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ABSTRACT
The complexity of today’s embedded applications requires mod-

ern high-performance embedded System-on-Chip (SoC) platforms
to be multiprocessor architectures. Advances in FPGA technology
make the implementation of such architectures in a single chip (MP-
SoC) feasible and very appealing. In recent years, the FPGA ven-
dors integrated enormous amount of hardware resources in their
FPGAs allowing larger and more complex MPSoCs to be built in
their FPGA fabric. The main limitation on the size of an MPSoC
that can be built in a single FPGA appears to be the amount of on-
chip memory. To relax this limitation, the usage of external (off-chip)
memory has to be considered. The state-of-the-art development tools
support off-chip memory for (multi-master) shared bus architectures
with arbitration of the memory accesses. Such architectures might
be efficient for single processor systems however for multiproces-
sor systems the shared bus concept significantly limits the systems
performance even if a DMA mechanism is used.

In this paper we present our approach and interface when using
an external memory for inter-processor data communication in mul-
tiprocessor platforms. We propose a hierarchical memory system
with a programmable controller to transfer data between external
and on-chip memories using a DMA mechanism. Our approach does
not require arbitration which results in better overall performance.
Results demonstrating the effectiveness of the proposed hierarchical
memory system are presented as well.

1. INTRODUCTION

The complexity of embedded multimedia and signal processing ap-
plications has reached a point where the performance requirements
of these applications can no longer be supported by embedded sys-
tem platforms based on a single processor. Therefore, modern em-
bedded system platforms have to be multiprocessor architectures.
Although today’s FPGA technology allows for building such archi-
tectures due to the large amount of resources integrated in a single
FPGA, still the amount of integrated on-chip memory is a severe
limiting factor for building large and high performance multiproces-
sor systems (MPSoCs) on an FPGA. This is because stream-based
computations, common in multimedia and signal processing appli-
cations typically manipulate large volumes of fine-grain data that,
despite recent increases in FPGA memory capacity, must be mapped
to external memories and then streamed through the FPGA for pro-
cessing.

Commercially available tools [1][2] provided by leading FPGA
companies (e.g., Xilinx and Altera) offer limited capabilities (ap-
proaches, interfaces, and components) to deal efficiently with ex-
ternal (off-chip) memories. The current state-of-the-art tools sup-
port external memory access based on a shared multi-master bus

architecture with arbitration. Such memory access is very ineffi-
cient when a high performance multiprocessor system (MPSoC) on
an FPGA chip is considered. Moreover, the shared bus arbitration
guarantees only that a processor can physically access the external
memory resources connected to the bus. However, it can not sched-
ule and synchronize an application dependent accesses of different
processors so that it may fail the correct functional behavior of the
application and to protect from incorrect accesses of one processor
to the external memory space of another processor. The problem of
dealing with an external memory is exacerbated by the lack of au-
tomated programming approaches for MPSoCs on FPGAs with an
external memory. In addition, the diversity of vendor-specific ex-
ternal memory interfaces results in a very time consuming manual
effort for designers to match the MPSoC design specification to a
specific interface which makes the overall specification difficult to
port to another vendor interface.

The contribution of this paper is the addressing of the above is-
sues related to the external memory interface of FPGA-based MP-
SoCs in a very innovative and efficient way. We propose a hierarchi-
cal memory system and an interface with a programmable controller
to transfer data between external memories and on-chip memories
using a DMA mechanism. The memory system and the interface
allow automated programming, synchronization and scheduling of
data dependent external memory accesses. The interface is generic
and can be realized on FPGAs from different vendors. Our memory
system and interface avoid the multi-master shared bus architecture
and arbitration which results in better overall performance when a
multiprocessor system is implemented on an FPGA.

1.1. Related Work

To the best of our knowledge there are not many references in the
literature that address off-chip data communication related to mul-
tiprocessor systems implemented on FPGAs. The general approach
is to connect a global off-chip memory to (on-chip) cache memo-
ries. This approach is inherited from the single processor architec-
tures (widely used for more than 20 years) and implies lots of inter-
processor synchronization challenges [3] such as cache coherency.
Although the programming of such multiprocessor systems is rel-
atively easy, the limited performance and cache coherency prob-
lems force us to devise alternative high-performance multiprocessor
architectures with more efficient hierarchical memory and external
memory interface.

