
Automatic Platform Synthesis and
Application Mapping for

Multiprocessor Systems On-Chip

MASTER’S THESIS

by

Kai Huang Ji Gu
kkhuang@liacs.nl jgu@liacs.nl

Leiden Embedded Research Center
LIACS - Leiden University

Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Supervisors: Dr.ir. Todor Stefanov (LIACS - Leiden University)
Prof.dr.ir. Ed F. Deprettere (LIACS - Leiden University)

The work in this thesis was carried out in the context of the Artemisia project supported by
PROGRESS/STW.

Copyright c©2005 by Kai Huang & Ji Gu, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form or by any means, electronic or mechanical, including photocopy-
ing, recording or by any information storage and retrieval system, without permission from the
author.

Printed in the Netherlands

Contents

Acknowledgments vii

1 Introduction 1

1.1 Problem Description . 2

1.2 Solution Approach . 4

1.3 Related Work . 7

1.4 Research Contributions . 10

1.5 Thesis Organization . 10

2 Multiprocessor Platform Synthesis and Application Mapping 13

2.1 Application Modeling . 14

2.1.1 Kahn Process Networks . 14

2.1.2 The COMPAAN compiler . 15

2.1.3 Mapping Example . 16

2.2 Synthesis of Multiprocessor Platform for KPN 18

2.2.1 Platform Modeling . 18

2.2.2 Synthesis Algorithm . 20

2.2.3 Target Platform Implementation . 22

2.3 Programming Multiprocessor Platforms . 23

2.3.1 What is Programming . 23

2.3.2 Program Modeling . 23

2.3.3 Program Code Generation . 24

3 Multiprocessor Platforms FPGA Prototyping 27

iv Contents

3.1 Target FPGA Platform . 28

3.2 Multiprocessor Platform Implementation on FPGA 28

3.2.1 MicroBlaze Soft Processor, Local Memory and Memory Controller . . 28

3.2.2 Hardware FIFO Buffer . 29

3.2.3 Bus connection . 30

3.2.4 FIFO Controller . 32

3.3 Programming Multiprocessor Platform and Code Generation 34

3.4 Project Generation for Xilinx Platform Studio 36

3.4.1 Xilinx Platform Studio project Specification 36

3.4.2 The Project Suite . 38

3.4.3 Visitor Hierarchy . 38

3.5 Discussion and Conclusion . 40

4 Case Studies 43

4.1 System Design Flow Using COMPAAN/ESPAM Tool Chain: a Matrix Multipli-
cation Case Study . 43

4.2 Exploring the Performance of Alternative KPN Instances: an M-JPEG Case Study 48

5 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain 55

5.1 XPS Project Generation . 55

5.1.1 Application Source Code . 56

5.1.2 KPN Specification and XPS Project Generation 57

5.1.3 MHS File . 60

5.1.4 Processor Program Code . 61

5.1.5 Linker Script . 61

5.1.6 Memory Map . 62

5.2 Importing the Project to XPS . 64

5.3 Custom Modification . 64

5.3.1 Hardware Modifications . 65

5.3.2 Program Code Modifications . 67

5.4 XPS project Execution and Results . 68

5.4.1 How to Get Results . 70

5.4.2 IP Cores for Debugging . 71

5.5 Conclusion and Discussion . 71

Contents v

6 Summary and Conclusions 73

Appendix 76

A XMP File 77

A.1 XMP file Global field . 77

A.2 XMP file Processor Instance Specific . 78

A.3 XMP file for Fully Pipelined M-JPEG System 79

B MHS File for M-JPEG System 81

Bibliography 85

Acknowledgments

This thesis is the result of a research work performed at the Leiden Embedded Research Center
of the Leiden Institute of Advanced Computer Science (LIACS) - Leiden University. We would
like to thank all the people who guided and supported us during our research.

First of all, we would like to thank Prof. Ed Deprettere for giving us the opportunity to do our
Master’s research at the Leiden Embedded Research Center.

Special thanks to our supervisor Todor Stefanov, who provided us with the most support and
guidance. He was always willing to spend time helping us to solve difficult problems related
to our research work presented in this thesis. Without him we could not have overcome all the
difficulties we found along our research path.

Kai Huang & Ji Gu
Leiden, The Netherlands
August 30, 2005

Chapter 1
Introduction

For modern embedded systems, the complexity of embedded applications has reached a point
where the performance requirements of these applications can no longer be supported by em-
bedded system architectures based on a single processor. Meanwhile, the Moore’s law predicts
exponential growth over time of the number of transistors that can be integrated in an IC. It
predicts that chips in 2010 will count over 4 billion transistors, operating in the multi-GHz
range [1]. Therefore, the emerging embedded System-on-Chip platforms are increasingly be-
coming multiprocessor architectures. Multiprocessors can provide enhanced processing effi-
ciency by exploiting parallelism between loops, functions, or even coarse-grained tasks. As in
the case of a uniprocessor architecture, multiprocessor architectures are much more efficient
when each of the processors can be customized to a specific task it performs. Moreover, there is
a tendency that the multiprocessor Systems-on-Chip (MPSoCs) need to support ever-increasing
functionality and complexity of applications while being subject to stringent performance and
power consumption requirements. Also, MPSoCs need to be flexible enough that the design
can be re-used between different product variants or versions, and easily modified in response
to bugs, market shifts, or user requirements, during the design cycle and even after production.

All these lead to the fact that existing design methodologies and tools can no longer keep up with
the trends because they cannot deal with such complex and highly flexible systems. Without a
disciplined design methodology, system designers will have to resort to ad hoc techniques to
implement concurrent applications on complex multiprocessor platforms, which is a doubtful
proposition. We believe that new design methodologies should be introduced with regard to the
following two concepts and approaches:

• First, the sequential languages widely used to specify applications will no longer match
the increasing amount of parallelism that will be enforced by multiprocessor platforms.
Thus, there is a need for a parallel language or more realistic, a translator to convert
sequential specifications into parallel specifications.

• Second, methods have to be designed to map application models onto platform models.
This includes techniques and tools to automatically and systematically map applications
onto hardware platforms, meeting severe system performance and cost requirements, in a
relatively short amount of time.

2 Introduction

In the system design community, a few challenges are agreed upon in order to master the ever
growing complexity of Embedded Systems-on-Chip. The first challenge is the application spec-
ification. Applications have to be specified in some parallel language and modeled at a high
level of abstraction. Currently, applications are specified using sequential programming lan-
guages like C or Matlab. The lack of appropriate methodology and tool support for extracting
and modeling of concurrency in its various forms is an essential limiting factor in commonly
used programming languages to express design complexity and to exploit parallelism available
in applications. The second challenge is the platform specification. Platforms have to be spec-
ified in a parameterized form and modeled at a high level of abstraction. Today, designers are
familiar with working at levels of abstraction that are too close to implementation. Therefore,
sharing design components and verifying designs before prototypes are built is nearly impossi-
ble. For most designers the highest level of abstraction of their design (platform) is the register
transfer level (RTL). The RTL level is clearly too low for complex platform design. The third
challenge is the mapping. Methods have to be provided to systematically and automatically
map the application models onto platform models in terms of system performance and cost in a
relatively short amount of time.

The three challenges presented above are closely related and equally important. Each challenge
has its own specific problems that have to be solved. The problems further discussed in this
thesis and the proposed solutions are related to the second and third challenge. This thesis
focuses on methods, techniques, and tools for systematic and automated mapping of a parallel
application model onto multiprocessor platforms.

This chapter is further organized as follows. In Section 1.1, we state the actual problem that we
want to solve. A description of the approaches and techniques we propose to solve this problem
is given in Section 1.2. Section 1.3 gives a brief overview of the related work and Section 1.4
summarizes the main contributions of this thesis. Finally, Section 1.5 describes the organization
of this thesis.

1.1 Problem Description

Applications in the realm of high throughput multimedia, imaging, and digital signal process-
ing usually consist of a variety of complex algorithms, such as FFT, DCT, image/video codecs,
and modems. They perform highly repetitive arithmetic tasks and demand extremely high pro-
cessing performance on the platforms. To achieve this performance, the emerging embedded
systems on a chip for applications in this realm, have to be multiprocessor platforms, thereby
allowing task-level parallelism available in applications to be exploited efficiently.

Fortunately, the state-of-the-art technologies allow us to build very complex multiprocessor
platforms. Three examples are the Picochip from PicoChip [2], the VirtexII-Pro from Xil-
inx [3], and the SpaceCAKE architecture [4] from Philips. The PicoChip combines 308 simple
RISC processors on a single die. Xilinx combines FPGA technology with four embedded Pow-
erPC processors on their VirtexII-Pro chips. The SpaceCAKE architecture is a homogeneous
network of tiles where each tile consists of a heterogeneous mix of memories, CPUs like MIPS
or ARM, DSPs, and hardware IP cores. An abstract model of such platforms is shown in the
bottom part of Figure 1.1. This model is composed of fully programmable components (CPUs),

1.1 Problem Description 3

reconfigurable components (RPUs), and dedicated hardware blocks (IP cores). These compo-
nents are linked via some kinds of communication structure, e.g., high speed on-chip bus or
multiple buses. This type of multiprocessor platforms implies that task-level parallelism can be
exploited to satisfy the performance needs of applications.

DIFFICULT to specifyEASY to specify

DIFFICULT to map

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

C
P

U

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

R
P

U

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

IP
 co

re

Application

Parallel

Application Specification

P1

S2

P3

Sink

P4

P2

S1

Translator
for j = 1:1:N,
[x(j)] = Source1();

end
for i = 1:1:K,
[y(i)] = Source2();

end
for j = 1:1:N,

for i = 1:1:K,

[y(i), x(j)] = F (y(i), x(j));

end
end
for i = 1:1:K,

[Out(i)] = Sink (y(I));
end

Sequential

Application Specification

for j = 1:1:N,
[x(j)] = Source1();

end
for i = 1:1:K,
[y(i)] = Source2();

end
for j = 1:1:N,

for i = 1:1:K,

[y(i), x(j)] = F (y(i), x(j));

end
end
for i = 1:1:K,

[Out(i)] = Sink (y(I));
end

Communication Structure

Systematic and
Automated mapping

How to
 m

ap
 ?

Figure 1.1: The mapping problem.

However, achieving high performance when mapping applications onto multiprocessor plat-
forms currently depends very much on the expertise of the hardware designer, who has to pos-
sess an accurate knowledge of the underlying hardware platforms and applications. Moreover,
the mapping of applications onto this type of platforms is in most cases done manually, which
leads to a slow, difficult, and error prone design process. Embedded system designers are faced
with expanding array of challenges in both application and platform design. One challenge is
the task of modeling the concurrency in an application. Another is the mapping of the con-
current model to multiprocessor platforms. Therefore, methodologies need to be developed that
allow efficient and effective mapping of a class of multimedia and signal processing applications
onto multiprocessor platforms in an automated and systematic way.

Mapping applications onto multiprocessor platform is difficult because the way an application
is specified does not match the way a multiprocessor platform operates. This mapping prob-
lem is shown in the left part of Figure 1.1. The multiprocessor platform has components that
can run concurrently, since the control is distributed over the components and the memory is
distributed as well. To satisfy the high performance needs of applications, such platform must
be programmed in a way that all components that comprise the multiprocessor platform run as
concurrently as possible. This implies that the parallelism available in an application must be
revealed and exploited efficiently. However, most of the applications are typically specified as
sequential programs using a high-level programming language such as C/C++ or Matlab. Such
specifications do not reveal parallelism due to their inherent sequential nature. The sequen-
tial model of computation makes it easy to reason about a program, as only a single memory

4 Introduction

and a single thread of control need to be considered. But the single memory and single thread
of control are contradictory to the need for distributed control and distributed memory for the
platform. So, an abstract concurrent model is needed to reveal the implicit concurrency of the
application. A translator, such as COMPAAN [5], can be used to convert the sequential applica-
tion to an abstract concurrent model, which is show in the right part of Figure 1.1. This model
consists of several concurrent tasks making the task-level parallelism available in an application
explicit.

Now the challenge is how to map the concurrent model onto a multiprocessor platform. The
Moore’s law has described the exponential growth over time of the number of transistors that
can be integrated in a single chip. The intrinsic computational power of a chip must not only be
used efficiently and effectively, but also the time and effort to design a system containing both
hardware and software must also remain acceptable. Unfortunately, current platform design
methodologies are still based on Register Transfer Level (RTL) platform descriptions created
in Verilog/VHDL by hand. Such methodologies were effective in the past. Applications and
platforms used in many of today’s new system designs are so complex that traditional design
practices are now inadequate, because creating RTL descriptions of complex multiprocessor
platforms becomes error-prone and time-consuming. Moreover, the complexity of high-end,
computationally intensive applications in the realm of high throughput multimedia, imaging,
and digital signal processing enlarges the difficulties associated with the traditional hand-coded
RTL design. At the same time, using traditional logic simulation to verify a large design repre-
sented in RTL is computationally expensive and extremely slow.

From all these reasons, we can conclude that the bottleneck is the use of a RTL system speci-
fication as a starting point of multiprocessor system design methodologies. Although the RTL
system specification has the advantage that the state of the art synthesis tools can use it as an
input to automatically implement a system, the system design community believes that a system
should be specified at a higher level of abstraction called System-Level. This is the only way to
solve the problems caused by the low level RTL specification discussed above. Moving up from
the detailed RTL specification to a more abstract System-Level specification opens a gap which
we call Implementation Gap. Indeed, on the one hand the RTL system specification is very de-
tailed and close to an implementation, thereby allowing automated system synthesis path from
RTL system specification to implementation. This is obvious if we consider the current com-
mercial synthesis tools where the RTL-to-netlist synthesis is very well developed and efficient.
On the other hand, the complexity of the today’s systems forces us to move to higher levels
of abstraction when designing a system, but currently we do not have mature methodologies,
techniques, and tools to go back from the high-level system specification to an implementation.
Therefore, the Implementation Gap has to be closed by finding a systematic and automated way
to effectively and efficiently convert a System-Level specification to a RTL-Level specification.

1.2 Solution Approach

In this section we give an overview of the solution approach and the techniques we have devel-
oped to close the Implementation Gap, described in Section 1.1, in a particular way. Figure 1.2
shows our approach integrated in a system design flow.

1.2 Solution Approach 5

ESPAM tool

Commercial Synthesizer

2

3

Library
IP Cores

Program code
for processors

HW description
of IP cores

Platform topology
description

Auxiliary
information

Application
Specification

as KPN

P1

P3

P2

P4

Mapping
Specification

Platform
Specification

FPGA
Eexecutable (P1|P2)

Microprocessor
Executable (P4)
Microprocessor

Target Platform
Executable (P3)
Microprocessor

System-Level
Specification

Gate-Level
Specification

RTL-Level
Specification

Application
described in Matab

COMPAAN compiler1

Figure 1.2: System design flow.

There are three levels of specifications in our system design flow. They are System-Level speci-
fication, RTL-Level specification, and Gate-Level specification.

On the top of Figure 1.2 is the System-Level specification, which consists of three parts:

• Platform Specification: It specifies the topology of a platform using generic parameter-
ized system components. There are two types of components, namely processing compo-
nents and communication components. The processing components are processor compo-
nent, IP component, memory component, and controller component. The communication
components are FIFO component, crossbar component, and bus component.

• Application Specification: It specifies an application as a Kahn Process Network (KPN)
where a number of concurrent processes are connected in a network and they commu-
nicate data via FIFO channels. The KPN specification reveals the task-level parallelism
available in the application.

• Mapping Specification: It specifies the relation between all processes and FIFO channels
of Application Specification and all components of Platform Specification, i.e., for each

6 Introduction

processing component in Platform Specification which processes from Application Spec-
ification are mapped onto it as well as for each communication component in Platform
Specification which FIFO channels are mapped onto it.

In this thesis, we consider only one-to-one mapping, which means the following: First, the
number of processor components in Platform Specification is equal to the number of processes
in Application Specification, a process is mapped onto only one processor, and each proces-
sor has only one process mapped onto it. Second, a channel in Application Specification is
mapped onto a FIFO component in Platform Specification and each FIFO component has only
one channel mapped onto it, so that all the connections are point-to-point connections. Since we
consider the one-to-one mapping described above, Platform Specification and Mapping Speci-
fication are straightforward and ESPAM derives them automatically according to the topology
of the KPN described in Application Specification. Therefore, currently the input of ESPAM is
only Application Specification.

To reveal the implicit parallelism inside an application, a concurrent model is needed to explic-
itly describe the task-level parallelism in Application Specification. Also, the data dependencies
and the communications among tasks are needed to be explicit via distributed memory buffers
in the model. There are many existing parallel models of computation [6] [7]. In this thesis
we have chosen the Kahn Process Network (KPN) model of computation [8] because its oper-
ational semantics are simple, yet general enough, to specify conveniently stream-oriented data
processing that fits nicely with the application domain of high throughput multimedia and sig-
nal processing applications described in Section 1.1. We describe the KPN model in detail in
Section 2.1. Although, the KPN parallel model of computation is very suitable for multipro-
cessor platforms mapping, specifying an application manually using such a model is a difficult,
error prone and time consuming process. To facilitate the migration from a sequential speci-
fication of an application to an equivalent KPN specification, we use the COMPAAN compiler,
i.e., Step 1 in Figure 1.2. This compiler, introduced in [5] and further developed in [9] [10],
fully automates the transformation of Matlab code into KPN specification. The applications that
COMPAAN can handle have to be specified as parameterized static affine nested loop programs,
which is a subset of the Matlab language. This conversion is fast and correct by construction.

Central to the design flow is our ESPAM tool, which is shown in Step 2 in Figure 1.2. Our
ESPAM tool is designed to bridge the gap between the System-Level specification of a system
and the RTL-Level specification of a system. The state-of-art RTL-based design approaches
are error-prone and time-consuming procedures which are lagged behind the design complex-
ity because of the continuing exponential growth of the on-chip transistor count. By using our
ESPAM tool, a correct-by-construction mapping process is achieved by systematically and auto-
matically converting a System-Level specification to a RTL-Level specification. This allows the
design process to be moved up to a higher abstraction level and later this provides a systematic
and automated path to an implementation. ESPAM first converts the given KPN specification
into an equivalent network of processors in which no information on the target physical plat-
form is taken into account. The processors network is composed of generic parameterized
system components. Then ESPAM instantiates the generic system components by setting pa-
rameters based on the target physical platform, by which an elaborate platform specification is
obtained for an implementation on the target platform. Finally, ESPAM generates program code
files for each processor in the processors network. Detailed description of ESPAM is given in

1.3 Related Work 7

Chapter 2 and Chapter 3.

The output of ESPAM, namely a RTL-level specification of a system is a model that can ade-
quately abstract and export the key features of the target programmable platform at the register
transfer level. It consists of four parts:

• Platform topology description defines in great detail the processors network (multipro-
cessor platform) in which all generic parameterized system components are used as well
as the connections between these components are specified. It has the same topology
as Platform Specification in the System-Level specification. The difference is that it de-
scribes the network in a lower level with more details.

• Hardware descriptions of IP cores contains all predefined IP cores as well as reconfig-
urable IP cores used in Platform topology description. ESPAM selects the predefined IP
cores from Library IP Cores, see Step 2 in Figure 1.2, and generates the reconfigurable
IP cores according to the KPN specification of an application.

• Program codes for processors are program source code files for each processor compo-
nent in the processors network. To execute an application on the synthesized multiproces-
sor platform, the platform has to be programmed, which means writing program source
code files for each processor in the platform using high level programming languages like
C/C++. ESPAM generates source code files in C for each processor component according
to the behavior of the corresponding process in the KPN.

• Auxiliary information contains supply files which give tight control of the overall specifi-
cations, such as defining precise timing requirements and prioritizing signal constraints.

With the above descriptions, a commercial synthesizer can convert a RTL-Level specification
to a Gate-Level specification, thereby generating the target platform gate-level netlist, see the
bottom part of Figure 1.2. This Gate-Level specification obtained in Step 3 of our system design
flow is actually the system implementation.

The ESPAM tool together with the COMPAAN compiler, allows a fully automated system design
flow that maps sequential applications written in Matlab onto multiprocessor platforms. This
automation significantly reduces the design time of a system as well as possible errors in the
mapping process are eliminated. Using our system design flow, the design focus can be moved
up to the high System-Level or even to more abstract level, namely the sequential application,
without sacrificing the possibility for automatic and systematic design implementation. Thus,
our design flow closes in a particular way the Implementation Gap described in Section 1.1.

1.3 Related Work

Systematic and automated application-to-architecture mapping has been widely studied in the
research community.

The closest work to our work is the LAURA tool [11] which has been developed at the Lei-
den Embedded Research Center (LERC). LAURA accepts a KPN specification and converts

8 Introduction

this KPN specification together with predefined non-programmable IP cores into synthesizable
VHDL code. The KPN is generated by COMPAAN from an application described as a Mat-
lab program. The IP cores are needed preemptively as they implement the functionality of the
functions used in the initial Matlab program. On the contrary, our ESPAM tool map KPN spec-
ifications to multiprocessor platforms. The functions used in the initial Matlab program can
be mapped to programmable processor cores and run on top of them as software, which gives
much more flexibility in the system implementation.

An automatic logic synthesis method has been presented in [12]. This automated synthesis is
focused on the mapping of the functionality of an asynchronous logic directly to the FPGA. A
hardware description language called CHP is used to describe the sequential program. At the
same time, their mapping is limited to a pipelined architecture. On the contrary, in our design
flow, more abstract programming languages are supported, e.g., C and Matlab. Besides the
pipelined architecture, more flexible parallel system architectures can be mapped to the target
platform.

In Philips Research Laboratory, a top-down design methodology called C-HEAP [13] is intro-
duced which starts with a functional description and proceeds to a silicon implementation in an
incremental way. Seven abstraction levels that are traversed throughout the design process have
been identified. It also proposes an architecture template based on distributed shared memory
that allows for the use of a variety of processing devices. Our design flow is similar to this.
We introduce four levels, e.g., application level, system level, RTL level and Gate level, and we
traverse them from the application level to system level using COMPAAN, from system level
to RTL level using ESPAM then to Gate level by a commercial synthesis tool. Another major
difference is that our platform model uses distributed memory instead of a shared memory.

Another similar work has been presented in [14]. This work is focused on synthesis of appli-
cation specific multiprocessor System-on-Chip architectures for process networks of streaming
applications. Our work is close to this, but the key difference is that they map the channels of
the KPN model onto shared memories. Therefore, possible data communication conflicts need
to be estimated and taken into account in the mapping process. In contrast, in our methodology,
the communication is distributed over hardware FIFO buffers. There is no notion of a shared
memory that has to be accessed by multiple processors. Therefore, resource contention does
not occur.

A few projects deal with high level analysis of systems on chip, such as ZIPPY [15] and AEthe-
real [16]. The ZIPPY project follows a systematic design methodology to investigate architec-
tures for dynamically reconfigurable processors for the domain of handhelds and wearables. It
intends to design a domain-specific, hybrid, dynamically reconfigurable processor. It is a pro-
cessor co-processor architecture optimized on instruction level in which the most used instruc-
tion set is executed by a co-processor. The AEthereal Network-On-Chip project tries to offer
guaranteed services to obtain a QoS-based design by using a mix of time-division-multiplexed
circuit switching and packet switching. A network protocol stack is adopted to model the com-
munication among different services. All these projects present novel ways for exploring em-
bedded system on chip at system level. However, there is still no runnable prototyping system,
let alone systematic and automated implementation path, therefore all candidate designs can
only be verified by simulation.

There are a number of exploration environments, such as SPADE [17], Sesame [18], MMM [19]

1.3 Related Work 9

and Polis [20], that facilitate flexible system-level design space exploration by providing sup-
port for mapping a behavioral application specification to an architecture specification. SPADE
is a method and tool for architecture exploration of heterogeneous signal processing systems.
SPADE supports the construction of abstract executable models for evaluation of alternative
architectures by modeling applications and architectures as well as capturing the mapping of
application models onto architecture models on the system level by using a library of generic
building blocks. The Sesame project, which builds up on the ground-laying work of Spade,
uses Y-Chart Modeling Language (YML) to describe the application model and uses the Pearl
discrete-event simulation language [21] to describe the architecture model. A mapping layer
is developed to map the application model onto the resources in the architecture model. In the
MMM project, a three-stage process network refinement-based approach has been proposed
for heterogeneous multiprocessor mapping of process networks. All these projects offer trace-
driven co-simulation of application and architecture models, yet there is still no runnable pro-
totype. Another problem in these three approaches is that modeling the application as a process
network and mapping have to be done manually. The Polis environment provides a totally auto-
mated flow from high-level specifications such as ESTEREL, down to performance optimized
machine code for a reconfigurable target architecture. It uses an intermediate model of compu-
tation called Extended Finite State Machines. This model is well suited for control dominated
applications, but less for stream oriented applications which is the application domain targeted
by our system design approach.

A lot of multiprocessor platform manufacturers offer RTL-level design tool chains. Three ex-
amples are the picoTools from PicoChip [2], the EDK and Platform Studio from Xilinx [3], and
the SpaceCAKE [4] environment from Philips. PicoChip’s newly picoArray processor, namely
PC102 has 308 processors. It divides tasks across multiple, independent, processors in the array.
In picoTools, the relationships and block diagram structure among different tasks is specified in
structural VHDL. Programmers can use ANSI C to program the individual elements. For time
critical blocks, the programmer needs to write an assembly code. The Xilinx Embedded Devel-
opment Kit (EDK) and the Platform Studio form a comprehensive suite which allows designers
to configure a HW/SW platform including automatic generation of device drivers, application
code, and Board Support Packets (BSPs) for their VirtexII-Pro chips which combine FPGA
technology with four embedded PowerPCs. The SpaceCAKE environments uses YAPI [22] as
modeling language for its homogeneous multiprocessing platform. The above tools move up
the design process from the gate level to the RTL level, which reduces the design time and com-
plexity. However, the RTL level is still too low for future complex system design. Therefore,
the above tools can be used as a back-end to ESPAM, see Step 3 in Figure 1.2.

