1 and A5,2 of actor A5, i.e., u5,1 = u5,2 = 5

20 .
Apparently, this workload distribution using the unfolding transformation
can enable the FFD-EDF scheduler to more efficiently utilize the processors
and schedule the tasks on fewer processors while satisfying the throughput
requirement. The strictly periodic schedule of the task set G0 is shown in
Figure 4.3(b).

The approach in [81] is very close to our approach as it adopts the un-
folding transformation technique to increase the throughput of an SDF graph
scheduled on an MPSoC with fixed number of processors under partitioned
scheduling. However, to schedule G on a platform with 5 processors under the
throughput requirement of 1

5 , the approach in [81] performs differently. It first
scales the period of the tasks in G using Equation (2.13) to make G schedulable
on 5 processors under FFD-EDF scheduler. Due to scaling the periods, i.e.,
s = 6 >

⌃ 10
2
⌥

= 5, however, the throughput is dropped to 1
6 . Then, to in-

crease the throughput, the approach in [81] replicates the actor corresponding
to the bottleneck task, i.e., the actor with the heaviest workload during one
graph iteration, and scales again the minimum computed periods of the tasks
such that the new task set can be scheduled on 5 processors under FFD-EDF
scheduler. This procedure is repeated until no throughput improvement can
be gained anymore by task replication under the resource constraint. For
our example in Figure 4.1, the approach in [81] replicates actors A3 and A4
corresponding to tasks t3 and t4 by a factor of 2 that results in the through-
put of 1

3 . Figure 4.2(b) shows the CSDF graph G00 obtained after applying
the unfolding transformation on graph G. Then, to schedule the tasks on 5
processors under FFD-EDF scheduler, the periods of tasks are scaled by using
Equation (2.13), i.e., s = 5 >

⌃ 12
4
⌥

= 3, where the throughput of 1
5 finally

could be achieved with the derived task set G00 = {t1,1 = (3, 5, 0, 5), t2,1 =
(6, 10, 10, 10), t3,1 = (10, 20, 20, 20), t3,2 = (10, 20, 30, 20), t4,1 = (7, 20, 40, 20),
t4,2 = (7, 20, 50, 20), t5,1 = (5, 10, 60, 10), t6,1 = (3, 5, 70, 5)} of eight IDP tasks
and the task allocation 5G00 = {5G001 = {t4,1, t1,1}, 5G002 = {t4,2, t2,1}, 5G003 =
{t6,1}, 5G004 = {t3,1, t3,2}, 5G005 = {t5,1}}.

The approaches in [4,23], adopt differently the semi-partitioned scheduling
EDF- f m to allow certain tasks to migrate between processors for efficiently
utilizing the remaining capacity on the processors. Under EDF- f m scheduling,
the LUF heuristic in [4] allocates the tasks in G to 5 processors with task

62 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

allocation 5G={5G1 = {t3}, 5G2 = {t4, t5}, 5G3 = {t5, t1}, 5G4 = {t6, t2}, 5G5 =
{t2}}, where task t5 is allowed to migrate between p2 and p3 and task t2
is allowed to migrate between p4 and p5. In this task allocation, however,
the fixed tasks t1, t4, and t6 that are allocated to the same processors as the
migrating tasks t2 and t5, can miss their deadline by a bounded tardiness.
To reduce the number of affected tasks by tardiness, the FFD-SP heuristic is
proposed in [23] to restrict the task migrations. Under EDF- f m scheduling,
this approach allocates the tasks in G to 5 processors with task allocation 5G =
{5G1 = {t3}, 5G2 = {t4, t5}, 5G3 = {t5, t1}, 5G4 = {t6}, 5G5 = {t2}}, where
only task t5 is allowed to migrate between p2 and p3. Similar to the approach
in [23], EDF-sh [92] allocates the tasks in G to 5 processors with task allocation
5G = {5G1 = {t3}, 5G2 = {t4, t5}, 5G3 = {t5, t1}, 5G4 = {t6}, 5G5 = {t2}},
where only task t5 is allowed to migrate between p2 and p3.

The reduction on the number of required processors using our proposed
algorithm and the related approaches, however, comes at the expense of more
memory requirements and longer application latency either because of task
replication3, i.e., more tasks and data communication channels, or task migra-
tion, i.e., task tardiness. The throughput R, latency L, memory requirements
M, i.e., the sum of the buffer sizes of the communication channels in the graph
and the code size of the tasks, and the number of required processors m for
different scheduling/allocation approaches are given in Table 4.1. Table 4.1
clearly shows that our proposed algorithm can reduce the number of required
processors while keeping a low memory and latency increase compared to the
related approaches for the same throughput requirement.

Let us now assume that the platform has only 4 processors. Then, all the
related approaches, except EDF-sh, fail to satisfy the throughput requirement
of 1

5 under this resource constraint. However, our approach finds a vector of
replication factors ~f = [1, 2, 1, 1, 5, 1] such that the CSDF graph obtained after
applying the unfolding transformation on the initial SDF graph G, is schedu-
lable on 4 processors under FFD-EDF scheduler using the SPS framework
while satisfying the throughput requirement of 1

5 . EDF-sh can also allocate
the tasks in G to 4 processors with task allocation 4G = {4G1 = {t3}, 4G2 =
{t4, t2}, 4G3 = {t2, t5, t1}, 4G4 = {t5, t6}}, where task t2 is allowed to migrate
between p2 and p3 and task t5 is allowed to migrate between p3 and p4. The
memory requirement and application latency to schedule G on 4 processors

3When replicating an actor, the period of the task corresponding to the actor is enlarged. As
a consequence, the production of data tokens that are required by its data-dependent tasks to
execute are postponed which results in a further offsetting of their start time, when calculating
the earliest start time of tasks in the SPS framework using Equation (2.16), hence increasing the
application latency.

4.6. Proposed Algorithm 63

Table 4.1: Throughput R (1/time units), latency L (time units), memory requirements M
(bytes), and number of processors m for G under different scheduling/allocation approaches.

Scheduling Allocation R [1
t.u] L [t.u] M [B] m̌ m̌OPT

EDF

FFD 1/5 55 155 6 4

our 1/5 65 189 5 4(105) (327) (4)
FFD-EP [81] 1/5 75 228 5 4

EDF-fm FFD-SP [23] 1/5 90 197 5 4
LUF [4] 1/5 94 217 5 4

EDF-sh [92] 1/5 113 217 5 4(192) (311) (4)

using our proposed algorithm and EDF-sh are given in the third and sev-
enth rows of Table 4.1 in parenthesis. As a result, our proposed algorithm
can decrease the application latency by 45.3% while increasing the memory
requirement by only 4.9% compared to EDF-sh.

From the above example, we can see the deficiencies of the related ap-
proaches because they have significant impact on the memory requirements
and application latency when reducing the number of processors. Oppositely,
our proposed algorithm which adopts the graph unfolding transformation,
can reduce the number of processors while introducing lower memory and
latency increase compared to the related approaches for the same throughput
requirement.

4.6 Proposed Algorithm

As explained and shown in Section 4.5, the partitioned scheduling algorithms,
potentially, have the disadvantage that processors cannot be fully utilized, i.e.,
capacity fragmentation, because the static allocation of tasks on processors
leaves an amount of unused capacity which is not sufficient to accommodate
another task. Therefore, in this section, we present our novel algorithm that
aims to exploit these unused capacity on the processors to reduce the num-
ber of processors needed to schedule the tasks in a hard real-time streaming
application, modeled as an acyclic SDF graph and subjected to a through-
put constraint, onto a heterogeneous MPSoC under partitioned scheduling
algorithms, e.g., FFD-EDF scheduler. Our propose algorithm can achieve
this goal by replicating tasks such that the required capacity of each resulting
task replica is sufficiently small to make use of the available capacity on the
processors.

The rationale behind our algorithm is the following: our algorithm first

64 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

detects every task which cannot be entirely allocated to any individual under-
utilized processor due to insufficient free capacity while, in total, there exists
sufficient remaining capacity on under-utilized processors to schedule the
tasks. Then, our algorithm replicates some of these tasks to distribute their
workloads equally among more parallel replicas and fit them entirely on
the remaining capacity of the processors without increasing the number of
processors. As a result, our algorithm can alleviate the capacity fragmentation
due to the FFD-EDF scheduler and utilize the processors more efficiently.
In this section, therefore, we present a novel heuristic algorithm to derive
the proper replication factor for each actor in an SDF graph and the task
allocation to reduce the number of required processors while satisfying a
given throughput requirement.

The algorithm is given in Algorithm 1. It takes as input an SDF graph G,
and a heterogeneous platform P = {PPE, PEE} with fixed number of PE and
EE processors onto which the actors in the graph have to be allocated. The
algorithm returns as output a CSDF graph G0, that is functionally equivalent
to the initial SDF graph, and a task allocation set xG if a successful allocation,
i.e., x |P|, is found. Otherwise, it returns false as output.

In Line 1, the algorithm initializes the replication factor of all actors in
graph G to 1, G0 to G, and P0 to P. In Line 2, the actors in the graph G0 are
converted to periodic tasks using the SPS framework, explained in Section 2.3,
where the minimum period T0i of each task t0i,k corresponding to actor Ai,k in
G0 is calculated for PE type of processors, i.e., using CPE

i , by Equation (2.12)
and Equation (2.13). In this chapter, we take the maximum throughput of graph
G, achievable by the SPS framework with the minimum calculated periods, as the
throughput requirement. Note that we can set another throughput requirement
by scaling the minimum calculated periods. Then, the algorithm builds a set
of periodic tasks G in Line 3 and sorts the tasks in the order of decreasing
utilization. Next, the algorithm enters to a while loop, Lines 4 to 37, where the
task allocation is started on platform P0. The body of the while loop, then, is
repetitively executed to better utilize the processors’ capacity using the graph
unfolding transformation, explained in Section 4.4.1, and allocate the tasks on
platform P0.

In Line 5, a task allocation set |P0|G is created, to keep the tasks allocated to
each processor individually. Please note that in sets P0 and |P0|G, the processors
are ordered according to their type, where EE processors are followed by PE processors,
to first utilize the energy-efficient processors. In Line 5, an empty task set G1 is
also defined to keep the candidate tasks for replication. In Lines 6 to 23, the
algorithm allocates every task t0i,k 2 G to one of the processors according

4.6. Proposed Algorithm 65

Algorithm 1: Proposed task allocation and finding proper replication
factors for an SDF graph.

Input: An SDF graph G = (A, E) and a heterogeneous MPSoC P = {PPE, PEE}.
Output: True, an equivalent CSDF graph G0 = (A0, E 0), and a task allocation set xG if a successful

task allocation onto platform P is found, False otherwise.
1 ~f = [1, 1, · · · , 1]; G0 G; P0 P;
2 Calculate period T0i for PE type of processors for each task t0i,k corresponding to actor Ai,k in G0 by

using Equation (2.12) and Equation (2.13);
3 G Sort tasks corresponding to actors in G0 in order of decreasing utilization;
4 while True do
5 |P0 |G {|P0 |G1, |P0 |G2, · · · , |P0 |G|P0 |}; G1 ∆;
6 for t0i,k 2 G do
7 for 1 j |P0| do
8 if pj is an EE processor then

9 ule f t =
j�1
Â
`=1

(1� upEE
`

); ui = uEE
i ;

10 if pj is a PE processor then

11 ule f t =
CPE

i
CEE

i

|PEE |
Â
`=1

(1� upEE
`

) +
j�1
Â

`=|PEE |+1
(1� upPE

`
); ui = uPE

i ;

12 Check EDF schedulability test on pj;
13 if task t0i,k is not schedulable on pj then continue;
14 else
15 if upj = 0^ ule f t � ui then
16 if actor Ai,k corresponding to task t0i,k is not stateful/in/out then
17 G1 G1 + {t0i,k , pj};

18 |P0 |Gj t0i,k ;
19 break;

20 if task t0i,k is not allocated then
21 if ui > ule f t then return False;
22 P0 P0 + pPE;
23 go to 5

24 for |PEE| < j |P0| do
25 if |P0 |Gj = ∆ then
26 P0 P0 � pPE

j ;

27 if |P0PE| |PPE| then break;
28 if G1 6= ∆ then
29 ule f t = 0;
30 for {t0i,k , pj} 2 G1 do
31 if 1� upj > ule f t then
32 ule f t = 1� upj ; sel = i;

33 else return False;
34 fsel = fsel + 1; fsel 2 ~f ;
35 Get CSDF graph G0 = (A0, E 0) by unfolding G with replication factors ~f using the method in

Section 4.4.1;
36 Calculate period T0i for PE type of processors for each task t0i,k corresponding to actor Ai,k in

G0 by using Equation (2.12) and Equation (2.13);
37 G Sort tasks corresponding to actors in G0 in order of decreasing utilization;

38 return True, G0, |P0 |G;

66 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

to the FFD-EDF scheduler. In Lines 8 to 11, the total unused capacity ule f t
from the first processor p1 to the current processor pj is calculated. The
current processor pj can be either an EE processor or a PE processor. If it is
an EE processor, all the previous processors are also EE processors due to
the ordering of processors based on their type in platform P0. In this case,
the total unused capacity is calculated in Line 9 and stored in variable ule f t.
Otherwise, if pj is a PE processor, the total unused capacity from p1 to the
current processor pj, that includes all the EE processors followed by a subset
of PE processors, is calculated in Line 11 and stored in variable ule f t. Since the
tasks have different utilization on the PE and EE processors, the total unused
capacity on the EE processors are scaled accordingly by the proportion of the
worst-case execution time of task t0i,k on the PE processor and EE processor, in
Line 11.

In Line 12, the EDF schedulability test [54] is performed to check the
schedulability of task t0i,k on processor pj, i.e., t0i,k is schedulable if the total
utilization of all tasks currently allocated to processor pj (including t0i,k) is
not greater than the utilization bound of 1. If task t0i,k is not schedulable on
processor pj, the procedure of visiting the next processors is continued in Line
13. Otherwise, the candidate tasks for replication are identified first in Lines 15
to 17. If task t0i,k is allocated to an unused processor pj while there is, in total,
a sufficient unused capacity on the other under-utilized processors, the task
is selected as a candidate to be replicated. This condition is checked in Line
15. Note that stateful tasks, whose next execution depends on the current execution,
and input and output tasks, which are connected to the external environment, are not
replicated. So, if task t0i,k satisfies the condition in Line 16, it is added in Line 17
to task set G1 together with the processor pj which it will be allocated to. Task
t0i,k is actually allocated on processor pj in Line 18 and the procedure of vising
the next processors is terminated in Line 19.

If task t0i,k is not allocated after visiting all processors in platform P0 and
if the utilization of the task is larger than the total unused capacity left on
the platform, then the algorithm cannot allocate the application tasks onto
the given platform and returns False in Line 21. Otherwise, a PE processor
is added to platform P0 in Line 22. This is because to reasonably find all
candidate tasks for replication, the algorithm first checks how the processors
are finally utilized by continuing the task mapping through adding an extra
processor and finding a valid tasks’ allocation using the FFD-EDF scheduler.
For instance, the capacity of a processor that is fragmented by a big task can
be efficiently exploited later by smaller tasks. Therefore there is no need to
replicate such a big task. Later, by iteratively replicating the selected tasks,

4.7. Experimental Evaluation 67

the algorithm gradually exploits the processors’ capacity more efficiently and
removes the extra added PE processors to finally find a valid tasks’ allocation
on the given platform P. Next, the procedure is moved to Line 5 to find new
tasks’ allocation on the new platform P0.

In Lines 24 to 26, the reduction of the number of required processors is
performed by removing PE processors. If a PE processor with no allocated
tasks is found, it means the task set G requires one PE processor fewer to
be scheduled under FFD-EDF scheduler. Therefore, the PE processor with
no allocated tasks is removed from platform P0 in Line 26. Then, Line 27
checks whether the number of PE processors in platform P0 is fewer than
or equal to the number of PE processors in the given platform P (Note that
both platforms P0 and P have an equal number of EE processors as the algorithm
only adds/removes PE processor to/from platform P0). If yes, then the CSDF graph
G0 and the task allocation set GP are returned in Line 38 and the algorithm
terminates successfully.

If not, to better utilize the processors, a task is selected among the candidate
tasks in G1 for replication, in Lines 28 to 32. If task set G1 is empty then no
task could be selected for replication, therefore the algorithm cannot allocate
the application tasks onto platform P and returns False as output in Line
33. Among all the candidates in task set G1, the task allocated to a processor
with the largest amount of unused capacity is identified as a fragmentation-
responsible task, in Lines 31 and 32. Then, the replication factor of the actor
corresponding to this task in the initial SDF graph is increased by one in Line
34 and the initial SDF graph is transformed into an equivalent CSDF graph
using the unfolding transformation technique with unfolding vector ~f , in Line
35. The periods of the tasks corresponding to actors in the obtained CSDF
graph are calculated again for PE type of processors using Equation (2.12)
and Equation (2.13) in Line 36 and the new periodic tasks are sorted in G in
the order of decreasing utilization, in Line 37. The body of the while loop,
then, is repeated to either find successfully a task allocation of the transformed
graph onto platform P or fail due to lack of candidate tasks for replication,
i.e., empty task set G1.

4.7 Experimental Evaluation

In this section, we present the experiments to evaluate our proposed algorithm
in Section 4.6. The experiments have been performed on a set of seven real-life
streaming applications modeled as acyclic SDF graphs taken from [23]. These
applications, from different application domains, are listed in Table 4.2. In this

68 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

Table 4.2: Benchmarks used for evaluation taken from [23].

Domain Application |A| |E |

Signal Processing
Fast Fourier transform (FFT) kernel 32 32
Multi-channel beamformer 57 70
Time delay equalization (TDE) 35 35

Cryptography Data Encryption Standard (DES) 55 64
Serpent 120 128

Video processing MPEG2 video 23 26
Sorting Bitonic Parallel Sorting 41 48

table, |A| and |E| denote the number of actors and FIFO communication
channels in the corresponding SDF graph of an application.

To demonstrate the effectiveness and efficiency of our proposed algorithm,
we perform two experiments. In the first experiment, in Section 4.7.1, we
consider a homogeneous platform as considered in the related works [4,23,81].
In this experiment, we compare the application latency, the memory require-
ments, and the minimum number of processors needed to schedule the tasks
of each application under a given throughput requirement for a homogeneous
platform, i.e, platform with only PE processors, obtained with six different
scheduling/allocation approaches: (i) partitioned EDF with FFD heuristic;
(ii) partitioned EDF with our proposed heuristic algorithm; (iii) partitioned
EDF with the heuristic proposed in [81]; (iv) semi-partitioned EDF-fm, with
the FFD-SP heuristic proposed in [23]; (v) semi-partitioned EDF-fm, with the
LUF heuristic proposed in [4]; (vi) semi-partitioned EDF-sh [92]. These ap-
proaches are denoted in Table 4.3 with FFD, our, FFD-EP, FFD-SP, fm-LUF, and
EDF-sh, respectively. In the second experiment, in Section 4.7.2, we consider
heterogeneous platforms, including PE and EE processors, as considered in
the related work [92]. In this experiment, we compare the application latency
and the memory requirements needed to schedule the tasks of each applica-
tion under a given throughput requirement obtained with partitioned EDF
with our proposed heuristic algorithm and semi-partitioned EDF-sh [92] for
different heterogeneous platforms. Please note that we use the approach presented
in [23] to handle data dependencies when using the scheduling/allocation approaches
in [4, 92] for comparison with our algorithm. The throughput requirement R for
each application, that is, the maximum achievable throughput under the SPS
framework, is given in the second column in Table 4.3.

4.7. Experimental Evaluation 69

Ta
bl

e
4.

3:
C

om
pa

ri
so

n
of

di
ffe

re
nt

sc
he

du
lin

g/
al

lo
ca

tio
n

ap
pr

oa
ch

es
.

B
en

ch
m

ar
k

R
[

1 t.u
.]

O
PT

Pa
rt

it
io

ne
d

Se
m

i-
pa

rt
it

io
ne

d
FF

D
ou

r
FF

D
-E

P
FF

D
-S

P
fm

-L
U

F
ED

F-
sh

m̌
O

PT
m̌

FF
D

M
FF

D
[B

]
L

FF
D
[t.

u.
]

m̌
ou

r
M

ou
r

M
FF

D

L
ou

r
L

FF
D

m̌
EP

M
EP

M
FF

D

L
EP

L
FF

D
m̌

SP
M

SP
M

FF
D

L
SP

L
FF

D
m̌

LU
F

M
LU

F
M

FF
D

L
LU

F
L

FF
D

m̌
sh

M
sh

M
FF

D

L
sh

L
FF

D

FF
T

1/
60

16
24

30
14

46
80

19
25

12
24

1.
54

5
1.