The work presented in [4] proposes a memory system architec-
ture with stream channels mapped onto an external memory and on-
chip FIFOs, and schedulers for managing memory accesses. This
is similar to our approach in the sense that we also propose a mem-
ory system that realizes FIFO communication (between processors



in an MPSoC). Their approach however supports a data stream ex-
ecution model for designs with only a single computation task. In
contrast, our hierarchical memory system is used to connect multi-
ple processors where each processor executes its own computation
task. In addition to that, our approach does not require application
dependent knowledge to manage memory accesses (for communi-
cation between the processors) which simplifies the structure of our
external memory interface.

Recent work on efficient FPGA multiprocessor system design
for high throughput dataflow and stream oriented applications is pre-
sented in [5]. The targeted architecture consists of a network of pro-
cessors connected through slow on-chip peripheral buses (OPBs),
direct FSL links, and on-chip memories. The authors present an
IPv4 packet forwarding application where the size and the perfor-
mance of the system is limited by the amount of the on-chip memory
and by arbitrating constraints to share the memory between different
processors. The authors observed a significant drop in OPB perfor-
mance if more than 2 processors share the same bus. The results
presented in [5] fully support our statements that 1) for modern MP-
SoCs, using an external memory has to be considered and 2) defining
an effective mechanism to share memory between different proces-
sors is an important aspect in designing high-performance MPSoCs.

1.2. Motivating Case
The work presented in this paper is an important extension of our
methodology for automated multiprocessor system design, program-
ming and implementation on FPGAs presented in [6]. The method-
ology has been implemented in a tool called ESPAM (Embedded
System-level Platform synthesis and Application Mapping). We have
experimented with ESPAM by implementing different MPSoCs on
the Xilinx FPGA technology executing a Motion JPEG encoder ap-
plication. Based on the obtained results presented in detail in [6] we
have concluded that the main limitation on the size of a multiproces-
sor system that can be built on a single FPGA is the amount of the
on-chip memory. For example, a system containing 2 PowerPC
and 2 MicroBlaze processors utilizes 100% of the memory re-
sources (BRAMs) and utilizes only 35% of the slices of a VirtexII-
Pro 20 device [6]. Although, in every new Xilinx FPGA device the
amount of the on-chip memory increases, still it remains a limiting
factor. To overcome this, the usage of external (off-chip) memories
has to be considered. However, using the FPGA on-chip memories
instead of external memories is crucial for our high-performance
multiprocessor systems because the external memories are slower
than the on-chip BRAMs. In addition to that, the only interface pro-
vided by Xilinx to connect the MicroBlaze and PowerPC pro-
cessors to an external memory is the slow OPB bus which reduces
the performance even more if external memory is used. Therefore,
we need to devise a different approach to use external memories in
our platforms without sacrificing the overall performance.

In this paper we propose a hierarchical memory system that uti-
lizes on-chip and off-chip memories for data communication be-
tween the processors in a multiprocessor platform. In our approach a
single external memory is shared between different processors with-
out limiting the overall performance. The hierarchical memory sys-
tem uses custom buses and controllers for accessing the memories
in a way that allows parallel operation of the processors without the
need of arbitration of the memory accesses. We do not consider
the usage of the shared external memory as a program and/or local
data memory of processors because in such case arbitration of the
accesses to the external memory can not be avoided. Such arbitra-

tion is crucial for the overall performance because if the processors
compete between each other every time they fetch an instruction or
(local) data, high performance can not be achieved. Local cache
memories can be used in order to increase the performance of these
systems. However, if cache memories are used for inter-processor
data communication, cache coherence mechanisms has to be con-
sidered [3]. This introduces additional overhead limiting the overall
performance.

2. MULTIPROCESSOR PLATFORMS
In this section we give a brief description of our approach, described
in [6], for building multiprocessor platforms. The multiprocessor
platforms we consider are constructed by connecting Processing,
Memory, and Communication components using Communication con-
trollers (CC). Memory components are used to specify the proces-
sors’ local program and data memories and to specify data commu-
nication memories (CM) used to transfer data between the proces-
sors. The Communication components determine the communica-
tion network topology of a multiprocessor platform, e.g., a point-to-
point network, a crossbar switch, or a shared bus. The Communica-
tion controller implements an interface between processing, mem-
ory, and communication components. We have developed a general
approach to connect and synchronize programmable processors of
arbitrary types via a communication component.