In the embedded design industry, there have been a few attempts to find a path that takes high-
level programming language specification of applications and automatically transforms them
into efficient hardware designs. The CriticalBlue [23] has developed a tool called Cascade
that automatically generates processor-coprocessor system at RTL level and a testbench from
compiled executable software code. This synthesis tool extracts parallelism directly from the
compiled code exploiting the full power of standard software languages such as C/C++. Tensil-
ica’s XPRES Compiler [24] is another synthesis tool that creates tailored processor descriptions
for the Xtensa processor from native C/C++ code. Designers can use the XPRES compiler
to synthesize highly optimized processor RTL codes directly from C/C++ reference code or
algorithmic specifications. The Celoxica [25] has a compiler, i.e., Agility which provides be-

10 Introduction

havioral design and synthesis with SystemC. It can automatically generate IEEE compliant RTL
(VHDL and Verilog HDL) from SystemC source code. Mentor Graphics has also developed a
synthesis tool, i.e., Catapult C [26]. The Catapult C uses industry-standard C++ source code
augmented with SystemC data types, which allows specific bit-widths to be associated with
variables and constants, to employ models in a non implementation-specific representation.
AccelChip’s product [27], namely AccelChip DSP Synthesis provides an automated implemen-
tation and verification flow for DSP algorithms, developed using Matlab and targeting ASIC
or FPGA devices. The final output is a synthesizable RTL VHDL or Verilog model optimized
for the specified device and automatically verified against the initial Matlab source. The above
mentioned tools focus on generating optimized hardware for system that are described using
hight-level programming languages. However, the generated hardware is limited to either a sin-
gle processor system or a processor-coprocessor system, hence these tools cannot fully exploit
the task-level parallelism existing in an application.

1.4 Research Contributions

The work presented in this thesis focuses on systematic synthesis of application-specific multi-
processor platforms and automated mapping of applications onto these platforms. We make the
following research contributions:

• We bridge the gap between the system-level design and the RTL-level design in a par-
ticular way. We present a novel way of mapping an application onto a multiprocessor
platform. Using our approach, an application which is described in a system-level speci-
fication as KPN can be systematically and automatically converted to a RTL-level specifi-
cation for a multiprocessor platform. The automated and systematic approach is correct-
by-construction and the automation reduces significantly the design time of a system and
possible errors in the mapping process are eliminated. Therefore, the design focus can
be move up to the system level and even to the sequential application. The proposed
mapping approach has been implemented as part of a software tool called ESPAM.

• We have implemented the proposed system design method in the context of a commercial
configurable soft processor design flow (using MicroBlaze embedded soft processor of
Xilinx Inc.) and prototyped the multiprocessor platform on an FPGA-based board. The
benefit of using a soft processor core is the ability for designers to build systems with
multiple processors using the same FPGA. The number of processors a designer can
incorporate within any given FPGA is only limited by the size of the FPGA itself.

1.5 Thesis Organization

The remaining part of this thesis is organized as follows. Chapter 2 presents our approach for
systematic synthesis of multiprocessor platforms and automatic mapping of applications. This
chapter describes in great detail the methods and techniques we have developed and used. First,
we describe the way to model an application specified as a sequential program. Second, we

1.5 Thesis Organization 11

present our approach for synthesizing multiprocessor platforms for KPN specifications. The
synthesis process consists of several steps, which are selection of reusable components, synthe-
sis of communication structure, mapping of processes of a KPN onto processor components,
and mapping channels onto FIFO components. Finally, we explain how to program the multi-
processor platforms.

Chapter 3 explains how we prototype our multiprocessor platforms onto a Field Programmable
Gate Array (FPGA) chip. To prototype a multiprocessor platform onto an FPGA, we describe
how to implement each component of the platform on the FPGA chip. Specifically, as we use a
single Xilinx Virtex-II Pro FPGA for prototyping, we use configurable MicroBlaze embedded
soft processor core for each processor in the platform. For the hardware FIFO buffers, we
instantiate predefined generic FIFO IP cores. Besides, the connection between the MicroBlaze
soft processor cores and the hardware FIFO buffers, the control mechanism of the FIFOs will
also be elaborated.

In Chapter 4 we present two case studies that we conducted in order to validate and evaluate
our approach presented in Chapter 2 on real-life applications. We analyze the results obtained
from the experiments performed in these case studies.

In Chapter 5 we give a tutorial showing how to build a multiprocessor embedded system using
our COMPAAN/ESPAM tool chain and the commercial synthesis tool Xilinx Platform Studio.
In the tutorial, we use a complex application, namely an M-JPEG encoder as our example to
explain each step of our design flow in detail. In the final chapter we give some conclusions and
recommendations for future work.

12 Introduction

Chapter 2
Multiprocessor Platform Synthesis and
Application Mapping

In Chapter 1 we discussed that in order to map efficiently sequential applications onto multi-
processor platforms, we first need to specify them as Kahn Process Networks (KPN). This is
because on the one hand KPN specifies an application as a composition of concurrent process
where the computation, control, and memory are distributed. On the other hand, the multi-
processor platforms have components that run concurrently, i.e, the computation and control
are distributed over the components. Thus the KPN parallel processing model matches the
multiprocessor platforms very well, thereby mapping of KPN specifications onto multiproces-
sor platforms can be done in a systematic and automated way. We discussed that we can use
the COMPAAN compiler [5] [9] [10] to facilitate the migration from a sequential application
specification to an equivalent KPN specification. Also, we proposed a systematic approach im-
plemented as part of the ESPAM tool to automatically synthesize multiprocessor platforms and
map applications onto the platforms.

In this chapter we present our approach and system design flow depicted in Figure 1.2. We
elaborate in more details on the techniques and tools integrated in our flow in order to show how
for an application written in Matlab, a Kahn Process Network specification can automatically
be derived and systematically mapped onto a multiprocessor platform. To make the design flow
specific, we demonstrate our design flow in the context of implementing a matrix multiplication
application onto a multiprocessor platform. In Section 2.1, we first describe the KPN model of
computation for specifying applications. We introduce the COMPAAN compiler that we use as
a tool to automatically convert sequential programs written in Matlab into KPN specification.
Then in Section 2.2, we present our systematic approach for automatic synthesis of application-
specific multiprocessor platforms for applications expressed as KPNs. The synthesis process
involves selection of computation modules and communication components from the platform
component library defined in ESPAM. We construct the multiprocessor platform by instantiating
a processor for each process and a hardware FIFO buffer for each channel in the KPN model.
This leads to multiprocessor platform that has the same topology as the input KPN model of
the original application. In Section 2.3, we discuss the programming of the multiprocessor
platform. Each process in the KPN is specified as a sequential program that is modeled as
a syntax tree by ESPAM. A software engineering technique called visitor, implemented in

14 Multiprocessor Platform Synthesis and Application Mapping

ESPAM, is able to traverse such a tree and generate a program code for each processor in the
multiprocessor platform.

2.1 Application Modeling

As we map an application onto a multiprocessor platform, we have to expose task-level par-
allelism available in the application and make communications explicit. This means that the
sequential application has to be specified as a parallel model of computation (MOC) in order
to be mapped onto the multiprocessor platform in a systematic and efficient way. In our sys-
tem design approach, we use the Kahn Process Networks [8] (KPNs) model of computation for
application specification.

2.1.1 Kahn Process Networks

The KPN model of computation assumes a network of concurrent autonomous processes that
communicate in a point-to-point fashion over unbounded FIFO channels, using a blocking-read
synchronization primitive. A simple example of the KPN model is shown in Figure 2.1. The
three concurrent processes A, B and C are connected via FIFO channels.

Figure 2.1: A simple KPN model.

Each process in a Kahn Process Network is specified as a sequential program that executes
concurrently with other processes. There are three primitives that are executed by each process
upon execution of the KPN model:

• Read primitive for communication events. This primitive is used to read data from a FIFO
channel via a process input port.

• Write primitive for communication events. This primitive is used to write data to a FIFO
channel via a process output port.

2.1 Application Modeling 15

• Execute primitive for computation events. This primitive performs the actual data pro-
cessing to implement the program.

These primitives can be demonstrated by the KPN example in Figure 2.1. Process A reads data
from its input port, executes the program and then writes the result data to FIFO1 and FIFO2
connected to process C and process B, respectively. Process B has to read data from FIFO2
before it executes its program, and then writes the result to FIFO3 connected to process C. For
the process C, it first reads data from FIFO1 and FIFO3, then executes the program, and finally
writes the result to its output port.

A KPN has the following characteristics:

• The control is completely distributed to the individual processes, there is no global sched-
uler present. As a consequence, partitioning a KPN over a number of processors is a
simple task.

• The exchange of data is distributed over the FIFO channels. There is no notion of a global
memory that has to be accessed by multiple processes. Therefore, resource contention
does not occur.

• Processes run autonomously and synchronize via a blocking read mechanism. When a
KPN specification is mapped onto a multiprocessor platform, the blocking write may
occur since the FIFO buffers in the platform are bounded. The blocking Read/Write
primitives are easy to be implemented in hardware and software. They are used as a
synchronization mechanism in the multiprocessor platform.

The KPN model fits nicely with signal processing applications as it conveniently models stream
processing and as it guarantees that no data is lost. Further, the execution of a KPN is determin-
istic, meaning that for a given input always the same output is produced and the same workload
is generated, irrespective of the execution schedule. The key characteristic of the KPN model
is that it specifies an application in terms of distributed control and distributed memory, which
allows us to map the application onto the multiprocessor platform in a systematic and efficient
way.

2.1.2 The COMPAAN compiler

Although the KPN model of computation is very suitable for multiprocessor platform mapping,
specifying an application manually using such a model is a difficult, error prone and time con-
suming process. To facilitate the migration from a sequential specification of an application to
an equivalent KPN specification, we use the COMPAAN compiler.

The COMPAAN compiler [5] [9] [10] is a methodology and tool developed at the Leiden Em-
bedded Research Center, The Netherlands. It automates the transformation of DSP applications
written in Matlab into Kahn Process Networks. The COMPAAN compiler framwork consists of
three tools. The first tool transforms the initial Matlab code into single assignment code (SAC),
which resembles the dependence graph (DG) of the initial nested loop program. The second
tool converts the SAC into a Polyhedral Reduced Dependence Graph (PRDG) data structure,

16 Multiprocessor Platform Synthesis and Application Mapping

which is a compact mathematical representation of the DG in terms of polyhedra. The third
tool converts the PRDG into a process network by generating a process for each node and a
FIFO channel for each edge in the PRDG. The parallel processes communicate with each other
according to the data-dependency given in the DG.

The COMPAAN compiler fully automates the transformation of an application written in Matlab
into KPN specifications. The applications that this tool can handle have to be specified as
parameterized static affine nested loop programs, which is a subset of the Matlab language.
This conversion is fast and correct by construction.

2.1.3 Mapping Example

Here, we illustrate the approach described above by an example to show how a sequential ap-
plication specification is automatically transformed into an equivalent KPN specification by the
COMPAAN compiler. The application we take is a two dimensional (2D) matrix multiplication.
We choose this application because it is an embedded system benchmark application. It is a
fundamental, yet real-life algorithm that can often be found in many applications in the realm
of digital signal processing. It is not complicated, but has enough features to illustrate the use
and usefulness of our approach for application specification.

We start with a standard sequential Matlab code of a matrix multiplication. This code is mod-
ified and structured by hand to meet the subset of Matlab that our design flow accepts and to
match the features of the matrix multiplication. The reason we use Matlab is only because the
COMPAAN compiler uses a simple Matlab parser. The code is shown in Figure 2.2.

We structure the matrix multiplication algorithm as a set of routines (functions) that are called by
the Matlab code. It can be debugged easily and the functional correctness of the application can
be easily verified. The code lines 1-3 specify that the number of elements of the two dimensions
of a matrix can be any integer value between 2 and 100. The code lines 5-9 initialize the first
input matrix X. The code lines 11-15 initialize the second input matrix Y. The matrix Z is used
to store the final result of the matrix multiplication, with its initial value set to zero - see code
lines 17-21. The MultProp function and the Sum function perform the multiplication of matrix
X and Y - see code lines 23-30. Finally, in code lines 32-36, the Write z function outputs the
result of the multiplication stored in matrix Z.

The Matlab program in Figure 2.2 is a convenient way to describe the matrix multiplication ap-
plication. Nonetheless, this program does not reveal the inherent task-level parallelism available
in the application due to the sequential nature of the program. Therefore, the first step in our
system design flow is to convert this sequential program into an executable parallel specifica-
tion, in our case Kahn Process Network (KPN). We rely on the COMPAAN compiler to convert
fully automatically the matrix multiplication Matlab program into the KPN specification shown
in Figure 2.3.

To obtain a KPN specification from a sequential application specification, the general parti-
tioning strategy employed in the COMPAAN compiler is to create a process for every function
call in the program. Therefore, the Kahn Process Network shown in Figure 2.3 consists of
six processes. The Read x, Read y, Zero z, MultProp, Sum and Write z processes form the cen-
tral data-flow processing of the matrix multiplication algorithm. These six concurrent processes

2.1 Application Modeling 17

1 %parameter N 2 100;
2 %parameter M 2 100;
3 %parameter T 2 100;
4
5 for i = 1:1:N,
6 for j = 1:1:M,
7 [x(i,j)] = Read_x();
8 end
9 end
10
11 for j = 1:1:T,
12 for i = 1:1:M,
13 [y(i,j)] = Read_y();
14 end
15 end
16
17 for i = 1:1:N,
18 for j = 1:1:T,
19 [z(i,j)] = Zero_z();
20 end
21 end
22
23 for i = 1:1:N,
24 for j = 1:1:T,
25 for k = 1:1:M,
26 [t, x(i,k) , y(k,j)] = MultProp(x(i,k), y(k,j));
27 [z(i,j)] = Sum (z(i,j), t);
28 end
29 end
30 end
31
32 for i = 1:1:N,
33 for j = 1:1:T,
34 [Sink(i,j)] = Write_z(z(i,j));
35 end
36 end

Figure 2.2: Task-level specification of the matrix multiplication in Matlab.

ND_1
Read_x|

ND_4
MultProp|

ED_2

ND_2
Read_y|

ED_4

ND_3
Zero_z|

ND_5
Sum|ED_6

ED_1

ED_3

ED_7

ED_5

ND_6
Write_z|

ED_8

Figure 2.3: The KPN specification of the matrix multiplication.

make the task-level parallelism available in the application explicit. Also, the data dependencies
and the communication between the processes is explicit via distributed FIFO channels.

In the KPN specification of the matrix multiplication shown in Figure 2.3, process Read x and
Read y get every element from matrix X and Y, repectively and send them to process MultProp.
MultProp calculates the product of every two elements from matrix X and Y, and then sends
the product to process Sum to calculate the sum of products. Process Zero z generates matrix
Z to store the final result of the matrix multiplication, with all its initial elements set to value
zero. Zero z also sends its initial elements of value zero to process Sum to be the initial value

18 Multiprocessor Platform Synthesis and Application Mapping

for the sum of products. Finally, process Write z outputs the result of the multiplication stored
in matrix Z.

2.2 Synthesis of Multiprocessor Platform for KPN

After the KPN specification of the application has been derived, the next step is to map it onto
multiprocessor platforms. To map a KPN specification onto a platform, we have implemented
in the ESPAM tool a strategy that performs the mapping in two steps:

• In the first step, the ESPAM tool converts the given KPN specification into an equivalent
network of processors. This is an abstract model of a multiprocessor platform onto which
we map the KPN specification. This step is implementation independent as no informa-
tion on the target physical platform is taken into account. The model defines the key
components of the platform and their attributes. Such an abstract model is constructed
using parameterized building blocks from a component library.

• In the second step, information is added to the abstract model that is specific for the target
physical platform. At this stage, we need to select the proper processors that can imple-
ment the functions of the original application. Also, we set parameters of the components
like bit-width and size of the hardware FIFO buffers. This step leads to an elaborate
platform specification ready for an implementation on the target platform.

2.2.1 Platform Modeling

To facilitate the construction of platform models, the ESPAM tool provides a component library
that consists of parameterized building blocks from which platform models can be composed.
These components are designed in a parameterized way so that they can be used to model a
broad class of programmable or dedicated components that are specific for a target physical
platform.

Currently the component library defined in ESPAM consists of six components. They are Pro-
cessor, Memory, Memory Controller, FIFO, FIFO Controller, and Bus. Table 2.1 lists these
components and their parameter descriptions. These components are abstract modules that rep-
resent a large number of concrete component specifications. We explain the components and
their parameters in detail as below:

Processor P FREQ denotes the frequency of the processor. It is one of the most important pa-
rameters of the processor and describes the processing speed of the processor. P PROG
denotes whether the processor is a programmable unit or not. For example, a processor
could be a non programmable unit like ASIC or a programmable unit such as a RISC
or DSP processor. P HARVARD denotes whether the processor has a Harvard memory
architecture. If yes, then the processor has two separated buses connected to its local
memory for data access and instruction access, respectively. Otherwise the processor has
only one bus connected to its local memory. P LM SIZE describes the local memory size

2.2 Synthesis of Multiprocessor Platform for KPN 19

Table 2.1: Component modules and parameters description.
Component Parameter Description Parameter Name Allowable Values

Processor

Frequency P FREQ 1MHz - 1GHz
Programmable P PROG Yes/No
Harvard Architecture P HARVARD Yes/No
Local Memory Size P LM SIZE 1KB - 1GB
Number of I/O Ports P IO PORTS 1 - 32
Instruction Bus Width P ILMB WIDTH 16/32/64/128
Data Bus Width P DLMB WIDTH 16/32/64/128
Address Bus Width P ADDR WIDTH 16/32/64/128

Memory

Memory Size M SIZE 1KB - 1GB
Data Bus Width M DWIDTH 16/32/64/128
Address Bus Width M AWIDTH 16/32/64/128
Number of I/O Ports M IO PORTS 1/2

Memory Controller
Data Bus Width MC DWIDTH 16/32/64/128
Address Bus Width MC AWIDTH 16/32/64/128
Number of I/O Ports MC IO PORTS 1 - 32

FIFO
FIFO Size FIFO SIZE 1 - 16384
FIFO Data Width FIFO DWIDTH 16/32/64/128

FIFO Controller

Data Bus Width FC DWIDTH 16/32/64/128
Address Bus Width FC AWIDTH 16/32/64/128
Number of FIFOs to Read FC FIFO READ 0 to 128
Number of FIFOs to Write FC FIFO WRITE 0 to 128

Bus

Clock Rate BS CLKRATE 16 - 500MHz
Data Rate BS DRATE 33 - 533MB/s
Number of Masters on the bus BS MASTER 1 to 16
Number of Slaves on the bus BS SLAVE 1 to 16
Data Width BS DWIDTH 16/32/64/128
Address Width BS AWIDTH 16/32/64/128

20 Multiprocessor Platform Synthesis and Application Mapping

of the processor. P IO PORTS describes the number of I/O ports of the processor. These
ports can be used to connect the processor to other components of the multiprocessor plat-
form. P ILMB WIDTH, P DLMB WIDTH, and P ADDR WIDTH denote the bitwidth of
the instruction bus, data bus, and address bus of the processor, respectively. The values
of the bitwidth can be 16, 32, 64, or 128 bits.

Memory A memory component could be a local memory along with a processor, or a shared
global memory in a network for data exchange. M SIZE denotes the size of the memory
component. M DWIDTH and M AWIDTH denote the bitwidth of the data bus and address
bus of the memory, respectively. The allowable values of the bitwidth can be 16, 32, 64
or 128 bits. M IO PORTS describes the number of I/O ports of the memory, i.e., single
or dual port memory.

Memory Controller The memory controller is used as an interface between a processor and a
memory component, translating the processor data bus protocol into a memory compo-
nent specific protocol. MC DWIDTH and MC AWIDTH denote the bitwidth of the data
bus and address bus of the memory controller, respectively. The allowable values of the
bitwidth can be 16, 32, 64 or 128 bits. MC IO PORTS describes the number of I/O ports
of the memory controller. It determines the number of memory components that can be
connected to this controller.

FIFO The FIFO component is a memory buffer for point-to-point connection between two
processors. The processors communicate with each other and exchange data via the FIFO
components. FIFO SIZE denotes the size of the FIFO components. It determines the
quantity of data that can be stored in the FIFO. FIFO DWIDTH denotes the bitwidth of
the data that can be stored in the FIFO.

FIFO Controller The FIFO controller is used as an interface between a processor and a FIFO
component. FC DWIDTH and FC AWIDTH denote the bitwidth of the data bus and ad-
dress bus of the FIFO controller, respectively. The allowable values of the bitwidth can be
16, 32, 64 or 128 bits. FC FIFO READ denotes the number of input FIFO components
from which the processor can read data. FC FIFO WRITE denotes the number of output
FIFO components to which the processor can write data. Currently, the FIFO controller
in our component library can support up to 128 input FIFO components and 128 output
FIFO components.

Bus The bus component is an arbiter controlling a fast local bus for connecting a processor and
its local memory or a slow peripheral bus connecting a processor with slow peripheral
components. BS CLKRATE denotes the clock rate of the bus. BS DRATE denotes the
data rate of the bus. BS DWIDTH and BS AWIDTH denote the bitwidth of the data and
address that the bus supports. BS MASTER denotes the number of masters that can be on
the same bus. BS SLAVE denotes the number of slaves that can be on the same bus.

2.2.2 Synthesis Algorithm

As a good component library has been defined in the ESPAM tool, synthesizing multiprocessor
platforms then becomes as easy as instantiating building blocks from the library and intercon-

2.2 Synthesis of Multiprocessor Platform for KPN 21

necting them. The synthesis procedure can be stated as follows:

Given an application in the form of a Kahn Process Network and a platform component library,
synthesis of a multiprocessor platform consists of allocation of processors and communication
components, binding of processes to processors, and FIFO channels to communication compo-
nents.

In our methodology, we define the synthesis algorithm as follows:

• A single processor has to be instantiated for each Kahn node (process).

• A FIFO buffer has to be instantiated for each channel in the KPN model.

• A FIFO controller has to be instantiated as an interface between a processor and all FIFO
buffers connected to the processor.

• A memory module has to be instantiated as a local memory along with each processor.

• A memory controller has to be instantiated as an interface between each processor and its
local memory.

• A bus has to be instantiated for a connection between any two components of processor,
FIFO, FIFO controller, memory and memory controller.

Thus, the synthesis procedure involves a selection and reuse of all six component modules from
the component library to construct the multiprocessor platform. To make clear the synthesis of a
multiprocessor platform done in ESPAM, we use the generated KPN specification of the matrix
multiplication given in Figure 2.3 as an example. After the synthesis procedure described above,
we get the multiprocessor platform shown in Figure 2.4.

The KPN shown in the upper part of Figure 2.4 is mapped by the platform synthesis method-
ology in the ESPAM tool onto an abstract model of multiprocessor platform. This model is
composed of the component modules defined in our component library. The lower part of Fig-
ure 2.4 represents the network of processors that has the same topology as the input KPN. This is
because our synthesis methodology performs a one-to-one mapping. The six processes Read x,
Read y, Zero z, MultProp, Sum, and Write z are mapped onto the processors P1, P2, P3, P4, P5,
and P6, respectively. The KPN unbounded FIFO channels ED 1 to ED 8 are mapped onto the
hardware FIFO buffers FIFO1 to FIFO8, respectively. A FIFO controller (FC) is instantiated
as an interface between each processor and all FIFO buffers connected to it. Besides, a mem-
ory component is instantiated as a local memory (LM) for each processor, with a controller
(MC) between them as an interface. A bus is instantiated for each connection between two
components in the multiprocessor platform.

The synthesis of a multiprocessor platform for a KPN specification is performed in a systematic
and automated way by the ESPAM tool. A multiprocessor platform model is specified by means
of a textual description using an architecture description language. The textual description is
automatically generated by our platform synthesis algorithm. We use a software engineering
technique called Visitor [28] to traverse the KPN model topology derived from the original
application by the COMPAAN compiler and to generate the platform description code.

22 Multiprocessor Platform Synthesis and Application Mapping

Figure 2.4: Synthesis of multiprocessor platform for KPN.

2.2.3 Target Platform Implementation

After the first step for synthesis of a multiprocessor platform for a KPN, which has been de-
scribed in the last subsection, we obtain an abstract model of a platform onto which we map
the KPN application. This model of a platform defines the key components of the platform and
their attributes.

In the second step, we start to add information to the abstract model that is specific for the target
physical platform. At this stage, we need to select the proper processors that can implement the
functions of the original application. Also, we set parameters of the components like bit-width
and size of the hardware FIFO buffers. This step leads to an elaborate platform specification
ready for an implementation on the target physical platform.

In our case, as we implement the multiprocessor platform on a single Xilinx Virtex-II Pro FPGA
for prototyping, the information to be added to this abstract model must be specific for this
FPGA chip. For example, we select a configurable MicroBlaze embedded soft processor core
for each processor in the platform. The MicroBlaze embedded soft core is a reduced instruction
set computer (RISC) optimized for implementation in Xilinx FPGAs. Since it is a soft core,
we are able to instantiate and synthesize multiple MicroBlaze processors on the FPGA, thereby
implementing the multiprocessor platform an a single FPGA. For the hardware FIFO buffers, we
implement them by instantiating predefined generic FIFO IP cores found in the Xilinx library.
The local memory of a processor is implemented using the Block RAMs on the FPGA. As the
MicroBlaze processor core has a Harvard memory architecture, the memory controllers in the
abstract model are now split into two controllers for instruction and data access, respectively.

2.3 Programming Multiprocessor Platforms 23

Also, the generic bus between the memory and the memory controller needs to be replaced
with the LMB bus that is specific for Xilinx FPGA. For the FIFO controller, as there are no
corresponding components on the target FPGA, we need to design a custom FIFO controller
using VHDL and implement it on the target FPGA. More details on our implementation of
multiprocessor platforms on FPGAs is discussed in Chapter 3.

2.3 Programming Multiprocessor Platforms

In section 2.2, we discussed the synthesis of a multiprocessor platform for an application spec-
ified as a Kahn Process Network. Now having the platform, the next step is to generate the
program code for each processor in the multiprocessor platform.

2.3.1 What is Programming

To execute an application on the synthesized multiprocessor platform, the platform has to be
programmed. Programming the multiprocessor platform means writing software for each pro-
cessor in the platform using high level programming languages like C/C++.

In our case, we model an application as a Kahn Process Network (KPN) and map each process
of the KPN onto a processor of the multiprocessor platform. Therefore, each processor must be
programmed according to the behavior of the corresponding process in the KPN.

2.3.2 Program Modeling

Each process in the Kahn Process Network is specified as a sequential program that executes
concurrently with other processes. In the KPN specification, such sequential program is mod-
eled as a syntax tree [29]. The benefit of a syntax tree representation is that a sequential program
is modeled at an abstract level that is independent on a specific programming language. Thus,
it is easy to convert a syntax tree representation into a program specified in any high level pro-
gramming language. A syntax tree gives a valid execution order between function calls which
have to be executed inside a process. It completely defines the internal behavior of the process.
An example of the syntax tree of process Sum depicted in Figure 2.4 is shown in Figure 2.5.