31
3

24
2.

42
0

2.
34

4
26

1.
41

3
1.

48
3

26
1.

48
5

1.
67

6
24

3.
11

4
3.

77
2

(2
6)

(1
.1

15
)

(1
.0

63
)

B
ea

m
fo

rm
er

1/
50

76
26

28
14

49
2

60
91

2
26

1.
14

4
1.

16
6

26
2.

78
1

1.
75

0
26

1.
14

5
1.

47
4

26
1.

22
9

1.
60

6
26

1.
32

6
2.

09
1

TD
E

1/
32

20
5

20
25

51
62

82
11

27
17

5
20

1.
59

7
1.

28
6

21
1.

30
1

1.
19

5
20

1.
56

0
1.

39
6

21
1.

72
2

1.
86

0
20

3.
13

9
3.

08
6

(2
1)

(1
.1

80
)

(1
.0

86
)

D
E

S
1/

70
4

26
33

33
81

33
08

8
26

1.
18

2
1.

21
3

27
1.

35
7

1.
34

0
27

1.
13

8
1.

21
8

28
1.

68
4

1.
86

2
26

1.
59

2
2.

30
1

(2
7)

(1
.1

03
)

(1
.1

06
)

(2
8)

(1
.0

73
)

(1
.0

85
)

S
er

pe
nt

1/
33

36
39

42
59

81
5

37
02

96
39

1.
01

6
1.

09
0

40
3.

78
1.

81
40

1.
01

2
1.

07
4

39
1.

06
8

1.
47

9
39

1.
06

9
1.

64
8

(4
0)

(1
.0

05
)

(1
.0

27
)

M
P

E
G

2
1/

76
80

8
9

61
90

9
13

82
40

8
1.

10
4

1.
05

5
8

1.
47

8
1.

14
1

8
1.

29
0

1.
21

7
9

3.
01

4
3.

43
2

8
1.

66
5

1.
54

4
B

ito
ni

c
1/

91
11

13
23

74
22

75
11

1.
10

4
1.

08
0

11
1.

10
2

1.
12

0
11

1.
13

9
1.

18
5

11
1.

41
3

1.
39

5
11

1.
29

1
1.

50
2

70 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

4.7.1 Homogeneous platform

Let us first compare our algorithm with the related approaches in terms of the
number of required processors. The minimum number of required processors
to satisfy the throughput requirement for each application using an optimal
scheduler, denoted as m̌OPT and calculated using Equation (2.8), is given in the
third column in Table 4.3. To find the minimum number of required processors
using our proposed algorithm and the related approaches proposed in [4, 23,
81, 92], we set the number of PE processors on the homogeneous platform
initially to m̌OPT. Then, if the task set cannot be scheduled on the platform,
we add one more PE processor and repeat the task allocation procedure again
until a successful task allocation is found.

As can be seen in Table 4.3, the FFD approach requires considerably more
processors, on average 17.6% more, than the number of required processors
by an optimal scheduler, see column m̌FFD. In contrast, our algorithm and
EDF-sh require the same number of processors as the optimal scheduler while
maintaining the same throughput for this set of applications, see columns m̌our
and m̌sh, respectively. For the other approaches, although they require fewer
processors than FFD, they still require more processors than our algorithm
for some applications. For instance, the approach FFD-EP requires one more
processor for TDE, DES, and Serpent, see column m̌EP; The approach FFD-SP
requires two more processors for FFT and one more processor for DES and
Serpent, see column m̌SP; Finally the approach fm-LUF requires two more
processors for FFT and DES and one more processor for TDE and MPEG2,
see column m̌LUF. Although this difference in terms of number of required
processors is not too large, it clearly reveals that our algorithm is more capable
of scheduling the applications with fewer processors compared to the FFD-
EP, FFD-SP, and fm-LUF approaches while satisfying the same throughput
requirement.

However, this reduction on the number of required processors comes at
the expense of increased memory requirements and application latency. For
each application, columns MFFD and LFFD report the memory requirements,
expressed in bytes, and the application latency, expressed in time units, under
FFD, respectively. The memory requirements is computed as the sum of the
buffer sizes of the FIFO communication channels in the (C)SDF graph and the
code size of the tasks. For each application, the increase on memory require-
ments and application latency by our algorithm over FFD are given in columns
Mour
MFFD

and Lour
LFFD

, respectively, that are on average 24.2% and 17.2%, respectively.
Similarly, the increases on memory requirements and application latency are
on average respectively 100% and 52.85% for FFD-EP, 24.3% and 29.2% for

4.7. Experimental Evaluation 71

FFD-SP, 65.9% and 90.2% for fm-LUF, and finally 88.5% and 127.8% for EDF-sh
compared to FFD. From these numbers, we can conclude that not only our
algorithm achieves fewer processors compared to the related approaches, but
also it imposes, on average, lower memory and latency overheads.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

FFT Beamformer

TDE DES Serpent
MPEG2

Bitonic
average

M
em

or
y

re
du

ct
io

n

 FFD-EP FFD-SP fm-LUF EDF-sh

(a) Memory reduction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

FFT Beamformer

TDE DES Serpent
MPEG2

Bitonic
average

La
te

nc
y

re
du

ct
io

n

 FFD-EP FFD-SP fm-LUF EDF-sh

(b) Latency reduction

Figure 4.4: Memory and latency reduction of our algorithm compared to the related approach
with the same number of processors.

To further compare our algorithm with the related approaches, we com-
pute the memory requirements and application latency of our algorithm when
equal number of processors as the related approaches are used, see the bolded
numbers in parenthesis in columns m̌our, Mour

MFFD
, and Lour

LFFD
. To ease the interpre-

tation of Table 4.3 for this comparison, Figure 4.4(a) and Figure 4.4(b) illustrate
the memory and latency reductions obtained by our algorithm compared to

72 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

FFT Beamformer

TDE DES Serpent
MPEG2

Bitonic

Nu
m

be
r o

f t
as

k
re

pl
ica

tio
n

 FFD-EP
 Our

Figure 4.5: Total number of task replications needed by FFD-EP and our proposed algorithm.

the related approaches, respectively. For instance, the reduction on memory
requirements is computed using the following equation:

r =
Mrel �Mour

Mrel
(4.3)

where Mrel is the memory requirements of scheduling an application using a
related approach and Mour denotes the memory requirements achieved by
our algorithm for the same number of processors. In Figure 4.4(a), we can
see that our algorithm can reduce the memory requirements by an average of
31.43%, 5.72%, 27.11%, and 27.46% compared to FFD-EP, FFD-SP, fm-LUF, and
EDF-sh, respectively. In Figure 4.4(a), however, there are two exceptions where
our algorithm achieves 2.43% and 0.19% more memory for TDE and Bitonic
compared to FFD-SP and FFD-EP, respectively. In Figure 4.4(b), we can also
see that our algorithm can reduce the application latency considerably for all
applications by an average of 22.60%, 13.24%, 37.92%, and 44.09% compared
to FFD-EP, FFD-SP, fm-LUF, and EDF-sh, respectively. This comparison clearly
demonstrates that for most of the applications our algorithm is more efficient
than the related approaches in exploiting the available resources. Compared to
FFD-EP, that is the closest approach to our algorithm as both adopt the graph
unfolding transformation, our efficiency comes from significantly reducing
the number of required task replications due to our novel Algorithm 1, as
shown in Figure 4.5. This figure clearly shows that, by replicating the right
tasks, our proposed algorithm can reduce the total number of task replications
significantly, by up to 30 times, compared to FFD-EP. From Figure 4.4, it can be
also observed that our proposed algorithm works better for some applications
than for others compared to the related approaches. Given the (C)SDF graph of
each application has different properties, e.g, the number of actors, the actors’

4.7. Experimental Evaluation 73

Table 4.4: Runtime (in seconds) comparison of different scheduling/allocation approaches.

Benchmark tFFD tour tFFD-EP tFFD-SP tfm�LUF tEDF-sh

FFT 0.001 5.95 451.48 0.22 0.17 0.024
Beamformer 0.011 5.16 126.30 0.100 0.037 0.022

TDE 0.005 3.96 138.32 0.011 0.013 0.011
DES 0.002 9.41 14.20 0.28 1.013 0.021

Serpent 0.025 56.43 960.30 1.44 0.45 0.09
MPEG2 0.001 0.015 3.25 0.002 0.002 0.004
Bitonic 0.001 0.127 0.093 0.003 0.011 0.034

workload, the graph’s topology, repetition vector, etc., the applications are
represented with a different set of periodic tasks by using the SPS framework
in terms of the number of tasks and the utilization of tasks. Therefore, this
variation on the number of tasks and the utilization of tasks in the set of
periodic tasks according to each application can have different impact on the
performance of different scheduling/allocation approaches.

Finally, we evaluate the efficiency of our algorithm in terms of the execution
time. We compare the execution time of our algorithm with the corresponding
execution times of FFD, FFD-EP, FFD-SP, fm-LUF, and EDF-sh. The comparison
is given in Table 4.4. As can be seen from Table 4.4, the execution time of FFD
and EDF-sh are always within less than 34 millisecond, while the execution
times of FFD-SP and fm-LUF are within less than 1.5 seconds. However, the
execution time of our algorithm is longer than FFD, FFD-SP, fm-LUF, and EDF-
sh due to its iterative execution nature, but it is within less than 10 seconds
for most of the cases and within less than 1 minute for one case which is
reasonable given that our proposed algorithm is used at design-time and that
it achieves better resource utilization. Among all the approaches, FFD-EP
has the highest execution time, which is within less than 17 minutes, due to
excessive number of algorithm iterations. This excessive number of iterations
is due to the excessive number of required task replications in FFD-EP as
shown in Figure 4.5.

4.7.2 Heterogeneous platform

To compare our proposed algorithm and EDF-sh [92] on heterogeneous plat-
forms, in this section, we conduct experiments on a set of heterogeneous
platforms including different number of PE and EE processors. To do so, we
initially generate a heterogeneous platform having m̌FFD�1 PE processors
(see Table 4.3 for m̌FFD) and 1 EE processor for each application and itera-
tively replace one PE processor with one EE processor (or more EE processors

74 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{29,1} {28,2} {27,3} {26,4} {25,5} {24,6}

R
ed

uc
tio

n

Memory
Latency

(a) FFT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{27,1} {26,2} {25,3} {24,4} {23,6} {22,8}

R
ed

uc
tio

n

Memory
Latency

(b) Beamformer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{32,1} {31,2} {30,3} {29,4} {28,5} {27,6} {26,7} {25,8}

R
ed

uc
tio

n

Memory
Latency

(c) DES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{12,1} {11,2} {10,3} {9,4} {8,5}

R
ed

uc
tio

n

Memory
Latency

(d) Bitonic

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

{8,1} {7,2} {6,3}

R
ed

uc
tio

n

Memory
Latency

(e) MPEG2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{24,1} {23,2} {22,3} {21,4} {20,5} {19,6} {18,7} {17,8} {16,9} {15,10}{14,12}

R
ed

uc
tio

n

Memory
Latency

(f) TDE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

{41,1} {40,2} {39,3} {38,4} {37,5} {35,8} {33,12} {31,16} {29,20} {28,22} {27,24} {25,28} {21,36} {20,38} {19,40} {17,44} {15,48} {12,50} {13,52}

R
ed

uc
tio

n

Memory Latency

(g) Serpent

Figure 4.6: Memory and latency reduction of our algorithm compared to EDF-sh [92] for
real-life applications on different heterogeneous platforms.

4.7. Experimental Evaluation 75

if the task set is not schedulable on the platform). However, due to the re-
strictive allocation rules in EDF-sh to ensure bounded tardiness for deadline
misses, EDF-sh cannot find a task allocation for some heterogeneous plat-
forms that have fewer than a certain number of PE processors. Therefore, we
only compare our algorithm with EDF-sh on the heterogeneous platforms for
which EDF-sh can successfully allocate the tasks for each application. Fig-
ure 4.6 shows the memory and latency reductions obtained by our algorithm
compared to EDF-sh for each application individually. The reductions are
computed using Equation (4.3). In Figure 4.6, the x-axis shows different het-
erogeneous platforms, comprised of different number of PE and EE processors
denoted by {number of PEs, number of EEs}. The y-axis shows the reduction
on the memory requirements and application latency.

From Figure 4.6, it can be observed that our proposed algorithm outper-
forms EDF-sh in terms of memory requirements and application latency for
most of the cases. Compared to EDF-sh, our algorithm can reduce the memory
requirements and application latency by an average of 42.6% and 51.1%, 12.4%
and 43.8%, 21.7% and 36.2%, 21.8% and 35.4%, 11.9 % and 20.1%, 37.6 % and
42.2%, and 3.6 % and 33.8% for the FFT, Beamformer, DES, Bitonic, MPEG,
TDE, and Serpent applications, respectively. For the MPEG application, how-
ever, our proposed algorithm increases the memory requirements compared
to EDF-sh by 20.6% on a platform including 6 PE and 3 EE processors. This is
because our algorithm excessively replicates a task to utilize the unused capac-
ity left on the under-utilized processors. Therefore, the memory requirements
increase significantly due to the code and data memory overheads. However,
since the replicated task has low impact on the application latency, our algo-
rithm can still reduce the application latency by 8.3% compared to EDF-sh. For
the TDE application, both approaches find a task allocation without requiring
either task replication (our) or task migration (EDF-sh) on a platform including
24 PE and 1 EE processors, therefore no reduction is achieved for both memory
requirements and latency in this case.

In addition, it can be observed in Figure 4.6 that for most of the cases by
replacing more PE processors with EE processors on the platform, our algo-
rithm can further reduce the memory requirements and application latency
compared to EDF-sh. This is mainly because, by replacing more number of
PE processors with EE processors on the platform, the number of migrating
tasks under EDF-sh scheduler is considerably increased while the number of
task replications is only gently increased by our algorithm. As a result, more
fixed tasks are affected by migrating tasks and can miss their deadlines, by
a bounded tardiness, under EDF-sh scheduler that comes at the expense of

76 Chapter 4. Exploiting Parallelism in Applications to Efficiently Utilize Processors

more memory requirements and longer application latency. According to the
approach presented in [23], the memory requirements increase due to both
the size of buffers, that have to be enlarged to handle task tardiness, and the
code size overhead of task replicas, which are necessary in case of migrating
tasks. In addition, the application latency increases due to the postponement
of task start times needed to handle task tardiness.

4.8 Conclusions

In this chapter, we have presented a novel heuristic algorithm which deter-
mines a replication factor for each actor in an acyclic SDF graph, with a given
throughput requirement, such that the number of processors needed to sched-
ule the periodic tasks corresponding to actors in the obtained transformed
graph is reduced under partitioned scheduling algorithms. By performing
tasks replication, the tasks’ workload is distributed among more parallel tasks’
replicas with larger period and lower utilization in the obtained transformed
graph. Therefore, the required capacity of the tasks which are replicated, is
split up in multiple smaller chunks that can more likely fit into the left capacity
on the processors and alleviate the capacity fragmentation due to partitioned
scheduling algorithms, hence reducing the number of needed processors. The
experiments on a set of real-life streaming applications show that our proposed
algorithm can reduce the number of needed processors by up to 7 processors
with increasing the memory requirements and application latency by 24.2%
and 17.2% on average compared to FFD while satisfying the same throughput
requirement. We also show that our algorithm can still reduce the number
of needed processors by up to 2 processors and considerably improve the
memory requirements and application latency by up to 31.43% and 44.09% on
average compared to the other related approaches while satisfying the same
throughput requirement.

Chapter 5

Energy-Efficient Scheduling of
Streaming Applications

Sobhan Niknam, Todor Stefanov. "Energy-Efficient Scheduling of
Throughput-Constrained Streaming Applications by Periodic Mode Switching". In
Proceedings of the 17th IEEE International Conference on Embedded Computer Systems:
Architectures, MOdeling, and Simulation (SAMOS), Samos, Greece, July 17 - 20, 2017.

IN this chapter, we present our energy-efficient periodic scheduling ap-
proach, which corresponds to the third research contribution, briefly in-

troduced in Section 1.5.3, to address the research question RQ2(B), described
in Section 1.4.2. The remainder of this chapter is organized as follows. Sec-
tion 5.1 introduces, in more details, the problem statement and the addressed
research question. It is followed by Section 5.2, which gives a summary of
the contributions presented in this chapter. Section 5.3 gives an overview
of the related work. Section 5.4 introduces the extra background material
needed for understanding the contributions of this chapter. Section 5.5 gives a
motivational example. Section 5.6 presents the proposed scheduling approach.
Section 5.7 presents the experimental evaluation of the proposed scheduling
approach. Finally, Section 5.8 ends the chapter with conclusions.

5.1 Problem Statement

As mentioned in Section 1.1, energy efficiency has become a critical challenge
for the design of modern embedded systems, especially for those which are
battery-powered. To address the energy efficiency challenge, many approaches

78 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

have been proposed in the past decades by several research communities [11].
These approaches mostly exploit the Voltage and Frequency Scaling (VFS)
mechanism that is widely adopted in modern processors. The general idea
behind these approaches is to exploit available idle, i.e., slack, time in the
schedule of an application in order to slow down the execution of tasks of
the application, by running processors at a lower voltage and operating clock
frequency, using the VFS mechanism and to reduce the energy consumption
while satisfying a given throughput requirement for the application.

Concerning the SPS framework, briefly described in Section 2.3, some
heuristic approaches have been proposed in [25, 55, 80] to find an energy-
efficient task mapping and scheduling using the VFS mechanism. Recall from
Equation (2.12) that under the SPS framework, briefly described in Section 2.3,
the period of real-time periodic tasks corresponding to the actors of a CSDF
graph can be enlarged by taking any s � š 2 N as long as a given application
throughput requirement is satisfied. This period enlargement under the SPS
framework, however, results in a set of application schedules that can only
satisfy a discreet set of application throughputs, as the timing requirement.
Therefore, given a required application throughput that is not in this set of
guaranteed throughputs by the SPS framework, the schedule that provides
the closest higher throughput to the required one must be selected from the
set. As a consequence, this reduces the amount of available slack time in the
application schedule, that can be potentially exploited using the VFS mecha-
nism to reduce the energy consumption, and limits the energy-efficiency of the
approaches in [25, 55, 80]. Thus, in this chapter, we investigate the possibility
to exploit more slack time in the schedule of an application, modeled as a
CSDF graph, under the SPS framework with a given throughput requirement
using the VFS mechanism to achieve more energy efficiency.

5.2 Contributions

In order to address the problem described in Section 5.1, in this chapter, we
propose a novel energy-efficient scheduling approach that combines the VFS
mechanism [71] and the SPS framework [8] in a sophisticated way. In this
novel approach, the execution of an application is periodically switched at
run-time between a few off-line determined energy-efficient schedules, called
operating modes, to satisfy a given throughput requirement at a long run. As
a result, this approach can reduce the energy consumption significantly by
exploiting the slack time in the application schedule more efficiently using
the Dynamic Voltage and Frequency Scaling (DVFS) mechanism [50], where

5.3. Related Work 79

multiple operating frequencies are computed at design-time for the processors
to be used at run-time. More specifically, the main contributions of this chapter
are as follows:

• A simple scheme has been devised for determining a set of discrete op-
erating modes of a system at different operating frequencies where each
operating mode provides a unique pair of throughput and minimum
power consumption to achieve this throughput.

• With such a set of discrete operating modes and a given throughput
requirement, we have devised an energy-efficient periodic scheduling
approach which allows streaming applications to switch their execution
periodically between operating modes at run-time to satisfy the through-
put requirement at a long run. Using this specific switching scheme, we
can benefit from adopting the DVFS mechanism to exploit the available
static slack time in an application schedule efficiently.

• The experimental results, on a set of real-life streaming applications,
show that our scheduling approach can achieve energy reduction by up
to 68% depending on the application and the throughput requirement
compared to the straightforward way of applying VFS as done in related
works.

5.3 Related Work

Several approaches aiming at reducing the energy consumption of stream-
ing applications have been presented in the past decades. Among these
approaches, [26, 42, 61, 74, 96] are the closest to our work. These approaches
have a common goal to reduce the energy consumption of a system by exploit-
ing the static slack time in the schedule of throughput-constrained streaming
applications using per-task [26, 61], per-core [42, 74, 96] or global [42] VFS.