Our approach is explained below using the example of a multi-
processor platform depicted in the right part of Figure 1 – see the
non-shaded blocks. It contains several processors connected to a
communication component (in this example – a crossbar switch CB)
using communication memories (CMx’) and communication con-
trollers (CCx’). The processors transfer data between each other
through the CMx’ memories. A communication controller connects
a communication memory to the data bus of the processor it be-
longs to and to a communication component. Each CC implements
the processor’s local bus-based access protocol to the CM for write
operations and the access to the communication component (CB)
for read operations. In our approach each processor writes only to
its local communication memory and uses the communication com-
ponent only to read data from all other communication memories.
Thus, memory contention is avoided. Each CM is organized as one
or more FIFO buffers. We have chosen such organization because,
then, the inter-processor synchronization in the platform can be im-
plemented in a very simple and efficient way by blocking read/write
operations on empty/full FIFO buffers located in the communication
memory.

The described communication mechanism and the usage of on-
chip memories for communication results in high performance of
our multiprocessor systems. However, for some applications the
memory requirements may exceed the available (on-chip) memory
resources of the system. Therefore, we devised a mechanism and ex-
tended our platforms to support external memory for inter-processor
data communication. The remaining part of the paper describes this
mechanism and our interface for an external memory.

3. HIERARCHICAL MEMORY SYSTEM
In this section we present our approach to use off-chip and on-chip
memories, combined in a hierarchical memory system, for data com-
munication between multiple processors in our platforms. An exam-
ple of such platform is depicted in Figure 1. The hierarchical mem-
ory system is depicted in the left part of the figure – see the shaded
blocks. For the sake of clarity the example contains only two proces-



sors. However, the number of processors is not limited to two. Each
processor has its local Program/Data memory. Processors commu-
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Fig. 1. Example of a Multiprocessor Platform.

nicate data only via FIFO buffers. Small size FIFOs are mapped
onto on-chip memory CM1

′ and CM2
′ connected to a crossbar

(CB) or other communication component. Large size FIFOs are
mapped onto the hierarchical memory system that includes on-chip
SRAMs, i.e., communication memories CM1 and CM2 and an ex-
ternal (off-chip) memory. Mapping of large FIFOs is explained in
the next section. External Data Memory Controller (EDM CTRL)
manages the access to the external memory. Also, EDM CTRL is
responsible for synchronizing and moving data between the SRAMs
and the external memory using a Direct Memory Access (DMA)
mechanism.

Each processor has its own CM as a part of the hierarchical mem-
ory system (see the left part of Figure 1). The CMs are connected to
communication controllers (CC1 and CC2). A CC allows multiple
FIFOs to be mapped in a single CM and the CM to be accessed by
the corresponding processor and EDM CTRL at the same time. The
External Data Memory Controller and the CCs connect the on-chip
CMs and the external memory in a particular way described in detail
later in the paper. EDM CTRL acts as a single master (with CCs as
slaves) that initiates data transfers between the CMs and the external
memory.

3.1. Mapping FIFOs onto Hierarchical Memory System
As explained above, the hierarchical memory system consists of low
latency on-chip communication memories (CMs) and a large off-
chip memory. This memory system is used for mapping of large
FIFO buffers as follows. For the sake of clarity assume that proces-
sors uP1 and uP2 (Figure 1) have to communicate data via large fifo
buffers FIFO1 and FIFO2. Processor uP1 writes data to FIFO1 and
reads data from FIFO2. Similarly, processor uP2 writes to FIFO2
and reads from FIFO1. In our approach each large fifo is split in
three parts. For FIFO1, these are FIFO1’, FIFO1”, and FIFO1”’
as shown in Figure 2 (FIFO2 is split in the same way). Each CM

size(FIFO1’) = size(FIFO1’’’) << size(FIFO1’’)

FIFO1’’ FIFO1’’’FIFO1’

FIFO1

size(FIFO1) = size(FIFO1’) + size(FIFO1’’) + size(FIFO1’’’)

Fig. 2. The FIFO structure.

is organized as several logical FIFO buffers. The off-chip memory
is organized as logical FIFOs as well. FIFO1’, FIFO2’, FIFO1”’,
and FIFO2”’ are small fifos. Therefore, they are physically mapped
onto the on-chip CMs. FIFO1” and FIFO2” are large fifos and they
are physically mapped onto the off-chip memory as shown in Fig-
ure 1. When processors uP1 and uP2 communicate data over the
buffers (FIFO1 and FIFO2), they write/read only to/from the fifos
FIFO1’, FIFO2’, FIFO1”’, FIFO2”’ located in the on-chip CMs.
The processors synchronize by blocking write/read on these fifos.
The External Data Memory Controller (EDM CTRL) is responsible
for the physical movement of data between the on-chip CMs and the
off-chip memory. EDM CTLR moves data from FIFO1’ to FIFO1”
to FIFO1”’ , i.e., EDM CTRL reads data from FIFO1’ and writes
it to FIFO1” or EDM CTRL reads data from FIFO” and writes it
to FIFO1”’. Similarly, it moves data from FIFO2’ to FIFO2” to
FIFO2”’.