The resulting syntax tree in Figure 2.5 consists of three types of node. They are ”For”-statement
nodes, ”If”- statement nodes, and ”Code”- statement nodes. Every program statement in the se-
quential program has a corresponding node in the syntax tree. ”For”-statement nodes contain the
information about the loops present in the sequential program. ”If”-statement nodes contain the
information about the condition present in the sequential program. Similarly, ”Code”-statement
nodes correspond to the code segments.

If we parse this tree top-down from left to right, we can obtain a valid sequential execution order
among function calls read(), Sum() and write(). This sequential order describes the behavior of
process Sum.

24 Multiprocessor Platform Synthesis and Application Mapping

NULL NULL NULL NULL

NULL NULL

Figure 2.5: The syntax tree of process Sum.

2.3.3 Program Code Generation

In order to execute an application on the multiprocessor platform, our methodology imple-
mented in the ESPAM tool is able to generate the program code for each processor. We use
the software engineering technique called Visitor to traverse the syntax tree and to generate the
program code. This program code can be expressed in any programming language for which a
compiler support exists for the processors used in the platform.

An example of C programming code generated from the syntax tree of process Sum is given in
Figure 2.6.

0 int main () {
for (i =1 ; i <=N ; i += 1) {

for (j =1 ; j <=T ; j += 1) {
for (k =1 ; k <=M ; k += 1) {

if (k-2 >= 0) {
5 read(ED_5, &in_0);

}
if (k-1 == 0) {

read(ED_6, &in_0);
}

10 read(ED_7, &in_1);
out_0 = Sum (in_0, in_1) ;
if (-k+M-1 >= 0) {

write (ED_5, out_0);
}

15 if (k-M == 0) {
write (ED_8, out_0);

}
} // for k

} // for j
20 } // for i

}

Figure 2.6: C program code generated from the syntax tree of process Sum.

2.3 Programming Multiprocessor Platforms 25

If we look at the program code together with Figure 2.4, we can see that in each for loop the
processor first reads data from FIFO ED 5 or ED 6 - code lines 6-11. If it is the first iteration of
k (k-1 == 0), then it reads data from FIFO ED 6 as this is the initial value of zero for the sum
of products. Otherwise it reads data from FIFO ED 5 which is the sum of products from the
previous iteration. The second data is always read from FIFO ED 7 - code line 12. This is the
value that has to be added to the sum of products. In line 14, it calculates the sum of products.
Then, it writes result to one of its output FIFOs. If it is the last iteration of loop k (k-M == 0),
it writes the final result to FIFO ED 8 as an element of the resulting matrix Z, otherwise the
result is written to FIFO ED 5 - code lines 16-21. Processor Sum executes the body of the loops
repeatedly till the end of the for loops.

26 Multiprocessor Platform Synthesis and Application Mapping

Chapter 3
Multiprocessor Platforms FPGA Prototyping

In Chapter 2 we have presented in detail the techniques and tools that we have developed and
used to show how for an application written in Matlab, a Kahn Process Network specification
can automatically be derived and systematically mapped onto a multiprocessor platform.

This chapter focuses on the second and third step shown in Figure 1.2 in which we imple-
ment the abstract model of a multiprocessor platform onto a Field Programmable Gate Array
(FPGA) chip for prototyping. This generates an elaborate platform specification ready for an
implementation on the target platform. To prototype a multiprocessor platform as described in
Figure 2.4 onto an FPGA, we present in this chapter our methodology of how to implement
each component of the multiprocessor platform on a target FPGA board. Specifically, as we
use a single Xilinx Virtex-II Pro FPGA for prototyping, we use configurable MicroBlaze em-
bedded soft processor core [30] [31] for each processor of the platform. For the hardware FIFO
buffers, we implement them by instantiating predefined generic FIFO IP cores found in the Xil-
inx EDK library [32]. Besides, the connection between the MicroBlaze soft processor cores
and the hardware FIFO buffers, the control mechanism of the FIFO will also be elaborated in
details.

This chapter is organized as follows. In Section 3.1, we first introduce the target FPGA board
on which we implement the multiprocessor platform. The multiprocessor platform FPGA pro-
totyping is presented in Section 3.2. In this section we present in detail how the six components
in the abstract model of the multiprocessor platform are implemented on the FPGA. In Section
3.3, we describe the program code generation for each processor and the software communica-
tion interface that also need to be automatically generated. Section 3.4 presents what is needed
to generate a Xilinx Platform Studio project and the tree architecture of the project suite. This
section also describes how to use the software engineering technique called visitor to system-
atically and automatically generate the whole project suite to implement the multiprocessor
platform on our target FPGA. Finally, Section 3.5 presents some discussion and conclusions.

28 Multiprocessor Platforms FPGA Prototyping

3.1 Target FPGA Platform

We implement the multiprocessor platform on an FPGA prototyping board, namely the ADM-
XPL board manufactured by Alpha Data Parallel Systems, Ltd [33]. The ADM-XPL board is a
high performance PCI Card, designed for supporting development of applications using the Xil-
inx Virtex-II Pro series of FPGAs. The board is mainly based on a Virtex-II Pro 2VP20 FPGA.
This FPGA chip contains two PowerPC hard processor cores, 88 distributed on-chip dual-port
RAM blocks and 9,280 slices. The board has a PCI interface PLX 9656 which connects to the
host processor (pentium) with PCI bus. It also has some off-chip memories on the board, 1 bank
ZBT 512k/1024K x 64 bits and 1 bank DDR 64MB /128MB. These plenty of resources make it
possible to implement a multiprocessor platform on this FPGA board.

Traditionally, most of the design tools for translating software programs into hardware im-
plementations assume that only the most computational intensive portions of the program are
mapped onto hardware. Those tools use the FPGA as a coprocessor to a standard CPU. The
CPU implemented most of the program, handling much of the operations that are necessary to
implement the program. The most computational intensive portions of the program code are
mapped onto the FPGA. In that way the strengths of both FPGA and standard processors are
combined into a single system. In our case, the standard CPU of the host is not involved. We
implement the entire multiprocessor platform onto a single FPGA. Each processor runs concur-
rently, communicating via the hardware FIFO buffers. This leads to a complete self-contained
system on programmable chip implementing the entire functionality of the application.

3.2 Multiprocessor Platform Implementation on FPGA

This section presents how we prototype the multiprocessor platform on our target FPGA board
described above. Specifically, we present in detail how the six components in the abstract model
of a multiprocessor platform are implemented on the FPGA.

3.2.1 MicroBlaze Soft Processor, Local Memory and Memory Controller

In most cases, the generated multiprocessor platform in our system design flow consists of
more than two processors. Thus the two PowerPC hard processors [30] on the FPGA are not
enough for the multiprocessor system prototyping if we use only one FPGA. Instead, we use
a configurable MicroBlaze embedded soft processor core [30] [31] for the processors. As it is
a soft processor core, the number of processors we can implement on a given FPGA is only
limited by the size of the FPGA itself.

The MicroBlaze soft processor core provided by Xilinx is a 32-bit configurable processor core.
A designer can create a system incorporating a MicroBlaze using the Xilinx Platform Studio
in which a designer can quickly build a MicroBlaze processor system by instantiating and con-
figuring cores from the provided libraries. Figure 3.1 presents a simple MicroBlaze system
incorporating a MicroBlaze processor along with a local memory, memory controller, local
memory bus and some other components to create a complete system.

3.2 Multiprocessor Platform Implementation on FPGA 29

Figure 3.1: Simple MicroBlaze processor system.

The MicroBlaze processor core has a Harvard memory architecture and thus utilizes two Local
Memory Busses (LMB), namely Data-side LMB (d lmb) and Instruction-side LMB (i lmb)
for instruction and data memory, respectively. According to the attributes of the MicroBlaze
processor core, the ESPAM tool now can specify the parameters of the processor component
in the abstract platform shown in Figure 2.4. For example, Frequency is set to 100 MHz by
default. Programmable is set to YES. Harvard Architecture is set to YES. The bitwidth of the
Instruction Bus, Data Bus and Address Bus is set to 32 bits.

The local memory is implemented using the dual-port BRAM Blocks on our target FPGA. We
can use from 4 to 64 dual-port BRAMs on the FPGA to provide memory sizes from 2KB to
128KB for the MicroBlaze processor. The parameters of the local memory can be set to be
uniquely tailored for a system. In our case, the ESPAM tool sets the parameter Memory Size to
8KB by default, but this value can be changed according to different application requirements.
The bitwidth of the Data Bus and Address Bus is set to 32 bits. The number of I/O ports is set
to 2 (dual-port).

The two ports of the local memory must be connected to independent memory interface con-
trollers. The system shown in Figure 3.1 includes two memory controllers and they are con-
nected to the two ports of the local memory respectively, one for instruction access and the other
one for data access. The parameters of these two memory controllers should be the same and
the ESPAM tool specifies their values as follows: The bitwidth of the Data Bus and Address Bus
is set to 32 bits. The number of I/O ports is set to 2. One port is connected to the local memory
and the other one is connected to the MicroBlaze processor.

The system in Figure 3.1 also includes two peripherals connected via the On-Chip Peripheral
Bus (OPB). After specifying the system architecture and configuring the MicroBlaze processor,
the Xilinx Platform Studio tools synthesize the design and generate a bitstream file for the
system as well as generate a set of software libraries that a design can use to interface with the
various components in the system. Finally, a designer can compile an application and combine
the application binary with the bitstream to produce the final system bitstream file.

3.2.2 Hardware FIFO Buffer

The communication structure in the multiprocessor platform is realized by hardware FIFO
buffers. We implement them by instantiating predefined generic FIFO IP cores found in the

30 Multiprocessor Platforms FPGA Prototyping

Xilinx EDK library [32].

FIFO IP cores utilize dual-port BRAM blocks as a data storage medium. The FIFO is designed
using VHDL and the design incorporates special purpose counters and logic necessary to im-
plement functional requirements of a channelized FIFO as shown in Figure 3.2. Counters are
used to generate the read/write addresses. Additional control is required to check for empty and
full states and to interface with the communication channels.

FSL_M_Clk

FSL_M_Data

FSL_M_Full

FSL_S_Data

FSL_M_Control

FSL_M_Write

FSL_S_Exists

FSL_S_Read

FSL_S_Control

FSL_S_Clk

Figure 3.2: FIFO IP core design.

Figure 3.2 shows the FIFO interface signals. The signals on the left side are for a master
processor to write data to the FIFO. FSL M Clk is the master clock signal to asynchronously
control the master writes to the FIFO. FSL M Data is the data bus to write tokens to the FIFO.
FSL M Control is a single bit control signal that is transmitted together with the data at each
clock edge. FSL M Write is the input signal that controls the write enable signal of the FIFO.
FSL M Full is the output signal from the FIFO indicating when the FIFO is full. The signals
on the right side are for a slave processor to read data from the FIFO. FSL S Clk is the slave
read clock to asynchronously read the FIFO. FSL S Data is the data bus to read tokens from the
FIFO. FSL S Control is the output signal that indicates the control bit associated with the data
at the read end of the FIFO. FSL S Read is the input signal that controls the read enable signal
of the FIFO. FSL S Exists is the output signal indicating when the FIFO contains valid data.

For the parameters of the FIFO component in the abstract model of a multiprocessor platform,
ESPAM sets the values that are specific for our target FPGA platform. The bitwidth of the Data
to be stored in the FIFO is set to 32 bits. The allowable value for FIFO size ranges from 1 to
16384, ESPAM sets it to 512 by default for our target FPGA board, but it can also be changed
according to different application requirements.

3.2.3 Bus connection

We have selected the MicroBlaze soft processor core for the processors in the abstract model
of multiprocessor platform. Next, with alternative bus interfaces available in the MicroBlaze
processor system, we need to choose a proper bus interface to interconnect the components in
the multiprocessor platform.

Figure 3.3 shows that the MicroBlaze core is organized as a Harvard architecture with separate
bus interface units for data accesses and instruction accesses. Each bus interface unit is further
split into a Local Memory Bus (LMB) [34] and IBMs On-chip Peripheral Bus (OPB) [35]. The
LMB is a fast, local bus for connecting MicroBlaze instruction and data ports to high-speed

3.2 Multiprocessor Platform Implementation on FPGA 31

peripherals, primarily on-chip BRAMs. The OPB interface provides a slow connection to both
on-and off-chip peripherals and memory. Besides these two bus interfaces, the MicroBlaze
processor core provides 8 input and 8 output interfaces to Fast Simplex Link (FSL) bus [36].
The FSL buses are uni-directional non-arbitrated dedicated communication channels. They can
be used as the fastest interconnection for Xilinx FPGA based embedded processor systems.

ILMB

IOPB

DLMB

DOPB

Instruction-side
bus interface

Data-side
bus interface

Figure 3.3: MicroBlaze core block diagram.

From the specification of these three bus interfaces, we find out that the FSL bus is ideal for our
processor network. The FSL is implemented on the FPGA as a FIFO using the SRL16 primitive.
The FSL bus provides a point-to-point communication channel between two components on the
FPGA. Up to 8 master and slave FSL interfaces are available on the MicroBlaze soft core. The
interfaces are used to transfer data in 2 clock cycles to and from a register file on the processor
to hardware running on the FPGA. The FIFO depths can be as low as 1 and as high as 8K. It
also supports both synchronous and asynchronous FIFO modes. This allows the master and
slave side of the FSL to clock at different rates.

All these three buses discussed above are predefined generic IP cores that can be found in the
Xilinx EDK library [32]. Some of the parameters defined in the abstract platform (See Table
2.1) of these three buses are listed in Table 3.1. The values of these parameters are specific to
our target FPGA board. Thus the ESPAM tool can set the parameters for the bus component of
the abstract platform according to this table 3.1. As the FSL bus is used for a point-to-point
connection between two MicroBlaze processors, ESPAM sets Clock Rate to 150 MHz, Data
Rate to 300 MB/s. The bitwidth of the Data Bus and Address Bus is set to 32 bits. Both the
number of masters and slaves are set to 1.

Table 3.1: Bus parameters of LMB, OPB and FSL.
Parameter LMB OPB FSL

Clock Rate 125 MHz 125 MHz 150 MHz
Data Rate 333 MB/s 167 MB/s 300MB/s

Number of Masters 1 2-8 1
Number of Slaves 4 2-8 1

Data Width 32 32 32
Address Width 32 32 32

Although the FSL bus has these advantages described before, the MicroBlaze processor can
only support up to 8 input ports and 8 output ports for FSL connection. If a MicroBlaze pro-

32 Multiprocessor Platforms FPGA Prototyping

cessor has more than 8 FIFO buffers connected to its input or output ports, we still have to use
some other bus interfaces. From the table 3.1. we can see that LMB is faster than OPB. It has
a data rate of 333 MB/s, twice as OPB. Therefore, we choose the data-side LMB bus [34]. The
LMB bus is designed specially for the local on-chip memory. This brings another issue, which
is, a custom FIFO controller between the LMB bus and the FSL FIFO is needed.

3.2.4 FIFO Controller

In the EDK, there is no standard controller for the LMB bus to connect to the FSL FIFO. Thus, a
custom controller is developed as an interface for this connection. We use one controller to deal
with all the input and output FIFOs connected to one processor. For the purpose of reducing
the amount of gates, a parameterized controller is useful, so that we can reduce the size of the
IP core by setting its parameters.

Figure 3.4 shows the FIFO controller interface and all its signals. The signals on the left side
are standard signals of the LMB bus and the ports are connected according to the standard LMB
bus. For example, LMB Rst is the LMB reset signal. LMB WriteDBus is the LMB write data
bus. SL DBus is the LMB read data bus. For the sake of brevity, we do not explain all the LMB
bus signals here, more details of the LMB bus interface is described in [34]. On the right side,
the signals can be connected to multiple FSL FIFOs. These signals are partitioned into 2n sets.
Each set is an interface for connecting to a FIFO. For example, the five signals FSL M Clk 1,
FSL M Data 1, FSL M Control 1, FSL M Write 1, and FSL M Full 1 form the interface to
the first writes FIFO. So we can see that all these signals can be connected to n writes FIFOs
and n reads FIFOs. The value of the parameter n can be up to 128 in our design. Thus, for the
FIFO controller in the abstract platform, the number of FIFOs to read/write can be set from 0
to 128. The bitwidth of the Data Bus and Address Bus is set to 32 bits.

C
O
N
T
R
O
L

I
N
T
E
R
F
A
C
E

FSL_M_Clk_1
FSL_M_Data_1

FSL_M_Full_1

FSL_M_Control_1
FSL_M_Write_1

FSL_S_Clk_1
FSL_S_Data_1

FSL_S_Exists_1
FSL_S_Read_1
FSL_S_Control_1

FSL_M_Clk_n
FSL_M_Data_n

FSL_M_Full_n

FSL_M_Control_n
FSL_M_Write_n

FSL_S_Clk_n
FSL_S_Data_n

FSL_S_Exists_n
FSL_S_Read_n
FSL_S_Control_n

...

LMB_Rst

LMB_Clk

LMB_ABus

LMB_WriteDBus

LMB_ReadStrobe

LMB_AddrStrobe

LMB_WriteStrobe
LMB_BE

SL_Ready

SL_DBus

Figure 3.4: LMB FIFO controller interface.

3.2 Multiprocessor Platform Implementation on FPGA 33

We use the generic syntax to define the parameters for the controller. Figure 3.5 shows a frag-
ment of the VHDL code to define the FIFO controller. There are two parameters, C FIFO WR
ITE and C FIFO READ, to define the maximum number of FIFOs to write or read, respec-
tively. The values of these two parameters (see Figure 3.5 lines 7-8) can be changed easily for
different FIFO controllers in the multiprocessor platform. Our automation tool implemented in
ESPAM generates the VHDL code for the controllers dynamically, it traverses the topology of
the multiprocessor platform and select the maximun number of writes/reads FIFOs connected
to all the processor as the parameter value. Thus ESPAM first generates one core for all the
processors. Further, it instantiates an instance of this controller core for each processor and set
the parameters of the reads/writes FIFOs specific to that processor.

1 GENERIC (
2 C_HIGHADDR: STD_LOGIC_VECTOR(0 to 31):= X’’ff00003f’’;
3 C_BASEADDR: STD_LOGIC_VECTOR(0 to 31):= X’’ff000000’’;
4 C_ABi: INTEGER:= 26;
5 C_LMB_AWIDTH: INTEGER:= 32;
6 C_LMB_DWIDTH: INTEGER:= 32;
7 C_FIFO_WRITE: INTEGER:= 2;
8 C_FIFO_READ: INTEGER:= 2
9);

Figure 3.5: Parameters of FIFO controller.

The FIFO controller is an interface for two different buses. It communicates with the MicroB-
laze processor core using the LMB bus interface and communicates with the FIFO using the
FSL bus interface. When a MicroBlaze processor writes/reads data to/from a FIFO buffer, the
FIFO controller translates the LMB bus protocol into the FSL bus specific protocol. Thus, the
MicroBlaze processors in the platform can communicate with each other via the FIFO buffers
using the LMB bus for connection. Figure 3.6 shows the VHDL code of the FIFO controller that
implements the mechanism of protocol translation. Code lines 1-7 translate the signals protocol
for FIFO writing. We can see that when the signals on the LMB bus indicate a FIFO writing,
the controller sets the write enable signal FSL M Write of the selected FIFO to ”1” - code line
2-5. Then the data in the LMB WriteDBus port are written to the data input port FSL M Data
of the FIFO - line 6. Similarly, when the signals on the LMB bus indicate a FIFO reading, the
controller sets the read enable signal FSL S Read of the selected FIFO to ”1” - code line 10-12.
Then the data on the data output port FSL S Data of the selected FIFO are written to the LMB
read data bus SL DBus - line 14.

1 G_1 : for I in 1 to C_FIFO_WRITE generate
2 FSL_M_Write(I) <= ’1’ when lmb_select = ’1’ and
3 LMB_ABus(24 to 29) =CONV_STD_LOGIC_VECTOR(2*I, 6) and
4 LMB_WriteStrobe = ’1’
5 else ’0’;
6 FSL_M_Data(I) <= LMB_WriteDBus;
7 end generate;
8
9 G_2 : for I in 1 to C_FIFO_READ generate
10 FSL_S_Read(I) <= ’1’ when lmb_select=’1’ and
11 LMB_ABus(24 to 29)= ONV_STD_LOGIC_VECTOR(2*I, 6) and
12 LMB_ReadStrobe = ’1’
13 else ’0’;
14 SL_DBus <= FSL_S_Data(I);
15 end generate;

Figure 3.6: Signal instance of FIFO controller.

34 Multiprocessor Platforms FPGA Prototyping

This simple controller mechanism reveals a flexible connectivity in our design methodology.
Only by rewriting this controller, we can easily change the connection. For example, once the
FSL FIFO is inapplicable, we only have to modify the bus interface on the right side of Figure
3.4 to adapt any other kind of FIFO. The other way around, we can adjust the bus interface
on the left side of Figure 3.4 to connect the FSL FIFO to other kind of bus interface of the
processor.

3.3 Programming Multiprocessor Platform and Code Gener-
ation

To execute an application on the synthesized multiprocessor platform, the platform has to be
programmed. Programming the multiprocessor platform means writing program code for each
processor in the platform using high level programming languages like C/C++. The MicroB-
laze soft processor core supports GNU tools that support standard Executable and Linkable
Format (ELF) [32]. The MicroBlaze GNU tools include mb-gcc compiler, mb-as assembler
and mb-ld loader/linker, which can compile GNU compatible C/C++ source files to build an
ELF executable file.

With the EDK GNU tools, we can build a separate ELF executable file for each MicroBlaze
processor in the multiprocessor platform. To build this ELF executable file, our methodology
implemented in the ESPAM tool is able to generate the program code for the MicroBlaze proces-
sors. We use the software engineering technique called Visitor [29] to generate C program code
for each MicroBlaze processor. An example of C programming code generated for the MicroB-
laze processor on which the process Sum is mapped can be seen in Figure 2.6. An explanation
of this program code is also presented in Section 2.3, Chapter 2. For the sake of brevity, we do
not explain it any more here.

When performing the application mapping, the major task is to construct the communication
between processors in the platform. In our multiprocessor platform, a MicroBlaze processor
gets data from other processors via hardware FIFO buffers using a read primitive. It sends data
to other processors via the FIFO buffers using a write primitive. For example, the code line 6 -
12 in Figure 2.6 describes that the Sum processor reads data from its input FIFO buffers using
a read primitive. It writes data to its output FIFO buffers using a write primitive - line 16 - 20.
The hardware FIFO buffers in our platform are bounded, and thus the read/write operation is
blocking. A blocking-read situation occurs when data is not available at a given input FIFO,
i.e., the corresponding FIFO buffer is empty. A blocking-write situation occurs when data can
not be written to a particular output FIFO, i.e., the corresponding FIFO buffer is full.

Below we explain the concrete implementation of the read and write primitives. As we use two
different buses (FSL and/or LMB) to communicate with the FIFO buffers, we have to define two
different sets of read/write primitives. The FSL primitives implement the blocking read/write
mechanism in hardware, because we use the MicroBlaze specific assembly instructions, namely
put and get [31] which are shown in Figure 3.7. To make a consistent user interface, we make a
wrapper for these assembly instructions as shown in Figure 3.8.

In Figure 3.8, the variable pos denotes a port number for a FSL bus of the MicroBlaze processor.

3.3 Programming Multiprocessor Platform and Code Generation 35

1 #define microblaze_bread_datafsl(val, id) \
2 asm(‘‘get %0, %1’’ : ‘‘=d’’ (##val##) : ‘‘m’’ (rfsl##id##))
3
4 #define microblaze_bwrite_datafsl(val, id) \
5 asm(‘‘put %0, %1’’ : ‘‘=d’’ (##val##) : ‘‘m’’ (rfsl##id##))

Figure 3.7: MicroBlaze FSL bus read/write assembly code.

0 #define readFSL(pos, value, len) \
do {\

int i = 0;\
for (i = 0; i < len; i++)\

microblaze_bread_datafsl(((volatile int *) value)[i], pos);\
5 } while(0)

#define writeFSL(pos, value, len) \
do {\

int i = 0;\
10 for (i = 0; i < len; i++)\

microblaze_bwrite_datafsl(((volatile int *) value)[i], pos);\
} while(0)

Figure 3.8: MicroBlaze FSL bus read/write primitive.

Its value ranges from 0 to 7. value is a variable used to store the data to be read/written. len
denotes the length (measured in 32-bit words) of the data to be read/written. When performing
the read operation, the MicroBlaze processor simply gets data from one of its FSL input ports
and stores the data into the variable value - see code line 4. For the write operation, it puts the
data stored in the variable value to one of its FSL output ports - see code line 11.

For the LMB bus, we can only implement the blocking mechanism in software, which means
that we need a busy-wait mechanism in the program code. This can be seen in Figure 3.9. The
variable pos in Figure 3.9 now denotes a physical address of a FIFO buffer in the LMB bus
memory space connected to a MicroBlaze processor via the LMB bus. When performing the
read operation, the MicroBlaze processor first gets the status of the FIFO buffer - see line 3.
While the FIFO status is Empty, an empty ”while” loop is used to block the reading - see line 5.
Otherwise, the processor gets the data from the FIFO buffer and stores the data into the variable
value - see code line 6. For the write operation, see code line 13-16, the processor first gets
the status of the FIFO buffer. While the FIFO status is Full, an empty ”while” loop is used
to block the writing. Otherwise, the processor puts the data stored in the variable value to the
FIFO buffer.

As shown above, the blocking read/write primitive is easily implemented as micros. It im-
plements an efficient synchronization mechanism between the MicroBlaze processors in our
multiprocessor platform. From the above discussion, we can see that the blocking read/write
mechanism in the FSL primitives implementation is faster than the LMB primitives since the
FIFO status checking is not necessary. Thus, the overhead of the communication between the
processors is much less when we use the FSL ports to connect processors in our multiprocessor
platform. However, sine the FSL primitives are implemented using the MicroBlaze specific
assembly instructions, they depend much on a specific processor. For a comparison, the LMB
primitives are more general. A processor usually has a local memory bus (LMB) and the LMB
primitives can always be implemented for that processor.

36 Multiprocessor Platforms FPGA Prototyping

0 #define readLMB(pos, value, len) \
do { \

int i;\
Status = getFifoStatus (pos);\
for (i = 0; i < len; i++) { \

5 while (Status == Empty) { };\ //FIFO is empty, reading is blocked.
((volatile int *) value)[i] = getFifoData (pos);\

}\
} while(0)

10 #define writeLMB(pos, value, len) \
do { \

int i;\
Status = getFifoStatus (pos);\
for (i = 0; i < len; i++) { \

15 while (Status == Full) { };\ //FIFO is full, writing is blocked.
putFifoData (pos) = ((volatile int *) value)[i];\

}\
} while(0)

Figure 3.9: MicroBlaze LMB bus read/write primitive.