The approaches in [26, 42, 61], formulate the energy optimization prob-
lem as a mixed integrated linear programming (MILP) problem to integrate
the VFS capability of processors with application scheduling. Compared to
these approaches, our approach mainly differs in two aspects. First, these ap-
proaches consider streaming applications modeled either as a Directed Acyclic
Graph (DAG) [26, 42] or a Homogeneous SDF (HSDF) graph [61] derived by
applying a certain transformation on an initial SDF graph. Therefore, these
approaches cannot be directly applied to streaming applications modeled with
more expressive MoCs, e.g., (C)SDF as considered in our work. In addition,
transforming a graph from SDF to HSDF is a crucial step in [61] where the
number of tasks in the streaming application can exponentially grow. This

80 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

growth of the application in terms of the number of tasks can lead to time-
consuming analysis and significant memory overhead for storing the tasks’
code. In contrast, our approach directly handles a more expressive MoC, such
as (C)SDF. Second, the approach in [42] uses per-core VFS where the off-
line computed operating frequencies of processors are fixed at run-time and
cannot be changed. In contrast, our approach uses DVFS where a sequence
of frequency changes which is computed off-line is used on the processors
during execution at run-time while satisfying the throughput requirement. As
a result, the DVFS mechanism enables our approach to exploit the available
static slack time in the application schedule more efficiently for better energy
reduction. The approaches in [26, 61] use a fine-grained DVFS, i.e., per-task
VFS, where the operating frequency of processors can be changed before ex-
ecuting each task. Fine-grained DVFS, like in [26, 61], can be beneficial only
when the overhead of DVFS is negligible. In contrast to these approaches, we
adopt a coarse-grained DVFS where the operating frequencies of processors
are changed at the granularity of graph iterations to avoid the large overhead
associated with the operating frequency changes.

The approaches in [74, 96] perform energy reduction directly on an SDF
graph. To this end, the approaches in [74,96] perform design space exploration
(DSE) at design time to find an energy-efficient schedule (in a self-timed
manner) of an SDF graph mapped on an MPSoC platform with per-core VFS
capability such that a given throughput requirement is satisfied. However, as
shown in the motivation example in Section 5.5, applying VFS in a similar way
as in [74,96] for streaming applications scheduled using the SPS framework [8]
is not energy-efficient. Compared to the approaches in [74, 96], our approach
is different in two aspects. First, these approaches use self-timed scheduling
for which analysis techniques suffer from a complex DSE. In contrast, we use
the SPS framework that enables the utilization of many scheduling algorithms
with fast analysis techniques from the classical hard real-time scheduling
theory [29]. Second, these approaches use per-core VFS to exploit static slack
time in the application schedule. In contrast, our approach uses a coarse-
grained DVFS. As a result, the processors are able to run periodically at lower
operating frequencies by exploiting available static slack time more efficiently
which can result in lower energy consumption.

5.4 Background

In this section, we define the system model and present the power model
considered throughout this chapter.

5.5. Motivational Example 81

5.4.1 System Model

In this section, we define the system model used in this chapter. The con-
sidered MPSoC platforms in this chapter are homogeneous, i.e., a platform
contains a set P = {p1, p2, · · · , pm} of m identical processors with distributed
memories. We assume that processors are endowed with the VFS capability.
In this regard, we assume that each processor supports only a discrete set
q = { fmin = f1, f2, · · · , fn = fmax} of n operating frequencies and different
processors can operate at different frequencies at the same time. Without loss
of generality, we assume that the operating frequencies in the set q are in
ascending order, in which f1 is the lowest operating frequency and fn is the
highest operating frequency.

5.4.2 Power Model

This section defines the power model used in this chapter. According to [55],
the power consumption of a (fully utilized) processor can be computed by the
following equation:

P(f) = a f b + b

where the first term is the dynamic power consumption and includes all
frequency-dependent components, the second term is the static power con-
sumption and includes all frequency-independent components, and f is the
operating frequency. Parameters a, b, and b are dependent on the platform
and they are determined in [55] by performing real measurements on a real
MPSoC platform. When all tasks are allocated on processors of platform P,
the power consumption of processor pj can be computed by the following
equation:

Pj = a · f b
pj

· fmax

fpj
Â

8ti2mGj

Ci
Ti

+ b (5.1)

where fpj 2 q is the operating frequency of pj and mGj 2 mG represent the set
of tasks allocated on processor pj. Therefore, the energy consumption of pj
within one graph iteration period (hyper period) is Ej = H · Pj and the energy
consumption of the platform within one iteration period is E = Â8pj2P H · Pj.

5.5 Motivational Example

In this section, we motivate the necessity of devising a new energy-efficient
scheduling approach using the VFS mechanism in the context of the SPS

82 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

4 2 1 3
[1] [2] [2]E1 E2

A1 A2 A3

Figure 5.1: An SDF graph G.

framework [8]. To do so, this motivational example consists of two parts.
In the first part, we show that a straightforward way of applying the VFS
mechanism in the context of the SPS framework is not energy efficient. Then,
in the second part, we show how we can schedule an application more energy
efficient using our novel periodic scheduling approach.

5.5.1 Applying VFS Similar to Related Works

Let us consider a simple streaming application modeled as the SDF graph G
shown in Figure 5.1. This graph has three actors A = {A1, A2, A3} with worst-
case execution times C1 = 1, C2 = 2, and C3 = 2 at the maximum processor
operating clock frequency. The repetition vector of this graph, according to
Theorem 2.1.1, is~q = [3, 6, 2]T. By applying the SPS framework for graph G,
the task set G = {t1 = (C1 = 1, T1 = 4, S1 = 0, D1 = 4), t2 = (2, 2, 4, 2), t3 =
(2, 6, 10, 6)} of three IDP tasks can be derived. Note that the derived periods of
the tasks are the minimum periods by using the scaling factor s = š = d 12

6 e = 2
in Equation (2.12). Based on these tuples, a strictly periodic schedule, as shown
in Figure 5.2(a), can be obtained for this graph. Using Equation (2.15), the
throughput of this schedule can be computed as R = 1

T3
= 1

6 . The minimum
number of processors needed for this schedule under partitioned First-Fit
Decreasing (Utilization) EDF (FFD-EDF) is two. Therefore, we consider a
homogeneous MPSoC platform P = {p1, p2} containing two processors,
where we allocate task t2 on processor p1 and tasks t1 and t3 on processor p2,
i.e., 2G = {2G1 = {t2}, 2G2 = {t1, t3}}.

So far, we have assumed that the tasks run at the maximum operating fre-
quency of the processors. Let us assume that each processor can only support
a discrete set q = {1/4, 1/2, 3/4, 1}(GHz) of four operating frequencies. In
order to make this schedule more energy efficient, we use the VFS mechanism
to exploit the available static slack time in the schedule for the purpose of
slowing down the execution of tasks by decreasing the operating frequency of
the processors. For this example, we can only decrease the operating frequency
of processor p2 to 3/4 GHz while still satisfying all timing requirements, i.e.,
job deadlines shown as down arrows in Figure 5.2(a). This slowing down
of the execution of tasks is visualized by extending the gray boxes with the

5.5. Motivational Example 83

t

�2

�1

�3
5

S1 T1

0 10 15

S2 T2
S3

job
deadline

job
release

20

T3

(a)

t

�2

�1

�3
50 10 15 20

job
deadline

job
release

S1 T1

S2 T2
S3 T3

(b)

Figure 5.2: The (a) SPS and (b) scaled SPS of the (C)SDF graph G in Figure 5.1. Up
arrows represent job releases, down arrows represent job deadlines. Dotted rectangles show
the increase of the tasks execution time when using the VFS mechanism.

dotted boxes in Figure 5.2(a). Using Equation (5.1), the power consumption
of this schedule is 0.61 mW. The energy consumption of this schedule for a
period of 36 time units, which is equivalent to 3 graph iterations, is 21.96 mJ.

To further reduce the power consumption by decreasing the operating
frequency of processors, more static slack time is needed to be created in
the application schedule. To do so, we can derive larger periods for tasks
by using any integer scaling factor s > š = 2 in Equation (2.12). We refer
to this approach as period scaling in this chapter. In this way, if we take s =
3, a new schedule can be derived using the SPS framework, as shown in
Figure 5.2(b), with throughput R = 1

T3
= 1

9 . As a result, there is more static
slack time available in the application schedule which enables the processors
p1 and p2 to run at lower operating frequencies of 3/4 GHz and 1/2 GHz,
respectively. This is visualized by extending the white boxes with the dotted
boxes in Figure 5.2(b). Using Equation (5.1), the power consumption of this
schedule is 0.43 mW. The energy consumption of this schedule for a period

84 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

of 36 time units, which is equivalent to 2 graph iterations, is 15.48 mJ. As a
result, the energy consumption is reduced by 29.5% using the schedule in
Figure 5.2(b) corresponding to s = 3 compared to the schedule in Figure 5.2(a)
corresponding to s = 2 for the same time period at the expense of decreasing
the application throughput from 1/6 to 1/9. By increasing the value of scaling
factor s and enlarging the periods of tasks as much as possible such that the
corresponding schedule still satisfies a given throughput requirement, we can
apply the VFS mechanism in the straightforward way, described above, similar
to the related works [74, 96]. Therefore, the maximum created static slack time
in the application schedule can be exploited using the VFS mechanism to
reduce the energy consumption as much as possible.

Now, assume that a throughput requirement of 1/8 has to be satisfied.
Following the period scaling approach, described above, the schedule corre-
sponding to s = 2 with the throughput of 1/6, shown in Figure 5.2(a), must be
selected to satisfy the throughput requirement of 1/8. However, this schedule
is not the most energy-efficient one. This is because, although the through-
put requirement of 1/8 is satisfied, more energy is consumed as a result of
delivering higher throughput than needed.

5.5.2 Our Proposed Scheduling Approach

In this section, we introduce our novel energy-efficient scheduling approach
for graph G in Figure 5.1 that satisfies the same throughput requirement of 1/8
while consuming less energy compared to the scheduling approach explained
in Section 5.5.1. In our approach, among all possible application schedules
corresponding to different values of scaling factor s to enlarge periods, we
select only Pareto optimal schedules and form a set g of schedules called
operating modes. For instance, the set g = {SI1, SI2, SI3, SI4, SI5} of five operat-
ing modes for graph G is given in Table 5.1. In this table, every row shows
an operating mode with the iteration period H, the operating frequencies of
the two processors (fp1 , fp2), the pair of throughput and power consumption
(R, P), and the energy consumption corresponding to the operating mode. In
the last column, the energy consumption of the operating modes is given for
a period of 720 time units which is the least common multiply of the iteration
periods H of all operating modes. As can be seen in this column, the energy
consumption of the operating modes is being reduced by slowing down the
application execution during this common period of time. The value of scaling
factor s corresponding to each operating mode is also given in the first column.
For instance, operating mode SI4 is the application schedule corresponding to
s = 5 that delivers throughput of 1/15. In this schedule, processors p1 and

5.5. Motivational Example 85

Table 5.1: Operating modes for graph G

Mode H fp1 fp2 (R [Token
Time units], P [mW]) E [mJ]

SI1 (s = 2) 12 1 3/4 (1/6, 0.61) 439.2
SI2 (s = 3) 18 3/4 1/2 (1/9, 0.43) 309.6
SI3 (s = 4) 24 1/2 1/2 (1/12, 0.36) 259.2
SI4 (s = 5) 30 1/2 1/4 (1/15, 0.34) 244.8
SI5 (s = 8) 48 1/4 1/4 (1/24, 0.31) 223.2

p2 must operate at frequencies of 1/2 GHz and 1/4 GHz in order to meet all
task’s job deadlines. The power consumption of this schedule is 0.34 mW and
the energy consumption of this schedule for 720 time units is 244.8 mJ.

Looking at set g of operating modes in Table 5.1, the throughput require-
ment of 1/8, we consider in this example, is between the throughput of op-
erating modes SI1 and SI2. Therefore, we propose the idea of periodically
switching the application execution between operating modes SI1 and SI2 to
satisfy the throughput requirement. Such a periodic switching schedule is
depicted for one period in Figure 5.3, where the application executes for three
graph iterations according to the schedule of operating mode SI1 and two
graph iterations according to the schedule of operating mode SI2. Different
graph iterations are separated by dotted and dashed lines for consecutive
executions of the application in operating mode SI1 and SI2, respectively, in
Figure 5.3. Note that this schedule repeats periodically every 77 time units, as
shown in Figure 5.3 (Q1 + Q2 + o12 = 77). In one period, task t3 executes 10
times in total during 77 time units, meaning that throughput of 10/77=1/7.7
is delivered at a long run that is more closer to the throughput requirement of
1/8 compared to the throughput of 1/6 delivered as a result of the schedule
in Figure 5.2(a). More importantly, the energy consumption of our proposed
novel schedule in Figure 5.3 for a period of 924 time units, which is the least
common multiply of the period of our schedule (77 time units) and the iteration
period of the schedule in Figure 5.2(a) (12 time units), is 496.68 mJ. The energy
consumption of the schedule in Figure 5.2(a) in the same period of 924 time
units is 563.64 mJ. Therefore, our novel scheduling approach can reduce the
energy consumption by 11.87% when the throughput requirement of 1/8 has
to be satisfied. The energy reduction of our proposed schedule, referred as
Switching, compared to the scheduling approach explained in Section 5.5.1,
referred as Scale, for a wide range of throughput requirements is given in
Figure 5.4. In this figure, the x-axis shows different throughput requirements
for graph G in Figure 5.1 while the y-axis shows the normalized energy con-
sumption. From Figure 5.4, we can see that our proposed scheduling approach

86 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

τ2 τ1τ3
5

0
10

15
20

25
30

35
40

45
t

o12
Q

1
Q

2

δ
2→
1

 D
VFS sw

itching tim
e

50
55

60
65

70
75

SI 1
SI 1

SI 1
SI 2

SI 2
1G
H
z

fʌ 1fʌ 2
1G
H
z

3/4G
H
z

3/4G
H
z1/2G

H
z

3/4G
H
z

Figure
5.3:O

ur
proposed

periodic
schedule

ofgraph
G

in
Figure

5.1.
In

this
schedule,graph

G
periodically

executes
according

to
schedulesofoperating

m
odeSI 1

and
operating

m
odeSI 2

in
Figure5.2(a)and

Figure5.2(b),respectively.N
otethatthisschedulerepeats

periodically.o12
=

5
and

o21
=

0.

5.6. Proposed Scheduling Approach 87

1
24

1
23

1
22

1
21

1
20

1
19

1
18

1
17

1
16

1
15

1
14

1
13

1
12

1
11

1
10

1
9

1
8

1
7

1
6

0.5

0.6

0.7

0.8

0.9

1

Throughput [token/time units]

N
or

m
al

iz
ed

 E
ne

rg
y

Switching
Scale

Figure 5.4: Normalized energy consumption of the scaled scheduling and our proposed
scheduling of the graph G in Figure 5.1 for a wide range of throughput requirements.

Switching can reduce the energy consumption significantly compared to Scale
for a large set of throughput requirements.

Note that our proposed scheduling approach uses the DVFS mechanism.
This is because, processors run at different operating frequencies in each
operating mode. Therefore, when the application switches to execute in a
different operating mode, the operating frequencies of the processors are
changed accordingly. The way of changing the operating frequencies of the
processors, for our example, is shown by the horizontal arrows on top of
Figure 5.3. Note that we also consider the switching time cost of the DVFS
mechanism in our analysis that is shown by the boxes with dotted pattern in
Figure 5.3.

From the above example, we can see the necessity and usefulness of our
novel scheduling approach, presented in detail in Section 5.6, to obtain more
energy-efficient application schedule when the VFS mechanism is used in the
context of the SPS framework.

5.6 Proposed Scheduling Approach

In this section, we describe our proposed energy-efficient periodic scheduling
approach for throughput-constrained streaming applications. The basis of our
approach is to determine a set of operating modes where each operating mode
provides a unique pair of throughput and minimum power consumption to
achieve this throughput. Then, for a given throughput requirement, there
may exist an operating mode whose throughput matches the throughput

88 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

Mode
λ

QLQH

Z(t)

oHL

RL.QL

ρout

oLH

Reff

RH.QH
Reff .λ

Power

PH

PL

Time

(a)

(c)

(b)

Tokens

Time

Time

Rreq

eLH

eHL

QLQH oHL oLH

QLQH oHL oLH

fswitchfswitch

mH mL mH mL

eLH

eHL

Figure 5.5: (a) Switching scheme, (b) Associated energy consumption of the switching scheme
and (c) Token production function Z(t).

requirement. In this unlikely case, we simply select this operating mode.
Otherwise, we choose the two operating modes with the closest higher and
lower throughput to the throughput requirement, referred as higher operating
mode (SIH) and lower operating mode (SIL), respectively. Then, we satisfy the
throughput requirement at a long run by periodically switching the execution
of the application between these two operating modes.

A general overview of our proposed switching scheme for the execution
of an application between the higher and lower operating modes is illustrated
in Figure 5.5. The periodic execution of the application between the higher
and lower operating modes in our approach is shown in Figure 5.5(a) and the
period of switching is denoted by l. The associated energy consumption and
token production of the application caused by our switching scheme corre-
sponding to Figure 5.5(a) are also shown in Figure 5.5(b) and Figure 5.5(c),
respectively. According to Figure 5.5(a), the execution of the application in
each period l consists of four parts. In the first part, the application exe-
cutes in the higher operating mode for QH time units where the application
has throughput RH and power consumption PH. Then, in the second part,

5.6. Proposed Scheduling Approach 89

the execution of the application switches to the lower operating mode SIL.
However, this switching cannot happen immediately and it takes some time,
denoted as oHL, before the application can produce tokens again in the lower
operating mode. Therefore, during the switching, the application does not
have any token production for oHL time units while consuming the energy
of eHL, as shown in Figure 5.5(b) and Figure 5.5(c), respectively. After com-
pleting the switching, in the third part, the application executes in the lower
operating mode for QL time units where the application has the throughput
and power consumption of RL and PL, respectively. Finally, in the fourth part,
the application switches again to the higher operating mode SIH for the next
period of l. However, this switching cannot happen immediately and it takes
some time that is denoted by oLH. During the switching time oLH, no tokens
are produced by the application while the energy of eLH is consumed. As a
result of the switching scheme in Figure 5.5(a), the application generates a
number of tokens in total, see the curve Z(t) in Figure 5.5(c), by executing in
the higher and lower operating modes during every period of l and in every
l the application effectively delivers the throughput of Re f f in a long run. The
curves corresponding to the token production Z(t) in our switching scheme
and the effective throughput of Re f f are shown in Figure 5.5(c) with a solid
line and a dotted line, respectively. The throughput requirement Rreq is also
shown with a dashed line in this figure. Therefore, to satisfy the throughput
requirement, we have to always keep the effective throughput Re f f above
the throughput requirement Rreq. This ensures that the number of produced
tokens at any time instant is greater than or equal to what is needed.

Considering Figure 5.5(c), the effective throughput obtained by executing
the application in operating mode SIH for QH time units and operating mode
SIL for QL time units is computed by the following expression:

Re f f =
RHQH + RLQL

QH + QL + oHL + oLH
=

RHQH + RLQL

l
(5.2)

where RH and RL are the throughputs of the application in the higher and
lower operating modes, respectively, and RHQH and RLQL are the number
of produced tokens in the higher and lower operating modes, respectively.
Similarly, the effective power consumption for the same operating mode
switching is computed as follows:

Pe f f =
PHQH + PLQL + eHL + eLH

l
=

PHQH + PLQL

l
+

eHL + eLH

l
(5.3)

where PH and PL are the power consumption of the higher and lower operating
modes, respectively, and PHQH and PLQL are the energy consumption in the
higher and lower operating modes, respectively.

90 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

Application

a0

a1

a3

a2

A1

A2
A4

A3

Output BufferInput Buffer
ReffR’eff Z(t)Z’(t)

Application

Figure 5.6: Input and Output buffers.

Using the periodic switching scheme, described above, we can benefit from
adopting the DVFS mechanism to exploit the available static slack time in the
application schedule more efficiently that can reduce the energy consumption
considerably. The shaded area in Figure 5.5(b) shows the energy consumption
corresponding to one period l in our scheduling approach. Although the
throughput requirement of the application is satisfied by our proposed ap-
proach, the mentioned energy reduction comes at the expense of increasing the
memory requirement. This is because the application samples the input data
stream and produces output data tokens in the higher operating mode more
frequently than in the lower operating mode. As a consequence, this results
in irregularity of sampling the input data stream and producing the output
data tokens over time. Therefore, to solve this irregular sampling/production
problem, we need extra memory buffers for the input and output of the appli-
cation, as shown in Figure 5.6. The reason to use an output buffer is to gather
the produced tokens and release them regularly over time in order to deliver
the throughput requirement in a long run. In the same manner, to regularly
sample the input data stream coming to the application, regardless of which
operating mode the application is running in, we need an extra buffer at the
input of the application. This buffer is needed to distribute the sampled data
regularly over the input data stream to guarantee certain sampling accuracy
instead of sampling the input data stream differently in each operating mode
leading to different accuracy in every operating mode.