3.2. Memory Maps
The multi-FIFO organization of the CMs is realized by the CCs.
Each FIFO is seen by a processor as two memory locations in its
memory address space. One location is used to read the status (full
or empty) of a FIFO. The other location is used for reading/writing
data from/to a FIFO. As explained above a FIFO is split in three
parts (FIFO’, FIFO”, and FIFO”’). The memory maps in Figure 3
show that a processor can access only FIFO’ and FIFO”’ located in
a CM. FIFO” located in the external memory cannot be accessed by
a processor. It can be accessed only by the EDM controller.
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Fig. 3. The Memory Maps of the Processors in Figure 1.

3.3. Inter-processor Synchronization and Data Transfer
The synchronization between the processors in the platform shown
in Figure 1 is realized by blocking read/write mechanism on empty/full
FIFOs as explained below. When a processor has to write data to a
FIFO in the CM (e.g. processor uP1 to write to FIFO1’), the proces-
sor first checks if there is room in the corresponding FIFO. This is
done by reading the FIFO status located at a memory address spec-
ified in the memory map of uP1. In Figure 3a the memory map of
processor uP1 shows that the status of FIFO1’ is located at address
1. If the FIFO is full, the processor blocks. Otherwise, it writes
the data to the corresponding DataWrite address of the FIFO. For
FIFO1’ this is address 0 (see the same figure). When a processor has
to read from a FIFO located in the CM memory (e.g. processor uP2
to read from FIFO1”’), it first checks if there is any data in the corre-
sponding FIFO. This is done by reading address 3 (see the memory
map of uP2, Figure 3b). The processor blocks if the FIFO is empty.
Otherwise, it reads the data from memory address 2.

The data transfer between the local processors’ FIFOs (e.g. FIFO1’
and FIFO1”’ in Figure 1) is realized by the External Data Memory
Controller through the large part of the corresponding FIFO located
in the external memory (e.g. FIFO1”) using a DMA mechanism.



The controller has a table containing the location of each part of
each FIFO. For our example these are FIFO1’, FIFO1”, FIFO1”’,
FIFO2’, FIFO2”, and FIFO2”’. EDM CTRL acts as a single master
transferring data first between the on-chip memories and the exter-
nal memory (i.e. all FIFOs’ to all FIFOs”) and then between the
external memory and the on-chip memories (i.e. all FIFOs” to all
FIFOs”’). The controller uses a Round-Robin policy to serve the
FIFOs. In the beginning, the controller checks if there is data to
be transferred, i.e., from FIFO1’ to FIFO1”. If FIFO1’ is empty,
the controller moves to the next FIFO in the table, i.e., FIFO2’. If
FIFO1’ is not empty, the EDM controller checks the status of the
corresponding FIFO in the external memory (FIFO1”). If it is not
full, a transfer of a predefined amount of data is initiated. If during
the transfer the controller blocks on empty or full FIFO, then the
transfer is suspended and EDM CTRL moves to the next FIFO in
the table. After the last FIFO’ in the table is served, the controller
proceeds with moving data, using the mechanism described above,
from the external memory to the on-chip memories, i.e., from all
FIFOs” to all FIFOs”’ according to the EDM CTRL table.

4. IMPLEMENTATION

In this section we give some details about the implementation of
the Communication Controllers (CC) and the External Data Mem-
ory Controller (EDM CTRL) as part of the hierarchical memory sys-
tem we propose. We use the Xilinx FPGA technology but any other
FPGA technology can be used for implementation because our hi-
erarchical memory system approach and external memory interface
are general enough. Notice that in the hierarchical memory system
the on-chip (CM) memories are implemented with the dual-ports
Block Select RAM modules (BRAMs) available in the Xilinx FP-
GAs. The CMs are the only technology dependent components in
our approach.