3.4 Project Generation for Xilinx Platform Studio

In this section, we explain the method inside our ESPAM tool that we apply to build an Xilinx
Platform Studio (XPS) project using the components described in Section 3.2.

XPS is an Integrated Development Environment (IDE) used to develop Xilinx Embedded Devel-
opment Kit (EDK)-based system designs. It allows designers to configure a HW/SW platform
including automatic generation of device drivers and Board Support Packets (BSPs) for their
VirtexII-Pro chips where an FPGA technology is combined with four embedded PowerPCs
processors. However, directly using XPS to design an embedded system of processors network
with dozens of processors and connections is extremely time-consuming and error-prone. At
the same time, the parallelism implicit in an application can only be depicted manually. All
these weak points restrict the building of a complex embedded system in XPS in a relatively
short amount of time. To reduce the design time, the XPS tool can be used as a back-end tool
of our ESPAM tool. ESPAM systematically synthesizes a platform and automatically generates
all necessary files for an XPS project from an application specified as a KPN. Therefore, we
can synthesize the system and build the bitstream file for a specific FPAG board efficiently and
effectively.

3.4.1 Xilinx Platform Studio project Specification

By exploring XPS, we find out that all the information of a project is stored in four files: an Xil-
inx Microprocessor Project (XMP) file [30], a Microprocessor Hardware Specification (MHS)
file [30], a Microprocessor Software Specification (MSS) file [30] and a User Constraint File
(UCF) [37]. The XMP file stores the project options. The MHS file defines all hardware com-
ponents used in a platform as well as the connections between these components. The MSS file
contains directives for customizing libraries, drivers, and file systems. The UCF file contains
pin information for the physical implementation in the selected FPGA device.

The XMP file points the location of the MHS file, the MSS file, and the C/C++ program codes

3.4 Project Generation for Xilinx Platform Studio 37

that need to be compiled into an executable file for a processor. It also includes the FPGA
architecture family and the device type for which the XPS hardware tool flow needs to run. A
sample XMP file is shown in Appendix A.3. Lines 3 - 4 specify the location of the MHS and
MSS files. Lines 6 - 10 include the FPGA architecture family and the device type. Lines 25
- 39 define 5 processors. Lines 40 - 145 consists of all options of the program codes for the
processors. For example, lines 40 - 61 define all options for the program codes of processor
mb P1. The detailed format of the XMP file is described in Appendix A.1 and A.2.

The MHS file defines all hardware components used in a platform as well as the connections
between these components. Each component definition starts with BEGIN keyword and ends
with END keyword. Between these keywords, three commands, namely BUS INTERFACE,
PORT, and PARAMETER are used to specify options. Each command has the following format:
name = value, where name is the name of a bus interface, a port, or a parameter, and the
value is a wire or a parameter number. A sample MHS file is shown in Appendix B. Figure
3.10 shows a small part of the sample MHS file, which defines an instantiation of a processor
component. Six parameters are specified in lines 317 - 322 using the command PARAMETER.
Five bus interface are specified in lines 323 - 227 using the command BUS INTERFACE. One
clock port is specified in line 328 using the command PORT.

BEGIN microblaze
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
PARAMETER HW_VER = 2.10.a
PARAMETER C_NUMBER_OF_PC_BRK = 1

320 PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_FSL_LINKS = 2
PARAMETER INSTANCE = mb_ND_4
BUS_INTERFACE DLMB = dlmb_ND_4
BUS_INTERFACE DOPB = mb_opb

325 BUS_INTERFACE SFSL0 = sync_fifo_ED_1_ND_3_to_ND_4
BUS_INTERFACE MFSL0 = sync_fifo_ED_2_ND_4_to_ND_5
BUS_INTERFACE ILMB = ilmb_ND_4
PORT CLK = sys_clk_s
END

Figure 3.10: MicroBlaze processor component MHS definition.

The MSS file contains directives for customizing libraries, drivers, and file systems. It has the
same format as the MHS file and the PARAMETER keyword is required before each assignment.
In Figure 3.11, code lines 3 and 9 define the processor type and the operating system type for a
processor.

0

5

10

BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = mb_ND_5
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar

END

BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = mb_ND_5

END

Figure 3.11: MicroBlaze processor component MSS definition.

The UCF file contains constraints such as timing, FPGA pin locations, FPGA resource specifi-
cation, and I/O standards. For example, in Figure 3.12, the read port of a UART component is
assigned to pin F9 and the write port is assigned to pin H11.

38 Multiprocessor Platforms FPGA Prototyping

NET RS232_Uart_1_RX LOC = F9;
NET RS232_Uart_1_TX LOC = H11;

Figure 3.12: Small part of a UCF file.

3.4.2 The Project Suite

The above sections have described all necessary files that comprise an XPS project. In order
to use the Xilinx Platform Studio as a back-end synthesis tool of our ESPAM tool, ESPAM

generates the project suite shown in Figure 3.13.

<PROJECT_ROOT>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- project.m: original Matlab code
|--- code/: Program codes
|-------- MemoryMap.h
|-------- aux_func.h
|-------- ND_5/
|------------- ND_5.cpp
|------------- default_link_script
|--- etc/: Optional files for implementation tools
|--- data/: UCF files
|--- pcores/: Customized IP cores for the EDK project
|---------- fifo_if_ctrl_v1_00_a/
|---------- myCLKRST_v1_00_a/
|---------- clock_cycle_counter_v1_00_a/
|---------- counter_input_ctrl_v1_00_a/

Figure 3.13: Project directory structure.

The system.xmp, system.mhs, and system.mss files are the corresponding XMP, MHS, and MSS
file which have been explained in Section 3.4.1. The project.m stores the initial Matlab code.
The directories etc and data contain some constant auxiliary files. Directory etc contains the
files bitgen.ut and fast runtime.opt which store options for the XPS tool. The directory data
contains a file, namely system.ucf which specifies implementation constraints such as timing,
FPGA pin locations, FPGA resource specification, and IO standards. Directory code stores the
program codes for each processor in the platform. Each processor has a corresponding sub-
directory, in which program source code files and a default linker script file are stored. We
describe the program codes in Section 5.1.4 and the linker script file in Section 5.1.5. In the
top level of the code directory, there are two files, namely MemoryMap.h and aux func.h. They
are common for program codes of all processors. The aux func.h file declares read and write
primitives and wrappers of all function calls in the initial Matlab code. The MemoryMap.h
file specifies physical addresses of FIFOs connected to every processor. We explain this file in
Section 5.1.6. The pcores directory contains predefined IP cores as well as IP cores generated
by ESPAM. A concrete example of the whole project hierarchy is presented in Section 5.1.2

3.4.3 Visitor Hierarchy

In this section, we give an overview of the technique used in ESPAM to generate an XPS project.
The classes hierarchy is shown in Figure 3.14. We use a software engineering technique called

3.4 Project Generation for Xilinx Platform Studio 39

V isitor [38] to traverse a KPN specification and to generate all necessary files for an XPS

project.

MicroblazeProcessVistor

− _fifoReadWriteApi : String
− _linker_script : String

+ visitStructure(x : ProcessNetwork)
+ visitStructure(x : ProcessPN)
+ visitStructure(x : ChannelPN)
− _writeFunctionArgument(x : ProcessPN)
− _writePorts(x : ProcessPN)
− _writeMemoryMapFile()

MhsSpecVisitor

− _mhsFile : String
− _mhsMbSpecList : ArrayList

+ visitStructure(x : ProcessPN)
+ visitStructure(x : ChannelPN)

+ visitStructure(x : ProcessNetwork)

− _updateMbSubSystem(p : ProcessPN, mb MhsTemplate)
− _updateOutputSubSystem(p : ProcessPN, mb MhsTemplate)

XPSTemplate

_delimiter : String
_componentList : ArrayList
_subSystemName : String
+ Component : Class

+ printSystem()

+ addComponent() : Component
+ getComponent() : Component

_initializeSystem(str : String)

FifoCtrlNetworkVisitor

− _coreName : String

+ visitStructure(x : ProcessNetwork)
_writeHdlFile()
_writeMpdFile()

Visitor

StatementVisitorPNVisitor

+ visitStructure(x : ProcessPN)
+ visitStructure(x : ChannelPN)

+ visitStructure(x : ProcessNetwork)

− _prefix: String

+ MbSysSpecVisitor()

_fifoBaseAddr : int
_fslFifoDataWidth : int
_fslFifoDataDepth : int
_lmbBramBaseAddr : int
_uartBaseAddr : int
_fslFifoMax : int

MbSysSpecVisitorMicroblazeNetworkVisitor

+ visitStructure(x : ProcessNetwork)

MicroblazeStatementVisistor

+ visitStatement(x : RootStatement)
+ visitStatement(x : ForStatement)
+ visitStatement(x : ModStatement)

− _funcList : Vector
− _opdMap : Map
− _ipdMap : Map
− _edgeMap : Map

XPSProfileNetworkVisitor

+ XPSProfileNetworkVisitor()

CustomIpCoreNetworkVisitor

_moduleName : String
_moduleDir : String

_paoFile : String
_mpdFile : String

_hdlFile : String

+ CustomIpCoreNetworkVisitor()

− _mhsMbSpecList : ArrayList

+ visitStructure(x : ProcessPN)
+ visitStructure(x : ChannelPN)

+ visitStructure(x : ProcessNetwork)

− _updateMbSubSystem(p : ProcessPN, mb MhsTemplate)
− _updateOutputSubSystem(p : ProcessPN, mb MhsTemplate)

MssSpecVisitor

− _mssFile : String

XmpSpecVisitor

− _xmpFile : String

+ visitStructure(x : ProcessNetwork)

− _coreName : String

+ visitStructure(x : ProcessNetwork)
_writeHdlFile()

ClockCycleCounterNetworkVisitor

_writeMpdFile()

− _coreName : String

+ visitStructure(x : ProcessNetwork)
_writeHdlFile()

CounterInputNetworkVisitor

_writeMpdFile()

_auxiliaryTemplate : String
_counterInputCtrlTemplate : String
_fifoIfCtrlTemplate : String
_fslFifoTemplate : String
_uartTemplate : String
_counterTemplate : String
_mbSubSystemTemplate : String

+ InitCounterInputCtrlSubSystem()
+ InitFifiCtrlSubSystem()
+ InitFslFifoSubSystem()
+ InitOutputSubSystem()
+ InitCounterSubSystem()
+ InitMbSubSystem()

MssTemplate

MhsTemplate

_auxiliaryTemplate : String
_counterInputCtrlTemplate : String
_fifoIfCtrlTemplate : String
_fslFifoTemplate : String
_uartTemplate : String
_counterTemplate : String
_mbSubSystemTemplate : String

+ InitCounterInputCtrlSubSystem()
+ InitFifiCtrlSubSystem()
+ InitFslFifoSubSystem()
+ InitOutputSubSystem()
+ InitCounterSubSystem()
+ InitMbSubSystem()

_auxiliaryTemplate : String

XmpTemplate

+ visitStatement(x : IpdStatement)
+ visitStatement(x : OpdStatement)

Figure 3.14: Visitor class hierarchy.

On the top level, an interface class called V isitor is defined to traverse a KPN specifica-
tion. Two abstract classes PNV isitor and StatementV isitor implement the interface class.

40 Multiprocessor Platforms FPGA Prototyping

The PNV isitor class is an abstract class for a visitor to traverse a Process Network. The
StatementV isitor class is another abstract class for a visitor to traverse a processor’s syn-
tax tree which is explained in Section 2.3.2. The MicroblazeStatementV isitor class extends
StatementV isitor to generate C codes for a MicroBlaze processor.

Concrete class MicroblazeNetworkV isitor extends abstract class PNV isitor. It is an en-
gine class called by ESPAM. It calls the method visitStructure(x : ProcessNetwork) of
all necessary concrete classes, i.e., MhsSpecV isitor, MssSpecV isitor, XmpSpecV isitor,
FifoCtrlNetworkV isitor, CounterInputCtrlNetworkV isitor, ClockCycleCounterNet
workV isitor, and MicroblazeProcessV isitor to generate XPS project files, respectively.

Abstract class MbSysSpecV isitor also extends abstract class PNV isitor, in which all the
common features of the project, such as the address space of each sub-system, is defined. Four
classes, XPSTemplate, CustomIpCoreNetworkV isitor, XPSProfileNetworkV isitor,
and MicroblazeProcessV isitor, are defined to extend the abstract class MbSysSpecV isitor.

Class MicroblazeProcessV isitor, which is called by class MicroblazeNetworkV isitor,
generates global program code files MemoryMap.h and aux func.h. At the same time,
it traverses the syntax tree of each processor and calls method visitStatement() of class
MicroblazeStatementV isitor to generate program codes for each processor.

Class CustomIpCoreNetworkV isitor is an abstract class which defines all common features
of the generation for custom IP cores. There are three concrete classes, namely FifoCtrlNetwo
rkV isitor, ClockCycleCounterNetworkV isitor, and CounterInputNetworkV isitor, which
extend CustomIpCoreNetworkV isitor to generate three different IP cores, i.e., fifo if ctrl
v1 00 a, clock cycle counter v1 00 a, and counter input ctrl v1 00 a described in Section
3.2.4 and Section 5.4.2.

For the project related files, such as the MHS, MSS, and XMP files, we define a template oper-
ation. Abstract class XPSTemplate is used to describe the common template descriptions.
There are three concrete template classes extend XPSTemplate, namely MhsTemplate,
MssTemplate, and XmpTemplate, which define the actual templates of the MHS, MSS, and
XMP files, respectively.

The last abstract class is XPSProfileNetworkV isitor. It is a abstract class for the genera-
tion of the above three project files using their corresponding templates. Three concrete class,
MhsSpecV isitor, MssSpecV isitor and XmpSpecV isitor, extend this abstract class. They
are used to generate the corresponding MHS, MSS, and XMP file. They are also called by class
MicroblazeNetworkV isitor when ESPAM is executed.

3.5 Discussion and Conclusion

In this chapter, we have described in detail how we implement the abstract model of a multipro-
cessor platform onto a Field Programmable Gate Array (FPGA) chip for prototyping. We use a
commercial tool, namely Xilinx Embedded Development Kit (EDK) [32], as the final synthesis
tool set to build the multiprocessor platform ready for an implementation on our target FPGA
board.

3.5 Discussion and Conclusion 41

We notice that Xilinx provides designers the EDK tool with a rich set of design tools and a wide
selection of standard peripherals required to build embedded processor systems using MicroB-
laze or PowerPC processor. But it does not provide a methodology how to design the systems
in a systematic and automated way. Thus, the situation the designers are facing is that they have
to do it all by hand. This is rather bearable if they only spend several hours to design a simple
embedded processor system with a single processor. But for a multiprocessor system, this can
be a nightmare. Such a design involves constructing the multiprocessor platform, partitioning
an application and allocating them to multiple processors, and debugging the multiprocessor
system. This design process is rather time consuming, error prone, difficult and depends very
much on the expertise of the designer.

Therefore, we have developed a methodology and tool called ESPAM that allows fast and effi-
cient mapping of an application onto multiprocessor platforms. One novelty in our ESPAM tool
is that it automatically generates the multiprocessor platform and the program code for each
processor in the platform for a given Matlab application as a project that can be accepted by
EDK. The automatic and systematic approach is a correct-by-construction mapping of a KPN
parallel specification onto multiprocessor platform. The automation will reduce significantly
the design time of a system and possible errors in the mapping process will be eliminated.

Another novelty is the communication mechanism in our multiprocessor platform. We generate
a FIFO controller between the processors and the hardware FIFO buffers. The FIFO controller
translates the MicroBlaze LMB bus protocol into the FSL bus FIFO specific protocol. The
MicroBlaze processor has to communicate with the FIFO buffers via this controller if the LMB
bus is used for connection between a processor and a FIFO buffer. This offers a flexibility while
implementing the multiprocessor platform on other target platform. If the bus protocol on either
side of the controller changes, we only have to make some corrections of the protocol translation
mechanism of the controller. The structure or topology of the multiprocessor platform need not
to be changed.

42 Multiprocessor Platforms FPGA Prototyping

Chapter 4
Case Studies

In this chapter we present two case studies that we have conducted in order to validate and
evaluate our system design approach presented in Chapter 2 and prototyped in Chapter 3. We
analyze the results obtained from the experiments performed in these case studies.

4.1 System Design Flow Using COMPAAN /ESPAM Tool Chain:
a Matrix Multiplication Case Study

In this case study, we present some of the results we have obtained by mapping the matrix
multiplication application introduced in Chapter 2 onto an FPGA using our system design flow
that has been discussed in Chapter 2 and Chapter 3.

The application we consider is a two dimensional (2D) matrix multiplication. The reason for
choosing this application can be explained from two aspects. On the one hand, what we need,
first of all, is an application to validate the correctness of the multiprocessor platform gener-
ated by the proposed COMPAAN/ESPAM tool chain. The matrix multiplication is a fundamental
benchmark application that is not complicated but has enough features to illustrate the correct-
ness and usefulness of our system design method. On the other hand, matrix multiplication is an
excellent application for parallel processing. It is commonly used in almost all areas of scien-
tific research and it has significant appliance in the areas of graph theory, numerical algorithms,
digital signal processing, and digital control.

The input to our system design flow is the application described in a subset of Matlab shown
in Figure 2.2. We start with publicly available sequential C code of a matrix multiplication.
This code is modified and structured by hand to meet the subset of Matlab that our design flow
accepts and to match the features of the matrix multiplication. The only reason we use Matlab
is that the COMPAAN tool uses a simple Matlab parser. The writing of the Matlab code together
with the functional testing and debugging takes 2 days. After this preparation work, which is an
one-time effort only, we start with the mapping of the matrix multiplication using our system
design flow.

Our first experiment is to measure how much time it takes to map the 2D matrix multiplication

44 Case Studies

onto the FPGA using our system design flow. The two matrices we use for multiplication in this
experiment are 20×20 integer matrices. Table 4.1 shows the processing time for every step in
the flow. The last column shows the total time needed for every step.

Table 4.1: Processing time (hh:mm:ss).
COMPAAN ESPAM Other tools Manually Total

STEP 1 00:00:18 – – – 00:00:18
STEP 2 – 00:00:24 – – 00:00:24
STEP 3 – – 00:45:10 00:10:00 00:55:10
Overall 00:00:18 00:00:24 00:45:10 00:10:00 00:55:52

The overall time of the whole design flow for the matrix multiplication experiment is around 56
minutes. The column “Other tools” now contains a commercial synthesis tool, namely Xilinx
Platform Studio (XPS). The time for running this tool is about 45 minutes, which takes 80%
of the time for the whole design flow. The column “Manually” indicates that we have to do
some manual manipulations. For example, at the beginning of Step 3 in Figure 1.2, we have
to manually import the generated project suite into the XPS environment and to initialize the
values of the two matrices for the multiplication. All these manual procedures take a total of
approximately 10 minutes.

The results show that the mapping of the matrix multiplication onto the FPGA is done in a
short amount of time - about one hour. The main reason is the great time performance of
the COMPAAN tool and our ESPAM tool that map fully automatically the KPN specification
of the application onto a multiprocessor platform description in a few seconds. In XPS this
platform description is further converted into synthesizable VHDL code in a few minutes. For
comparison, a hand-made design of converting the KPN specification directly into VHDL will
take several days or even months. Note that the time consumed by the COMPAAN/ESPAM tool
chain in the system design flow is weakly dependent on the complexity of the application. For
a very complex application, the time consumed by the first two steps is still at the level of a few
seconds. Therefore, we can conclude that the automation realized by the COMPAAN/ESPAM

tool chain reduces significantly the design time of a system.

Table 4.2 shows the FPGA resource utilization for the mapping of the matrix multiplication
application. The KPN specification derived from COMPAAN in this experiment can be seen in
Figure 2.3. The multiprocessor platform derived from this KPN specification is shown in Figure
2.4. It consists of six MicroBlaze processors, eight FIFO buffers, six FIFO control cores, one
UART, and some memory blocks and FSL buses associated to each processor. The numbers in
Table 4.2 show that on average 43% of the FPGA resources are used. This is not efficient in
terms of resource usage for such a simple application. A manual design for sequential imple-
mentation on non-multiprocessor platform gives much better resource utilization. However, as
has said before, the goal of this case study is to show that we can build very fast a complex mul-
tiprocessor platform for an application. A more complex and realistic example is the M-JPEG
application which is discussed in Section 4.2.

In the second experiment, we map a set of different KPN specifications of this 2D matrix mul-
tiplication onto the FPGA and compare their performance. A sequential application can be
expressed as a KPN model in many different ways, thereby generating alternative functionally
equivalent KPNs. All these KPNs specify the functionality of the initial application exploiting
different degree of task-level parallelism. Mapping these alternative KPN specifications of an

4.1 System Design Flow Using COMPAAN /ESPAM Tool Chain: a Matrix Multiplication
Case Study 45

Table 4.2: Virtex II Pro 2VP20: device utilization.
FPGA Resource Utilization %

Number of MULT18X18s 6 out of 88 20%
Number of RAMB16s 9 out of 88 40%

Number of SLICEs 1273 out of 9280 43%
Number of BUFGMUXs 1 out of 16 6%

application onto a multiprocessor platform can help us to explore and evaluate the performance
of different systems. This allows us to select the KPN and the platform instance that meet best
our performance requirements.

In our system design flow, we use algorithmic transformations Merging and Unfolding [39] [40]
in combination with the COMPAAN compiler to increase or decrease the degree of task-level
parallelism exploited in the KPN specification. For our matrix multiplication case, the most
computational intensive processes in the application are MultProp and Sum that compute the
product of the elements from the two matrices and the sum of products. We first use the Merg-
ing transformation to merge these two processes into one single process, see Figure 4.1. Then
by applying Unfolding, we further partition this process into several processes that run con-
currently. Thus, we can obtain a set of KPN specifications having different degree of exploited
task-level parallelism. Figure 4.1 to 4.4 show four KPN specifications where the merged process
of MultProp and Sum is unfolded by factor 1, 2, 3, and 4. Unfolding factor 1 means unfolding
is not performed at all while factor 2, 3, or 4 means the process is partitioned into two, three, or
four concurrent processes, respectively.

ND_1
Read_x|

P1
P1_l_MultProp|P1_l_Sum|P1_l_Write_z|

ED_2

ND_2
Read_y|

ED_4

ND_3
Zero_z|

ED_6

ED_1

ED_3

ED_5

ED_7

ED_8

Figure 4.1: Unfolding factor = 1.

We map the four KPN specifications of the matrix multiplication in this experiment. We im-
plement each one onto the FPGA in two different ways regarding to different bus connections,
namely LMB and FSL bus connections. Then we measure the clock cycles needed for each im-
plementation to process the two 20×20 integer matrices multiplication. The results are shown
in Figure 4.5.

From the experimental results, first we can see that for each KPN specification with identical
unfolding factor, the cycles consumed by the LMB bus implementation are much more than
those of the FSL bus implementation. Obviously, the FSL bus is faster than the LMB bus. This
is because the FLS read/write primitives shown in Figure 3.8 perform the blocking read/write
in hardware with 1 assembly instruction (See lines 2 and 5 in Figure 3.7) and in total each of

46 Case Studies

ND_1
Read_x|

P1
P1_l_MultProp|P1_l_Sum|

ED_2

P2
P2_l_MultProp|P2_l_Sum|P2_l_Write_z|

ED_9

ND_2
Read_y|

ED_4

ND_3
Zero_z|

ED_6

ED_12

ED_1

ED_5

ED_7

ED_14

ED_10

ED_3

ED_11

ED_13

ED_15

ED_8

Figure 4.2: Unfolding factor = 2.

ND_1
Read_x|

P1
P1_l_MultProp|P1_l_Sum|

ED_2

P2
P2_l_MultProp|P2_l_Sum|

ED_10

P3
P3_l_MultProp|P3_l_Sum|P3_l_Write_z|

ED_17

ND_2
Read_y|

ED_4 ED_12

ED_19

ND_3
Zero_z|

ED_6

ED_1

ED_3

ED_7

ED_13

ED_23

ED_14

ED_9

ED_11

ED_20

ED_24

ED_26

ED_5

ED_16

ED_18

ED_21

ED_25

Figure 4.3: Unfolding factor = 3.

ND_1
Read_x|

P1
P1_l_MultProp|P1_l_Sum|

ED_2

P2
P2_l_MultProp|P2_l_Sum|

ED_9

P3
P3_l_MultProp|P3_l_Sum|

ED_15

P4
P4_l_MultProp|P4_l_Sum|P4_l_Write_z|

ED_21

ND_2
Read_y|

ED_4

ND_3
Zero_z|

ED_6

ED_12

ED_18

ED_24

ED_1

ED_5

ED_7

ED_10

ED_26

ED_11

ED_13

ED_8

ED_16

ED_27

ED_14

ED_17

ED_19

ED_22

ED_28

ED_3

ED_20

ED_23

ED_25

ED_29

Figure 4.4: Unfolding factor = 4.

these primitives is implemented with 9 assembly instructions (1 instruction for read/write FIFO,
6 instructions for the for loop and 2 instructions for an end of the function call). In contrast, the
LMB read/write primitives perform the blocking read/write in software, see lines 7 and 19 in
Figure 3.9. This causes additional 6 assembly instructions. It means that in total each primitive
for the LMB bus is implemented with 15 assembly instructions. Based on this fact, we can
conclude that we get a speedup of 1.67 on average using the FSL bus as it is shown by the black
boxes in Figure 4.5.

4.1 System Design Flow Using COMPAAN /ESPAM Tool Chain: a Matrix Multiplication
Case Study 47

�������

������ ����	�

�����	�

�����������

����
�

�������

������
������

�����

�
����

�

������

�������

�������

�������

�������

� � � �

���������	�
���
���������	�
���
���������	�
���
���������	�
���

�
�
�
�
�
�
�
�
	
�

�

�
�

�
�
�
�
�
�
�
�
	
�

�

�
�

�
�
�
�
�
�
�
�
	
�

�

�
�

�
�
�
�
�
�
�
�
	
�

�

�
�

��	
��
 ���
��
 ���
������
����

Figure 4.5: Experimental results.

From a viewpoint of different unfolding factors, speedup can also be obtained with the in-
crement of the unfolding factor. Larger unfolding factor means the process is split into more
concurrent processes, thus a higher degree of parallelism is exploited. This is especially obvious
for the case of LMB bus implementation, see the gray boxes in Figure 4.5. We have a speedup
of 2 from factor 1 (no unfolding) to factor 2. Unfolding by 3, we get 3 times less clock cycles.
Unfolding by 4, we get nearly 4 times less clock cycles compared to the unfolding by factor 1.