According to the discussion above and looking at Figure 5.5, there are
some parameters in our scheduling approach that have to be determined,
namely, the time duration to stay in the higher and lower operating modes
(QH , QL), as well as switching costs (oHL, oLH , eHL, eLH). Therefore, in the rest
of this section, we explain how to compute these parameters. We first explain
how the operating modes are determined in Section 5.6.1. Then, we compute
the switching costs, oHL, eHL, oLH and, eLH and the time duration of staying
in the higher and lower operating modes, QH and QL, that are key elements
in our approach, in Section 5.6.2 and Section 5.6.3, respectively. Finally, we
compute the memory overhead (the input and output buffers in Figure 5.6)

5.6. Proposed Scheduling Approach 91

Algorithm 2: Operating modes determination.
Input: A CSDF graph G = (A, E).
Input: A set P = {p1, p2, · · · , pm} of m identical processors.
Input: A set q = { fmin = f1, f2, · · · , fn = fmax} of n discrete operating

frequencies for the processors.
Input: A set mG = {mG1, mG2, · · · , mGm} of task allocation on the

processors.
Output: A set g of operating modes.

1 g ∆;
2 Compute s = š using Equation (2.13);
3 while true do
4 for 8 ti 2 G do
5 Ti = lcm(~q)

qi
· s;

6 for 8 pj 2 P do
7 Compute a minimum operating frequency fpj such that

upj = fmax
fpj

Â8ti2xGj
Ci
Ti
 1;

8 R = Compute the throughput of new schedule using Equation (2.15);
9 P = Compute the power consumption of new schedule

corresponding to the operating frequency set ~f using Equation (5.1);
10 SI (R, P, G, ~f);
11 if {¬9 SIi 2 g : ~fi = ~f } then
12 g g + SI;

13 if the operating frequency of all processors reaches to fmin then
14 return g;

15 s = s + 1;

associated with our scheduling approach in Section 5.6.4.

5.6.1 Determining Operating Modes

The procedure for determining the operating modes is given in Algorithm 2.
The inputs of this algorithm are a CSDF graph G, a homogeneous platform
P containing m processors, a set q of n discrete operating frequencies for the
processors, and a set mG of task allocations on the processors. The output of
this algorithm is a set g of determined operating modes. First, Line 2 in this

92 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

algorithm initializes the scaling factor s = š using Equation (2.13). Then, we
use this initial value of s in Lines 4 and 5 to compute the minimum period of
tasks corresponding to the actors in the CSDF graph G using Equation (2.12).
Then, the minimum operating frequencies of the processors are computed
in Lines 6 and 7 in such a way that the schedulability of the allocated tasks
on each processor is still preserved. To do so, a simple utilization check is
performed where the total utilization of the allocated tasks on each processor
has to be less than or equal to 1, for partitioned EDF, for the selected operating
frequency. These operating frequencies are then stored in the frequency set ~f .
In Lines 8 and 9, the throughput R and power consumption P of the periodic
scheduling of task set G are computed using Equation (2.15) and Equation (5.1),
respectively. Then, in Line 10 a new operating mode SI that is characterized
with the strictly periodic task set G corresponding to s, throughput R, power
consumption P, and the set of operating frequencies ~f for the processors is
created. Line 11 checks a condition whether to include the newly created
mode to the set g of operating modes. According to this condition, an op-
erating mode is included to the set g, in Line 12, if there does not exist any
operating mode in set g with the same operating frequency set ~f . This is
because, if there exists such an operating mode in set g, it corresponds to
smaller s than the new operating mode. Therefore, the tasks in the existing
operating mode have shorter periods where less unused slack time remains in
the application schedule with the same operating frequency of the processors.
This selection strategy ensures that the static slack time in the application
schedule is exploited more efficiently using the DVFS mechanism. Then, the
explained procedure from Lines 4 to 12 repeats by incrementing s in Line
15 until the operating frequency of all processors reaches to the minimum
available operating frequency. Finally, the set g of all determined operating
modes is returned by this algorithm in Line 14. As an example, following
Algorithm 2, the operating modes for the graph G shown in Figure 5.1 are
determined and listed in the Table 5.1.

5.6.2 Switching Costs oHL, oLH , eHL, eLH

In this section, we introduce the switching costs associated with our proposed
switching scheme and explain the way we compute them.

(1) Time Costs: As shown in Figure 5.5(a), we switch the operating mode in
our approach between SIH and SIL. In Section 2.4, mode switching has been
investigated for an MADF graph to determine the earliest time that tasks in the
new operating mode can start their execution during mode switching instants.

5.6. Proposed Scheduling Approach 93

In Section 2.4, it has been shown that the tasks in the new operating mode
cannot be executed immediately. Therefore, their execution has to be offset
by d time units according to Equation (2.20). As a consequence, the system
may not have any token production during the operating mode switching. In
our case, the time cost of switching from the higher operating mode SIH to
the lower operating mode SIL and vice versa using the offset d, according to
Equation (2.20), can be computed as follows:

oHL = SL
out + dH!L � SH

out, oLH = SH
out + dL!H � SL

out (5.4)

where SL
out and SH

out are the starting time of the output task in the lower and
higher operating modes, respectively. This time cost is exactly the elapsed
time between the finishing of the output task in one operating mode and
the starting time of the output task in the other operating mode. However,
since the operating frequencies of the processors are changed during the
switching, the computed d offset in Equation (2.20) may not be sufficient.
This is because, the time that is needed for physically changing the operating
frequencies in the processors, denoted by z, is not considered in Equation (2.20).
Apparently, the operating frequency must not be changed when the tasks in
the higher operating mode are still executing in the system. Therefore, when
the operating mode is switched from the higher operating mode to the lower
operating mode, the operating frequency of the processors must be changed
after the end of the execution of the allocated tasks on the processors in the
higher operating mode. Similarly, when the operating mode is switched
from the lower operating mode to the higher operating mode, the operating
frequency of the processors must be changed before the start of the execution
of the allocated tasks on the processors in the higher operating mode. This
ensures that the tasks’ job deadlines in both operating modes are met. For
instance, for the proposed switching scheduling approach in Figure 5.3, the
time instants of changing the operating frequencies of p1 and p2 are shown
by the boxes with a dotted pattern where the size of these boxes denotes the
frequency switching delay z. The d offset in Equation (2.20) is a function of the
tasks utilization. Therefore, to involve such switching delay z associated with
the DVFS mechanism into the d offset, we have changed the utilization of each
task ti in the lower operating mode SIL, i.e., tL

i , from CL
i /TL

i to (CL
i + z)/TL

i
that is executing when the operating frequency change happens. As a result,
using Equation (2.20), we can compute a sufficient d with the new utilization
of tasks to make sure that the job deadlines of all tasks in both operating
modes are still met during operating mode switching. Clearly, the last starting
time instant of the new operating mode, using Equation (2.20), can be when

94 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

the execution of the previous operating mode is completely finished and the
operating frequencies of the processors are also changed. This is the safest
starting time for the new operating mode while no extra schedulability test is
needed as there is no overlapping execution between two operating modes.
Using the method, explained above, for the proposed schedule in Figure 5.3,
the starting offset of d1!2 = 0 can be computed for operating mode SI2 when
the operating mode is switched from SI1 to SI2. Similarly, the starting offset of
d2!1 = 5 can be computed for operating mode SI1 when the operating mode
is switched from SI2 to SI1. Finally, the time cost of o12 = 5 and o21 = 0 can be
computed using Equation (5.4) for the operating mode switching from SI1 to
SI2 and vice versa, respectively, as can be seen in Figure 5.3.

(2) Energy Costs: By applying sufficient d offset, as computed in Sec-
tion 5.6.2(1) above, tasks belonging to both the lower and higher operating
modes may be concurrently executing on the processors during mode switch-
ing instants. For instance, in Figure 5.3 tasks in both operating modes SI1 and
SI2 execute from time instant 26 to 36 and from time instant 67 to 77 when the
operating mode is switched from SI1 and SI2 and vice versa, respectively. To
meet the tasks’ job deadlines in both operating modes, the processors must run
at the operating frequency corresponding to the higher operating mode during
operating mode switching instants. Therefore, the total energy consumption of
our proposed scheduling approach is more than the summation of the energy
consumption of operating modes SIH and SIL for the execution intervals of
QH and QL time unit, respectively. As a result, we define eHL and eLH as extra
energy consumption when the operating mode is switched from the high
operating mode to the low operating mode and vice versa, respectively, and
we compute them using the following expressions:

eHL = oHLPL (5.5)

eLH = (SH
out � oLH)(PH � PL) + oLHPH = SH

out(PH � PL) + oLHPL (5.6)

where the SH
out is the start time of the task corresponding to output actor Aout

in the graph in the higher operating mode. These energy costs are visualized
by the hatched boxes in Figure 5.5(b). These energy costs are overestimated
using the above expressions because a single time instant is assumed for
changing the operating frequency of all processors in each operating mode
switching. This time instant is referred by fswitch in Figure 5.5(b). Note that we
also include the energy overhead of DVFS into this energy costs.

5.6. Proposed Scheduling Approach 95

5.6.3 Computing QH and QL

In our approach, we only allow the switching of operating modes at the graph
iteration boundary. This means that the operating mode can be switched as
soon as an application graph iteration is completed. Under this assumption,
the time that an application is executed, in any operating mode, must be a
multiple of the duration of one graph iteration. Therefore, the time that the
application spends in the higher and lower operating modes can be defined
as follows:

QH = NH · HH, NH 2 N (5.7)

QL = NL · HL, NL 2 N (5.8)

where NH and NL are the number of graph iterations in the higher and lower
operating modes, respectively, and HH and HL are the graph iteration pe-
riod in the higher and lower operating modes, respectively, as defined in
Equation (2.14). Finally, by substituting Equation (5.7) and Equation (5.8) in
Equation (5.2) and setting Re f f = Rreq, the number of graph iterations to stay
in the higher operating mode, NH, can be derived as follows:

NH =

⇠
HLNL(Rreq �RL) + Rreq(oHL + oLH)

HH(RH �Rreq)

⇡
. (5.9)

Note that, in the above equation, the ceiling function is used to derive an
integer value for NH such that the effective throughput Re f f can still satisfy
the throughput requirement Rreq. This fact is shown in Figure 5.5(c) where
our proposed effective throughput Re f f is higher than the throughput require-
ment Rreq. Using Equation (5.9), we have to derive the pair of NH and NL
that satisfies the throughput requirement Rreq. Clearly, Equation (5.9) has
more than one solution for the pair of NH and NL. Since all of these solu-
tions have the same timing requirement, i.e., throughput requirement, the
energy reduction is equivalent with the power reduction. Therefore, to find
the less power consuming solution that consequently results in the less energy
consumption, we can see from Equation (5.3) that less power is consumed
when we have an arbitrarily large period l. This is because, the contribu-
tion of the switching power consumption eHL+eLH

l becomes negligible in the
total power consumption Pe f f . Moreover, as the period l is enlarged, the
delivered effective throughput Re f f using our switching scheme becomes
closer to the throughput requirement Rreq. This is because, as NL increases
in Equation (5.9), the ceiling function becomes less contributing and the pair
of NL and NH can produce the effective throughput Re f f more closely to the
throughput requirement Rreq. As a result, this leads to exploiting static slack

96 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

Algorithm 3: Finding the least power consuming pair of NH and NL.

Input: Rreq, SIH, SIL.
Output: NL, NH.

1 Prev_Power = +•;
2 NL = 1;
3 while True do
4 Calculate NH using Equation (5.9) and Rreq;
5 Power = Calculate power consumption by using Equation (5.3);
6 if Prev_Power�Power

Prev_Power ⇥ 100 < 1 then
7 return NL, NH;

8 Prev_Power = Power;
9 NL = NL + 1;

time in the application scheduling more efficiently leading to further power
reduction. Therefore, to find a valid solution for NH and NL which satisfies
Equation (5.9) and reduces the power consumption significantly, we search for
the largest NL where if it is further enlarged, the power reduction diminishes
to less than one percent.

Algorithm 3 presents the pseudo-code of finding the least power con-
suming pair of NH and NL. The inputs of this algorithm are the throughput
requirement and the higher and lower operating modes. The output of this
algorithm is the pair of NH and NL. First, we initialize NL = 1 in Line 2
and compute the corresponding NH using Equation (5.9) in Line 4. Then, we
compute the power consumption corresponding to the derived pair of NH and
NL using Equation (5.3) in Line 5. We repeat this procedure by incrementing
NL in Line 9 until further power reduction compared to the previous iteration
becomes less than one percent. This condition to terminate the procedure is
given in Line 6. Then, the pair NH and NL is returned by the algorithm.

5.6.4 Memory Overhead

In this section, we compute the memory overhead that our approach incurs
to the system, that is, the input and output buffers shown in Figure 5.6. In
order to compute the output buffer, we should consider Figure 5.5(c) which
shows the variable rate of token production Z(t) delivered by our scheduling
approach (the solid curve) and the needed constant rate of token production
Re f f (the dotted line). When the application executes in the higher operating

5.6. Proposed Scheduling Approach 97

t

R(t)
P

QLQH

Z(t)

t

oHL

P

QLQH oHL oLH

RL.QL

Z’(t)

Timeλ

o’HL

R’eff .λ
R’L.QL

R’H.QH

QH o’LHQL

ρout

ρin

twait

Reff
RL

RH

oLH

R’eff

Reff

RH.QH

Rreq

Reff.P

Tokens

Figure 5.7: Token consumption function Z0(t). Note that, oHL + oLH = o0HL + o0LH =
dH!L + dL!H.

mode, it produces more tokens than needed while in the lower operating
mode it produces less tokens than needed. Therefore, the purpose of using the
output buffer is to accumulate the maximum difference between the number
of produced and needed tokens over time. This maximum difference is given
by rout in Figure 5.5(c). Therefore, the size of the output buffer must be at least

Bout =

⇠
rout

⇡
=

⇠
QH(RH �Re f f)

⇡
(5.10)

To compute the input buffer, the same method as for the output buffer
can be used. To do so, we should consider Figure 5.7 which shows the rate
of sampling data tokens Z0(t) in our scheduling approach given by the solid
curve. As can be seen, the application samples the data tokens in the higher
operating mode more often than in the lower operating mode. To solve such
irregular sampling of the input data tokens over the time, we introduce a
constant rate of sampling data tokens R0e f f give by the dotted line in Figure 5.7
for the application and we compute it as follows:

R0e f f =
R0HQH + R0LQL

QH + QL + o0HL + o0LH
(5.11)

where R0H and R0L are the throughput of the input task in the higher and lower
operating modes, R0HQH and R0LQL are the number of sampled data tokens
from the input data stream in the higher and the lower operating modes,
and o0HL and o0LH are the time overhead for the input task where no input
data stream is sampled during switching from the higher to lower operating
mode and vice versa, respectively. These time overheads are equal to the
offset d computed using Equation (2.20). Apparently, the constant sampling
rate of R0e f f has to always provide sufficient sampled data tokens in both

98 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

operating modes. Thus, to be able to guarantee this feature, the sampling of
the input data stream with the rate of R0e f f must be started twait time units
before the application starts executing, as shown in Figure 5.7. This time can
be computed as follows:

twait =
(R0H �R0e f f)QH

R0e f f
(5.12)

Finally, the size of the input buffer must be at least

Bin =

⇠
rin

⇡
=

⇠
twaitR0e f f

⇡
=

⇠
QH(R0H �R0e f f)

⇡
(5.13)

where rin is the maximum difference between the number of sampled and
needed tokens, as shown in Figure 5.7.

5.7 Experimental Evaluation

In this section, we evaluate the effectiveness of our scheduling approach in
terms of energy reduction. We compare our proposed scheduling approach, re-
ferred as Switching, in terms of energy reduction with two related approaches:
the straightforward approach of always selecting the operating mode whose
throughput is the closest higher to the throughput requirement, referred as
Higher mode, and the period scaling approach, referred as Scale, explained
in Section 5.5.1, which is the way of using the VFS mechanism similar to the
related works [74,96] in the context of the SPS framework [8]. In the following,
we first explain our experimental setup in Section 5.7.1. Then, we present the
experimental results in the Section 5.7.2.

5.7.1 Experimental Setup

Applications

We have performed experiments on a set of six real-life streaming applications
collected from the StreamIt benchmark suit [88], the SDF3 suit [84] and the
individual research article [69], where all streaming applications are modeled
as CSDF graphs. An overview of all streaming applications is given in Table 5.2.
In this table, |A| denotes the number of actors in a CSDF graph, while |E |
denotes the number of FIFO communication channels among actors.

5.7. Experimental Evaluation 99

Table 5.2: Benchmarks used for evaluation.

Application |A| |E | Source
Discrete cosine transform (DCT) 8 7 [88]
Fast Fourier transform (FFT) 17 16 [88]
Data modem 6 5 [84]
MP3 audio decoder 14 18 [84]
H.263 video decoder 4 3 [84]
Heart pacemaker 4 3 [69]

Architecture and Power Model

In the experiments, we use the power model presented in Section 5.4.2. In this
model, we adopt the power parameters of the Cortex A15 core given in [55],
where these parameters have been obtained based on real measurements on
the ODROID XU-3 platform [66]. The overhead of the DVFS mechanism
is set to values taken from [67], i.e., 10µs and 1µJ are used for the delay
and energy overhead associated with the physical change of the operating
frequency in processors, respectively. We evaluate the effectiveness of our
scheduling approach on platforms with limited number of processors. To this
end, we compute the minimum number of processors needed to schedule each
application using FFD-EDF when the maximum achievable throughput under
the SPS framework is required.

5.7.2 Experimental Results

All experimental results are shown in Figure 5.8 and Figure 5.9, where the
comparison is made for a set Rapp of selected application throughputs as
throughput requirements. In Figure 5.8, we show the different throughput
requirements for the applications on the x-axis and the normalized energy
consumption of all three approaches is shown on the y-axis. As can be seen in
Figure 5.8, the energy reduction varies considerably among different applica-
tions and throughput requirements. When compared to the approach Higher
mode, our proposed approach Switching achieves significant energy reduction
for all applications. This energy reduction for the Modem, Pacemaker, DCT,
MP3, FFT, and H.263 applications can be up to 68.18%, 61.94%, 21.14%, 22.4%,
19.9%, and 19%, respectively. Compared to the approach Scale, our approach
Switching can still reduce the energy consumption considerably. This energy
reduction for the Modem, Pacemaker, DCT, MP3, FFT, and H.263 applications
can be up to 68.18%, 61.94%, 13.1%, 13.78%, 10.7%, and 12.07%, respectively.
Among all these applications, the Modem and Pacemaker are the two applica-

100 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

·10�7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or

m
al

iz
ed

E
n
er

gy

MP3

Switching
Higher mode

Scale

1

(a) MP3

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

·10�5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]
N

or
m

al
iz

ed
E

n
er

gy

Fast Fourier Transform (FFT)

Switching
Higher mode

Scale

1

(b) FFT

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·10�6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or

m
al

iz
ed

E
n
er

gy

H.263

Switching
Higher mode

Scale

1

(c) H.263

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

·10�5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or

m
al

iz
ed

E
n
er

gy

DCT

Switching
Higher mode

Scale

1

(d) DCT

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit] ·10�1

N
or

m
al

iz
ed

E
n
er

gy

Pacemaker

Switching
Higher mode

Scale

1

(e) Pacemaker

2.5 3 3.5 4 4.5 5 5.5 6

·10�2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput [tokens/time unit]

N
or

m
al

iz
ed

E
n
er

gy

Data modem

Switching
Higher mode

Scale

1

(f) Modem

Figure 5.8: Normalized energy consumption vs. throughput requirements.

5.7. Experimental Evaluation 101

MP3
FFT H.263

DCT Pacemaker

Modem

100

101

102

103

104

105

106

107

Bu
ff

er
Si

ze
(B

)

Figure 5.9: Total buffer sizes needed in our scheduling approach for different applications.
Note that the y axis has a logarithmic scale.

tions for which our approach can obtain the largest energy reduction when
compared to the approach Scale. This is mainly because the period of the tasks
in Pacemaker and Modem applications are quickly increased by applying the
period scaling approach, explained in Section 5.5.1. Therefore, a fewer number
of operating modes can be determined for these applications and no other ap-
plication scheduling remains between the operating modes. As a consequence,
the same application scheduling as the approach Higher mode is selected in
the approach Scale to satisfy the throughput requirement in these applications.
This fact can be seen in Figure 5.8 for Pacemaker and Modem applications
in which the result of the approach Scale and the approach Higher mode are
overlapped on each other.