4.1. Communication Controller
The communication controllers (CC1 and CC2 in Figure 1) real-
ize the interfaces of the processors and EDM CTRL for accessing
the CMs. The CCs also implement the multi-FIFO behavior of each
CM. We use the FIFOs Unit component, which is a part of the com-
munication controller presented in [6]. The number of the FIFOs
and the size of each FIFO are (generic) parameters of this com-
ponent. For details about the multi-FIFO implementation we refer
to [6]. Recall that in our approach for on-chip communication (the
right part of Figure 1) each processor writes only to its local CM
and uses other CMs only for read operations. Therefore, writing to
a FIFO is performed only by the local processor and reading from
a FIFO is performed only from the communication component side
(other processors). In contrast, in the proposed hierarchical mem-
ory system (the left part of Figure 1) both a processor and the EDM
controller may access a CM to read from and write to FIFOs. A
contention occurs when both, a processor and the EDM CTRL, try
to read from (or write to) a FIFO in a CM at the same time. There-
fore, arbitration of a CM access is required. This means that while a
processor reads/writes from/to its CM, EDM CTRL can not (and the
other way round). Because of the temporal blocking due to arbitra-
tion, the overall performance of the system is reduced. To keep the
high performance of our platforms we propose a CC that uses two
memory banks per CM (see the right part of Figure 4). One bank is
used for FIFOs written by a processor and the other for FIFOs writ-
ten by EDM CTRL. This guarantees no contention when accessing
a CM and therefore arbitration is not needed.

4.2. External Data Memory Controller
The structure of the external data memory controller is shown in
Figure 4. To implement the multi-FIFO organization of the external
memory we use the same component as in the communication con-
trollers (CCs). The external memory of our prototyping board is a
Micron Technology ZBT (Zero Bus Turnaround) Memory. The pur-
pose of the ZBT Memory Port (the bottom of the EDM CTRL) is to
couple the physical interface of the ZBT memory with the internal
logic. The main control unit of the EDM CTRL is the Round-Robin
Sequencer. It continuously serves all the ports connected to the CCs
and controls the data transfers as described in Section 3.3. The se-
quencer first determines the action to be performed on all ports (sig-
nal R/W Act.). It can be either read from a (CC) port and write to
the external memory, i.e., moving data from FIFOx’ to FIFOx”, or
read from the external memory and write to a CC port, i.e., moving
data from FIFOx” to FIFOx”’. The type of action is changed every
time all the CC ports have been served.
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Fig. 4. The External Data Memory Controller.
Below we explain how a single port is served. The targeted

FIFOs are specified by Port Sel and Fifo Sel signals. This is
done according to a mapping table that determines the addresses
of each FIFO’, FIFO”, and FIFO”’. The Port Sel is translated in
the A/D Mux/Demux module to a physical address selecting a
proper CC port and a FIFO (FIFOx’ or FIFOx”’) within the corre-
sponding CM. Then, the status of the FIFO is read by the Status
Control module via the Status signal. If a FIFO is accessed for
read operation, then the status indicates empty/not empty. If the
FIFO is accessed for write operation, then the status indicates full/not
full. The read and write FIFOs are implemented in two physically
separated memory banks (see Read and Write memory banks of
CM1 in the right part of Figure 4). The communication controller
(CC1 for the example in Figure 4) uses the most significant bit of
the address (Addr) to select the proper memory bank and to gen-
erate the proper status of the corresponding FIFO. The status of the
FIFO in a CM and the status of the corresponding FIFO” in the ex-
ternal memory is checked in the Status Control module. If the
FIFOs are neither empty nor full, then a transfer of a predefined
amount (chunk) of data is initiated as the Status Control module
generates read/write strobe signals to the CC port and the external
memory. These signals are coordinated in a way that takes into ac-
count the difference in the timing characteristics of both BRAM and
ZBT memories. If the transfer is not possible, or the transfer blocks
on a full or empty FIFO, the Status Control module generates
Change signal that forces the sequencer to move to the next port
(or the next FIFO of the same CC port) according to the mapping
table. After the predefined amount of data has been transferred, the



Chunk module generates Done signal to the sequencer and the lat-
ter moves to the next FIFO in its table. For each data transfer the
chunk size is set by the Round-Robin sequencer (signal Set) to be
equal to the corresponding FIFO’ (or FIFO”’) size.