The experimental results discussed above are obtained by using the FSL and LMB bus read/write
primitives shown in Figure 3.8 and Figure 3.9, respectively. They are general read/write primi-
tives in our system design method for stream oriented applications. They both have a parameter
len that specifies the length of the data for each read/write operation. For example, the for loop
in the FSL read primitive in line 3 - 4 of Figure 3.8 implements reading of data with different
lengths. This for-loop control adds extra clock cycles to perform the reading. The same is valid
for the LMB read/write primitives. In our matrix multiplication case, however, the parameter
len is fixed to 1, because we always read one 32-bit data token at a time. Therefore, we can
remove the for statement in order to obtain a further speedup as shown by the white boxes in
Figure 4.5.

There is an exception in the unfolded-by-4 system. As Figure 4.5 shows the cycles consumed
in FSL-bus system and Fix-length-data system are more than the corresponding cycles in the
unfolded-by-3 system. We find out that the bottleneck is in the input processors. When we
unfold by factor 4, the input data is split to 4 sets by using for-if control statements. These for-if
control statements execute sequentially in the input processor. The additional cycles they need
mask the performance improvements gained by the unfolding. We conclude that we can get
the best-performance system for this application by unfolding by 3. Further unfolding does not
give any improvement.

In this case study, we verify the methods and techniques implemented in our tool chain. Using
our tool chain, the design time of a system can be reduced from days to hours. Thus, exploring
the performance of alternative KPN specifications mapped onto instances of a multiprocessor

48 Case Studies

platform using our tool chain is feasible. Meanwhile, we explore two different bus connections,
i.e., FSL and LMB. By choosing the FSL as communication bus, the system performance can
be improved significantly.

4.2 Exploring the Performance of Alternative KPN Instances:
an M-JPEG Case Study

In this case study, we consider a more complex application, a modified Motion JPEG (M-JPEG)
encoder, to evaluate our design flow. Like traditional M-JPEG encoder, this modified M-JPEG
encoder compresses a sequence of frames, applying JPEG [41] [42] compression to each frame.
This encoder operates on video data in a 4:2:2 YUV formats on a per-frame basis.

The initial Matlab code is shown in Figure 4.6. It is parameterized in the number of frames to
be processed (NumFrames) and in the vertical (VnumBlocks) and horizontal (HnumBlocks) size
of a frame in number of 8×8-pixel blocks. For example, the code in line 1 specifies that the
number of frames in the sequence can be any integer value from 1 to 100. The code in lines
5-9 initializes the luminance and chrominance quantization table (QTables) and luminance and
chrominance Huffman table (HuffTableAC), etc. First, frames in YUV format are divided in
8×8-pixel blocks by the VideoInMain() function where every block is a 4:2:2 YUV block.
Then a standard JPEG compression algorithm is executed for each frame. A Discrete Cosine
Transform (DCT) is applied on every 4:2:2 YUV block - line 16, followed by quantization (Q)
and variable-length encoding (VLE) - line 17-19. Function VideoOut() in line 20-21 adds header
information to the compressed frame.

1 %parameter NumFrames 1 100;
2 %parameter VNumBlocks 2 100;
3 %parameter HNumBlocks 1 100;
4
5 for k = 1:1:1,
6 [LuminanceQTable, ChrominanceQTable, LuminanceHuffTableDC, ChrominanceHuffTableDC,
7 LuminanceHuffTableAC,ChrominanceHuffTableAC, LuminanceTablesInfo, ChrominanceTablesInfo
8] = DefaultTables();
9 end
10
11 for k = 1:1:NumFrames,
12 [HeaderInfo] = VideoInInit();
13 for j = 1:1:VNumBlocks,
14 for i = 1:1:HNumBlocks,
15 [Block] = VideoInMain();
16 [Block] = DCT(Block);
17 [Block] = Q(Block, LuminanceQTable, ChrominanceQTable);
18 [Packets] = VLE(Block, LuminanceHuffTableDC,ChrominanceHuffTableDC,
19 LuminanceHuffTableAC,ChrominanceHuffTableAC);
20 [dummy] = VideoOut(HeaderInfo, LuminanceTablesInfo,
21 ChrominanceTablesInfo, Packets);
22 end
23 end
24 end

Figure 4.6: Task-Level specification of the M-JPEG application in Matlab.

In this case study, we first convert the initial Matlab program in Figure 4.6 into several alter-
native KPN specifications using COMPAAN. The general partitioning strategy employed by

4.2 Exploring the Performance of Alternative KPN Instances: an M-JPEG Case Study 49

COMPAAN is to create a process for every function call in the initial program. By using the
Merging transformation, we can alter the partitioning strategy and get alternative KPN spec-
ifications, thereby exploiting different degree of task-level parallelism available in the initial
M-JPEG application. In this case study, we conduct three experiments to evaluate our COM-
PAAN/ESPAM design flow. In the first experiment, we merge all the functions into one process
as shown in Figure 4.7. Actually, this KPN specification exploits no parallelism as this is the
case in the initial Matlab program. We use this KPN as a refereed point for comparison. In the
second experiment, we only merge the input and output functions, see Figure 4.8. In the third
experiment depicted in Figure 4.9, we build a task-level pipelined network by not merging the
input and output functions.

P1
P1_l_DefaultTables|P1_l_VideoInInit|P1_l_VideoInMain|P1_l_DCT|P1_l_Q|P1_l_VLE|P1_l_VideoOut|

ED_1

ED_2

ED_11

ED_12

ED_13

ED_3

ED_4

ED_5

ED_6

ED_7

ED_8

ED_9

ED_10

Figure 4.7: Experiment 1 - Merge all functions in to one process.

P1
P1_l_DefaultTables|P1_l_VideoInInit|P1_l_VideoInMain|P1_l_VideoOut|

ED_11

ED_12

ED_10

ND_4
DCT|

ED_1

ND_5
Q|ED_3

ED_4

ND_6
VLE|

ED_6

ED_7

ED_8

ED_9

ED_2

ED_5

ED_13

Figure 4.8: Experiment 2 - Merge only the input and output functions.

In the second step, we use ESPAM to derive three different platforms and map these three net-
works onto the platforms, respectively. So that we can compare their system performance. In
Experiment 1, we map process P1 to a MicroBlaze soft processor. The 13 self-loop channels are
mapped to 13 FIFOs. Since the MicroBlaze processor only has 8 input and 8 output FSL ports as

50 Case Studies

P1
P1_l_DefaultTables|P1_l_VideoInInit|P1_l_VideoInMain|

ND_4
DCT|

ED_1

ND_5
Q|

ED_3

ED_4

ND_6
VLE|

ED_6

ED_7

ED_8

ED_9

ND_7
VideoOut|

ED_11

ED_12

ED_10

ED_2

ED_5

ED_13

Figure 4.9: Experiment 3 - Fully pipelined M-JPEG.

has explained in Section 3.2.3, we connect the first 8 FIFOs to FSL ports and the rest 5 to LMB
bus. In Experiment 2, we create a partial pipelined system, in which the input&output functions
are mapped to one MicroBlaze processor and DCT, Q, and VLE are mapped to separate Mi-
croBlaze processors respectively. In Experiment 3, ESPAM generates a 5-stage multi-processor
pipeline system. Each stage in the pipeline is executed by a processor on which a process is
mapped. See in Figure 4.9, The VideoInMain() process is mapped to processor P1, DCT() to
ND 4, Q() to ND 5, VLE() to ND 6, and VideoOut() to ND 7. The performance of these three
system is shown in Figure 4.10.

�

�������

�������

�������

�������

���������	�
����
���������	�
����
���������	�
����
���������	�
����

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
�
�
�
�
�
�
�
	
�

�
�

�
�

���	
��	
��� ���	
��	
��� ���	
��	
���

���	
��	
��� ������ ������� ������� ������� ������� ������� ������� �������

���	
��	
��� ������ ������ ������� ������� ������� ������� ������� �������

���	
��	
��� ������ ������ ������ ������ ������� ������� ������� �������

� � � � � � � �

Figure 4.10: Performance of the M-JPEG application of the three experiments.

Comparing the performance of Experiment 1 and Experiment 2, the partly pipelined network in
Experiment 2 cannot provide too much improvements. This is because we merge the input and
output into one processor. The next frame can be put into the pipeline only after the previous one
is sent to the output, which causes it perform a sequential processing the same as Experiment

4.2 Exploring the Performance of Alternative KPN Instances: an M-JPEG Case Study 51

1. The only difference is the bus connection. As has described above, the input and output of
the upper 9-13 FIFOs of Experiment 1 are connected via the relatively low speed LMB bus.
Whereas in Experiment 2, the 13 FIFOs are dispersed in the network. Only 3 output ports of
processor P1 need to connect to the LMB bus. This is the reason that Experiment 2 causes less
clock cycles than Experiment 1, which is shown in the gray and black columns in Figure 4.10.

From the white boxes in Figure 4.10, we can see that if only one image is put to the pipeline,
the clock cycles used are nearly the same as those in Experiment 2. There is no performance
improvement. However, when a sequence of images is put to the pipeline, speedup is achieved.
From a theoretical point of view, suppose the clock cycles used for one image is I , we can
express the relation of the sequence of n images and clock cycles C(n) for Experiment 2 as
Equation (4.1) and for Experiments 3 as Equation (4.2). Then the speedup expression is given
by Equation (4.3). When an infinite sequence of images is put in the pipeline, n → ∞, we can
theoretically achieve 5 times speedup.

C2(n) = I × n (4.1)

C3(n) = I + I × n/5 (4.2)

lim
n→∞

I × n

I + I × n/5
(4.3)

However, from Figure 4.11, we can see the actual speedup in Experiment 3 is less than the
theoretical speedup. The reason for this is that the stages in the pipeline are not balanced. The
total cycles for one image of 8×8 pixels is 498929 as shown in the first white box in Figure 4.10.
Function DefaultTables(), which takes 147318 cycles, has an one time effect on the pipeline and
will not be put to the total cycles. Thus, the total cycles that the pipeline runs are 351611. Table
4.3 shows the cycles and utilization percentage of each pipeline stage in Experiment 3. From
the table, we can see that DCT() takes more than 40 percent of the whole time. If we unfold
DCT() into two parallel processors, the speedup will be significantly increased, because we will
balance the pipeline.

Table 4.3: Cycles and utilization percentage of each pipeline stage in experiment 3.
VideoInMain DCT Q VLE VideoOut

Cycles 21,502 142,293 76,736 92,094 18,991
Percentage(%) 6.1 40.5 21.8 26.2 5.4

Another issue we need to explain is related to the input and output stages. From Table 4.3, we
see that the input and output stages take only 11 percent from the total clock cycles. This is
because we get an image frame from an external memory and store the result in the on-chip
RAM. But for a real life streaming system, this is not the case. We might expect that the input
and output stages will take more percentage. More exploration can be done to get the best
pipeline performance, which is out of the scope of this experiment.

In this case study, we verify the methods and techniques implemented in our tool chain with a
more complex M-JPEG application. For this complex M-JPEG application, we find out that a

52 Case Studies

���

�

���

�

���

�

���

� � � � � � 	

����������	�
��
������������	�
��
������������	�
��
������������	�
��
��

�
�
�
�
�
�
�
�
�
�
�
�
	
�
�

	
�
�

�
�
�
�
�
�
�
�
�
�
�
�
	
�
�

	
�
�

�
�
�
�
�
�
�
�
�
�
�
�
	
�
�

	
�
�

�
�
�
�
�
�
�
�
�
�
�
�
	
�
�

	
�
�

��
��
����� ���
���
���� ���
���
����

Figure 4.11: Speedup comparison of the theoretical value and actual value.

lot of new issues need to be considered. All these issues are related to the memory allocation,
e.g., the stack size of each processor, the FIFO size, and the instruction/data memory allocation
of each processor. In the matrix multiplication case study, the problem cannot be revealed
because of the simplicity of the functions in it. Whereas, in the M-JPEG application, functions
are more complex. For example, an argument of a function call may take hundreds of bytes.
All these arguments will be pushed to the stack of a processor when calling this function. The
stack may be filled and then broken through if its size is not enough when nested function calls
occur.

We cannot predict the minimum size of the stack and memory at compile time. Therefore, we
have to adjust the size of the instruction memory, data memory and stack after our automatic
generation. The size of the memory and stack for the three experiments are listed in Table 4.4,
4.5, and 4.6. From these tables, we can see that the P1 processor of all three experiments needs
an extremely huge stack, which size is up to 64 Kbytes. The target board has only 88 blocks
on-chip memory, which is 176 Kbytes (2k per block), thus we use an external memory for the
stack.

Table 4.4: Experiment 1 - memory allocation.
P1(VIn Vout DCT Q VLE)

Instruction memory Data memory Stack
Size (KB) 64 64 45

Table 4.5: Experiment 2 - memory allocation.
P1 (VIn and VOut) ND 4 (DCT) ND 5(Q) ND 6(VLE)

Size(KB)
Ins/Data Stack in

external
memory

Ins
/Data

Stack Ins/Data Stack Ins/Data Stack

32 64 32 18 32 9 32 19

4.2 Exploring the Performance of Alternative KPN Instances: an M-JPEG Case Study 53

Table 4.6: Experiment 3 - memory allocation.
P1 (VIn) ND 4 (DCT) ND 5(Q) ND 6(VLE) ND 7(Vout)

Size(KB)
Ins Data Stack in

external
memory

Ins
/Data

Stack Ins/Data Stack Ins/Data Stack Ins
/Data

Stack

8 16 64 32 18 16 9 32 19 32 20

Another fact needed to be discussed is the size of FIFOs in the processors network. To avoid a
deadlock of the network, we need to predict the minimum FIFO size. However, our tool chain
does not support this feature currently. To predict the minimum size, we need to evaluate how
much tokens at most will be in a FIFO at a certain time. This is another open problem. For the
three experiments in this case study, we allocate the size of each FIFO following Table 4.7.

Table 4.7: FIFO memory allocation.
ED 1 ED 2 ED 3 ED 4 ED 5 ED 6 ED 7 ED 8 ED 9 ED 10 ED 11 ED 12 ED 13

Size(KB) 2 2 2 2 2 4 4 4 4 2 4 4 2

In this case study, we use our COMPAAN/ESPAM tool chain to design three different systems
for the M-JPEG application. With the help of our tool chain, we can fast map our designs on an
FPGA board and get a runnable system. Because of the complexity of the M-JPEG application,
a few new issues are revealed during this case study. They are size adjustment of the stack,
memory allocation, and FIFO buffer. Further research work is needed to supply these new
issues. Although some features still need to be adjusted manually, our tool chain achieves great
efficiency for prototyping alternative KPN specification. We believe this efficiency will release
system designers from the heavy workload of prototyping a complex multiprocessor system, so
that they can focus on exploring the performance of alternative systems.

54 Case Studies

Chapter 5
Getting Started: Tutorial with Example using
the COMPAAN/ESPAM tool chain

In this chapter, we give a tutorial to show how an embedded system can be designed using our
COMPAAN/ESPAM tool chain and the commercial synthesis tool Xilinx Platform Studio (XPS).
We choose a complex application, namely the fully pipelined M-JPEG shown in Figure 4.9 as
our example to explain each design step in detail.

XPS is an Integrated Development Environment (IDE) used to develop Xilinx Embedded De-
velopment Kit (EDK)-based system designs. An XPS project consists of a few description files,
e.g., the Xilinx Microprocessor Project (XMP) file, the Microprocessor Hardware Specification
(MHS) file, the Microprocessor Software Specification (MSS) file, and the User Constraint File
(UCF). Our ESPAM tool acts as a front-end compiler of XPS. ESPAM systematically synthesizes
a platform and automatically generates all necessary files of an XPS project from an application
specified as a KPN.

This chapter is further organized as follows. In Section 5.1, we describe the steps of generating
an XPS project as well as we explain the result of the generation in detail. In Section 5.2,
we describe how to import the generated project into XPS. In Section 5.3, we discuss what is
needed to be modified manually in the imported project. Finally, we show how to execute the
modified project and how to get results as well as we explain some debug procedures in Section
5.4

5.1 XPSProject Generation

In this section, we briefly describe how to generate a KPN specification from an application
written in Matlab and how to generate an XPS project suite from the KPN specification. We use
COMPAAN to generate the KPN specification and ESPAM to generate the XPS project suite.

56 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

5.1.1 Application Source Code

The initial sequential Matlab code is shown in Figure 4.6. It is a modified Motion JPEG (M-
JPEG) encoder which compresses a sequence of video frames, applying JPEG compression to
each frame in the video sequence. The detail explanation of this application is given in Section
4.2.

By default, COMPAAN generates a process for each function call in the initial Matlab code.
Therefore, a 7-process network will be generated for the code in Figure 4.6. To generate a 5-
stage task-level pipelined system, we need a 5-process network. To get such network, we merge
some of the 7 function calls using the key word P1 l shown in the bold lines 23, 27, and 30 in
Figure 5.1. In this case, function calls DefaultTables, V ideoInInit, and V ideoInMain will
be merged into one process.

1 %%MJPEG_5p.mat
%parameter NumFrames 1 100;
%parameter VNumBlocks 2 100;
%parameter HNumBlocks 1 100;

5
%typedef HeaderInfo THeaderInfo;
%typedef LuminanceQTable TQTables;
%typedef ChrominanceQTable TQTables;
%typedef LuminanceHuffTableDC THuffTablesDC;

10 %typedef ChrominanceHuffTableDC THuffTablesDC;
%typedef LuminanceHuffTableAC THuffTablesAC;
%typedef ChrominanceHuffTableAC THuffTablesAC;
%typedef LuminanceTablesInfo TTablesInfo;
%typedef ChrominanceTablesInfo TTablesInfo;

15 %typedef Packets TPackets;
%typedef Block TBlocks;

for k = 1:1:1,
[LuminanceQTable,ChrominanceQTable,

20 LuminanceHuffTableDC,ChrominanceHuffTableDC,
LuminanceHuffTableAC,ChrominanceHuffTableAC,
LuminanceTablesInfo, ChrominanceTablesInfo

] = P1 l DefaultTables();
end

25
for k = 1:1:NumFrames,

[HeaderInfo] = P1 l VideoInInit ();
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
30 [Block] = P1 l VideoInMain();

[Block] = DCT(Block);
[Block] = Q(Block, LuminanceQTable, ChrominanceQTable);
[Packets] = VLE(Block,

LuminanceHuffTableDC,ChrominanceHuffTableDC,
35 LuminanceHuffTableAC,ChrominanceHuffTableAC);

[dummy] = VideoOut(HeaderInfo, LuminanceTablesInfo,
ChrominanceTablesInfo, Packets);

end
end

40 end

Figure 5.1: M-JPEG task-level pipeline Matlab code.

Another fact which needs to be explained is that the Matlab code in Figure 5.1 is the top-level
entry for our COMPAAN/ESPAM tool chain. Our tool does not deal with the implementation of
the function calls used in the initial Matlab code, it only generates empty wrappers for these
function calls. To implement the application in XPS, these empty wrappers have to be replaced

5.1 XPS Project Generation 57

in a later step. Therefore the definition and implementation of all functions in the initial Matlab
code need to be considered. We declare needed data types in lines 6 - 16 in Figure 5.1, the
definition of which is in file types.h. The DefaultTables() function in line 23 is implemented
in file ControlInit.cpp. V ideoInInit() and V ideoInMain() in lines 27 and 30 are imple-
mented in file V ideo in.cpp. DCT () in line 31 is implemented in file DCT.cpp. Q() in line 32
is implemented in file Q.cpp. V LE() in line 33 is implemented in file V LE.cpp. V ideoOut()
in line 36 is implemented in file V ideo out.cpp. We need to import manually all these files
to XPS. We describe this procedure in Section 5.3.2. The source files discussed above can be
found in the CVS repository:
docs/students/KaiHuang JiGu/experiment/projects/m-jpeg/MJPEG-Pentium.tar.gz

5.1.2 KPN Specification and XPS Project Generation

In this section, we describe how to generate the KPN specification and the XPS project from the
Matlab code in Figure 5.1 using our COMPAAN/ESPAM tool chain.

Tool Chain Commands

We use three commands, shown in Figure 5.2, in the tool chain to generate the KPN specification
and the XPS project. These commands have to be executed from a Linux terminal on a computer
where the COMPAAN/ESPAM software is installed:

1) matparser --input MJPEG_5p.mat --output MJPEG_5p.sac --compile --verbose -r
2) dgparser --input MJPEG_5p.sac --output MJPEG_5p --xml -r
3) panda --input MJPEG_5p.xml -c MJPEG_5p.m -ls -lms -RP -r --clockgen --mbxps <libXPS>

Figure 5.2: Commands and options.

The first command starts the MATPARSER tool [43]. It transforms the initial Matlab code into
a single assignment code (SAC), which resembles the dependence graph (DG) of the initial
Matlab code. We explain the necessary options below:

• --input : This option is followed by a filename that points to a file where the initial
Matlab code is stored.

• --output: This option is followed by a filename that points to a file where results, for
example the SAC, need to be written.

• --compile: This option tells MATPARSER to convert the Matlab code into a SAC.

• --verbose: This option causes MATPARSER to produce information messages showing
the progress made in the conversion.

• -r : This option applies a set of optimizations on a solution tree which describes data-
dependencies. The optimizations include removing redundant if/else statements, remov-
ing redundant index statements, and removing redundant sub-graphs.

58 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

The second command starts the DGPARSER tool. It converts the SAC into a Polyhedral Reduced
Dependence Graph (PRDG) data structure, which is a compact mathematical representation
of the DG in terms of polyhedra. Figure 5.3 depicts the resultant PRDG, in which each node
represents a function in the initial Matlab code and the edges represent data dependences among
all function calls. To run DGPARSER, the necessary options are:

• --input : This option specifies the SAC file generated by MATPARSER.

• --output: This option specifies the output file where the PRDG data structure will be
stored.

• --xml: This option specifies the format of the output file as XML.

• -r : This option manipulates the parse tree. In particular, it removes control from the
index statements.

ND_1
DefaultTables|

ND_5
Q|

ED_3

ED_4

ND_6
VLE|

ED_6

ED_7

ED_8

ED_9

ND_7
VideoOut|

ED_11

ED_12

ND_2
VideoInInit|

ED_10

ND_3
VideoInMain|

ND_4
DCT|

ED_1 ED_2

ED_5

ED_13

Figure 5.3: PRDG graph for the fully pipelined M-JPEG Application.

The third command starts the PANDA tool. It converts the PRDG into a KPN process network
[44] [45]. For our example, the resultant KPN is shown in Figure 4.9, where nodes ND 1,
ND 2, and ND 3 are merged in process P1. Also, this command invokes our ESPAM tool
which generates the XPS project suite. The necessary options for this command are:

• --input : This option specifies the input PRDG XML file generated by DGPARSER.

• -c: This option describes a valid global schedule as a Matlab program for all the nodes in
Figure 5.3. The reason that we use the initial Matlab code schedule is simply because it is
available by default. Actually, we can use any other valid schedule specified as a Matlab
program.

• -ls -lms: These options tell PANDA to select communication linearization model, since
the communication is not always in order. For more details see [44] [45].

• -RP: This option makes sure that the number of data tokens which a producer process
sends is the same as the number of tokens a consumer process needs. For more details
see [44] [45].

5.1 XPS Project Generation 59

• -r : This option optimizes the number of communication channels without decreasing the
performance of the process network. It removes some channels which start from one and
the same process and end to another process.

• --mbxps: This option invokes the ESPAM tool and tells ESPAM to generate an XPS

project. This option has a parameter <libXPS>, which points to a library that stores the
predefined platform components used to generate an XPS project. An XPS project con-
sists of two parts. One part is generated at compile time, including the XMP/MHS/MSS
files, program codes for each processor in the platform, and some custom IP cores. The
other part is a library which consists of predefined components that are common for all
projects, such as a clock IP core and a UCF file. We store this library in the CVS repos-
itory. The <libXPS> specifies the path to this library so that ESPAM can copy and use
it during the generation of an XPS project suite. Currently, we use the following CVS
repository path for this library:
.../compaan/pa/espam/libXPS

• --clockgen: This option tells ESPAM to generate some components used for debugging.
We explain these debugging components in Section 5.4.2.

XPS Project Directory Hierarchy

After we run the three commands depicted in Figure 5.2, an XPS project is generated. Figure
5.4 shows the project directory hierarchy.

<PROJECT_ROOT>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- M_JPEG_5p.m
|--- loader.exe
|--- etc/
|---------- bitgen.ut
|---------- fast_runtime.opt
|--- data/
|---------- system.ucf
|--- code/
|---------- MemoryMap.h
|---------- aux_func.h
|---------- ND_4/
|---------------- ND_4.cpp
|---------------- default_link_script
|---------- ND_5/
|---------------- ND_5.cpp
|---------------- default_link_script
|---------- ND_6/
|---------------- ND_6.cpp
|---------------- default_link_script
|---------- ND_7/
|---------------- ND_7.cpp
|---------------- default_link_script
|---------- P1/
|---------------- P1.cpp
|---------------- default_link_script
|--- pcores/
|---------- fifo_if_ctrl_v1_00_a/
|---------- myCLKRST_v1_00_a/
|---------- clock_cycle_counter_v1_00_a/
|---------- counter_input_ctrl_v1_00_a/
|---------- buffers_v1_00_a/
|---------- opb_zbt_controller_v1_00_a/

Figure 5.4: Project directory structure.

The system.xmp, system.mhs and system.mss files are the corresponding XMP, MHS, and MSS
files which have been introduced in section 3.4.1. The system.mhs file is described in detail in

60 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

Section 5.1.3. The M JPEG 5p.m file stores the initial Matlab code shown in Figure 5.1. The
loader.exe is a program used to download and run the bitstream file. We explain it in Section
5.4.1. Directory etc contains files bitgen.ut [46] and fast runtime.opt [46] which store options
for the Xilinx implementation tools. The directory data contains a file, namely system.ucf [37]
which specifies implementation constraints such as timing, FPGA pin locations, FPGA resource
specification, and IO standards.

Directory code stores the program code files for each processor in the platform. Each processor
has a corresponding sub-directory, in which program source code files and a default linker script
file are stored. We describe the program code files in Section 5.1.4 and the linker script file in
Section 5.1.5.

In the top level of the code directory, there are two files, namely MemoryMap.h and aux func.h.
They are common for program codes of all processors. The aux func.h file declares read and
write primitives and the wrappers of all function calls in the initial Matlab code in lines 23, 27
and 30 - 36 in Figure 5.1. The MemoryMap.h file specifies the physical addresses of FIFOs
connected to every processor. We explain this file in Section 5.1.6.