As can be seen in Figure 5.8, for some throughput requirements no energy
reduction is achieved by our approach Switching compared to approach Higher
mode and approach Scale. This happens when the throughput requirements
match with the throughput of one of the operating modes. In such cases,
we simply select the operating mode whose throughput matches with the
throughput requirement because mode switching is not needed.

Finally, the memory overhead, discussed in Section 5.6.4, introduced by
our scheduling approach, is given in Figure 5.9. In this figure, the x-axis
shows the different applications while the y-axis shows the buffer size for each
application which is calculated as follows:

Bapp = max
Ri2Rapp

(Bi
in + Bi

out)

where Bi
in and Bi

out are the size of the input and output buffers shown in Fig-
ure 5.6, computed by using Equation (5.13) and Equation (5.10), respectively,
for a required application throughput Ri. In this regard, the memory overhead
for the H.263 application is 1.7 MB whereas for the other applications it is

102 Chapter 5. Energy-Efficient Scheduling of Streaming Applications

less than 83 KB. Given such memory overhead and given the size of memory
available in modern embedded systems, we can conclude that the memory
overhead introduced by our scheduling approach is acceptable.

5.8 Conclusions

In this chapter, we have proposed a novel energy-efficient periodic schedul-
ing approach for streaming applications. This approach can satisfy a system
throughput requirement at a long run by periodically switching the applica-
tion schedule between two selected schedules, referred as operating modes.
Contrary to related approaches, our scheduling approach benefits from using
multiple voltage and frequency levels at run-time leading to more efficient
static slack time utilization while the throughput requirement is still satisfied.
The experimental results, on a set of six real-life streaming applications, show
that our approach can reduce the energy consumption by up to 68% while satis-
fying the same throughput requirement when compared to related approaches.
However, for some throughput requirements that match with the throughput
of one of the operating modes, no energy reduction can be achieved by our
approach compared to the related approaches. This is because, in such cases,
we can simply select the operating mode which throughput matches with
the throughput requirement instead of adopting the mode switching scheme.
Finally, although the throughput requirement of the applications is satisfied by
our proposed approach, the mentioned energy reductions come at the expense
of increased memory requirements.

Chapter 6

Implementation and Execution
of Adaptive Streaming
Applications

Sobhan Niknam, Peng Wang, Todor Stefanov. "On the Implementation and Execution
of Adaptive Streaming Applications Modeled as MADF". In Proceedings of the 23rd
International Workshop on Software and Compilers for Embedded Systems (SCOPES), Sankt
Goar, Germany, May 25-26, 2020.

Jiali Teddy Zhai, Sobhan Niknam, Todor Stefanov. "Modeling, Analysis, and Hard
Real-time Scheduling of Adaptive Streaming Applications". IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 37, No. 11, pp.
2636-2648, Nov 2018.

IN this chapter, we present our implementation and execution approach for
adaptive streaming applications modeled as MADF graphs, which corre-

sponds to the fourth research contribution, briefly introduced in Section 1.5.4,
to address the research question RQ3, described in Section 1.4.3. The remain-
der of the chapter is organized as follows. Section 6.1 introduces, in more
details, the problem statement and the addressed research question. It is fol-
lowed by Section 6.2, which gives a summary of the contributions presented
in this chapter. Section 6.3 gives an overview of the related work. Section 6.4
introduces an extra background material, on K-Periodic Schedules, needed for
understanding the contributions of this chapter. Section 6.5 presents our exten-
sion of the MOO transition protocol (described in Section 2.1.2 and Section 2.4)
followed by Section 6.6 presenting our proposed parallel implementation and

104 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

execution approach for the MADF MoC. Section 6.7 presents two case stud-
ies to demonstrate the practical applicability of our approach, presented in
Section 6.6. Finally, Section 6.8 ends the chapter with conclusions.

6.1 Problem Statement

Recall, from Section 1.4.3, that the last phase of the design flow, considered in
this thesis and shown in Figure 1.2, is to implement and execute the analyzed
application on an MPSoC platform. This phase is an important step towards
designing an embedded streaming system where the system should behave
at run-time as expected according to the performed analysis at design-time.
Concerning static streaming applications, an implementation and execution
approach for such applications modeled as CSDF graphs and analyzed by
the SPS framework, briefly described in Section 2.3, is presented in [7]. For
adaptive streaming applications, modeled and analyzed with the MADF MoC
[94], briefly described in Section 2.1.2, however, no attention has been paid
so far at this implementation phase. Thus, in this chapter, we investigate
the possibility to implement and execute an adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform, such
that the properties of the analyzed model are preserved.

6.2 Contributions

In order to address the problem described in Section 6.1, in this chapter,
we propose a simple, yet efficient, parallel implementation and execution
approach for adaptive streaming applications, modeled with the MADF model,
that can be easily realized on top of existing operating systems. Moreover, we
extend the offset calculation of the MOO transition protocol, briefly described
in Section 2.4, for the MADF model in order to enable the utilization of a
wider range of schedules, i.e., K-periodic schedules [17], during the model
analysis, implementation, and execution depending on the scheduling support
provided by the MPSoC and its operating system onto which the streaming
application runs.

More specifically, the main contributions of this chapter are as follows:

• We extend the MOO transition protocol employed by the MADF model.
This extension enables the applicability of many different schedules to
the MADF model, thereby generalizing the MADF model and making

6.3. Related Work 105

MADF schedule-agnostic as long as K-periodic schedules are consid-
ered;

• We propose a generic parallel implementation and execution approach
for adaptive streaming applications modeled with MADF that conforms
to the analysis model and its operational semantics [94]. We demonstrate
our approach on LITMUSRT [22] which is one of the existing real-time
extensions of the Linux kernel;

• Finally, to demonstrate the practical applicability of our parallel imple-
mentation and execution approach and its conformity to the analysis
model, we present a case study (see Section 6.7.1) on a real-life adap-
tive streaming application. In addition, we present another case study
(see Section 6.7.2) on a real-life streaming application to validate our
proposed energy-efficient periodic scheduling approach, presented in
Chapter 5, which adopts the MOO protocol of the MADF MoC for
switching the application schedule, with a practical implementation of
this approach by using our generic parallel implementation and execu-
tion approach presented in this chapter.

6.3 Related Work

In [60], the MCDF model is presented where the same application graph is
used for both analysis and execution on a platform. In such graph, special
actors, namely switch and select actors, are used to enable reconfiguration
of the graph structure according to an identified mode by a mode controller
at run-time. In the MCDF model, every mode is represented as a single-rate
SDF graph and the actors are scheduled on each processor according to a
precomputed static schedule, called quasi-static order schedule, in which extra
switch and select actors are required to model the schedule in the graph. In
contrast to MCDF, the MADF model [94], we consider in our work, is more
expressive as each mode is represented as a CSDF graph. Moreover, our
proposed MOO transition protocol extension and our implementation and
execution approach for the MADF model are schedule agnostic and do not
require extra switch and select actors. Therefore, our approach enables the
utilization of many different schedules than only a static-order schedule, with
no need of extra actors.

In [33], the FSM-SADF model is presented as another analysis model for
adaptive streaming applications. To implement an application modeled and
analyzed with FSM-SADF, two programming models have been proposed
in [89, 90]. In [89], the programming model is constructed by merging the SDF

106 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

graphs of all scenarios into a single graph which may be larger than the FSM-
SADF analysis graph. Then, to enable switching to a new scenario, all actors in
all scenarios are constantly kept active while only those actors belonging to the
identified new scenario by a detecting actor(s) will be executed after switching.
In this way, a single static-order schedule can be used for the application in
all scenarios. In contrast to [89], the proposed programming model in [90]
uses a similar switch/select actors, as in MCDF [60], in the constructed graph
for switching between scenario graphs at run-time. Then, the graph is recon-
figured at run-time using the switch/select actors according to the identified
scenario by a detecting actor(s) while updating the application’s static-order
schedule accordingly. However, the proposed programming models in [89,90]
need to be derived manually, thereby requiring extra effort by the designer.
More importantly, these programming models assume that actors in all scenar-
ios of an application are active all the time. This can result in a huge overhead
for applications with a high number of modes, thereby leading to inefficient
resource utilization. In contrast to [89, 90], our implementation and execution
approach does not require derivation of an additional model and enables the
utilization of many different schedules rather than only static-order schedule.
Moreover, our approach (de)activates actors in different modes at run-time,
so we do not need to keep all modes active all the time, thereby avoiding the
unnecessary overhead imposed by the approaches in [89, 90].

In [47], the task allocation of adaptive streaming applications onto MPSoC
platforms under self-timed (ST) scheduling is studied when considering tran-
sition delay during mode transitions. In [47], however, the verification of the
proposed approach and mode transition mechanism is limited to simulations
and no implementation and execution approach is provided. In contrast, in
this chapter, we propose a generic parallel implementation and execution ap-
proach for applications modeled with MADF which enables the applicability
of many different schedules on the application as well as execution of the
application on existing operating systems.

6.4 K-Periodic Schedules (K-PS)

In [19], K-periodic schedules (K-PS) of streaming applications modeled as
CSDF graphs are introduced, implying that Ki consecutive invocations of an
actor Ai 2 A occur periodically in the schedule. For example, when Ki = qi
for every actor Ai 2 A, such K-PS is equivalent to a ST schedule [85] where all
qi invocations of the actor Ai in one graph iteration occur in each period and
can result in the maximum throughput for a given CSDF graph. On the other

6.5. Extension of the MOO Transition Protocol 107

hand, when Ki = 1 for every actor Ai 2 A, 1-PS is achieved in which only
a single invocation of the actor occurs in each period. The SPS schedule [8],
briefly described in Section 2.3, is a special case of 1-PS in which the actors are
converted to real-time tasks to enable the application of classical hard real-time
scheduling algorithms [29], e.g., EDF, to streaming applications modeled as
CSDF graphs. Therefore, in general, the K-PS notion covers a wide set of
schedules ranging between 1-PS and ST schedules.

6.5 Extension of the MOO Transition Protocol

As explained in Section 2.4, when multiple actors of an application, modeled
as an MADF graph, are allocated on the same processor, the processor can be
potentially overloaded during mode transitions due to simultaneous execution
of actors from different modes. Therefore, a larger offset, than the offset x
computed by using Equation (2.4), may be needed by the MOO protocol to
delay the starting time of the new mode during a mode transition in order to
avoid processor overloading. Then, this offset, represented with d, is computed
under the SPS schedule by using Equation (2.20). As the SPS schedule has
the notion of a task utilization, by converting the actors in a CSDF graph to
real-time (RT) tasks, the offset d is computed, according to Equation (2.20),
by making the total utilization of the RT tasks allocated on each processor
during mode transition instants to not exceed the processor capacity. However,
since the K-periodic schedules (K-PS), considered in this chapter and briefly
introduced in Section 6.4, have no notion of a task utilization, the offset d for
any K-PS cannot be computed as in Equation (2.20). Therefore, in this section,
we extend the MOO transition protocol to compute such an offset for any
K-PS.

In fact, to avoid the processor overloading under any K-PS, the schedule in-
terferences of modes (in terms of overlapping iteration period H) during mode
transitions must be resolved on each processor. For instance, consider the
MADF graph G1 in Figure 6.1(a), explained in Section 2.1.2, with two operating
modes SI1 and SI2. Figure 6.2(a) and Figure 6.2(b) show the corresponding
CSDF graphs of modes SI1 and SI2, respectively. An execution of both modes
SI1 and SI2 under a K-PS are shown in Figure 6.3(a) and Figure 6.3(b), re-
spectively, as well as an execution of G1 with two mode transitions and the
computed offsets x1!2 = 3 and x2!1 = 1, for mode transitions from SI1 to
SI2 and vice versa, according to Equation (2.4), is illustrated in Figure 6.4(a).
Now, let us assume the allocation of all actors of G1 on an MPSoC platform
P = {p1, p2, p3, p4} containing four processors that is shown in Figure 6.1(b).

108 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

A1 A2 A3 A5
[1[1], 1[0]]

OP1:
[p2[1]]

A4
[1[0], 1[p6]]

[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

IP1:
[p2[1]]

E1

[1[p4]] [1[p4]]

[1[1]][1[1]]

IC

E22

E2 E3

E4 E5

E44 E11

E55

IC1

E33

A1
1 A2

1 A3
1 A5

1[1, 0] [1, 1] [2, 0]

[0, 1]

[1, 0][1, 1] [1] [1]

A1
2 A2

2 A3
2 A5

2[1, 0]

A4
2

[0, 1]
[1, 0]

[0, 1]

[0, 1]

[1, 0]

[1] [1]

[1] [1][1] [1]

A1 A2

A3

A5

PE1 PE2

A4

Ac

PE4

PE3

(c)

(b)

(d)

1 4 1 2

1 5 1 2

2

E1 E2 E3

E1 E2 E3

E4 E5

E6

E6

(a)

A1 A2

A3

A5

�1

A4

Ac

�2 �4

�3

(b)

Figure 6.1: (a) An MADF graph G1 (taken from Section 2.1.2). (b) The allocation of actors
in graph G1 on four processors.

A1
1 A2

1 A3
1 A5

1

[1,1] [4,4] [1]E1 E2 E3

[1,0] [1,1] [1,1] [1] [1] [2,0]

[2,2]

(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2

A4
2

[1,1] [5] [1]

[2]

E1 E2 E3

E4 E5
[1][1]

[0,1]
[1,0] [1] [1] [1] [1] [1,0]

[0,1]

[2,2]

(b) CSDF graph G2
1 of mode SI2.

Figure 6.2: Two modes of graph G1 in Figure 2.1 (taken from Section 2.1.2 with modified
WCET of the actors).

Then, considering the execution of G1 in Figure 6.4(a), the schedule interfer-
ences on p1 happen during time periods [6, 11] and [25, 27] for mode transition
from SI2 to SI1 and vice versa, respectively, while no schedule interference
happens on p2 and p3. Obviously, to resolve the schedule interferences on
p1, the earliest start time of actors in the new mode should be further offset
by the length of the time period in which the schedule interferences happen.
Therefore, the extra offsets for mode transitions from SI2 to SI1 and vice versa
on p1 are 11� 6 = 5 and 27� 25 = 2 time units, respectively, thereby resolving
the schedule interferences on p1, as shown in Figure 6.4(b). In this example,
d2!1 = x2!1 + 5 = 6 and d1!2 = x1!2 + 2 = 5.

Now, considering any K-PS, the offset do!n can be computed as the maxi-
mum schedule overlap among all processors when the new mode SIn starts
immediately after the source actor of the old mode SIo completes its last itera-
tion, as follows:

do!n = max {xo!n, max
8 mYo

i 2mYo^mYn
i 2mYn

mYo
i 6=∆^mYn

i 6=∆

(max
Ao

j2Yo
i

So
j � min

An
k2

mYn
i

Sn
k)} (6.1)

where mY = {mY1, . . . , mYm} is m-partition of all actors on m number of pro-

6.5. Extension of the MOO Transition Protocol 109

5 10 15

L1

S21

S31

S51

A11

A21

A31

A41

A51

20

H1

H1

H1

0

H1

(a) Mode SI1 in Figure 6.2(a)
5 10 15

S22

S32

S42

S52

A22

A12

A32

A42

A52

200

H2

H2

H2

H2

H2

(b) Mode SI2 in Figure 6.2(b)

Figure 6.3: Execution of both modes SI1 and SI2 under a K-PS.

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H1

Start of mod e SI2

H2
Start of mod e SI 2

�2�1 �1�2

tMCR1 tMCR2

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H2 H1

40

�2�1
�1�2

� 2�1tMCR1 tMCR2

Start of mode SI2

(a) (b)

� 1�2x1�2
x2�1

(a)

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H1

Start of mod e SI2

H2
Start of mod e SI 2

�2�1 �1�2

tMCR1 tMCR2

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30 35

L1 L2

Start of mode SI1

H2 H1

40

�2�1
�1�2

� 2�1tMCR1 tMCR2

Start of mode SI2

(a) (b)

� 1�2x1�2
x2�1

(b)

Figure 6.4: Execution of G1 with two mode transitions under (a) the MOO protocol, and (b)
the extended MOO protocol with the allocation shown in Figure 6.1(b).

cessors, i.e., mYo
i and mYn

i are the sets of actors allocated on the i-th processor
(pi) in the old mode SIo and the new mode SIn, respectively. For instance,

110 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

consider the allocation of G1 on the four processors, shown in Figure 6.1(b),
and the K-PS of modes SI1 and SI2 given in Figure 6.3(a) and 6.3(b), respec-
tively. The offset d1!2 of the mode transition from SI1 to SI2 on each proces-
sor is computed using Equation (6.1) as follows: (p1) S1

3 � S2
1 = 5� 0 = 5,

(p2) S1
2 � S2

2 = 1 � 1 = 0, and (p3) S1
5 � S2

5 = 10 � 7 = 3, thereby result-
ing in the offset d1!2 = max(3, max(5, 0, 3)) = 5 for the start time of mode
SI2, as shown in Figure 6.4(b). Similarly, the offset d2!1 of the mode transi-
tion from SI2 to SI1 on each processor is computed using Equation (6.1) as
follows: (p1) S2

3 � S1
1 = 6, (p2) S2

2 � S1
2 = 0, and (p3) S2

5 � S1
5 = �3, and

d2!1 = max(1, max(6, 0,�3)) = 6.

6.6 Implementation and Execution Approach for MADF

In this section, we first present our generic parallel implementation and execu-
tion approach (Section 6.6.1) for an application modeled as an MADF. Then,
in Section 6.6.2, we demonstrate our approach on LITMUSRT [22].

6.6.1 Generic Parallel Implementation and Execution Approach

In this section, we will explain our approach by an illustrative example. Con-
sider the MADF graph G1 shown Figure 6.1(a). Our implementation consists
of three main components: 1) (normal) actors, 2) a control actor, and 3) FIFO
channels. We implement the actors as separate threads and the FIFO chan-
nels as circular buffers [15] with non-blocking read/write access. Thus, the
execution of the threads and the read/write from/to the FIFO channels are
controlled explicitly by an operating system supporting and using any K-PS,
briefly introduced in Section 6.4. A valid K-PS schedule always ensures the
existence of sufficient data tokens to read from all input FIFO channels and
sufficient space to write data tokens to all output FIFO channels when an actor
executes.

In our implementation, all FIFO channels in the MADF graph of an applica-
tion are created statically before the start of the application execution to avoid
duplication of FIFO channels and unnecessary use of more memory during
mode transitions. On the other hand, the threads corresponding to the actors
are handled at run-time. This means that when a mode change request (MCR)
occurs, in order to switch the application’s mode, the executing threads in the
old mode are stopped and terminated whereas the threads corresponding to
the actors in the requested new mode are created and launched at run-time. In
this way, our implementation enables task migration during mode transitions

6.6. Implementation and Execution Approach for MADF 111

A1
2 A2

2 A3
2 A5

2[1, 0] [1][1]

A4
2

[1] [1]

[0, 1][0, 1]

[1] [1]

E1 E2 E3

E5E4

Ac

IC

[1, 0]

(a)

A1
2 A2

2 A3
2 A5

2
[1, 0] [1]

[2, 0]

[1]

A4
2

[1]

[1]

[0, 1]

[1] [1]

A1
1 A2

1 A3
1 A5

1[1, 0] [1, 1] [1, 1] [1]

[1, 0][1]

[0,1]

E1 E2 E3

E5E4

(b)

A2
1

A5
2

[0, 1]

A1
1

A5
1

A3
1[1,1][1,0] [1,1] [1] [1]

E5E4

E1 E2 E3
[2, 0]

[1, 0]

(c)

A2
1A1

1 A3
1[1,1][1,0] [1,1] [1] [1]

A5
1[2, 0]

E5E4

E1 E2 E3

(d)

A2
1A1

1 A3
1[1,1][1,0] [1,1] [1] [1]

A5
1[2, 0]

E5E4

E1 E2 E3

(e)

A2
1A1

1 A5
1A3

1[1,1][1,0] [1,1] [1] [1] [2, 0]

E5E4

E1 E2 E3

(f)

Figure 6.5: Mode transition of G1 from mode SI2 to mode SI1 (from (a) to (f)). The control
actor and the control edges are omitted in figures (b) to (f) to avoid cluttering.

by using a different task allocation in each application’s mode. For instance,
the implementation and execution of the mode transition from mode SI2 to
mode SI1 of G1, with the given schedule in Figure 6.4(b), is shown in Figure 6.5
and has the following sequence - Figure 6.5(a): The application is in mode SI2

where the threads corresponding to the actors in this mode run. The threads
are connected to the control thread Ac, which runs on a separate processor,
through the control FIFO channels (the dashed arrows in Figure 6.5(a)). In our
approach, two extra FIFO channels, shown in the red color in Figure 6.5(a),
are required, both from the thread of source actor A1 to control thread Ac in
order to notify the control thread in which graph iteration number the source
actor is currently running and the time when the thread of the source actor
is terminated; Figure 6.5(b): When MCR1 occurs at time instant tMCR1 = 1
to switch to mode SI1, the threads corresponding to the actors in mode SI1

are created and connected to the corresponding FIFO channels. At this stage
the newly-created threads (the red nodes in Figure 6.5(b)) are suspended and
they wait to be released. Note that the mode transitions cannot be performed at
any moment. According to the operational semantics of the MADF model, a mode
transition is only allowed in a consistent state, that is, after the graph iteration in

112 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

which the MCR occurred, has completed and the graph has returned to its initial
state. Therefore, control thread Ac needs to check the current graph iteration
number of the source actor A2

1 and notify all threads at which graph iteration
number they have to be terminated; Figure 6.5(c): Next, when the thread of
the source actor A2

1 is terminated at time instant 5 (according to Figure 6.4(b)),
which is notified to control thread Ac as well, the control thread signals the
suspended threads to be released synchronously d2!1 = 6 time units later at
time instant 11 (according to Figure 6.4(b)). At this stage, a mixture of threads
in both modes may be running on processors. In the meanwhile, the threads
of the actors in the old mode SI2 are gradually finishing their execution and
terminated at the same graph iteration number; Figure 6.5(d)-6.5(f): Since the
actors have different start time in the new mode SI1, as shown in Figure 6.4(b),
the threads in mode SI1 start executing accordingly after the releasing time.
The threads which are released but not yet running, are shown in the green
color. Then, the released threads in the new mode SI1 gradually start running
and finally, the application is switched to mode SI1 where all created threads
run and the unused channels E4 and E5 in this mode are left unconnected to
the threads.