5. AUTOMATED PROGRAMMING
Our methodology for multiprocessor system design, implemented
in a tool called ESPAM and presented in [6][7], allows systematic
and automated synthesis, programming, and implementation of MP-
SoC platforms. Automated programming of an MPSoC means that
our tool automatically generates program code for each processor
in the system, generates the memory map of the system, and gen-
erates code that implements the synchronization and communica-
tion between the processors. In this section we describe how we ex-
tended ESPAM to support automated programming of MPSoC plat-
forms when FIFO channels are mapped onto the proposed hierarchi-
cal memory system.

5.1. Programming model and code for processors
In our approach for design, implementation, and programming mul-
tiprocessor systems, we use the Kahn Process Network [8] MoC as
a programming model. In general, a Kahn Process Network (KPN)
is a network of concurrent autonomous processes that communicate
data in a point-to-point fashion over unbounded FIFO channels, us-
ing a blocking-read on an empty FIFO as synchronization mecha-
nism. Because in the implementations the FIFO channels are finite
in size, we use a blocking-write on full FIFO as well. A simple ex-
ample of a KPN is shown in the left part of Figure 5. Two processes
P1 and P2 are connected through FIFO1 and FIFO2. In the bottom-
left part of the same figure we show a simple example of code for
process P1 generated by ESPAM to be executed by a processor. The
process reads data from its input channel via port p2 (line 3). If
data is not available, then the process blocks on reading until data
arrives. Then it performs a computation on the data (line 4), and
writes the result to its output channel via port p1 (line 5). Lines 3
to 5 are repeated several times. The blocking read/write synchro-

main()void {

read( p2, in_0, sizeof(myType) );
compute( in_0, out_0 );

P2

p1

p2

p3

p4

P1

FIFO2

FIFO1

1

5 write( p1, out_0, sizeof(myType) );
}

}

for ( int k=1; k<=N; k++ ) {2
3
4

6
7

void

for
int *isEmpty = port + 1;

// reading is blocked if a FIFO is empty
while
(byte* data)[i] = *port; // read data from a FIFO

( int i=o; i<length; i++ )

}

( *isEmpty ){  }

read( byte *port, void *data, int length ) {

}

{

void write( byte *port, void *data, int length )

for
int *isFull = port + 1;

// writing is blocked if a FIFO is full
while

( int i=o; i<length; i++ )

( *isFull ) {  }
*port = (byte* data)[i]; // write data to a FIFO

}

{

}

{
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Fig. 5. A KPN example and code generated by ESPAM.

nization primitives are depicted in the right part of Figure 5. They
are automatically generated and inserted in the program code by ES-
PAM in the places where a processor has to read/write data from/to
a FIFO channel. Both primitives have 3 parameters: port, data,
and length. Parameter port is the address of the memory location
through which a processor can access a given FIFO. Parameter data
is a pointer to a local variable and length specifies the amount of
data (in bytes) to be transferred. Recall that a FIFO is seen by a
processor as two memory locations in its memory address space. A
processor uses the first location to read/write data from/to the FIFO
and the second location to read its (empty/full) status. The primitives
implement the blocking synchronization mechanism in the follow-
ing way. First, the status of a channel that has to be read/written is

checked. A channel status is accessed using the locations defined
in lines 9 and 18. The blocking is implemented by while loops with
empty bodies in lines 12 and 21. A loop iterates (does nothing) while
a channel is full or empty. Then, in lines 13 and 22 the actual data
transfer is performed.

5.2. Memory map and EDM controller mapping table
Each FIFO in our MPSoCs has separate read and write ports. A pro-
cessor accesses a FIFO using the read/write synchronization prim-
itives described in Section 5.1 where the parameter port specifies
the address of the read/write port of the FIFO. The FIFOs are im-
plemented in the communication memories, therefore the addresses
of the FIFO ports are located in the processors’ address space where
the communication memory segment is defined (see Figure 3). The
memory map of a MPSoC generated by ESPAM contains the values
defining the read and the write addresses of each FIFO in the system.
In our example there are two FIFOs (FIFO1 and FIFO2). Assume
that process P1 is executed by processor uP1 and P2 by uP2 of
the platform in Figure 1. Because the FIFOs are mapped onto the
hierarchical memory system, the memory map of the MPSoC con-
sists of the read and write addresses of their corresponding FIFOx’
and FIFOx”’ parts. The memory map as generated by ESPAM is
shown in Figure 6a. Notice that FIFO1’, FIFO2’ have equal write
addresses. This is not a problem because writing to these FIFOs is
done by different processors and these FIFOs are located in the lo-
cal CMs of these different processors, i.e., these addresses are local
processor write addresses. The same applies for the read addresses
of FIFO1”’ and FIFO2”’.