The pcores directory contains all predefined IP cores as well as IP cores generated by ES-
PAM. The fifo if ctrl v1 00 a is the LMB FIFO controller described in Section 3.2.4. The
clock cycle counter v1 00 a and counter input ctrl v1 00 a are two IP cores used for debug-
ging. We explain them in Section 5.4.2. The myCLKRST v1 00 a is a predefined IP core used
for generating the system clock and reset. The buffers v1 00 a and opb zbt controller v1 00 a
are also predefined IP cores used for connecting an external memory to a processor.

5.1.3 MHS File

The MHS file defines all hardware components used in a platform as well as the connections
between these components. An automatically generated MHS file for our example platform is
shown in Appendix B.

In code lines 1 - 16, input/output pins of the FPGA chip are specified, such as the Universal
Asynchronous Receiver-Transmitter (UART) pins, clock and reset pins. In code lines 17 - 45, a
bank of Zero Bus Turnaround (ZBT) SRAM memory is instantiated. This memory is connected
via an OPB bus mb opb in line 24 and its base address is set to 0xfa000000. Every processor
which is connected to bus mb opb can access this ZBT memory by the physical address from
0xfa000000 to 0xfa3fffff. In code lines 47 - 60, a global clock module is instantiated using the
IP core myCLKRST v1 00 a. It generates different clocks for different modules. In code lines
62 - 228, FSL FIFOs are instantiated corresponding to the 13 channels shown in Figure 4.9. By
default, the data width is set to 32 bits and the depth is set to 512 for all FIFOs.

The rest of this file describes 5 processor sub-systems. Each sub-system is stand-alone, i.e.,
it has its own instruction/data memory and memory controller. Each processor sub-system
corresponds to a process in Figure 4.9. For example, in code lines 230 - 314, all components
of processor P1 which corresponds to process P1 in Figure 4.9 are specified. Processor P1
itself is described in lines 242 - 261. It has 10 output FIFO connections. The first 8 FIFOs are
connected to FSL ports, see lines 247-254. The rest two are connected via a LMB bus in line
257 using the fifo ctrl P1 component which is instantiated in lines 230 - 240. One dual-port

5.1 XPS Project Generation 61

on-chip BRAM, which is in lines 299 - 304, is allocated for processor P1 with a default size of
16 Kbytes. The processor uses two controllers, i.e., dlmb cntlr P1 and ilmb cntlr P1 in lines
279 - 297 to access the BRAM.

5.1.4 Processor Program Code

In directory code of an XPS project, each processor has a corresponding sub-directory, in which
program code files and a default linker script file are stored.

Figure 5.5 depicts the program code for processor P1. This is a sequential program that de-
scribes the internal behavior of processor P1. In code lines 0 - 4, some basic definitions of
the environment are included. Lines 8 - 19 declare local variables that are used later in the
code. The real work is done in the body of the for loops in lines 22 - 67. In lines 23, 51, and
58, empty wrappers corresponding to function calls P1 l DefaultTables, P1 l VideoInMain, and
P1 l VideoInInit are placed, which have to implement the main computational tasks of proces-
sor P1. These empty wrappers are defined in file aux func.h. We explain how to import the
implementation of these wrappers in Section 5.3.2.

The rest of the code in the body of the for loops controls the sequence of executions of the
three wrappers above. Also, it controls from/to which ports the input/output arguments of these
wrappers are read/written using a read/write primitives. For example, in line 26, argument
out 0ND 1 is written to the output port ND 1 OP 1 ED 3 using the write primitive writeFSL().
The data size of argument out 0ND 1 in 32-bit words is computed by the expression:
(sizeof(tED 3) + (sizeof(tED 3)%4) + 3)/4.

In line 66, the variable counter flag is used for debugging. We explain this in Section 5.4.2.

5.1.5 Linker Script

In the program codes directory of each processor, there is a default linker script file [31]. The
linker script consists of two parts. The first part defines a memory layout, i.e., specifies the start
address and size of different memory regions. The second part specifies a location in a memory
region for each section of an executable file by defining the start address of each section. If the
address map of a processor occupy contiguous areas of memory, its default linker script need
not to be changed. Else, we have to modify its default linker script according to [47].

A default linker script is shown in Figure 5.6. In lines 1 - 3, we use the MEMORY command
to define the memory layout. All parameters for a memory region come from the MHS file. For
example, in line 2, we specify a memory region INSTRUCTION DATA MEM , of which
the base address is set to 0x00000000 and the length is set to 16 Kbytes. These parameters
are based on lines 282, 285, 291 and 295 in Appendix B, which define parameter values for
memory controllers lmb bram if cntlr connected to processor P1.

In lines 10 - 80 of the default linker script file, we specify a location in this memory region for
each section of an ELF executable file [48] by defining the start address of each section. For
example, section .text is set to the beginning of the memory block in lines 10 - 16 and section
.rodata is set to the following region in lines 18 - 25. The .text section is always set to launch

62 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

0 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

5

int main(){
// Input Arguments
// Output Arguments

10 tED_3 out_0ND_1;
tED_4 out_1ND_1;
tED_6 out_2ND_1;
tED_7 out_3ND_1;
tED_8 out_4ND_1;

15 tED_9 out_5ND_1;
tED_11 out_6ND_1;
tED_12 out_7ND_1;
tED_10 out_0ND_2;
tED_1 out_0ND_3;

20

for (int k = ceil1(1) ; k <= floor1(1) ; k += 1) {
P1_l_DefaultTables(&out_0ND_1, &out_1ND_1, &out_2ND_1, &out_3ND_1, &out_4ND_1, &out_5ND_1, &out_6ND_1, &out_7ND_1);

25 // Variable: LuminanceQTable_1(k)
writeFSL(ND_1_OP_1_ED_3, &out_0ND_1, (sizeof(tED_3)+(sizeof(tED_3)%4)+3)/4);

// Variable: ChrominanceQTable_1(k)
writeFSL(ND_1_OP_2_ED_4, &out_1ND_1, (sizeof(tED_4)+(sizeof(tED_4)%4)+3)/4);

30
// Variable: LuminanceHuffTableDC_1(k)
writeFSL(ND_1_OP_3_ED_6, &out_2ND_1, (sizeof(tED_6)+(sizeof(tED_6)%4)+3)/4);

// Variable: ChrominanceHuffTableDC_1(k)
35 writeFSL(ND_1_OP_4_ED_7, &out_3ND_1, (sizeof(tED_7)+(sizeof(tED_7)%4)+3)/4);

// Variable: LuminanceHuffTableAC_1(k)
writeFSL(ND_1_OP_5_ED_8, &out_4ND_1, (sizeof(tED_8)+(sizeof(tED_8)%4)+3)/4);

40 // Variable: ChrominanceHuffTableAC_1(k)
writeFSL(ND_1_OP_6_ED_9, &out_5ND_1, (sizeof(tED_9)+(sizeof(tED_9)%4)+3)/4);

// Variable: LuminanceTablesInfo_1(k)
writeFSL(ND_1_OP_7_ED_11, &out_6ND_1, (sizeof(tED_11)+(sizeof(tED_11)%4)+3)/4);

45
// Variable: ChrominanceTablesInfo_1(k)
writeFSL(ND_1_OP_8_ED_12, &out_7ND_1, (sizeof(tED_12)+(sizeof(tED_12)%4)+3)/4);

} // for k

50 for (int k = ceil1(1) ; k <= floor1(NumFrames) ; k += 1) {
P1_l_VideoInInit(&out_0ND_2);

// Variable: HeaderInfo_1(k)
writeLMB(ND_2_OP_1_ED_10, &out_0ND_2, (sizeof(tED_10)+(sizeof(tED_10)%4)+3)/4);

55
for (int j = ceil1(1) ; j <= floor1(VNumBlocks) ; j += 1) {

for (int i = ceil1(1) ; i <= floor1(HNumBlocks) ; i += 1) {
P1_l_VideoInMain(&out_0ND_3);

60 // Variable: Block_1(k,j,i)
writeLMB(ND_3_OP_1_ED_1, &out_0ND_3, (sizeof(tED_1)+(sizeof(tED_1)%4)+3)/4);

} // for i
} // for j

65 } // for k
*counter_flag = 1;

}

Figure 5.5: Program code for processor P1.

from the physical address 0x00000000, which is required by the MicroBlaze core definition.
The .bss section is located at the end of the memory block in lines 67 - 79, where the heap must
be set to the beginning of this section and the stack set to the end of this section.

5.1.6 Memory Map

The MemoryMap.h file in the top level of directory code stores the physical address of each port
for every processor. This is shown in Figure 5.7. Via these addresses, a processor can access a
FIFO for a read/write operation using a read/write primitive. For example, lines 2 - 14 define

5.1 XPS Project Generation 63

0 /* OUTPUT_FORMAT("elf32-microblaze", "", "") */
MEMORY {

INSTRUCTION_DATA_MEM: ORIGIN=0x00000000, LENGTH=0x3fff /*16k*/
}

5 ENTRY(_start)
SECTIONS {

_TEXT_START_ADDR = 0x0;
. = _TEXT_START_ADDR;

10 _ftext = .;
.text : {
*(.text)
(.text.)
(.gnu.linkonce.t)

15 } > INSTRUCTION_DATA_MEM
_etext = .;

. = ALIGN(4);
_frodata = . ;

20 .rodata : {
*(.rodata)
(.gnu.linkonce.r)
CONSTRUCTORS; /* Is this needed? */

} > INSTRUCTION_DATA_MEM
25 _erodata = .;

. = ALIGN(8);
_ssrw = .;
.sdata2 : {

30 *(.sdata2)
} > INSTRUCTION_DATA_MEM

. = ALIGN(8);
_essrw = .;

35 _ssrw_size = _essrw - _ssrw;
PROVIDE (_SDA2_BASE_ = _ssrw + (_ssrw_size/2));
. = ALIGN(4);

_fdata = .;
40 .data : {

*(.data)

(.gnu.linkonce.d)
*(.eh_frame)
CONSTRUCTORS;

45 } > INSTRUCTION_DATA_MEM
_edata = . ;

. = ALIGN(8);
_ssro = .;

50 .sdata : {
*(.sdata)

} > INSTRUCTION_DATA_MEM

. = ALIGN(4);
55 .sbss : {

PROVIDE (__sbss_start = .);
*(.sbss)
PROVIDE (__sbss_end = .);

} > INSTRUCTION_DATA_MEM
60

. = ALIGN(8);
_essro = .;
_ssro_size = _essro - _ssro;
PROVIDE (_SDA_BASE_ = _ssro + (_ssro_size / 2));

65 . = ALIGN(4);

_fbss = .;
.bss : {

PROVIDE (__bss_start = .);
70 *(.bss)

*(COMMON)
. = ALIGN(4);
PROVIDE (__bss_end = .);
_heap = .;

75 _STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE:0x1000;
. += _STACK_SIZE;
. = ALIGN(8);
_stack = .;

} > INSTRUCTION_DATA_MEM
80 _end = .;

}

Figure 5.6: Default linker script.

the physical addresses of all ports for processor P1. Since P1 has no input ports, only output
addresses are defined in lines 5 - 14. These addresses are used to output data to other processors,
see lines 26, 29, 32, 35, 38, 41, 44, 47, 54, and 61 in the program code of P1 in Figure 5.5.

There are two kinds of addresses, namely FSL bus address and LMB bus address. If a FIFO
is connected to a FSL port, we assign a FSL address. The MicroBlaze processor that we use
to build a multiprocessor platform has 8 FSL write ports and 8 FSL read ports. To every FSL
port, only one FIFO can be connected. The addresses of these ports are numbered from 0 to 7
for both read and write ports. For example, in line 26 of Figure 5.5, a write FSL primitive is
used for data communication via a FIFO. This means that the corresponding FIFO is connected
to a FSL port (see line 247 in Appendix B) which address is ND 1 OP 1 ED 3. In line 5 of
Figure 5.7, this address is defined and its value is 0.

If a FIFO is connected to a LMB port, we assign LMB address. The MicroBlaze processor
has one data LMB port. This port defines a data LMB bus to which many components can be
connected. These components are accessed by the processor via addresses from the processor’s
data memory address space. For our multiprocessor platform, FIFO components can be con-
nected to the LMB bus of each processor. The address space for FIFOs connected to a processor
begins from address 0x08000000, see line 237 in Appendix B. Each FIFO uses 8 bytes from
the address space. For example, in lines 54 and 61 of Figure 5.5, write LMB primitives are used
for data communication via FIFOs. This means that the corresponding FIFOs are connected to
the LMB bus of processor P1, see lines 231 and 232 in Appendix B. These FIFOs are accessed
via addresses ND 2 OP 1 ED 10 and ND 3 OP 1 ED 1 that are defined in lines 13 and 14
of Figure 5.7.

64 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

In summary, our ESPAM tool tries to connect FIFOs to the FSL ports of each processor, because
FSL connection is faster than LMB connection. However, the number of FSL ports for each
processor is limited to 8 FSL ports for read and 8 FSL ports for write. If extra FIFOs have to
be connected to a processor, ESPAM uses LMB connection. For example, processor P1 has 10
FIFOs to be connected. We assign the first 8 to FSL ports , which are shown in lines 5 - 12 of
Figure 5.7. The rest two are assigned to LMB bus address in lines 13 and 14.

The last two lines 57 and 58 of Figure 5.7 define addresses corresponding to components used
for debugging We explain them in Section 5.4.2.

0 #ifndef __MEMORYMAP_H_
#define __MEMORYMAP_H_
//P1 FIFOs
// InPut to FIFOs
// OutPut to FIFOs

5 #define ND_1_OP_1_ED_3 0 //write to edgeED_3 address
#define ND_1_OP_2_ED_4 1 //write to edgeED_4 address
#define ND_1_OP_3_ED_6 2 //write to edgeED_6 address
#define ND_1_OP_4_ED_7 3 //write to edgeED_7 address
#define ND_1_OP_5_ED_8 4 //write to edgeED_8 address

10 #define ND_1_OP_6_ED_9 5 //write to edgeED_9 address
#define ND_1_OP_7_ED_11 6 //write to edgeED_11 address
#define ND_1_OP_8_ED_12 7 //write to edgeED_12 address
#define ND_2_OP_1_ED_10 0x08000000 //write to edgeED_10 address
#define ND_3_OP_1_ED_1 0x08000008 //write to edgeED_1 address

15

//ND_4 FIFOs
// InPut to FIFOs
#define ND_4_IP_1_ED_1 0 //read from edgeED_1 address

20
// OutPut to FIFOs
#define ND_4_OP_1_ED_2 0 //write to edgeED_2 address

25 //ND_5 FIFOs
// InPut to FIFOs
#define ND_5_IP_2_ED_2 0 //read from edgeED_2 address
#define ND_5_IP_3_ED_3 1 //read from edgeED_3 address
#define ND_5_IP_4_ED_4 2 //read from edgeED_4 address

30

// OutPut to FIFOs
#define ND_5_OP_1_ED_5 0 //write to edgeED_5 address

35 //ND_6 FIFOs
// InPut to FIFOs
#define ND_6_IP_5_ED_5 0 //read from edgeED_5 address
#define ND_6_IP_6_ED_6 1 //read from edgeED_6 address
#define ND_6_IP_7_ED_7 2 //read from edgeED_7 address

40 #define ND_6_IP_8_ED_8 3 //read from edgeED_8 address
#define ND_6_IP_9_ED_9 4 //read from edgeED_9 address

// OutPut to FIFOs
#define ND_6_OP_1_ED_13 0 //write to edgeED_13 address

45

//ND_7 FIFOs
// InPut to FIFOs
#define ND_7_IP_10_ED_10 0 //read from edgeED_10 address

50 #define ND_7_IP_11_ED_11 1 //read from edgeED_11 address
#define ND_7_IP_12_ED_12 2 //read from edgeED_12 address
#define ND_7_IP_13_ED_13 3 //read from edgeED_13 address

// OutPut to FIFOs
55

#define counter_flag (volatile int*)0x09000000
#define counter_addr (volatile int*)0x0a000000
#endif

Figure 5.7: Memory map file.

5.2 Importing the Project to X PS

After an XPS project is generated as described in Section 5.1.2, we have to import this project
into XPS. To start XPS, we use the start menu of Windows: start->Xilinx Platform Studio-
>Xilinx Platform Studio . In the XPS tool, select the menu option: File->Open Project. Then
in the new dialog box Microprocessor Project files, we select the XMP file system.xmp by
double clicking on it. Thereby, the project is loaded to XPS automatically. We can get a visual
view of all the settings by clicking on the dialog box Project->Add/Edit Cores...(Dialog). All
the components, buses, ports, and parameters are listed separately in the tabs Peripherals, Bus
Connections, Ports, and Parameters, respectively. More details of how to use the XPS tool
can be found in [49].

5.3 Custom Modification

After we import the project in XPS, we still need to make some manual modifications on both
the hardware description and the program code files. As discussed in Chapter 4, the size of the

5.3 Custom Modification 65

on-chip memory is not sufficient for our five-processor system. We need to refine the memory
allocation as well as we need to use the external on-board memory as a data memory. At the
same time, we need to import the definition and implementation of all function calls used in
program code files of each processor.

5.3.1 Hardware Modifications

We first describe the hardware modifications. The hardware specification is captured in the
MHS file shown in Appendix B. We can modify manually each entry respecting the syntax
rules of the MHS file as described in Section 3.4.1.

All modifications are related to the memory allocation, because there are a lot of limits for
the on-chip memory allocation in XPS. The minimum size of a memory block which can be
allocated is 2 Kbytes, and the size can be enlarged by power of 2, which means we can allocate
memory per block with sizes 2K, 4K, 8K, 16K, 32K, etc. Moreover, since the use of memory
can not be fully determined at compile time, it is hard to find an automated procedure to allocate
the memory efficiently. A typical case is the memory allocation for the stack. Its size changes
at runtime according to the execution flow of a program which in many case is data depended,
i.e., unpredictable at compile time. Using worst-case scenario to estimate the minimum size of
the stack is not a good option, because our total on-chip memory is only 176 Kbytes. Therefore,
currently the memory allocation is more like an art than a science. Efficient memory allocation
cannot be done without the skills and knowledge of the designer.

FIFO Size Adjustment

The first step in our manual modification procedure is to adjust the size of FIFOs. By default,
we allocate 2048 bytes (512×32) for each FIFO, for example see lines 67 and 68 of Appendix
B. The 512 is the data depth of a FIFO and the 32 is the data width of a FIFO. However, when
we explore the initial M-JPEG code, we find out that the size of structures THuffTablesAC,
THuffTablesDC and TTablesInfo is larger than 2048 bytes, all of which will be put into certain
FIFOs. Therefore, the default size of the corresponding FIFOs is not sufficient. We need to
enlarge the corresponding FIFO buffer sizes to 4096 bytes (1024×32). According to Table 4.7,
we enlarge the size of FIFOs ED 6, ED 7, ED 8, ED 9, ED 11, and ED 12 to 4096 bytes.
A sample modification of the size of FIFO ED 6 is shown in line 133 of Figure 5.8. In the same
way, the rest of the FIFOs in the MHS file are modified. After these modifications, 38 Kbytes
of the on-chip memory are allocated for FIFO buffers.

Memory Allocation

The second step is to refine the data and instruction memory of each process. By default, we
allocate a 16 Kbytes BRAM for both the instruction and data memory. For example, lines
495 and 505 in Appendix B shows the default value for processor ND 6. However, this is
not sufficient for our M-JPEG system. Because of the complexity of the function calls in the
M-JPEG application, a larger stack is need for the context switch between two function calls.

66 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

127 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0

130 PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync fifo ED 6 ND 1 to ND 6
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PARAMETER C_EXT_RESET_HIGH = 0

135 PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

Figure 5.8: Set the size of FIFO ED 6 to 4 Kbytes.

We refine the memory allocation following Table 4.6. For example, Figure 5.9 shows how we
modify the MHS file to allocate sufficient memory for processor ND 6. We enlarge its memory
size to 32 Kbytes as shown in lines 495 and 505 below.

490 BEGIN lmb_bram_if_cntlr
490 BUS_INTERFACE BRAM_PORT = conn_d_ND_6

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb cntlr ND 6
BUS_INTERFACE SLMB = dlmb_ND_6

495 PARAMETER C_HIGHADDR = 0x00007fff
PARAMETER C_MASK = 0xff000000

END

BEGIN lmb_bram_if_cntlr
500 BUS_INTERFACE BRAM_PORT = conn_i_ND_6

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb cntlr ND 6
BUS_INTERFACE SLMB = ilmb_ND_6

505 PARAMETER C_HIGHADDR = 0x00007fff
PARAMETER C_MASK = 0xff000000

END

Figure 5.9: Processor ND 6 memory allocation.

Another example is Processor P1. After the memory allocation for FIFOs and other processors,
there are 26 Kbytes on-chip BRAM left for processor P1. To efficiently use these 26 Kbytes
on-chip BRAM, we use separate memory blocks for the instruction memory and data memory
for processor P1. Figure 5.10 shows how this is done by modifying the MHS file. We allocate
8 Kbytes for the instruction memory in lines 302 - 303 and 16 Kbytes for the data memory in
line 291 - 292. This is done according to the memory values for processor P1 listed in Table
4.6. Since two separate physical memory blocks are needed, we add a new memory module to
the MHS file, which is shown in lines 315 - 319.

Now we have used 24 Kbytes of the 26 Kbytes on-chip memory left for processor P1. Accord-
ing to Table 4.6, processor P1 needs 64 Kbytes for its stack. This huge stack cannot be placed
in the on-chip memory, because we have only 2Kbytes on-chip memory available. To resolve
this problem, we put the stack and heap to an external memory on the prototyping board which
is connected to the OPB bus, see lines 17 - 45 in Appendix B. Now processor P1 has three
separate physical memory regions. They are mapped to different addresses. The instruction
memory begins from address 0x00000000 and its length is 8 Kbytes. The data memory begins
from address 0x01000000 and its length is 16 Kbytes. The external memory is mapped from
address 0xfa000000 to address 0xfa3fffff . Because the address space is changed, we need
to modify the default linker script of processor P1 accordingly. We discuss this in the next
section.

5.3 Custom Modification 67

289 BEGIN lmb_bram_if_cntlr
290 BUS_INTERFACE BRAM_PORT = conn d P1

PARAMETER C_BASEADDR = 0x01000000
PARAMETER C_HIGHADDR = 0x01003fff
PARAMETER INSTANCE = dlmb_cntlr_P1
BUS_INTERFACE SLMB = dlmb_P1

295 PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000

END

BEGIN lmb_bram_if_cntlr
300 BUS_INTERFACE BRAM_PORT = conn i P1

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00001fff
PARAMETER INSTANCE = ilmb_cntlr_P1

305 BUS_INTERFACE SLMB = ilmb_P1
PARAMETER C_MASK = 0xff000000

END

BEGIN bram_block
310 PARAMETER HW_VER = 1.00.a

PARAMETER INSTANCE = dlmb bram P1
BUS_INTERFACE PORTA = conn d P1

END

315 BEGIN bram_block
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = lmb bram P1
BUS_INTERFACE PORTA = conn i P1

END

Figure 5.10: P1 memory allocation.

Linker Script Adjustment

We modify the default linker script shown in Figure 5.6 for processor P1 according to the
memory changes described in the previous section. The modifications are shown in bold font in
Figure 5.11. In lines 2 - 6, we define the starting address and length of the three separate memory
blocks as we described at the end of the previous section. Then, we specify the location of each
section of the ELF executable file. In lines 13 - 19, the .text section is always allocated in the
instruction memory and begins from address 0x00000000. All the other sections are allocated
to the data memory continuously except the .bss section. In lines 70-82, the .bss section is
placed to the external memory ZBTMM in which the stack and heap are allocated.

5.3.2 Program Code Modifications

After the hardware modifications, we need to modify the program code for each processor.

The first step is to import the implementation of the function calls. In our automatic code
generation, we create an empty wrapper for each function call presented in the initial M-JPEG
code shown in Figure 5.1. As explained in Section 5.1.1, our tool chain does not deal with
the actual implementation of these function calls. Therefore, we need to import manually the
implementation of each function call.

In the Applications tab of XPS, five software projects can be found, one for each processor. We
need to import files ControlInit.cpp and Video in.cpp for processor P1, DCT.cpp for processor
ND 4, Q.cpp for processor ND 5, V LE.cpp for processor ND 6 and V ideo out.cpp for pro-
cessor ND 7. We can import these files by double clicking on the sourceentry of a software
project in the Applications tab.

After we import these files, the second step is to add the function declaration and replace each
empty wrapper with a method call. This is done by modifying the program code of each pro-
cessor. For example, the modified program code of processor P1 is shown in Figure 5.12. The
bold lines in this code highlight the differences between this code and the initially generated
code shown in Figure 5.5. In lines 18 - 19, we define two instances vin and cinit. Then in lines
23, 52, and 60, we replace the empty wrappers with the actual method calls. In the same way,

68 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

0 /* OUTPUT_FORMAT("elf32-microblaze", "", "") */

MEMORY {
INSTM: ORIGIN=0x00000000, LENGTH=0xffff /* 8k */
DATAM: ORIGIN=0x01000000, LENGTH=0x3fff /* 16k */

5 ZBTMM: ORIGIN=0xfa000000, LENGTH=0x1ffff /* 128k */
}

ENTRY(_start)
SECTIONS {

10 _TEXT_START_ADDR = 0x0;
. = _TEXT_START_ADDR;

_ftext = .;
.text : {

15 *(.text)
(.text.)
(.gnu.linkonce.t)

} > INSTM
_etext = .;

20
. = ALIGN(4);
_frodata = . ;
.rodata : {

*(.rodata)
25 *(.gnu.linkonce.r*)

CONSTRUCTORS; /* Is this needed? */
} > DATAM
_erodata = .;

30 . = ALIGN(8);
_ssrw = .;
.sdata2 : {

*(.sdata2)
} > DATAM

35
. = ALIGN(8);
_essrw = .;
_ssrw_size = _essrw - _ssrw;
PROVIDE (_SDA2_BASE_ = _ssrw + (_ssrw_size/2));

40 . = ALIGN(4);

_fdata = .;

.data : {
44 *(.data)
45 *(.gnu.linkonce.d*)

*(.eh_frame)
CONSTRUCTORS;

} > DATAM
_edata = . ;

50
. = ALIGN(8);
_ssro = .;

.sdata : {
*(.sdata)

55 } > DATAM

. = ALIGN(4);

.sbss : {
PROVIDE (__sbss_start = .);

60 *(.sbss)
PROVIDE (__sbss_end = .);

} > DATAM

. = ALIGN(8);
65 _essro = .;

_ssro_size = _essro - _ssro;
PROVIDE (_SDA_BASE_ = _ssro + (_ssro_size / 2));
. = ALIGN(4);

70 _fbss = .;
.bss : {
PROVIDE (__bss_start = .);
*(.bss)
*(COMMON)

75 . = ALIGN(4);
PROVIDE (__bss_end = .);
_heap = .;
_STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE:0xf000;
. += _STACK_SIZE;

80 . = ALIGN(8);
_stack = .;

} > ZBTMM
_end = .;

}

Figure 5.11: Modified linker script of process P1 .

all the program codes of the other processors are modified. The complete modified project can
be found in the CVS repository:
docs/students/KaiHuang JiGu/experiment/projects/m-jpeg/M JPEG 5p zbt.tgz

5.4 XPSproject Execution and Results

Once we have adjusted all components for our five-processor task-level pipelined M-JPEG sys-
tem, we are ready to use XPS to generate the final bitstream file. The bitstream file is used
to configure the FPGA chip such that it implements our M-JPEG system specified by the XPS

project. We use the following commands to generate the bitstream file step by step. All these
commands can be found in the menu option Tools in the XPS tool.