6.6.2 Demonstration of Our Approach on LITMUSRT

In this section, we demonstrate how to realize our implementation and ex-
ecution approach on LITMUSRT [22] as one of the existing real-time (RT)
extensions of the Linux kernel. The realizations of a normal actor and the con-
trol actor in our approach are given in C++ in Listing 6.1 and 6.2, respectively,
in which the bolded primitives belong to LITMUSRT. Note that, any other
RT operating system which has similar primitives, e.g., FreeRTOS [72], can
be used instead. We also use the standard POSIX Threads (Pthreads) and the
corresponding API integrated in Linux to create the threads of the actors.

In Listing 6.1, the RT parameters of an actor, e.g., actor A2 of graph G1
shown in Figure 6.1(a), are set up using the data structure threadInfo passed
to the function as argument in Lines 2-6. Under partitioned scheduling al-
gorithms, e.g., Partitioned EDF, the processor core which the thread should
be statically executing on, is set in Line 7. Then, the RT configuration of the
thread is sent to the LITMUSRT kernel for validation, in Line 8, in which if it is
verified, the thread is admitted as a RT task in LITMUSRT, in Line 9. In Line
10, the RT task is suspended, in order to synchronize the start time of the tasks,
until signaled by the control actor to begin its execution. Next, the task enters
to a while loop in Lines 12-31, in which iterates infinitely. At the beginning
of each graph iteration, the current time instant is captured and stored in

6.6. Implementation and Execution Approach for MADF 113

1void Actor_A2(void ⇤threadarg) {
2 threadInfo = (threadInfo ⇤)threadarg; // Get the thread parameters
3 struct rt_task param; // Set up RT parameters
4 param.period = threadInfo.period;
5 param.relative_deadline = threadInfo.relative_deadline;
6 param.phase = threadInfo.start_time;
7 be_migrate_to_domain(threadInfo.processor_core); // For partitioned schedulers
8 set_rt_task_param(gettid(), ¶m));
9 task_mode(LITMUS_RT_TASK); // The actor is now executing as a RT task

10 wait_for_ts_release(); // The RT task is waiting for a release signal
11 int graph_iteration = 1;
12 while(1) { // Enter to the main body of the task
13 lt_t now = litmus_clock();
14 for(i=1; i<=threadInfo.repetition; i++){
15 lt_sleep_until(now + threadInfo.slot_offset[i]);
16 if(IC1 is not empty) READ(& terminate, threadInfo.IC1);
17 if(i == 1 && graph_iteration > terminate){
18 WRITE(& now, threadInfo.OCtrig);
19 task_mode(BACKGROUND_TASK); //Trans. back to non�RT mode
20 return NULL;
21 }
22 if(i == 1) WRITE(& graph_iteration, threadInfo.OCiter);
23 if(threadInfo.mode == 1){ // Do action according to the task’s mode
24 READ(& in1, threadInfo.IP1);
25 task_function(& in1, & out1);
26 WRITE(& out1, threadInfo.OP1);
27 }/⇤ Actions according to the other modes ⇤/ { . . . }
28 if(i%threadInfo.K == 0) sleep_next_period();
29 }
30 graph_iteration += 1;
31 }
32}

Listing 6.1: C++ code of actor A2

variable now in Line 13. Then, the task iterates as many repetition times as it
has in one graph iteration in a for loop, in Lines 14-29. In Line 15, the task
sleeps until reaching the start time of its i-th invocation, corresponding to the
K-PS, from the time instant captured in now. After finishing Ki invocations,
the task sleeps again, in Line 28, until finishing the current period. In fact,
in this line, a kernel-space mechanism is triggered for moving the task from
the ready queue to the release queue. Then, LITMUSRT will move the task

114 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

1void main(int argc, char ⇤⇤argv) {
2 /⇤ Create FIFO channel E1 ⇤/
3 size_E1_in_tokens = 4;
4 size_token_E1= sizeof(token_structure)/sizeof(int);
5 size_fifo_E1 = size_E1_in_tokens ⇥ size_token_E1;
6 E1 = calloc(size_fifo_E1+2, sizeof(int)); // Allocate memory for E1
7 /⇤ Create other FIFO channels⇤/ {· · ·}
8 init_litmus(); // Initialize the interface with the kernel
9 old_mode = 1, new_mode = 1;

10 while(1){
11 switch(new_mode){
12 case 1: /⇤ Create and launch the thread of actor A2 in mode SI1⇤/
13 threadInfo.mode = 1; thread.repetition = 2; threadInfo.processor_core = 1;
14 threadInfo.IP1 = E1; /⇤ Connect other FIFO channels to the thread⇤/ {· · ·}
15 threadInfo.period = 8; threadInfo.relative_deadline = 8;
16 threadInfo.phase = 1; threadInfo.slot_offset = [0, 4];
17 pthread_create(&threadInfo.id, NULL, &Actor_A2, &threadInfo);
18 /⇤ Create and launch the threads of the other actors in mode SI1⇤/ { . . . }
19 case 2: { /⇤ Create and launch the thread of the actors in mode SI2⇤/ }
20 }
21 while(rt_task == ready_rt_tasks)
22 read_litmus_stats(&ready_rt_tasks);
23 if(new_mode != old_mode){
24 while(ICtrig is empty);
25 READ(& now, ICtrig);
26 }else now = litmus_clock();
27 release_ts(d); old_mode = new_mode;
28 do{ READ(& new_mode, IC); } while(new_mode == old_mode)
29 READ(& graph_iteration, ICiter);
30 tleft = Ho �(litmus_clock() � now � d)%Ho;
31 if(tleft < tOV) graph_iteration += d(tOV � tleft)/Hoe;
32 for(all active actor Ai) WRITE(& graph_iteration, OCi);
33}

Listing 6.2: C++ code of control actor Ac

back to the ready queue at the start time of the next period when the task
will again be eligible for execution. In Line 16, the state of the input control
port IC1 is checked in which if it is not empty, the graph iteration number
where the task has to be terminated is read. Then, the termination condition is
checked in Line 17. If the condition holds, the mode of the thread is changed
to non-RT in Line 19 and the thread is terminated in Line 20. Otherwise, the

6.7. Case Studies 115

task reads from its input FIFO channels, executes its function, and writes the
result to the output FIFO channels, in Lines 23-27. Only for the source actor,
the latest graph iteration number where the task is currently running and the
time instant now are written to the output control ports OCiter and OCtrig, in
Lines 22 and 18 highlighted with red color, respectively, which are needed by
the control thread, as explained in Section 6.6.1.

In Listing 6.2, realizing control actor Ac, all FIFO channels are created
and the needed memory is allocated to them using the standard calloc()

function, in Lines 3-7. In Line 8, the interface with the LITMUSRT kernel is
initialized. In Lines 11-20, the data structure of threadInfo is initialized
for each actor of the requested new mode and the corresponding threads of
the actors in the new mode are created and launched. In Lines 21 and 22, the
number of suspended RT tasks is checked which if is equal to the number of
the actors in the new mode, they can be signaled to be released simultaneously.
Therefore, in Line 27, the global release signal is sent by d time units after
receiving the time instant now on the input port ICtrig from the thread of
the source actor in the old mode in Line 25, implying the termination of the
thread and acting as a trigger. Afterwards, the control actor continuously
monitors the occurrence of a new MCR in Line 28. If an MCR occurs to a
new mode which differs from the current mode, the graph iteration number
in which the threads in the current mode need to be terminated is computed
in Lines 29-31. The primary graph iteration number is simply the current
graph iteration number of the source actor, read from the input port ICiter
in Line 29. However, since the control actor has certain timing overhead,
represented by tOV, the primary graph iteration number needs to be revised
corresponding to the time left from the current graph iteration of the source
actor tleft, computed in Line 30, and tOV, in Line 31, to ensure that all threads
will be terminated in the same graph iteration number. Then, the new graph
iteration number is written on the control port of all threads in the current
mode in Line 32 to notify them when they have to be terminated.

6.7 Case Studies

In this section, we present two case studies using real-life streaming appli-
cations to validate the proposed implementation and execution approach in
Section 6.6 as well as the proposed periodic scheduling approach in Chapter 5
by running the applications on actual hardware. We perform these case stud-
ies on the ARM big.LITTLE architecture [40], shown in Figure 1.1, including
a quad-core Cortex A15 (big) cluster and a quad-core Cortex A7 (LITTLE)

116 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Table 6.1: Performance results of each individual mode of Vocoder.

Mode Analysis [94] Implementation and execution Number/Type of processorH (ms) L (ms) H (ms) L (ms)
SI8 25 21 25 21 1 LITTLE
SI16 25 19 25 19 1 big
SI32 25 33 25 33 2 big
SI64 25 56 25 56 3 big

cluster, that is available on the Odroid-XU4 platform [66]. The Odroid XU4
runs Ubuntu 14.04.1 LTS along with LITMUSRT version 2014.2.

6.7.1 Case Study 1

In this section, we present a case study, using a real- life adaptive streaming
application, to demonstrate the practical applicability of our parallel imple-
mentation and execution approach for MADF. Moreover, we show that our
approach conforms to the MADF analysis model in [94] by measuring the
application’s performance, in terms of the achieved iteration period, iteration
latency, and mode transition delay, and comparing them with the computed
ones using the MADF analysis model.

In this case study, we take a real-life adaptive streaming application from
the StreamIT benchmark suite [37], called Vocoder, which implements a phase
voice encoder and performs pitch transposition of recorded sounds from
male to female. We modeled Vocoder using the MADF graph, shown in
Figure 6.6, with four modes which captures different workloads. The four
modes {SI8, SI16, SI32, SI64} specify different lengths of the discrete Fourier
transform (DFT), denoted by dl 2 {8, 16, 32, 64}. Mode SI8 (dl = 8) requires the
least amount of computation at the cost of the worst voice encoding quality
among all DFT lengths. Mode SI64 (dl = 64) produces the best quality of voice
encoding among all modes, but is computationally intensive. The other two
modes SI16 and SI32 exploit the trade-off between the quality of the encoding
and the computational workload. Therefore, the resource manager of an
MPSoC can take advantage of this trade-off and adjust the quality of the
encoding according to the available resources, such as energy budget and
number/type of processors, at run-time.

We measured the WCET of the actors in Figure 6.6 in the four modes on
both big and LITTLE processors. Then, since the shortest time granularity
visible to LITMUSRT, i.e., the OS clock tick, is 1 millisecond (ms), the WCET
of the actors are rounded up to the nearest multiple of the OS clock tick
duration. This is necessary to derive the period and start time of the actors

6.7. Case Studies 117

R
ea
d

W
av
e

D
FT

Ad
dC
os
W
in

R
ec
2P
ol
ar

U
nw
ra
p

Sp
ec
2E
nv

m
al
e2
fe
m
al
e

Po
la
r2
R
ec

In
vD
FT

W
rit
e

W
av
e

A c IC

[1
[1
28
dl
]]

[1
[2
56
]]

[1
28
[d
l]
]

[1
[2
56
]]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
[2
56
]]
[1
[2
56
]]

[1
[1
28
dl
]]
[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

[1
28
[d
l]
]

Fi
gu

re
6.

6:
M

A
D

F
gr

ap
h

of
th

eV
oc

od
er

ap
pl

ic
at

io
n.

118 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Table 6.2: Performance results for all mode transitions of Vocoder (in ms).

Transition Analysis [94] Implementation and execution
(SIo to SIn) Do!n

min Do!n
max Do!n

SI8 ! SI64 146 171 160
SI8 ! SI32 123 148 131
SI8 ! SI16 111 136 122
SI16 ! SI64 165 190 185
SI16 ! SI32 142 167 157
SI16 ! SI8 112 137 130
SI32 ! SI64 162 187 168
SI32 ! SI16 125 150 139
SI32 ! SI8 125 150 145
SI64 ! SI32 160 185 182
SI64 ! SI16 146 171 162
SI64 ! SI8 146 171 152

under any K-PS to be executed by LITMUSRT. Table 6.1 shows the performance
results of each individual mode under the self-timed (ST) schedule, which
is a particular case of K-PS explained in Section 6.4. In this table, columns
2-3 show the iteration period H and iteration latency L of each individual
application mode computed by the analysis model, respectively. The iteration
period H indicates the guaranteed production of 256 samples per 25 ms, as a
performance requirement, in all modes by sink actor WriteWave. Column 6
shows the number and type of processors required in each mode to guarantee
the aforementioned performance requirement. On the other hand, columns
4-5 show the measured iteration period H and iteration latency L of each
individual application mode achieved by our implementation and execution
approach, respectively. Comparing columns 2-3 with columns 4-5, we see
that the performance of Vocoder computed using the MADF analysis model
is the same as the measured performance when Vocoder is implemented and
executed using our approach. This is because the ST schedule of each mode is
implemented in our approach by setting up, in LITMUSRT, the same periods
and start times of the actors as in the analysis model. Based on the results,
shown in Table 6.1, we can conclude that our implementation and execution
approach conforms to the MADF analysis model in terms of H and L for the
Vocoder application.

Now, we focus on the performance results related to the mode transition
delays for all 12 possible transitions between the four modes of Vocoder. Using
the MADF analysis model in [94], the computed minimum and maximum
transition delays are shown in columns 2-3 of Table 6.2, respectively. By using

6.7. Case Studies 119

 0

 25

 50

 75

 100

 125

 150

 175

 200

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(m

illi
se

co
nd

)

Number of actors of the application

Figure 6.7: The execution time of control actor Ac for applications with different numbers of
actors.

our implementation and execution approach, however, the measured transi-
tion delay depends on the occurrence time of the mode change request (MCR)
at run-time, thus the measured transition delay could vary between the com-
puted minimum and maximum values in each transition. For instance, column
4 in Table 6.2 shows the measured transition delay for each transition with a
random occurrence time of an MCR, within the iteration period, at run-time.
These measured transition delays (column 4) are within the computed bounds
using the analysis model (columns 2-3). Therefore, our implementation and
execution approach also conforms to the MADF analysis model in terms of
mode transition delay Do!n for the Vocoder application.

Finally, we evaluate the scalability of our proposed implementation and
execution approach in terms of the execution time tov of the control actor for
applications with different numbers of actors. Since the most time-consuming
and variable part of the control actor is located in Lines 11 to 22 of Listing 6.2,
that is the time needed for the threads creation and the threads admission as
RT tasks, we only measure the time needed for this part of the control actor.
In this regard, the measured time for applications with a varying number of
actors is shown in Figure 6.7. In this figure, we can clearly observe that the
execution time of the control actor follows a fairly linear scalability when the
number of actors in the application increases.

6.7.2 Case Study 2

In this section, we present a case study, using a real-life streaming application,
for our energy-efficient periodic scheduling approach presented in Chapter 5.
As explained in Chapter 5, this scheduling approach primarily selects a set

120 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

Video
Out

[1][1][1][1] [1][1]
[1]

[1,1,...,1]

[1]

DCT QVideo
In

VLE

Init
Video

[1,0,...,0]}

127 Times

Figure 6.8: CSDF graph of MJPEG encoder.

of SPS schedules, as operating modes, for an application modeled as a CSDF
graph where each mode provides a unique pair of performance and power
consumption. Then, it satisfies a given throughput requirement at a long
run by switching the application’s schedule periodically between modes at
run-time. As this scheduling approach is evaluated using only simulations in
Chapter 5, this case study aims to validate its applicability on a real hardware
platform using our parallel implementation and execution approach presented
in Section 6.6. To do so, we only adopt the ARM Cortex A15 cluster with four
processors available on the Odroid-XU4 platform. This platform provides
the DVFS mechanism per cluster in which the operating frequency of the
Cortex-A15 cluster can be varied between 200 MHz to 2 GHz with a step of
100 MHz.

In this case study, we take the Motion JPEG (MJPEG) video encoder ap-
plication which CSDF graph is shown in Figure 6.8. The specifications of
two modes where the SPS schedule is used in each mode of this application,
referred as mode SI1 and mode SI2, are given in Table 6.3. The iteration period
H of these modes, in milliseconds, is given in the second column in Table 6.3.
Mode SI1 has an iteration period of 128 ms which results in the application
throughput of 1000/128 = 7.81 frames/second. Likewise, the iteration pe-
riod of mode SI2 is 256 ms which results in the application throughput of
1000/256 = 3.9 frames/second. In these modes, the operating frequency of
the A15 cluster is set to 1.4 GHz and 600 MHz for mode SI1 and SI2, respec-
tively, while satisfying their aforementioned application throughput. As a
result, these modes have different power consumption which is given in the
fourth column in Table 6.3. The WCETs of all actors in these mode are also
given in the fifth to tenth columns in Table 6.3. In these modes, we use the
partitioned EDF scheduler plugin (PSN-EDF) in LITMUSRT to schedule the
actors allocated on each processor separately.

Note that modes SI1 and SI2 correspond to two consecutive SPS schedules

6.7. Case Studies 121

Table 6.3: The specification of modes SI1 and SI2 in MJPEG encoder application

Mode Iteration Period Frequency Power WCET of actors (ms)
(ms) (GHz) (W) Init Video Video In DCT Q VLE Video Out

SI1 128 1.4 2.24 0.003 0.139 0.272 0.136 0.267 0.779
SI2 256 0.6 1.62 0.004 0.219 0.682 0.251 0.682 1.437

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f V
id

eo
 F

ra
m

es

Time (Second)

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7.81 6.94 6.25 5.68 5.2 4.8 4.46 4.16 3.9

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Throughput of MJPEG encoder application
(Video frames/second)

(b)

Figure 6.9: (a) The video frame production of the MJPEG encoder application over time for
the throughput requirement of 5.2 frames/second. (b) Normalized energy consumption of the
application for different throughput requirements.

of the MJPEG encoder application, i.e., no other valid SPS schedule exists
between them. So, to satisfy a throughput requirement between 3.9 to 7.81
frames/second, the naive solution is to constantly execute the application in
mode SI1. As a consequence, the application consumes more energy due to
producing more frames/second than required. In contrast, our scheduling
approach, presented in Chapter 5, can satisfy the throughput requirement at a
long run by periodically switching the application execution between mode
SI1 and SI2. For instance, let us consider the throughput requirement of 5.2
frames/second. Then, Figure 6.9(a) shows the production of video frames
over time by the MJPEG encoder application under our proposed scheduling
approach. The red line in this figure represents the required number of frames
per second according to the throughput requirement whereas the blue curve
represents the measured number of produced video frames per second by
our scheduling approach implemented and executed on the real hardware
platform Odroid XU4. As shown in this figure, the application executes
initially in mode SI1 for about 4 seconds while producing more video frames
than required. These excessive frames are accumulated in a buffer to be

122 Chapter 6. Implementation and Execution of Adaptive Streaming Applications

consumed when the application executes in mode SI2 with lower throughput
for the next about 7 seconds. After finishing one period of the schedule at
about 11 seconds, the application delivers the throughput requirement where
the red line and the blue curve in Figure 6.9(a) hit each other. This execution is
then repeated indefinitely.