• Generate Libraries: This command invokes the library building tool LibGen with the
correct MSS file as input to create the Board Support Packet (BSP) which includes device
drivers, libraries, STDIN/STDOUT configurations, and interrupt handlers associated with
the design.

• Compile Program Source: This command invokes the cross compiler mc − gcc. This
compiler generates several ELF executable files, one for each processor in the system, by
compiling the program code of each processor. If LibGen has not been executed, this
command first invokes LibGen.

5.4 XPS project Execution and Results 69

0 #include "xparameters.h"
#include "aux_func.h"
#include "MemoryMap.h"

int main() {
5 // Input Arguments

// Output Arguments
tED_3 out_0ND_1;
tED_4 out_1ND_1;
tED_6 out_2ND_1;

10 tED_7 out_3ND_1;
tED_8 out_4ND_1;
tED_9 out_5ND_1;
tED_11 out_6ND_1;
tED_12 out_7ND_1;

15 tED_10 out_0ND_2;
tED_1 out_0ND_3;

Video in vin (VNumBlocks, 2 * HNumBlocks);
ControlInit cinit;

20
for (int k = ceil1 (1); k <= floor1 (1); k += 1) {

//P1 l DefaultTables(&out 0ND 1, &out 1ND 1, &out 2ND 1, &out 3ND 1, &out 4ND 1, &out 5ND 1, &out 6ND 1, &out 7ND 1);
cinit.main (out 0ND 1, out 1ND 1, out 2ND 1, out 3ND 1, out 4ND 1, out 5ND 1, out 6ND 1, out 7ND 1);

25 // Variable: LuminanceQTable_1(k)
writeFSL (ND_1_OP_1_ED_3, &out_0ND_1, (sizeof (tED_3) + (sizeof (tED_3) % 4) + 3) / 4);

// Variable: ChrominanceQTable_1(k)
writeFSL (ND_1_OP_2_ED_4, &out_1ND_1, (sizeof (tED_4) + (sizeof (tED_4) % 4) + 3) / 4);

30
// Variable: LuminanceHuffTableDC_1(k)
writeFSL (ND_1_OP_3_ED_6, &out_2ND_1, (sizeof (tED_6) + (sizeof (tED_6) % 4) + 3) / 4);

// Variable: ChrominanceHuffTableDC_1(k)
35 writeFSL (ND_1_OP_4_ED_7, &out_3ND_1, (sizeof (tED_7) + (sizeof (tED_7) % 4) + 3) / 4);

// Variable: LuminanceHuffTableAC_1(k)
writeFSL (ND_1_OP_5_ED_8, &out_4ND_1, (sizeof (tED_8) + (sizeof (tED_8) % 4) + 3) / 4);

40 // Variable: ChrominanceHuffTableAC_1(k)
writeFSL (ND_1_OP_6_ED_9, &out_5ND_1, (sizeof (tED_9) + (sizeof (tED_9) % 4) + 3) / 4);

// Variable: LuminanceTablesInfo_1(k)
writeFSL (ND_1_OP_7_ED_11, &out_6ND_1, (sizeof (tED_11) + (sizeof (tED_11) % 4) + 3) / 4);

45
// Variable: ChrominanceTablesInfo_1(k)
writeFSL (ND_1_OP_8_ED_12, &out_7ND_1, (sizeof (tED_12) + (sizeof (tED_12) % 4) + 3) / 4);

}// for k

50 for (int k = ceil1 (1); k <= floor1 (NumFrames); k += 1) {
//P1 l VideoInInit(&out 0ND 2);
vin.init (out 0ND 2);

// Variable: HeaderInfo_1(k)
55 writeLMB (ND_2_OP_1_ED_10, &out_0ND_2, (sizeof (tED_10) + (sizeof (tED_10) % 4) + 3) / 4);

for (int j = ceil1 (1); j <= floor1 (VNumBlocks); j += 1) {
for (int i = ceil1 (1); i <= floor1 (HNumBlocks); i += 1) {

//P1 l VideoInMain(&out 0ND 3);
60 vin.main (out 0ND 3);

// Variable: Block_1(k,j,i)
writeLMB (ND_3_OP_1_ED_1, &out_0ND_3, (sizeof (tED_1) + (sizeof (tED_1) % 4) + 3) / 4);

65 } // for i
} // for j

} // for k
*counter_flag = 1;

}

Figure 5.12: Modified program code for processor P1.

• Generate Netlist: This command invokes the platform building tool P latGen with the
correct MHS file as input. It produces system netlist files in NGC format.

• Generate Bitstream: This command invokes the xflow tool with the NGC netlist file
as input. The fast runtime.opt and bitgen.ut files residing in the etc directory of the
project are used to set some options of the xflow tool. The xflow tool generates the
bitstream file for the FPGA. This file is located in directory implementation/system.bit.

• Update Bitstream: This invokes the tool bitinit. This is the stage where the hardware
and the software flows come together. If above four commands have not been executed,

70 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

this command will first invoke them, respectively. At the end of this stage, the resultant
download.bit file is located in the implementation directory and it contains FPGA con-
figuration information regarding both the software and the hardware part of the design.

5.4.1 How to Get Results

The input and output capabilities of our prototyping board are limited. It has only a serial
port controlled by a Universal Asynchronous Receiver-Transmitter (UART) component which
is connected to processor ND 7. We create a hyper terminal in the host machine, which is
connected to the serial port of the prototyping board, to get the output of our M-JPEG sys-
tem. To create the hyper terminal, we use the start menu of Windows: start->Accessories-
>Communication->Hyper Terminal . The settings of the hyper terminal have to be the same
as the settings of the UART component, see lines 530 - 533 in Appendix B. According to the
UART settings in the MHS file, we have to set the hyper terminal as follows:

Bits per second: 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Now, we can run the system by executing the loader.exe program in the Xygwin shell command
line interface (Xygwin can be started from the menu option Tools in XPS). The loader.exe
program, which can be found on the top level of the generated project suite in Figure 5.4, is a
program used to download and run the bitstream file. The sources of the loader can be found
in the CVS repository:
docs/students/KaiHuang JiGu/experiment/accessary/loader.

The loader program has the following options:

• --help: This option shows all the options and their explanation.

• --file: This option is followed by a filename that specifies the path of the bitstream file.
The default value is implementation/download.bit.

• --lclk : This option is followed by an integer value that specifies a clock frequency in
MHz. The default value is 100 MHz. This frequency is the system clock of the multipro-
cessor platform. Note: the parameter value of the UART component shown in line 529 of
Appendix B must be equal to this lclk.

• --mclk: This option is followed by an integer that specifies the user clock frequency in
MHz. The relation between the mclk and the lclk is: fmclk = 2 × flclk.

While the system runs, we can get messages on the hyper terminal. If not, see the conclusion
in [49] for some hints.

5.5 Conclusion and Discussion 71

5.4.2 IP Cores for Debugging

To evaluate the performance of our system, we count the number of clock cycles for compress-
ing a certain number of image frames. We attach a hardware counter module to the processor to
which the UART component is connected. Each processor in the processors network controls
a 1-bit flag which is observed by the counter module. When a processor finishes its execution,
it sets its flag to 1. Meanwhile, the counter module counts the cycles from the beginning and
stops until all the flags are set to 1. When the counter module stops counting, it stores the cycles
that our system has run.

Two custom IP cores, namely clock cycle counter v1 00 a and counter input ctrl v1 00 a are
developed for evaluating the performance as described above, see the description of processor
ND 7 in lines 550 - 561 and lines 624 - 633 in Appendix B. The counter input ctrl v1 00 a
core controls the 1-bit flag. An instance of this IP core is attached to each processor of the
processors network via the processor’s data memory bus. When a processor finishes its com-
putation, it announces its completion by setting its flag to 1. The setting is acquired by writ-
ing a 1 to the absolute address counter flag which is defined in line 57 in Figure 5.7. The
clock cycle counter v1 00 a core is the hardware counter module attached to the processor that
has the output interface. It maintains a hardware counter, which stores the cycles from the be-
ginning. The value of the counter can be accessed by the absolute address counter addr which
is defined in line 58 of Figure 5.7.

An example is given in Figure 5.13 to show the program code in which the debugging operations
have been implemented. The processor ND 7 controls the output interface. Once it finishes its
computation task, it sets its flag to 1 in line 53 to announce its finish. Then in line 54, we get
the value of the hardware counter by reading the absolute address counter addr.

5.5 Conclusion and Discussion

In this chapter, we described step by step how to design an embedded system from an ap-
plication written in Matlab. We first use COMPAAN to generate a KPN specification of the
application. Then we use ESPAM to generate the XPS project suite from the KPN specification.
Finally, we use a commercial tool, namely Xilinx Platform Studio to generate the configura-
tion bitstream file. Our tool chain can fully automate the conversion from Matlab code to KPN
specification and the generation from KPN specification to the XPS project suite. However, for
complex applications like M-JPEG, a lot of issues still need to be considered regarding to the
automation.

• We need to import the declaration and implementation of each function call in the initial
Matlab code to XPS, then replace the empty wrappers with method calls.

• We need to refine the FIFO size, memory size and stack size.

• We even need to redefine the instruction and data memory for some of the processors in
our special fully pipelined 5-processor case.

72 Getting Started: Tutorial with Example using the COMPAAN /ESPAM tool chain

0 #include "xparameters.h"
#include "stdio.h"
#include "stdlib.h"
#include "aux_func.h"
#include "MemoryMap.h"

5
int main (){
// Input Arguments
tED_10 in_0ND_7;

tED_11 in_1ND_7;
10 tED_12 in_2ND_7;

tED_13 in_3ND_7;
// Output Arguments
double out_0ND_7;

15 Video_out vout;

for (int k = ceil1(1) ; k <= floor1(NumFrames) ; k += 1) {
for (int j = ceil1(1) ; j <= floor1(VNumBlocks) ; j += 1) {

for (int i = ceil1(1) ; i <= floor1(HNumBlocks) ; i += 1) {
20 // BEGIN Broadcast In Order Read Tree

if (j-1 == 0) {
if (i-1 == 0) {

readFSL(ND_7_IP_10_ED_10, &in_0ND_7, (sizeof(tED_10)+(sizeof(tED_10)%4)+3)/4);
}

25 }
// END Broadcast In Order Read Tree
// BEGIN Broadcast In Order Read Tree
if (k-1 == 0) {
if (j-1 == 0) {

30 if (i-1 == 0) {
readFSL(ND_7_IP_11_ED_11, &in_1ND_7, (sizeof(tED_11)+(sizeof(tED_11)%4)+3)/4);

}
}

}
35 // END Broadcast In Order Read Tree

// BEGIN Broadcast In Order Read Tree
if (k-1 == 0) {
if (j-1 == 0) {

if (i-1 == 0) {
40 readFSL(ND_7_IP_12_ED_12, &in_2ND_7, (sizeof(tED_12)+(sizeof(tED_12)%4)+3)/4);

}
}

}
// END Broadcast In Order Read Tree

45 readFSL(ND_7_IP_13_ED_13, &in_3ND_7, (sizeof(tED_13)+(sizeof(tED_13)%4)+3)/4);

//P1_l_VideoOut(in_0ND_7, in_1ND_7, in_2ND_7, in_3ND_7, &out_0ND_7);
vout.main(in_0ND_7, in_1ND_7, in_2ND_7, in_3ND_7);

50 } // for i
} // for j

} // for k
*counter flag = 1;
volatile int counter = *counter addr;

55 xil printf(”count = %d \n\r”, counter);
}

Figure 5.13: Source file of process ND 7.

Importing the declaration and implementation of function calls is easy to automate. There is
not a theoretical problem. What is difficult is the refinement of the FIFO size, memory size, and
stack size. For example, the stack size cannot be precisely decided at compile time. It changes
at runtime according to the execution flow of a program which in many cases is data depended.
We can use a worst-case scenario to estimate the minimum value of the stack size. However this
is not a good option because of the limited memory resource for the on-chip embedded system.
See in our target prototyping board, the total on-chip memory is only 176 Kbytes. Efficient
memory allocation cannot be done without the skills and knowledge of the designer. A more
appropriate option is to find an accurate modeling in order to change the refinement from an art
to a science.

Chapter 6
Summary and Conclusions

In this thesis we propose a system design methodology that allows efficient and effective map-
ping of a class of multimedia and signal processing applications onto multiprocessor platforms
in a systematic and automated way. We have implemented this methodology in a system design
flow by integrating two tools, namely COMPAAN and ESPAM. First, we use COMPAAN to con-
vert a sequential application specified in Matlab to an equivalent KPN specification. Then, we
use ESPAM to synthesize a multiprocessor platform and map the KPN specification onto it.

Essential to the design flow is the use of the Kahn Process Network (KPNs) model of computa-
tion. This model inherently expresses applications in terms of distributed computation, control,
and memory. Because of this, the KPN model matches the emerging multiprocessor platforms
where concurrent processing components are connected via distributed memory buffers. There-
fore, the mapping of KPN specifications of applications onto multiprocessor platforms can be
done in a transparent, systematic, and automated way.

In Chapter 1, we discussed that the performance demands of many of today and future appli-
cations can only be satisfied by embedded systems based on multiprocessor platforms. Such
applications and platforms are so complex that the current traditional design methodologies can
no longer deal with such complexity. This is because these methodologies are based on Regis-
ter Transfer Level (RTL) system (application/platform) models created in programing and HDL
languages by hand. The RTL level is too low for a complex system design because RTL models
are very detailed, therefore creating them by hand for complex systems becomes error-prone
and time-consuming. We can conclude that the use of a RTL-level specification as a starting
point of multiprocessor system design methodologies is the bottleneck to achieve a reasonable
design time and effort. Therefore, the system should be designed at a higher level of abstraction.
Moving up from the detailed RTL-level specification to a more abstract specification opens a
gap that we call Implementation Gap because currently we do not have mature methodologies
and tools to go back from a high-level specification to an implementation. In response to that,
we propose our techniques implemented in the ESPAM tool as a systematic and automated way
to effectively and efficiently convert a high-level system specification to a RTL-level specifica-
tion, thereby closing the Implementation Gap in a particular way.

In Chapter 2, we elaborated in detail on the techniques and tools integrated in our design flow.
An important part of the flow is the definition of a component library that consists of generic

74 Summary and Conclusions

parameterized system components from which platform models can be composed. We describe
these components at a high level of abstraction in order to conceal implementation details,
thereby allowing easy construction of a variety of platform instances. These components are
used by ESPAM to synthesize a multiprocessor platform from a KPN specification and to map
this KPN onto the platform. A key feature in our design flow is that currently ESPAM performs
a one-to-one mapping, i.e., each process in a KPN is mapped onto a processor component and
each channel onto a FIFO component. As a consequence of this, the obtained multiprocessor
platform has the same topology as the initial KPN, thereby exploiting the full parallelism of-
fered by this KPN. We are aware that the one-to-one mapping is expensive in the sense that it
requires a lot of computation and communication resources. Fortunately, the Moore’s law pre-
dicts that chips in 2010 will count over 4 billion transistors, which means that the computation
and communication resources available on a single chip will be of less concern. More important
will be the time performance of a multiprocessor system and the ability to program such system
in a systematic and automated way. In this respect, currently ESPAM delivers high performance
multiprocessor systems using a one-to-one mapping as well as an automated programming of
these systems is supported. ESPAM generates fully automatically program code files for each
processor in the system as well as the synchronization between processors is realized by imple-
menting read/write primitives based on the KPN communication semantic.

In Chapter 3, we presented how we targeted our methodology and tools to a particular imple-
mentation technology, namely Field Programmable Gate Arrays (FPGAs). We use a single
Xilinx Virtex-II Pro FPGA chip to prototype multiprocessor systems generated by our ESPAM

tool. To do this we use as a back-end of ESPAM, the commercial synthesis tool Xilinx Platform
Studio (XPS). The output of ESPAM can be targeted to other implementation technologies by
using other back-end synthesis tools. ESPAM is constructed such that it supports easy integra-
tion with such tools. Our current choice to target ESPAM to Xilinx FPGA chips is motivated by
the following facts. First, prototyping alternative multiprocessor systems using Xilinx FPGA
technology can be done relatively easy because of the flexible reconfigurable feature of the
FPGA. Second, the Xilinx FPGA chips offer a lot of computation and communication resources
needed for our multiprocessor systems, such as embedded soft processor cores (MicroBlaze and
PicoBlaze) and FIFO based communication buffers. The number of processors and FIFOs that
we can implement on a given FPGA is only limited by the size of the FPGA itself. Third, con-
necting FIFOs to the MicroBlaze soft processor core can be done very easy because MicroBlaze
supports 16 dedicated ports which can be used for very fast connection to FIFOs. In general, not
all existing processors have dedicated FIFO ports. Therefore, ESPAM can generate a controller
that can be used as an interface to connect FIFOs to the general data bus of a processor. Such
connection has the disadvantage that in many cases it is slower than a connection via dedicated
FIFO ports. However, it is general enough to be applied to any processor because always a
processor has a general data bus.

In Chapter 4, we use two real-life applications, namely a benchmark Matrix Multiplication
application and an industrially-relevant Motion-JPEG encoder application, to verify the func-
tionality of our system design flow and tools. Several experiments were conducted to evaluate
the efficiency and usefulness of our tools. From the results we have obtained during the ex-
periments, we can conclude the following. First, all the experiments show that the design time
of a complex multiprocessor system can be reduced from months to hours by using our tools.
The main reason is the great time performance of the COMPAAN compiler and our ESPAM tool.

75

COMPAAN/ESPAM take only a few seconds to derive a multiprocessor platform and to map an
application specified as a KPN onto this multiprocessor platform. The rest of the design time (a
few hours) is taken by the back-end commercial synthesis tool XPS to generate the final FPGA
implementation. An interesting observation is that the time taken by XPS is strongly dependent
on the complexity of the application to be implemented whereas the time taken by our tools
is weakly dependent. This is supported by the fact that for a simple application like Matrix
Multiplication and for a complex application like M-JPEG encoder, the time performance of
COMPAAN/ESPAM stays in the range of a few seconds whereas the time performance of XPS

varies from several minutes to a few hours. Second, for both applications we have generated
multiprocessor systems with high performance. However, generating a multiprocessor platform
for the Matrix Multiplication application is not very efficient from a point of view of resource
utilization. This is because the Matrix Multiplication application can only be partitioned to a
concurrent tasks with a very fine granularity. This very fine-grain tasks do not require powerful
resources such as processors to be mapped on. When the complexity of applications increases,
as in the case of the M-JPEG encoder, such applications can be partitioned to coarse-grain con-
current tasks which require powerful computational resources. Therefore, mapping such tasks
onto processors is justified and our experiments proved that in this case it is efficient.

In Chapter 5, a step-by-step tutorial is given to demonstrate the complete design flow in action.
First, we use COMPAAN to generate a KPN specification of an application. Then, we use ESPAM

to generate an XPS project suite from the KPN specification. Finally, we use the XPS tool to
generate a bitstream file to configure the FPGA. This chapter acts as a starting point for users
as well as other people who will continue developing our system design flow.

As a general conclusion, we would like to mention that our ESPAM tool together with the
COMPAAN compiler and the XPS tool can systematically and automatically implement multi-
processor systems for an application in a relatively short amount of time (a few hours). Thus,
a very accurate exploration of the performance of alternative multiprocessor systems becomes
feasible.

76 Summary and Conclusions

Appendix A
XMP File

A.1 XMP file Global field

UsePeriphRepos Specifies whether to use any specified PeriphReposDir or not.
PeriphReposDir PeriphReposDir.

MHS File If theMHSFile does not exist in the project directory with same base name as
project name, then XPS copies that MHS file into this name and location.

MSS File MSS Files are created by XPS in the project directory with project name as base.
MVS File MVS Files are created by XPS in the project directory with project name as base.

UseProjNav Specifies whether the XPS project should use Project Navigator or Xflow for
implementation tools.

AddToNPL Specifies that if using ProjNav.
NPL File The Project Navigator Project (NPL) file location is specified by NPL File field.

Architecture The valid strings for target architecture families are virtex2, spartan2, spartan2e,
virtex, virtexe, and virtex2p.

Device Specifies the target device name.
Package Specifies the device package.

SpeedGrade Specifies the speed grade of the device.
HierMode HierMode corresponds to the PlatGen option of whether to generate netlist in

hierarchical mode or flat mode.
SynProj Specifies which synthesis tool script file is to be generated.

InsertNoPads Specifies the design hierarchy.
TopInst Specifies the instance name give to this design in the top-level module.

78 XMP File

A.2 XMP file Processor Instance Specific

Processor This field should be used at least once before specifying any other processor
specific fields.

Header Specifies a source file for the current processor instance.
Source Specifies a header file for the current processor instance.

CompilerFlow Specifies how far the compiler flow should be run.
CompilerOptLevel Specifies the compiler optimization level.

HardMul Specifies to use hard multiplier available on Virtex2 and Virtex2P devices for
MicroBlaze instance.

GlobPtrOpt Specifies whether to use Global Pointer Optimization during compilation of pro-
gram sources for the current processor.

DebugSym Specifies whether to compile the program sources with debugging information
or not.

SearchComp This field specifies various directories (separated by space) for compiler search
path (-B option)

SearchLibs This field specifies various directories (separated by space) where the linker
should look for libraries for the program sources (-L option).

SearchIncl This filed specifies various directories (separated by space) where the compiler
should look for various include files for the program sources (-I option).

PrepOpt This field specifies various options (separated by space) to be passed on to the
preprocessor (-Wp option).

AsmOpt This field specifies various options (separated by space) to be passed to the as-
sembler (-Wa option).

LinkOpt This field specifies various options (separated by space) to be passed to linker
(-Wl option).

ProgStart This field specifies the program start address for your application software.
StackSize This field specifies the stack size for your application software.
HeapSize This field specifies the heap size for your application software.

LinkerScript This field specifies the linker script file to be used for compiling program sources.
ProgCCFlags This field specifies various options to be passed to the top-level compiler wrap-

per.

A.3 XMP file for Fully Pipelined M-JPEG System 79

A.3 XMP file for Fully Pipelined M-JPEG System

0 #Please do not modify this file by hand
XmpVersion: 6.2
IntStyle: default
MHS File: system.mhs
MSS File: system.mss

5 NPL File: projnav/system.npl
Architecture: virtex2p
Device: xc2vp20
Package: ff896
SpeedGrade: -6

10 UseProjNav: 0
AddToNPL: 0
PNImportBitFile: projnav/system.bit
PNImportBmmFile: implementation/system_stub.bmm
UserCmd1:

15 UserCmd2:
SynProj: xst
ReloadPbde: 0
MainMhsEditor: 0
InsertNoPads: 0

20 HdlLang: VHDL
Simulator: mti
SimModel: BEHAVIORAL
SimXLib:
SimEdkLib:

25 Processor: mb_P1
BootLoop: 0
XmdStub: 0
Processor: mb_ND_4
BootLoop: 0

30 XmdStub: 0
Processor: mb_ND_5
BootLoop: 0
XmdStub: 0
Processor: mb_ND_6

35 BootLoop: 0
XmdStub: 0
Processor: mb_ND_7
BootLoop: 0
XmdStub: 0

40 SwProj: mb_P1
Processor: mb_P1
Executable: mb_P1/executable.elf
Source: code/P1/P1.cpp
Source: code/P1/Video_in.cpp

45 Source: code/P1/ControlInit.cpp
Header: code/aux_func.h
Header: code/MemoryMap.h
DefaultInit: EXECUTABLE
InitBram: 1

50 Active: 1
CompilerOptLevel: 2
GlobPtrOpt: 0
DebugSym: 0
ProfileFlag: 0

55 AsmOpt:
LinkOpt:
ProgStart:
StackSize: 64000
HeapSize:

60 LinkerScript: code/my_linker_script
ProgCCFlags:
SwProj: mb_ND_4
Processor: mb_ND_4
Executable: mb_ND_4/executable.elf

65 Source: code/ND_4/ND_4.cpp
Source: code/ND_4/DCT.cpp
Header: code/aux_func.h
Header: code/MemoryMap.h
DefaultInit: EXECUTABLE

70 InitBram: 1
Active: 1
CompilerOptLevel: 2
GlobPtrOpt: 0

DebugSym: 0
75 ProfileFlag: 0

AsmOpt:
LinkOpt:
ProgStart:
StackSize: 18000

80 HeapSize:
LinkerScript:
ProgCCFlags:
SwProj: mb_ND_5
Processor: mb_ND_5

85 Executable: mb_ND_5/executable.elf
Source: code/ND_5/ND_5.cpp
Source: code/ND_5/Q.cpp
Header: code/aux_func.h
Header: code/MemoryMap.h

90 DefaultInit: EXECUTABLE
InitBram: 1
Active: 1
CompilerOptLevel: 2
GlobPtrOpt: 0

95 DebugSym: 0
ProfileFlag: 0
AsmOpt:
LinkOpt:
ProgStart:

100 StackSize: 9000
HeapSize:
LinkerScript:
ProgCCFlags:
SwProj: mb_ND_6

105 Processor: mb_ND_6
Executable: mb_ND_6/executable.elf
Source: code/ND_6/ND_6.cpp
Source: code/ND_6/VLE.cpp
Header: code/aux_func.h

110 Header: code/MemoryMap.h
DefaultInit: EXECUTABLE
InitBram: 1
Active: 1
CompilerOptLevel: 2

115 GlobPtrOpt: 0
DebugSym: 0
ProfileFlag: 0
AsmOpt:
LinkOpt:

120 ProgStart:
StackSize: 19000
HeapSize:
LinkerScript:
ProgCCFlags:

125 SwProj: mb_ND_7
Processor: mb_ND_7
Executable: mb_ND_7/executable.elf
Source: code/ND_7/ND_7.cpp
Source: code/ND_7/Video_out.cpp

130 Header: code/aux_func.h
Header: code/MemoryMap.h
DefaultInit: EXECUTABLE
InitBram: 1
Active: 1

135 CompilerOptLevel: 2
GlobPtrOpt: 0
DebugSym: 0
ProfileFlag: 0
AsmOpt:

140 LinkOpt:
ProgStart:
StackSize: 20000
HeapSize:
LinkerScript:

145 ProgCCFlags:

80 XMP File

Appendix B
MHS File for M-JPEG System

1 PARAMETER VERSION = 2.1.0
PORT RS232_Uart_1_RX = RS232_Uart_1_RX, DIR = I
PORT RS232_Uart_1_TX = RS232_Uart_1_TX, DIR = O
PORT lclk = lclk, DIR = I

5 PORT mclk = mclk, DIR = I
PORT mgt_clk = mgt_clk, DIR = I
PORT mgt_clkb = mgt_clkb, DIR = I
PORT clk_fb = clk_fb, VEC = [1:0], DIR = I
PORT clk_gen = clk_gen, VEC = [1:0], DIR = O

10 PORT lreset_l = sys_rst_s, DIR = IN
PORT sys_clk = sys_clk_s, DIR = IN, SIGIS = CLK
PORT system_reset = sys_rst_s, DIR = IN
Begin:zbt
PORT zbt_ad = zbt_ad, VEC = [0:19], DIR = O

15 PORT zbt_dq = zbt_dq, VEC = [0:31], DIR = IO
PORT zbt_ctrl = zbt_ctrl, VEC = [0:11], DIR = O
BEGIN opb_zbt_controller
PARAMETER INSTANCE = opb_zbt_controller_0
PARAMETER HW_VER = 1.00.a

20 PARAMETER C_BASEADDR = 0xFA000000
PARAMETER C_HIGHADDR = 0xFA3FFFFF
PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb

25 BUS_INTERFACE DESIGN_BUFF_PORT = buffer_zbt_ctrl
PORT RA_O = zbt_ad
PORT RC_O = zbt_ctrl

END
BEGIN buffers

30 PARAMETER INSTANCE = buffers_0
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE BUFF_ZBT_CTRL_PORT = buffer_zbt_ctrl
PORT rd0 = zbt_dq
PORT O1 = net_vcc

35 PORT O2 = net_vcc
PORT O3 = net_vcc
PORT O4 = net_vcc
PORT O5 = net_vcc
PORT T1 = net_vcc

40 PORT T2 = net_vcc
PORT T3 = net_vcc
PORT T4 = net_vcc
PORT T5 = net_vcc

END
45 # End: zbt

BEGIN myclkrst
PARAMETER INSTANCE = myclkrst_1
PARAMETER HW_VER = 1.00.a

50 PARAMETER num_clock = 2
PORT lreset_l = sys_rst_s
PORT lclk = lclk
PORT mclk = mclk
PORT mgt_clk = mgt_clk

55 PORT mgt_clkb = mgt_clkb
PORT clk_fb = clk_fb
PORT ctrl = net_gnd

PORT lclk_gen = sys_clk_s
PORT clk_gen = clk_gen

60 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0

65 PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_1_ND_3_to_ND_4
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0

70 PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

75 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_2_ND_4_to_ND_5

80 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s

85 PARAMETER C_ASYNC_CLKS = 0
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a

90 PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_3_ND_1_to_ND_5
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

95 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END
100

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s

105 PARAMETER INSTANCE = sync_fifo_ED_4_ND_1_to_ND_5
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1

110 PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

82 MHS File for M-JPEG System

BEGIN fsl_v20
115 PARAMETER HW_VER = 2.00.a

PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_5_ND_5_to_ND_6
PARAMETER C_FSL_DWIDTH = 32

120 PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

125 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0

130 PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_6_ND_1_to_ND_6
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0

135 PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

140 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_7_ND_1_to_ND_6

145 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s

150 PARAMETER C_ASYNC_CLKS = 0
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a

155 PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_8_ND_1_to_ND_6
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

160 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

165 BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_9_ND_1_to_ND_6

170 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s

175 PARAMETER C_ASYNC_CLKS = 0
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a

180 PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_10_ND_2_to_ND_7
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512

185 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END
190

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s

195 PARAMETER INSTANCE = sync_fifo_ED_11_ND_1_to_ND_7
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1

200 PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

BEGIN fsl_v20
205 PARAMETER HW_VER = 2.00.a

PARAMETER C_USE_CONTROL = 0
PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_12_ND_1_to_ND_7
PARAMETER C_FSL_DWIDTH = 32

210 PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

215 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER C_USE_CONTROL = 0

220 PORT FSL_Clk = sys_clk_s
PARAMETER INSTANCE = sync_fifo_ED_13_ND_6_to_ND_7
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 512
PARAMETER C_EXT_RESET_HIGH = 0

225 PARAMETER C_IMPL_STYLE = 1
PORT SYS_Rst = sys_rst_s
PARAMETER C_ASYNC_CLKS = 0

END

230 BEGIN fifo_if_ctrl
BUS_INTERFACE FIFO_WRITE_1 = sync_fifo_ED_10_ND_2_to_ND_7
BUS_INTERFACE FIFO_WRITE_2 = sync_fifo_ED_1_ND_3_to_ND_4
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = dlmb_P1

235 PARAMETER INSTANCE = fifo_ctrl_P1
PARAMETER C_FIFO_WRITE = 2
PARAMETER C_BASEADDR = 0x08000000
PARAMETER C_HIGHADDR = 0x080007f
PARAMETER HW_VER = 1.00.a

240 END

BEGIN microblaze
PARAMETER INSTANCE = mb_P1
PARAMETER HW_VER = 2.10.a

245 PORT CLK = sys_clk_s
BUS_INTERFACE DOPB = mb_opb
BUS_INTERFACE MFSL0 = sync_fifo_ED_3_ND_1_to_ND_5
BUS_INTERFACE MFSL1 = sync_fifo_ED_4_ND_1_to_ND_5
BUS_INTERFACE MFSL2 = sync_fifo_ED_6_ND_1_to_ND_6

250 BUS_INTERFACE MFSL3 = sync_fifo_ED_7_ND_1_to_ND_6
BUS_INTERFACE MFSL4 = sync_fifo_ED_8_ND_1_to_ND_6
BUS_INTERFACE MFSL5 = sync_fifo_ED_9_ND_1_to_ND_6
BUS_INTERFACE MFSL6 = sync_fifo_ED_11_ND_1_to_ND_7
BUS_INTERFACE MFSL7 = sync_fifo_ED_12_ND_1_to_ND_7

255 PARAMETER C_NUMBER_OF_PC_BRK = 1
BUS_INTERFACE ILMB = ilmb_P1
BUS_INTERFACE DLMB = dlmb_P1
PARAMETER C_FSL_LINKS = 8
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0

260 PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
END

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a

265 PARAMETER INSTANCE = ilmb_P1
PORT LMB_Clk = sys_clk_s
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END
270

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = dlmb_P1
PORT LMB_Clk = sys_clk_s

275 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

BEGIN lmb_bram_if_cntlr
280 BUS_INTERFACE BRAM_PORT = conn_d_P1

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb_cntlr_P1
BUS_INTERFACE SLMB = dlmb_P1

285 PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

END

BEGIN lmb_bram_if_cntlr
290 BUS_INTERFACE BRAM_PORT = conn_i_P1

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb_cntlr_P1
BUS_INTERFACE SLMB = ilmb_P1

295 PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

END

83

BEGIN bram_block
300 PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTB = conn_d_P1
PARAMETER INSTANCE = lmb_bram_P1
BUS_INTERFACE PORTA = conn_i_P1

END
305

BEGIN counter_input_ctrl
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0x09000000
PARAMETER INSTANCE = counter_input_ctrl_P1

310 BUS_INTERFACE CounterFlag = P1_count_conn
PORT LMB_Clk = sys_clk_s
BUS_INTERFACE SLMB = dlmb_P1
PARAMETER C_HIGHADDR = 0x09000003

END
315

BEGIN microblaze
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
PARAMETER HW_VER = 2.10.a
PARAMETER C_NUMBER_OF_PC_BRK = 1

320 PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_FSL_LINKS = 2
PARAMETER INSTANCE = mb_ND_4
BUS_INTERFACE DLMB = dlmb_ND_4
BUS_INTERFACE DOPB = mb_opb

325 BUS_INTERFACE SFSL0 = sync_fifo_ED_1_ND_3_to_ND_4
BUS_INTERFACE MFSL0 = sync_fifo_ED_2_ND_4_to_ND_5
BUS_INTERFACE ILMB = ilmb_ND_4
PORT CLK = sys_clk_s

END
330

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = ilmb_ND_4
PORT LMB_Clk = sys_clk_s

335 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

BEGIN lmb_v10
340 PARAMETER HW_VER = 1.00.a

PARAMETER INSTANCE = dlmb_ND_4
PORT LMB_Clk = sys_clk_s
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

345 END

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_d_ND_4
PARAMETER HW_VER = 1.00.b

350 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb_cntlr_ND_4
BUS_INTERFACE SLMB = dlmb_ND_4
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

355 END

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_i_ND_4
PARAMETER HW_VER = 1.00.b

360 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb_cntlr_ND_4
BUS_INTERFACE SLMB = ilmb_ND_4
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

365 END

BEGIN bram_block
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTB = conn_d_ND_4

370 PARAMETER INSTANCE = lmb_bram_ND_4
BUS_INTERFACE PORTA = conn_i_ND_4

END

BEGIN counter_input_ctrl
375 PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0x09000000
PARAMETER INSTANCE = counter_input_ctrl_ND_4
BUS_INTERFACE CounterFlag = ND_4_count_conn
PORT LMB_Clk = sys_clk_s

380 BUS_INTERFACE SLMB = dlmb_ND_4
PARAMETER C_HIGHADDR = 0x09000003

END

BEGIN microblaze
385 PARAMETER HW_VER = 2.10.a

PORT CLK = sys_clk_s
BUS_INTERFACE DOPB = mb_opb
BUS_INTERFACE SFSL0 = sync_fifo_ED_2_ND_4_to_ND_5
PARAMETER C_NUMBER_OF_PC_BRK = 1

390 BUS_INTERFACE ILMB = ilmb_ND_5
BUS_INTERFACE MFSL0 = sync_fifo_ED_5_ND_5_to_ND_6
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE SFSL1 = sync_fifo_ED_3_ND_1_to_ND_5

PARAMETER C_FSL_LINKS = 4
395 BUS_INTERFACE DLMB = dlmb_ND_5

PARAMETER INSTANCE = mb_ND_5
BUS_INTERFACE SFSL2 = sync_fifo_ED_4_ND_1_to_ND_5
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0

END
400

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = ilmb_ND_5
PORT LMB_Clk = sys_clk_s

405 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

BEGIN lmb_v10
410 PARAMETER HW_VER = 1.00.a

PARAMETER INSTANCE = dlmb_ND_5
PORT LMB_Clk = sys_clk_s
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

415 END

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_d_ND_5
PARAMETER HW_VER = 1.00.b

420 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb_cntlr_ND_5
BUS_INTERFACE SLMB = dlmb_ND_5
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

425 END

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_i_ND_5
PARAMETER HW_VER = 1.00.b

430 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb_cntlr_ND_5
BUS_INTERFACE SLMB = ilmb_ND_5
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

435 END

BEGIN bram_block
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTB = conn_d_ND_5

440 PARAMETER INSTANCE = lmb_bram_ND_5
BUS_INTERFACE PORTA = conn_i_ND_5

END

BEGIN counter_input_ctrl
445 PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0x09000000
PARAMETER INSTANCE = counter_input_ctrl_ND_5
BUS_INTERFACE CounterFlag = ND_5_count_conn
PORT LMB_Clk = sys_clk_s

450 BUS_INTERFACE SLMB = dlmb_ND_5
PARAMETER C_HIGHADDR = 0x09000003

END

BEGIN microblaze
455 PARAMETER HW_VER = 2.10.a

PORT CLK = sys_clk_s
BUS_INTERFACE DOPB = mb_opb
BUS_INTERFACE SFSL0 = sync_fifo_ED_5_ND_5_to_ND_6
BUS_INTERFACE MFSL0 = sync_fifo_ED_13_ND_6_to_ND_7

460 PARAMETER C_NUMBER_OF_PC_BRK = 1
BUS_INTERFACE ILMB = ilmb_ND_6
BUS_INTERFACE SFSL4 = sync_fifo_ED_9_ND_1_to_ND_6
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE SFSL1 = sync_fifo_ED_6_ND_1_to_ND_6

465 PARAMETER C_FSL_LINKS = 6
BUS_INTERFACE DLMB = dlmb_ND_6
PARAMETER INSTANCE = mb_ND_6
BUS_INTERFACE SFSL2 = sync_fifo_ED_7_ND_1_to_ND_6
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0

470 BUS_INTERFACE SFSL3 = sync_fifo_ED_8_ND_1_to_ND_6
END

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a

475 PARAMETER INSTANCE = ilmb_ND_6
PORT LMB_Clk = sys_clk_s
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END
480

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = dlmb_ND_6
PORT LMB_Clk = sys_clk_s

485 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

84 MHS File for M-JPEG System

BEGIN lmb_bram_if_cntlr
490 BUS_INTERFACE BRAM_PORT = conn_d_ND_6

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb_cntlr_ND_6
BUS_INTERFACE SLMB = dlmb_ND_6

495 PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

END

BEGIN lmb_bram_if_cntlr
500 BUS_INTERFACE BRAM_PORT = conn_i_ND_6

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb_cntlr_ND_6
BUS_INTERFACE SLMB = ilmb_ND_6

505 PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

END

BEGIN bram_block
510 PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTB = conn_d_ND_6
PARAMETER INSTANCE = lmb_bram_ND_6
BUS_INTERFACE PORTA = conn_i_ND_6

END
515

BEGIN counter_input_ctrl
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0x09000000
PARAMETER INSTANCE = counter_input_ctrl_ND_6

520 BUS_INTERFACE CounterFlag = ND_6_count_conn
PORT LMB_Clk = sys_clk_s
BUS_INTERFACE SLMB = dlmb_ND_6
PARAMETER C_HIGHADDR = 0x09000003

END
525

BEGIN opb_uartlite
PARAMETER HW_VER = 1.00.b
PARAMETER INSTANCE = RS232_Uart_ND_7
PARAMETER C_CLK_FREQ = 100000000

530 PARAMETER C_DATA_BITS = 8
PARAMETER C_BAUDRATE = 9600
PARAMETER C_ODD_PARITY = 0
PARAMETER C_USE_PARITY = 0
BUS_INTERFACE SOPB = mb_opb

535 PARAMETER C_HIGHADDR = 0xfffe21ff
PARAMETER C_BASEADDR = 0xfffe2100
PORT OPB_Clk = sys_clk_s
PORT RX = RS232_Uart_1_RX
PORT TX = RS232_Uart_1_TX

540 END

BEGIN opb_v20
PARAMETER HW_VER = 1.10.b
PORT OPB_Clk = sys_clk_s

545 PARAMETER INSTANCE = mb_opb
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

550 BEGIN clock_cycle_counter
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE CounterFlag_3 = ND_5_count_conn
BUS_INTERFACE CounterFlag_2 = ND_4_count_conn
BUS_INTERFACE CounterFlag_5 = ND_7_count_conn

555 PARAMETER C_BASEADDR = 0x0a000000
PARAMETER INSTANCE = clock_cycle_counter_ND_7
PORT LMB_Clk = sys_clk_s
BUS_INTERFACE CounterFlag_1 = P1_count_conn
BUS_INTERFACE SLMB = dlmb_ND_7

560 BUS_INTERFACE CounterFlag_4 = ND_6_count_conn
PARAMETER C_HIGHADDR = 0x0a000003

END

BEGIN microblaze
565 PARAMETER HW_VER = 2.10.a

PORT CLK = sys_clk_s
BUS_INTERFACE DOPB = mb_opb
BUS_INTERFACE SFSL0 = sync_fifo_ED_10_ND_2_to_ND_7
PARAMETER C_NUMBER_OF_PC_BRK = 1

570 BUS_INTERFACE ILMB = ilmb_ND_7
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
BUS_INTERFACE SFSL1 = sync_fifo_ED_11_ND_1_to_ND_7
PARAMETER C_FSL_LINKS = 5

BUS_INTERFACE DLMB = dlmb_ND_7
575 PARAMETER INSTANCE = mb_ND_7

BUS_INTERFACE SFSL2 = sync_fifo_ED_12_ND_1_to_ND_7
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
BUS_INTERFACE SFSL3 = sync_fifo_ED_13_ND_6_to_ND_7

END
580

BEGIN lmb_v10
PARAMETER HW_VER = 1.00.a
PARAMETER INSTANCE = ilmb_ND_7
PORT LMB_Clk = sys_clk_s

585 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

END

BEGIN lmb_v10
590 PARAMETER HW_VER = 1.00.a

PARAMETER INSTANCE = dlmb_ND_7
PORT LMB_Clk = sys_clk_s
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = sys_rst_s

595 EN

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_d_ND_7
PARAMETER HW_VER = 1.00.b

600 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = dlmb_cntlr_ND_7
BUS_INTERFACE SLMB = dlmb_ND_7
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

605 END

BEGIN lmb_bram_if_cntlr
BUS_INTERFACE BRAM_PORT = conn_i_ND_7
PARAMETER HW_VER = 1.00.b

610 PARAMETER C_BASEADDR = 0x00000000
PARAMETER INSTANCE = ilmb_cntlr_ND_7
BUS_INTERFACE SLMB = ilmb_ND_7
PARAMETER C_HIGHADDR = 0x00003fff
PARAMETER C_MASK = 0xff000000

615 END

BEGIN bram_block
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTB = conn_d_ND_7

620 PARAMETER INSTANCE = lmb_bram_ND_7
BUS_INTERFACE PORTA = conn_i_ND_7

END

BEGIN counter_input_ctrl
625 PARAMETER HW_VER = 1.00.a

PARAMETER C_BASEADDR = 0x09000000
PARAMETER INSTANCE = counter_input_ctrl_ND_7
BUS_INTERFACE CounterFlag = ND_7_count_conn
PORT LMB_Clk = sys_clk_s

630 BUS_INTERFACE SLMB = dlmb_ND_7
PARAMETER C_HIGHADDR = 0x09000003

END

Bibliography

[1] Semiconductor Industry Association. The International Technology Roadmap for Semi-
conductors. 2001.

[2] http://www.picochip.com.

[3] http://www.xilinx.com.

[4] Paul Stravers and Jan Hoogerbrugge. Homogeneous multiprocessoring and the future of
silicon design paradigms. In Proceedings of the Int. Symposium on VLSI Technology,
Systems, and Applications, April 2001.

[5] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Compaan: Deriving Process Net-
works from Matlab for Embedded Signal Processing Architectures. In Proc. 8th Interna-
tional Workshop on Hardware/Software Codesign (CODES’2000), San Diego, CA, USA,
May 3-5 2000.

[6] Edward Lee and Alberto Sangiovanni-Vincentelli. A Framework for Comparing Mod-
els of Computation. IEEE Transactions on CAD of Integrated Circuits and Systems,
17(12):1217–1229, 1998.

[7] E.A. Lee et al. PtolemyII: Heterogeneous Concurrent Modeling and Design in Java. Tech-
nical report, University of California at Berkeley, 1999. UCB/ERL M99/40.

[8] Gilles Kahn. The semantics of a simple language for parallel programming. In Proc. of
the IFIP Congress 74. North-Holland Publishing Co., 1974.

[9] Alexandru Turjan and Bart Kienhuis. Storage Management in Process Networks using the
Lexicographically Maximal Preimage. In Proc. of the IEEE 14th Int. Conf. on Application-
specific Systems, Architectures and Processors (ASAP’03), The Hague, The Netherlands,
January 24-26 2003.

[10] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A Technique to Determine Inter-
process Communication in the Polyhedral Model. In Proc. Int. Workshop on Compilers
for Parallel Computers (CPC’03), Amsterdam, The Netherlands, January 8-10 2003.

86 Bibliography

[11] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed Deprettere. LAURA: Lei-
den Architecture Research and Exploration Tool. In Proc. 13th Int. Conference on Field
Programmable Logic and Applications (FPL’03), Lisbon, Portugal, September 1-3 2003.

[12] Song Peng, David Fang, John Teifel, and Rajit Manohar. Automated Synthesis for Asyn-
chronous FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th International symposium
on Field Programmable Logic and Applications, Monterey, California, USA, February
2005.

[13] Andre Nieuwland, Jeffrey Kang, O. P. Gangwal, R. Sethuraman, N. Busa, K Goosens,
R. P. Llopis, and P. Lippens. C-HEAP: A Heterogeneous Multi-processor Architecture
Template and Scalable and Flexible Protocol for the Design of Embedded Signal Process-
ing Systems. Kluwer Academic Publishers, 2002.

[14] B. K. Dwivedi, A. Kumar, and M. Balakrishnan. Synthesis of application specific multi-
processor architectures for process networks. In Proc. 17th International Conference on
VLSI Design (VLSI-2004), Mumbai, India, January 2004.

[15] Rolf Enzler, Marco Platzner, Christian Plessl, Lothar Thiele, and Gerhard Troster. Re-
configurable pprocessors for Handhelds and Wearables: Application Analysis. In Recon-
figurable Technology: FPGAs and Reconfigurable Processors for Computing and Com-
munications III (Proceedings of ITCom’01), Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland, 2001.

[16] Kees Goossens, John Dielissen, Jef van Meerbergen, Peter. Poplavko, Andrei. Radulescu,
Edwin Rijpkema, Erwin. P. Waterlander, and Paul. Wielage. Guaranteeing the Quality Of
Services in Networks On Chip. In Networks on Chip, pages 61–82. Kluwer Academic
Publishers, 2003.

[17] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and Ed Deprettere. System Level
Design with SPADE: an M-JPEG Case Study. In Proc. Int. Conference on Computer
Aided Design (ICCAD’01), pages 31–38, San Jose CA, USA, November 4-8 2001.

[18] Joe Coffland and Andy Pimentel. A Software Framework for Efficient System-level Pe
rformance Evaluation of Embedded Systems. In Proc. of the 18th ACM Symposium on
Applied Computing, Embedded Systems track, pages 666–671, Melbourne, Florida, USA,
March 2003.

[19] Erwin de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decoding Case
Study. In Proc. 15th Int. Symposium on System Synthesis (ISSS’2002), pages 68–73, Ky-
oto, Japan, October 2-4 2002.

[20] F. Balarin, E. Sentovich, M Chiodo, P. Giusto, H. Hsieh, B Tabbara, A. Jurecska,
L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-Software
Co-design of Embedded Systems – The POLIS approach. Kluwer Academic Publishers,
1997.

[21] H. Muller. Simulating computer architectures. PhD thesis, Dept. of Computer Science,
Univ. of Amsterdam, 1993.

Bibliography 87

[22] E.A. de Kock et al. YAPI: Application modeling for signal processing systems. In
Proc. 37th Design Automation Conference (DAC’2000), pages 402–405, Los Angeles,
CA, June 5-9 2000.

[23] ”http://www.criticalblue.com”. CriticalBlue Limited.

[24] ”http://www.tensilica.com”. Tensilica Inc.

[25] http://www.celoxica.com/products/agility/default.asp. Celoxica, Inc.

[26] Shawn McCloud. Algorithmic c synthesis optimizes esl design flows. Xcell Journal,
August 2004.

[27] http://www.accelchip.com/.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[29] R. Sethi, A.V. Aho, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, 1986.

[30] Platform studio user guide: Xilinx, inc.
http://www.xilinx.com/ise/embedded/edk6 2docs/platform studio ug.pdf.

[31] Microblaze software reference guide: Xilinx, inc.
http://www.xilinx.com/ipcenter/processor central/microblaze/doc/swref.pdf.

[32] Embedded system tools guide: Xilinx, inc.
http://www.xilinx.com/ise/embedded/edk6 2docs/est guide.pdf.

[33] http://www.alpha-data.com/adm-xrc-ii.html. Alpha Data Parallel Systems, Ltd.

[34] Local memory bus (lmb) v1.0, xilinx, inc.
http://www.xilinx.com/ise/embedded/edk docs.htm.

[35] 64-bit on-chip peripheral bus, architectural specifications, version 2.0.
http://www.xilinx.com/ise/embedded/edk docs.htm.

[36] Fast simplex link (fsl) bus (v2.00a), xilinx, inc.
http://www.xilinx.com/bvdocs/ipcenter/data sheet/FSL V20.pdf.

[37] User constraint file: Xilinx, inc.
toolbox.xilinx.com/docsan/xilinx7/books/docs/sim/sim.pdf.

[38] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[39] Todor Stefanov, Bart Kienhuis, and Ed Deprettere. Algorithmic Transformation Tech-
niques for Efficient E xploration of Alternative Application Instances. In Proc. 10th In-
ternational Symposium on Hardware/Software Codesi gn (CODES’02), pages 7–12, Estes
Park, Colorado, USA, May 6-8 2002.

88 Bibliography

[40] Todor Stefanov. Converting Weakly Dynamic Programs to Equivalent Process Network
Specifications. PhD dissertation, Universiteit Leiden., 2004.

[41] Vasudev Bhaskaran and Konstantinos Konstantinides. Image and Video Compression
Standards; Algorithms and Architectures. Kluwer Academic Publishers, 1995.

[42] W.B. Pennebacker and J.L. Mitchel. JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, New York, 1993.

[43] Bart Kienhuis. MatParser: An array dataflow analysis compiler. Technical report, Univer-
sity of California at Berkeley, 2000. UCB/ERL M00/9.

[44] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Translating Affine Nested-loop Pro-
grams to Process Networks. In Proc. International Conference on Compilers, Architec-
tures, and Synthesis for Embedded Systems (CASES’04), Washington D.C., USA, Septem-
ber 23-25 2004.

[45] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. The Compaan Communication
Model Selection. In Proc. of the IEEE 15th Int. Conf. on Application-specific Systems,
Architectures and Processors (ASAP’04), Galveston, Texas, USA, September 27-29 2004.

[46] http://toolbox.xilinx.com/docsan/xilinx7/de/dev/xflow.pdf.

[47] http://www.gnu.org/software/binutils/manual/ld-2.9.1/.

[48] Elf: Executable and linkable format. ftp://ftp.intel.com/pub/tis, 1998.

[49] Ji Gu Kai Huang. Mapping process networks onto microblaze based multiprocessor plat-
forms : Research project report. Technical report, LIACS, the Netherlands, 2005.