For different throughput requirements, we also measure the energy con-
sumption of the Odroid XU4 platform when running the application using
our periodic scheduling approach. To do so, the energy consumption of the
Odroid XU4 platform is E = V ⇥

R t
0 I(t)dt, where the current I(t) is obtained

by precisely measuring (sampling) the current drawn by the platform during
the time interval t of the application execution under the platform operating
voltage V. The normalized energy consumption of the platform executing
the application with different throughput requirements for a duration of one
minute is shown in Figure 6.9(b). This figure clearly shows the effectiveness of
our periodic scheduling approach which can reduce the energy consumption
by up to 26% compared to the naive scheduling approach, mentioned earlier,
where the approach constantly executes in mode SI1 in order to satisfy any
throughput requirement between 3.9 and 7.81 frames per second.

6.8 Conclusions

In this chapter, we proposed a generic parallel implementation and execution
approach for adaptive streaming applications modeled with MADF. Our ap-
proach can be easily realized on top of existing operating systems and support
the utilization of a wider range of schedules. In particular, we demonstrated
our approach on LITMUSRT which is one of the existing real-time extensions
of the Linux kernel. Finally, we performed a case study using a real-life adap-
tive streaming application and showed that our approach conforms to the
analysis model for both execution of the application in each individual mode
and during mode transitions. In addition, we performed another case study
using a real-life streaming application to validate the practical applicability
of our proposed periodic scheduling approach, presented in Chapter 5, on
a real hardware platform by using our generic parallel implementation and
execution approach presented in this chapter.

Chapter 7

Summary and Conclusions

STREAMING applications have become prevalent in embedded systems
in several application domains, such as image processing, video/audio

processing, and digital signal processing. These applications usually have
high computational demands and tight timing requirements, such as through-
put requirements. To handle the ever-increasing computational demands and
satisfy tight timing requirements, Multi-Processor System-on-Chip (MPSoC)
has become a standard platform that is widely adopted in the design of em-
bedded streaming systems to benefit from parallel execution. To efficiently
exploit the computational capacity of such MPSoCs, however, streaming ap-
plications must be expressed primarily in a parallel fashion. To do so, the
behavior of streaming applications is usually specified using a parallel Model
of Computation (MoC), in which the application is represented as parallel
executing and communicating tasks. Although parallel MoCs resolve the
problem of explicitly exposing the available parallelism in an application, the
design of embedded streaming systems imposes two major challenges: 1) how
to execute the application tasks spatially, i.e., task mapping, and temporally,
i.e., task scheduling, on an MPSoC platform such that timing requirements
are satisfied while making efficient utilization of available resources (e.g, pro-
cessors, memory, energy, etc.) on the platform, and 2) how to implement and
run the mapped and scheduled application tasks on the MPSoC platform.
In this thesis, we have addressed several research questions related to the
aforementioned challenges in the design of embedded streaming systems. The
research questions and the logical connection between them are illustrated
in the design flow shown in Figure 1.2. Below, we provide a summary of the
presented research work in this thesis along with some conclusions.

To address the first aforementioned challenge in the design of embed-

124 Chapter 7. Summary and Conclusions

ded streaming systems, the strictly periodic scheduling (SPS) framework is
proposed in [8] which establishes a bridge between the data flow models
and the real-time theories, thereby enabling the designers to directly apply
the classical hard real-time scheduling theory to applications modeled as
acyclic CSDF graphs. In Chapter 3, we have extended the SPS framework and
have proposed a scheduling framework, namely Generalized Strictly Periodic
Scheduling (GSPS), that can handle cyclic CSDF graphs. The GSPS framework
converts each actor in a cyclic CSDF graph to a real-time periodic task. This
conversion enables the utilization of many hard real-time scheduling algo-
rithms that offer properties such as temporal isolation and fast calculation of
the number of processors needed to satisfy a throughput requirement. Based
on experimental evaluations, using a set of real-life streaming applications,
modeled as cyclic CSDF graphs, we conclude that our GSPS framework can
deliver an equal or comparable throughput to related scheduling approaches
for the majority of the applications, we experimented with. However, enabling
the utilization of scheduling algorithms from the classical hard real-time the-
ory on streaming applications by using our GSPS framework comes at the
costs of increasing the latency and buffer sizes of the data communication
channels for the applications by up to 3.8X and 1.4X when compared with
related scheduling approaches.

In Chapter 4, we have addressed the problem of efficiently exploiting the
computational capacity of processors when mapping a streaming application,
modeled as an acyclic SDF graph, on an MPSoC platform to reduce the number
of needed processors under a given throughput requirement. Given the fact
that an initial SDF application specification is often not the most suitable one
for the given MPSoC platform, we have explored an alternative application
specification, using an SDF graph transformation technique, which closely
matches the given MPSoC platform. In this regard, in Chapter 4, we have
proposed a novel algorithm to find a proper replication factor for each task/ac-
tor in an initial SDF application specification such that by distributing the
workloads among more parallel task/actor in the obtained transformed graph,
the computational capacity of the processors can be efficiently exploited and a
smaller number of processors is then required. Based on experimental eval-
uations, using a set of real-life streaming applications, we conclude that our
proposed algorithm can reduce the number of needed processors by up to 7
processors while increasing the memory requirements and application latency
by 24.2% and 17.2% on average compared to FFD task mapping heuristic
algorithms while satisfying the same throughput requirement. The experi-
mental evaluations also show that our proposed algorithm can still reduce the

125

number of needed processors by up to 2 processors and considerably improve
the memory requirements and application latency by up to 31.43% and 44.09%
on average compared to the other related approaches while satisfying the
same throughput requirement.

As embedded streaming systems operate very often using stand-alone
power supply such as batteries, energy efficiency has become an important
design requirement of such embedded streaming systems in order to pro-
long their operational time without replacing/recharging the batteries. In
this regard, in Chapter 5, we have addressed the problem of energy-efficient
scheduling of streaming applications, modeled as CSDF graphs, with through-
put requirements on MPSoC platforms with voltage and frequency scaling
(VFS) capability. In particular, we have proposed a novel periodic scheduling
approach which switches the execution of streaming applications periodically
between a few energy-efficient schedules, referred as modes, at run-time in
order to satisfy a given throughput requirement at a long run. Using such
specific switching scheme, we can benefit from adopting a dynamic voltage
and frequency scaling (DVFS) mechanism to efficiently exploit available idle
time in an application schedule. Based on experimental evaluations, using a
set of real-life streaming applications, we conclude that our novel scheduling
approach can achieve up to 68% energy reduction compared to related ap-
proaches depending on the application while satisfying the given throughput
requirement.

Finally, in Chapter 6, we have addressed the second aforementioned chal-
lenge in the design of embedded streaming systems, namely, how to im-
plement and run a mapped and scheduled adaptive streaming application,
modeled and analyzed with the MADF MoC, on an MPSoC platform such
that the properties of the analysis model are preserved. In particular, we
have proposed a generic parallel implementation and execution approach
for adaptive streaming applications modeled with MADF. Our approach can
be easily realized on top of existing operating systems while supporting the
utilization of a wider range of schedules. We have demonstrated our approach
on LITMUSRT which is one of the existing real-time extensions of the Linux
kernel. Based on a case study using a real-life adaptive streaming application,
we conclude that our approach is practically applicable on a real hardware
platform and conforms to the analysis model. In addition, another case study,
using a real-life streaming application, has shown that our proposed energy-
efficient periodic scheduling approach presented in Chapter 5, which adopts
the MOO protocol of the MADF MoC for switching the application mode, is
also practically applicable on a real hardware platform by using our generic

126 Chapter 7. Summary and Conclusions

parallel implementation and execution approach presented in Chapter 6.

Bibliography

[1] Embedded System Market. https://www.gminsights.com/

industry-analysis/embedded-system-market. [Cited Decem-
ber 17, 2019].

[2] SDFˆ 3. http://www.es.ele.tue.nl/sdf3/download/

examples.php. [Cited December 30, 2019].

[3] H. I. Ali, B. Akesson, and L. M. Pinho. Generalized extraction of real-
time parameters for homogeneous synchronous dataflow graphs. In
2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pages 701–710. IEEE, 2015.

[4] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based scheduling
algorithm for multiprocessor soft real-time systems. In 17th Euromicro
Conference on Real-Time Systems (ECRTS’05), pages 199–208. IEEE, 2005.

[5] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings International Parallel and Distributed
Processing Symposium, pages 9–pp. IEEE, 2003.

[6] T. P. Baker and S. K. Baruah. Schedulability analysis of multiprocessor
sporadic task systems. In Handbook of Real-Time and Embedded Systems,
pages 49–66. Chapman and Hall/CRC, 2007.

[7] M. Bamakhrama. On hard real-time scheduling of cyclo-static dataflow and its
application in system-level design. Leiden Institute of Advanced Computer
Science (LIACS), Leiden University, 2014.

[8] M. Bamakhrama and T. Stefanov. Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications. In Proceedings of
the ninth ACM international conference on Embedded software, pages 195–204.
ACM, 2011.

https://www.gminsights.com/industry-analysis/embedded-system-market
https://www.gminsights.com/industry-analysis/embedded-system-market
http://www.es.ele.tue.nl/sdf3/download/examples.php
http://www.es.ele.tue.nl/sdf3/download/examples.php

128 Bibliography

[9] M. Bamakhrama and T. Stefanov. Managing latency in embedded stream-
ing applications under hard-real-time scheduling. In Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 83–92. ACM, 2012.

[10] M. Bamakhrama and T. Stefanov. On the hard-real-time scheduling
of embedded streaming applications. Design Automation for Embedded
Systems, 17(2):221–249, 2013.

[11] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-aware
scheduling for real-time systems: A survey. ACM Transactions on Embed-
ded Computing Systems (TECS), 15(1):7, 2016.

[12] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[13] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-time systems, 2(4):301–324, 1990.

[14] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. An empirical
comparison of global, partitioned, and clustered multiprocessor EDF
schedulers. In 2010 31st IEEE Real-Time Systems Symposium, pages 14–24.
IEEE, 2010.

[15] S. S. Bhattacharyya and E. A. Lee. Memory management for dataflow
programming of multirate signal processing algorithms. IEEE Transac-
tions on Signal Processing, 42(5):1190–1201, 1994.

[16] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static
dataflow. IEEE Transactions on signal processing, 44(2):397–408, 1996.

[17] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. K-periodic sched-
ules for evaluating the maximum throughput of a synchronous dataflow
graph. In 2012 International Conference on Embedded Computer Systems
(SAMOS), pages 152–159. IEEE, 2012.

[18] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. Periodic schedules
for cyclo-static dataflow. In The 11th IEEE Symposium on Embedded Systems
for Real-time Multimedia, pages 105–114. IEEE, 2013.

Bibliography 129

[19] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. Optimal and fast
throughput evaluation of CSDF. In Proceedings of the 53rd Annual Design
Automation Conference, page 160. ACM, 2016.

[20] A. Burns, R. I. Davis, P. Wang, and F. Zhang. Partitioned EDF scheduling
for multiprocessors using a C= D task splitting scheme. Real-Time Systems,
48(1):3–33, 2012.

[21] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications, volume 24. Springer Science & Business Media,
2011.

[22] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson.
Litmusˆ rt: A testbed for empirically comparing real-time multiprocessor
schedulers. In 2006 27th IEEE International Real-Time Systems Symposium
(RTSS’06), pages 111–126. IEEE, 2006.

[23] E. Cannella, M. A. Bamakhrama, and T. Stefanov. System-level schedul-
ing of real-time streaming applications using a semi-partitioned approach.
In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE, 2014.

[24] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov. Adaptivity
support for MPSoCs based on process migration in polyhedral process
networks. VLSI Design, 2012, 2012.

[25] E. Cannella and T. Stefanov. Energy efficient semi-partitioned scheduling
for embedded multiprocessor streaming systems. Design Automation for
Embedded Systems, 20(3):239–266, 2016.

[26] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM combina-
tion. ACM Transactions on Embedded Computing Systems (TECS), 13(3s):111,
2014.

[27] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling
algorithm for multiprocessors. In 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), pages 101–110. IEEE, 2006.

[28] E. G. Coffman, J. M. R. Garey, and D. Johnson. Approximation algorithms
for bin packing: A survey. Approximation algorithms for NP-hard problems,
pages 46–93, 1996.

130 Bibliography

[29] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM computing surveys (CSUR), 43(4):35, 2011.

[30] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[31] N. W. Fisher. The multiprocessor real-time scheduling of general task systems.
PhD thesis, The University of North Carolina at Chapel Hill, 2007.

[32] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous
dataflow scenarios. In CODES+ISSS, 2010.

[33] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous
dataflow scenarios. In Proceedings of the eighth IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis, pages
125–134. ACM, 2010.

[34] A. H. Ghamarian, M. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi, and
S. Stuijk. Liveness and boundedness of synchronous data flow graphs. In
2006 Formal Methods in Computer Aided Design, pages 68–75. IEEE, 2006.

[35] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. Moonen, and M. Bekooij. Throughput analysis of syn-
chronous data flow graphs. In Sixth International Conference on Application
of Concurrency to System Design (ACSD’06), pages 25–36. IEEE, 2006.

[36] L. Gide. Embedded/cyber-physical systems ARTEMIS major challenges:
2014-2020. Draft Addendum to the ARTEMIS-SRA 2011, 2013.

[37] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. ACM SIGOPS
Operating Systems Review, 2006.

[38] M. Grant and S. Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/
~boyd/graph_dcp.html.

[39] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex
Programming, version 2.1. http://cvxr.com/cvx, Mar. 2014.

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

Bibliography 131

[40] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7.
ARM White paper, 17, 2011.

[41] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[42] P. Huang, O. Moreira, K. Goossens, and A. Molnos. Throughput-
constrained voltage and frequency scaling for real-time heterogeneous
multiprocessors. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1517–1524. ACM, 2013.

[43] A. Jantsch and I. Sander. Models of computation and languages for em-
bedded system design. IEE Proceedings-Computers and Digital Techniques,
152(2):114–129, 2005.

[44] A. Jerraya, H. Tenhunen, and W. Wolf. Multiprocessor systems-on-chips.
IEEE Computer, 38(7):36–40, July 2005.

[45] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, 1973.

[46] D. S. Johnson and M. R. Garey. Computers and intractability: A guide to the
theory of NP-completeness. WH Freeman, 1979.

[47] H. Jung, H. Oh, and S. Ha. Multiprocessor scheduling of a multi-mode
dataflow graph considering mode transition delay. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 22(2):37, 2017.

[48] A. H. Khan, Z. H. Khan, and Z. Weiguo. Model-based verification
and validation of safety-critical embedded real-time systems: formation
and tools. In Embedded and Real Time System Development: A Software
Engineering Perspective, pages 153–183. Springer, 2014.

[49] P. S. Kurtin, J. P. Hausmans, and M. J. Bekooij. Combining offsets with
precedence constraints to improve temporal analysis of cyclic real-time
streaming applications. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 1–12. IEEE, 2016.

[50] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling:
The laws of diminishing returns. In Proceedings of the 2010 international
conference on Power aware computing and systems, pages 1–8, 2010.

132 Bibliography

[51] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real-
time DSP. In 1989 IEEE Global Telecommunications Conference and Exhibi-
tion’Communications Technology for the 1990s and Beyond’, pages 1279–1283.
IEEE, 1989.

[52] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[53] E. A. Lee and A. Sangiovanni-Vincentelli. Comparing models of compu-
tation. In Proceedings of International Conference on Computer Aided Design,
pages 234–241. IEEE, 1996.

[54] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[55] D. Liu, J. Spasic, G. Chen, and T. Stefanov. Energy-efficient mapping of
real-time streaming applications on cluster heterogeneous mpsocs. In
2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia
(ESTIMedia), pages 1–10. IEEE, 2015.

[56] D. Liu, J. Spasic, J. T. Zhai, T. Stefanov, and G. Chen. Resource optimiza-
tion for CSDF-modeled streaming applications with latency constraints.
In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE, 2014.

[57] P. Marwedel. Embedded System Design: Embedded Systems, Foundations of
Cyber-Physical Systems, and the Internet of Things. Springer International
Publishing: Imprint: Springer, 2018.

[58] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,
Q. Xu, and L. Huang. Mapping of applications to MPSoCs. In Proceedings
of the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 109–118. ACM, 2011.

[59] T. Mitra. Heterogeneous multi-core architectures. Information and Media
Technologies, 10(3):383–394, 2015.

[60] O. Moreira. Temporal analysis and scheduling of hard real-time radios
running on a multi-processor. ser. PHD Thesis, Technische Universiteit
Eindhoven, 2012.

Bibliography 133

[61] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and
K. Goossens. Power minimisation for real-time dataflow applications. In
2011 14th Euromicro Conference on Digital System Design, pages 117–124.
IEEE, 2011.

[62] S. Niknam and T. Stefanov. Energy-efficient scheduling of throughput-
constrained streaming applications by periodic mode switching. In
2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 203–212. IEEE, 2017.

[63] S. Niknam, P. Wang, and T. Stefanov. Resource Optimization for Real-
Time Streaming Applications Using Task Replication. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2755–
2767, 2018.

[64] S. Niknam, P. Wang, and T. Stefanov. Hard Real-Time Scheduling of
Streaming Applications Modeled as Cyclic CSDF Graphs. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1549–
1554. IEEE, 2019.

[65] S. Niknam, P. Wang, and T. Stefanov. On the Implementation and Ex-
ecution of Adaptive Streaming Applications Modeled as MADF. In
Proceedings of the International Workshop on Software and Compilers for Em-
bedded Systems (SCOPES). ACM, 2020.

[66] ODROID. http://www.hardkernel.com/. [Cited December 17,
2019].

[67] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang.
Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(5):695–708,
2013.

[68] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to
multi-core: preparing for a new exponential. In Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, pages 67–72.
ACM, 2006.

[69] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha.
Handling mixed-criticality in SoC-based real-time embedded systems. In
Proceedings of the seventh ACM international conference on Embedded software,
pages 235–244. ACM, 2009.

http://www.hardkernel.com/

134 Bibliography

[70] M. Processor. Exynos 5 Octa (5422). https://www.

samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-5-octa-5422/. [Cited December 17,
2019].

[71] G. Qu. What is the limit of energy saving by dynamic voltage scaling? In
Proceedings of the 2001 IEEE/ACM international conference on Computer-aided
design, pages 560–563. IEEE Press, 2001.

[72] Real Time Engineers Ltd. The FreeRTOS Project. http://www.

freertos.org/. [Cited December 17, 2019].

[73] M. Shafique and S. Garg. Computing in the dark silicon era: Current
trends and research challenges. IEEE Design & Test, 34(2):8–23, 2016.

[74] A. K. Singh, A. Das, and A. Kumar. Energy optimization by exploiting
execution slacks in streaming applications on multiprocessor systems. In
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–7, 2013.

[75] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: survey of current and emerging trends. In
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–10. IEEE, 2013.

[76] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal. Analyzing
synchronous dataflow scenarios for dynamic software-defined radio ap-
plications. In 2011 International Symposium on System on Chip (SoC), pages
14–21. IEEE, 2011.

[77] D. Sopic, A. Aminifar, and D. Atienza. e-glass: A wearable system
for real-time detection of epileptic seizures. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[78] J. Spasic, D. Liu, E. Cannella, and T. Stefanov. Improved hard real-time
scheduling of CSDF-modeled streaming applications. In Proceedings of
the 10th International Conference on Hardware/Software Codesign and System
Synthesis, pages 65–74. IEEE Press, 2015.

[79] J. Spasic, D. Liu, E. Cannella, and T. Stefanov. On the improved hard real-
time scheduling of cyclo-static dataflow. ACM Transactions on Embedded
Computing Systems (TECS), 15(4):68, 2016.

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://www.freertos.org/
http://www.freertos.org/

Bibliography 135

[80] J. Spasic, D. Liu, and T. Stefanov. Energy-efficient mapping of real-time
applications on heterogeneous MPSoCs using task replication. In 2016
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), pages 1–10. IEEE, 2016.

[81] J. Spasic, D. Liu, and T. Stefanov. Exploiting resource-constrained paral-
lelism in hard real-time streaming applications. In Proceedings of the 2016
Conference on Design, Automation & Test in Europe, pages 954–959. EDA
Consortium, 2016.

[82] S. Sriram and S. S. Bhattacharyya. Embedded multiprocessors: schedul-
ing and synchronization. 2009.

[83] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs. In
2007 44th ACM/IEEE Design Automation Conference, pages 777–782. IEEE,
2007.

[84] S. Stuijk, M. Geilen, and T. Basten. SDFˆ 3: SDF for free. In Sixth
International Conference on Application of Concurrency to System Design
(ACSD’06), pages 276–278. IEEE, 2006.

[85] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs. IEEE
Transactions on Computers, 57(10):1331–1345, 2008.

[86] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications. In
2011 International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation, pages 404–411. IEEE, 2011.

[87] B. D. Theelen, M. C. Geilen, S. Stuijk, S. V. Gheorghita, T. Basten, J. P.
Voeten, and A. H. Ghamarian. Scenario-aware dataflow. Technical Report
ESR-2008-08, 2008.

[88] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
2010 19th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 365–376. IEEE, 2010.

[89] R. Van Kampenhout, S. Stuijk, and K. Goossens. A scenario-aware
dataflow programming model. In 2015 Euromicro Conference on Digital
System Design, pages 25–32. IEEE, 2015.

136 Bibliography

[90] R. Van Kampenhout, S. Stuijk, and K. Goossens. Programming and
analysing scenario-aware dataflow on a multi-processor platform. In
Proceedings of the Conference on Design, Automation & Test in Europe, pages
876–881. European Design and Automation Association, 2017.

[91] M. H. Wiggers, M. J. Bekooij, and G. J. Smit. Efficient computation of
buffer capacities for cyclo-static dataflow graphs. In 2007 44th ACM/IEEE
Design Automation Conference, pages 658–663. IEEE, 2007.

[92] K. Yang and J. H. Anderson. Soft real-time semi-partitioned scheduling
with restricted migrations on uniform heterogeneous multiprocessors. In
Proceedings of the 22nd International Conference on Real-Time Networks and
Systems, page 215. ACM, 2014.

[93] J. T. Zhai. Adaptive streaming applications: analysis and implementation
models. PhD thesis, Leiden Embedded Research Center, Faculty of Science
(LERC), Leiden Institute of Advanced Computer Science (LIACS), Leiden
University, 2015.

[94] J. T. Zhai, S. Niknam, and T. Stefanov. Modeling, analysis, and hard real-
time scheduling of adaptive streaming applications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2636–2648,
2018.

[95] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with EDF scheduling. IEEE Transactions on Computers, 58(9):1250–1258,
2009.

[96] J. Zhu, I. Sander, and A. Jantsch. Energy efficient streaming applications
with guaranteed throughput on MPSoCs. In Proceedings of the 8th ACM
international conference on Embedded software, pages 119–128. ACM, 2008.

Summary

This thesis focuses on addressing four research problems in designing embed-
ded streaming systems. Embedded streaming systems are those systems that
process a stream of input data coming from the environment and generate
a stream of output data going into the environment. For many embedded
streaming systems, the timing is a critical design requirement, in which the
correct behavior depends on both the correctness of output data and on the
time at which the data is produced. An embedded streaming system subjected
to such a timing requirement is called a real-time system. Some examples of
real-time embedded streaming systems can be found in various autonomous
mobile systems, such as planes, self-driving cars, and drones.

To handle the tight timing requirements of such real-time embedded
streaming systems, modern embedded systems have been equipped with hard-
ware platforms, the so-called Multi-Processor Systems-on-Chip (MPSoC), that
contain multiple processors, memories, interconnections, and other hardware
peripherals on a single chip, to benefit from parallel execution. To efficiently
exploit the computational capacity of an MPSoC platform, a streaming applica-
tion which is going to be executed on the MPSoC platform must be expressed
primarily in a parallel fashion, i.e., the application is represented as a set of
parallel executing and communicating tasks. Then, the main challenge is how
to schedule the tasks spatially, i.e., task mapping, and temporally, i.e., task
scheduling, on the MPSoC platform such that all timing requirements are sat-
isfied while making efficient utilization of available resources (e.g, processors,
memory, energy, etc.) on the platform. Another challenge is how to implement
and run the mapped and scheduled application tasks on the MPSoC platform.
This thesis proposes several techniques to address the aforementioned two
challenges.

In the first part of the thesis, the focus is on addressing the first aforemen-
tioned challenge in the design of embedded streaming systems. To do so, a
scheduling framework is proposed to convert the data-dependent tasks in
an application, including cyclic data-dependent tasks, to real-time periodic

tasks. As a result, a variety of hard real-time scheduling algorithms for peri-
odic tasks, from the classical real-time scheduling theory, can be applied to
schedule such streaming applications with a certain guaranteed performance,
i.e., throughput/latency. These algorithms can perform fast admission control
and scheduling decisions for new incoming applications in an MPSoC plat-
form as well as offer properties such as temporal isolation and fast analytical
calculation of the minimum number of processors needed to schedule the
tasks in the application.

In the second part of the thesis, the focus is on addressing the problem
of efficiently exploiting resources on an underlying MPSoC platform when
scheduling the tasks of applications on the platform. An algorithm is proposed
to transform an initial representation of a streaming application, i.e., an initial
application graph, into a functionally equivalent one such that the new repre-
sentation requires fewer processors while guaranteeing a given throughput
requirement. Additionally, this thesis studies the problem of energy-efficient
scheduling of streaming applications with throughput requirements on MP-
SoC platforms with voltage and frequency scaling capability. In this regard,
a novel periodic scheduling framework is proposed which allows streaming
applications to switch their execution periodically between a few energy-
efficient schedules at run-time in order to meet a throughput requirement at
long run. Using such periodic switching scheme, system designers can benefit
from adopting Dynamic Voltage and Frequency Scaling techniques to exploit
available static slack time in the schedule of an application efficiently.

Finally, in the third part of the thesis, the focus is on addressing the second
aforementioned challenge in the design of embedded streaming systems. In
this regarde, a generic parallel implementation and execution approach for
(adaptive) streaming applications is proposed. The proposed approach can
be easily realized on top of existing operating systems while supporting the
utilization of a wider range of schedules. In particular, a demonstration of the
proposed approach on LITMUSRT is provided, which is one of the existing
real-time extensions of the Linux kernel.

Samenvatting

Het doel van dit proefschrift is het oplossen van vier onderzoeksproblemen
bij het ontwerpen embedded streaming-systemen. Embedded streaming-
systemen zijn die systemen die een stroom invoergegevens uit de omgeving
verwerken en een stroom van uitvoergegevens genereren voor deze omge-
ving. Voor velen van deze ingebedde streaming-systemen is de timing een
kritische ontwerpvereiste, waarbij correct gedrag afhangt van zowel de juist-
heid van uitvoergegevens als van het tijdstip waarop de gegevens worden
geproduceerd. Een embedded streaming-systeem onderworpen naar zo’n
timingvereiste wordt een real-time systeem genoemd. Enkele voorbeelden
van real-time embedded streaming-systemen zijn te vinden in verschillende
autonome mobiele systemen, zoals vliegtuigen, zelfrijdende auto’s en drones.

Om aan de strakke timingvereisten van dergelijke real-time embedded
streaming-systemen te kunnen voldoen zijn moderne embedded systemen
uitgerust met hardware platforms, de zogenaamde Multi-Processor Systems-
on-Chip (MPSoC), die meerdere processors, geheugens, verbindingen en
andere hardware-randapparatuur op een enkele chip samenvoegen, om zo
te kunnen profiteren van parallelle executie. Om de rekencapaciteit van
een MPSoC-platform te kunnen benutten moet een streaming-applicatie, die
wordt uitgevoerd op het MPSoC-platform, worden beschreven op een paral-
lelle wijze, d.w.z. de applicatie wordt gedefinieerd als een set van parallele
taken die met elkaar communiceren. De belangrijkste uitdaging is om deze
taken ruimtelijk te plannen, d.w.z. de afbeelding van taken op processors, en
temporeel, d.w.z. de volgorde van de taakplanning, op het MPSoC-platform
zodat aan alle timingvereisten wordt voldaan met een efficiÎnt gebruik van de
beschikbare middelen (de processors, geheugen, energie, etc.) op het platform.
Een andere uitdaging is hoe deze toegewezen en geplande applicatietaken op
de MPSoC te implementeren en uit te voeren op het platform. Dit proefschrift
stelt verschillende technieken voor om de twee bovengenoemde uitdagingen
op te lossen.

In het eerste deel van het proefschrift ligt de focus op de eerste boven-

genoemde uitdaging bij het ontwerpen van embedded streaming-systemen.
Hier wordt een methode geintroduceerd om de data-afhankelijke taken in een
applicatie, inclusief cyclische data-afhankelijke taken, om te zetten naar real-
time periodieke taken. Dit maakt het mogelijk om een verscheidenheid aan
harde realtime planning algoritmen voor periodieke taken, van de klassieke
real-time planning theorie, toe te passen om dergelijke streamingtoepassingen
te plannen met bepaalde gegarandeerde prestaties voor doorvoer en reactietijd.
Deze algoritmen kunnen snelle toegangscontrole en planningsbeslissingen uit-
voeren voor nieuwe inkomende applicaties in een MPSoC-platform en bieden
eigenschappen zoals temporele isolatie en snelle analytische berekening van
het minimum aantal processors dat nodig is voor het uitvoeren van de taken
in de applicatie.

In het tweede deel van het proefschrift ligt de focus op het efficiÎnt ge-
bruik maken van componenten op een onderliggend MPSoC-platform bij
het plannen van de taken van applicaties op het platform. We introduceren
een algoritme om een eerste representatie van een streamingapplicatie, d.w.z.
een initiÎle applicatie graaf, te transformeren in een functioneel equivalente
applicatie graaf die minder processors nodig heeft om de gegeven doorvoerve-
reiste te garanderen. Daarnaast onderzoekt dit proefschrift het probleem van
energiezuinige planning van streaming-applicaties met doorvoer vereisten op
MPSoC-platforms met spannings- en frequentieschaling mogelijkheden. Hier-
voor wordt er een nieuw periodiek planningskader geintroduceerd waarin
streaming-applicaties hun uitvoering periodiek kunnen varieren tussen een
aantal energiezuinige schema’s tijdens runtime om te voldoen aan een door-
voervereiste op de lange termijn. Met behulp van een dergelijke periodieke
omschakeling kunnen systeemontwerpers profiteren van het gebruik van dy-
namische spanning en frequentieschalingstechnieken om de beschikbare extra
spelingstijd in het schema van een applicatie efficiÎnt te gebruiken.

Tot slot, in het derde deel van het proefschrift, ligt de focus op de tweede
bovengenoemde uitdaging in het ontwerp van embedded streaming-systemen.
Hiervoor wordt een generieke parallelle implementatie- en uitvoeringsme-
thode voor (adaptieve) streaming-applicaties voorgesteld. De voorgestelde
methode kan gemakkelijk kunnen worden gerealiseerd bovenop bestaande
besturingssystemen en in combinatie met een breder scala aan taakplannings-
methoden. Een demonstratie van de voorgestelde aanpak voor LITMUSRT, een
bestaande real-time uitbreidingen van de Linux-kernel, toont de haalbaarheid
aan van deze methode.

List of Publications

Journal Articles

• Sobhan Niknam, Peng Wang, Todor Stefanov. "Resource Optimization
for Real-Time Streaming Applications using Task Replication". IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 37, No. 11, pp. 2636-2648, Nov 2018.

• Teddy Zhai, Sobhan Niknam, Todor Stefanov. "Modeling, Analysis,
and Hard Real-time Scheduling of Adaptive Streaming Applications".
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), vol. 37, No. 11, pp. 2755-2767, Nov 2018.
(Authors contributed to the paper equally)

Peer-Reviewed Conference Proceedings

• Sobhan Niknam, Peng Wang, Todor Stefanov. "On the Implementation
and Execution of Adaptive Streaming Applications Modeled as MADF".
In Proceedings of the 23rd International Workshop on Software and Compilers
for Embedded Systems (SCOPES), Sankt Goar, Germany, May 25-26, 2020.

• Peng Wang, Sobhan Niknam, Sheng Ma, Zhiying Wang, Todor Stefanov.
"EVC-based Power Gating Approach to Achieve Low-power and High
Performance NoC". In Proceedings of the 22nd Euromicro Conference on
Digital System Design (DSD), Chalkidiki, Greece, August 28 - 30, 2019.

• Erqian Tang, Sobhan Niknam, Todor Stefanov. "Enabling Cognitive
Autonomy on Small Drones by Efficient On-board Embedded Comput-
ing: An ORB-SLAM2 Case Study". In Proceedings of the 22nd Euromicro
Conference on Digital System Design (DSD), Chalkidiki, Greece, August
28 - 30, 2019.

• Peng Wang, Sobhan Niknam, Sheng Ma, Zhiying Wang, Todor Stefanov.
"A Dynamic Bypass Approach to Realize Power Efficient Network-on-
Chip". In Proceedings of the 21st IEEE International Conference on High
Performance Computing and Communications (HPCC), Zhangjiajie, Hunan,
China, August 10 - 12, 2019.

• Peng Wang, Sobhan Niknam, Sheng Ma, Zhiying Wang, Todor Ste-
fanov. "Surf-Bless: A Confined-interference Routing for Power-Efficient
Communication in NoCs". In Proceedings of the 56th ACM/EDAC/IEEE
Design Automation Conference (DAC), Las Vegas, USA, June 2 - 6, 2019.
Winner of HiPEAC paper award

• Sobhan Niknam, Peng Wang, Todor Stefanov. "Hard Real-Time Schedul-
ing of Streaming Applications Modeled as Cyclic CSDF Graphs". In
Proceedings of the 22nd International Conference on Design, Automation and
Test in Europe (DATE), Florence, Italy, March 25 - 29, 2019.

• Peng Wang, Sobhan Niknam, Zhiying Wang, Todor Stefanov. "A Novel
Approach to Reduce Packet Latency Increase caused by Power Gating
in Network-on-Chip". In Proceedings of the 11th International Symposium
on Networks-on-Chip (NOCS), Seoul, South Korea, October 19 - 20, 2017.

• Sobhan Niknam, Todor Stefanov. "Energy-Efficient Scheduling of Thr-
oughput-Constrained Streaming Applications by Periodic Mode Switch-
ing". In Proceedings of the 17th IEEE International Conference on Embedded
Computer Systems: Architectures, MOdeling, and Simulation (SAMOS),
Samos, Greece, July 17 - 20, 2017.

• Sobhan Niknam, Arghavan Asad, Mahmood Fathy, Amir M. Rahmani.
"Energy Efficient 3D Hybrid Processor-Memory Architecture for the
Dark Silicon Age". In Proceedings of the 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Bremen,
Germany, Jun 29 - July 1, 2015.

Curriculum Vitae

Sobhan Niknam was born on February 28, 1990 in Tehran, Iran. He obtained
his B.Sc. degree in computer engineering from Shahed University, Tehran,
Iran, in 2012 and the M.Sc. degree in computer engineering from the Iran
University of Science and Technology, Tehran, in 2014. In March 2015, he
joined the Leiden Embedded Research Center, part of the Leiden Institute of
Advanced Computer Science (LIACS) at Leiden University, as a Ph.D. candi-
date. His research work, which resulted in this thesis, was funded by NWO
under project rCPS3. Besides his work as a researcher, he had been teaching as-
sistant for several courses such as Digital Techniques, Computer Architecture,
Operating Systems, and Embedded Systems and Software. Since February
2020, he has been working as a postdoctoral researcher at the University of
Amsterdam.

Acknowledgments

Finally, my long academic journey as a PhD student comes to its end. The past
five years have been quite an intense and unforgettable experience, full of all
sorts of overwhelming emotions - happiness, frustration, anxiety, inspiration,
and a lot of hope! Finishing this hard, but the enjoyable journey would not
have been possible without the help, guidance, and assistance from many
extraordinary people whom I would like to express my gratitude.

First of all, I would like to thank my supervisor, Dr. Todor Stefanov, for
giving me the chance to pursue my doctoral research at Leiden University and
for his support, patience, and effort throughout my PhD study. Thank you,
Todor, especially for teaching me how to write a good academic paper and
spending indefinite time and tremendous efforts on proof-reading my papers
and finally my thesis. Secondly, I was very fortunate to be a part of the Leiden
Embedded Research Center (LERC) where I had nice colleagues: Emanuele
Cannella, Jelena Spasic, Di Liu, Teddy Zhai, Peng Wang, Hongchan Shan,
Erqian Tang, Svetlana Minakova. I really enjoyed working with you. I hope
you are all doing well and wish you great success in your current and future
endeavors. Emanuele, thank you especially for your support at the early stage
of my PhD; I never forget about your encouragement and pleasing words
about being persistent and not giving up. Jelena and Di, thank you for your
help, exchanging ideas, suggestions about my research, and nice discussions
we had. I would like to give my special thanks to Peng. I was lucky to have
such a wonderful fellow PhD almost from the beginning of my study, who
helped by brainstorming, providing feedback, and most importantly being an
exceptional friend. We had unforgettable coffee breaks, talking about our daily
life and all PhD-related matters, such as our ongoing research and feelings -
fear, happiness, failure, and success. It has been a pleasure and privilege to
work with you, Peng!

Further, during my stay in the Netherlands, I have been lucky to make
some good friends, Seyed Ali Mirsoleimani, Hadi Ahmadi Balef, Hadi
Arjmandi-Tash, Seyed Kamal Sani, Soroush Rasti, and many others, whom

I am so grateful for their help in many ways. Without them, I would never feel
being like at home in the past five years. A big thanks goes to Hadi Ahmadi
Balef and his family for the joyfull gatherings and nice trips we have had.

Last but not least, I would like to express my thanks and gratitude to my
family, and in particular, my parents, who have believed in me, helped me
to pursue my dream and, enabled me to become the person I am today. My
thanks also go to my parents-in-law for their understanding and supports.
The biggest "thank you" goes to my beloved wife, Saeedeh, who sacrifices
herself to let me finish my PhD. Thank you for all support, encouragement,
and love you have unconditionally given me especially during this extremely
difficult time in our lives. Words can not express my gratitude for all what
you have done, may God reward you in a thousand folds, Saeedeh. My finall
thanks go to my little boy, Amirali, who has brought joyfull time to our family.

Sobhan Niknam
June, 2020
Leiden, The Netherlands

	final-cover
	thesis
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Design Requirements for Embedded Streaming Systems
	Trends in Embedded Streaming Systems Design
	Multi-Processor System-on-Chip (MPSoC)
	Model-based Design

	Two Important Design Challenges
	Research Questions
	Phase 1: Analysis
	Phase 2: Resource Optimization
	Phase 3: Implementation

	Research Contributions
	Generalized Strictly Periodic Scheduling Framework
	Algorithm to Find an Alternative Application Task Graph for Efficient Utilization of Processors
	Energy-Efficient Periodic Scheduling Approach
	MADF Implementation and Execution Approach

	Thesis Outline

	Background
	Dataflow Models of Computation
	Cyclo-Static/Synchronous Data Flow (CSDF/SDF)
	Mode-Aware Data Flow (MADF)

	Real-Time Scheduling Theory
	System Model
	Real-Time Periodic Task Model
	Real-Time Scheduling Algorithms

	HRT Scheduling of Acyclic CSDF Graphs
	HRT Scheduling of MADF Graphs

	Hard Real-Time Scheduling of Cyclic CSDF Graphs
	Problem Statement
	Contributions
	Related Work
	Motivational Example
	Our Proposed Framework
	Existence of a Strictly Periodic Schedule
	Deriving Period, Earliest Start Time, and Deadline of Tasks

	Experimental Evaluation
	Conclusions

	Exploiting Parallelism in Applications to Efficiently Utilize Processors
	Problem Statement
	Contributions
	Related Work
	Background
	Unfolding Transformation of SDF Graphs
	System Model

	Motivational Example
	Proposed Algorithm
	Experimental Evaluation
	Homogeneous platform
	Heterogeneous platform

	Conclusions

	Energy-Efficient Scheduling of Streaming Applications
	Problem Statement
	Contributions
	Related Work
	Background
	System Model
	Power Model

	Motivational Example
	Applying VFS Similar to Related Works
	Our Proposed Scheduling Approach

	Proposed Scheduling Approach
	Determining Operating Modes
	Switching Costs oHL, oLH, eHL, eLH
	Computing QH and QL
	Memory Overhead

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions

	Implementation and Execution of Adaptive Streaming Applications
	Problem Statement
	Contributions
	Related Work
	K-Periodic Schedules (K-PS)
	Extension of the MOO Transition Protocol
	Implementation and Execution Approach for MADF
	Generic Parallel Implementation and Execution Approach
	Demonstration of Our Approach on LITMUSRT

	Case Studies
	Case Study 1
	Case Study 2

	Conclusions

	Summary and Conclusions
	Bibliography
	Summary
	Samenvatting
	List of Publications
	Curriculum Vitae
	Acknowledgments