EDM CTRL mapping tableb)MPSoC memory mapa)

#define
#define
#define
#define

#endif

#define
#ifndef _MEMORYMAP_H_

_MEMORYMAP_H_

p1 0x0 // write address FIFO1’;
p2 0x2 // read address FIFO2’’’;
p4 0x0 // write address FIFO2’;
p3 0x2 // read address FIFO1’’’;
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Fig. 6. FIFOs Memory Map and EDM CTRL Mapping Table.

The mapping table of the EDM controller, described above, is
generated automatically by ESPAM as well. It is shown in Figure 6b.
It gives the relation between the FIFOs in the external memory (FI-
FOx”) and the corresponding FIFOx’ and FIFOx”’ parts located in
the on-chip CMs. In the mapping table these FIFOs are associated
with three numbers: a number of a CM (#M), a number of a FIFO
in this CM (#F), and a number specifying the access of this FIFO by
EDM CTRL, i.e., A = ’0’ for read and A = ’1’ for write. Consider
for example FIFO1. It is the first FIFO in the external memory, i.e.,
FIFO1” = 1. FIFO1’ is read by EDM CTRL and written by uP1.
Also, FIFO1’ is the first FIFO in the write bank of CM1 (Figure 4).
Therefore, the numbers in the mapping table related to FIFO1’ are
1 1 0. Similarly, FIFO”’ is accessed by EDM CTRL for write op-
erations. Also, FIFO1”’ is the first FIFO in the read bank of CM2.
Therefore, the numbers in the table related to FIFO1”’ are 2 1 1.

6. EXPERIMENTS AND RESULTS
In this section we present an experiment and the results obtained by
implementing and executing a Motion JPEG (M-JPEG) encoder ap-
plication onto two alternative MPSoCs using our ESPAM tool. As
processing components we used MicroBlaze processors. Both
MPSoCs have been tested on a prototyping board with a Xilinx
VirtexII-6000 FPGA. The purpose of this experiment is to compare
the achieved results, in terms of resource utilization and execution



performance, between a multiprocessor system using the proposed
hierarchical memory system and a system using only on-chip mem-
ory resources for data communication. For the latter we chose an
MPSoC with a point-to-point (P2P) communication topology us-
ing dedicated HW FIFO components (the Xilinx’ FSLs) because the
point-to-point communication guarantees the highest (communica-
tion) performance [6].

Synthesis Results. The table in Figure 7a shows the overall re-
source utilization of the two MPSoCs we consider in our experi-
ment. The table shows that a 5-processor P2P system utilizes 96%
of the available on-chip memory (BRAMs). The other FPGA re-
sources are grouped into slices that contain 4-Input Look-Up tables
and Flip-Flops. The first three rows in the table (second column,
5 Proc P2P) show that this system utilizes only 14% of the slices,
5% FFs, and 8% LUTs. Although, there are plenty of slices to add
more MicroBlaze processors to the system this is not possible due
to the lack of on-chip BRAM memory. In contrast, comparing the
above numbers with the resource utilization of the MPSoC using our
hierarchical memory system with 5 processors (see columns 5 Proc
EDM), show savings of 31% of the on-chip BRAM components. At
the same time, this MPSoC utilizes only 5% more slices for imple-
mentation of the hierarchical memory system. The difference in the
amount of resources utilized by both systems is shown on the right
most column of the table. These numbers clearly indicate that our
approach to map communication buffers onto an external memory
using the proposed hierarchical memory system is very efficient in
terms of resource utilization, thereby allowing larger MPSoCs to be
built.

a) Resource Utilization
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#Flip-Flops 7%5%

#4-Input LUT 12%8%

#Slices 19%14%

5 Proc P2P 5 Proc EDM

Xilinx VirtexII-6000 FPGA

9146

4941

6443

94

4763

139

5822

3678

b) Performance Results

+2%

+4%

+5%

-31%

18.74
22.57

0

5

10

15

20

25

5 Processors
EDM CTRL

5 Processors
P2P FSL

M
ili

o
n

s 
o

f 
cl

o
ck

 c
yc

le
s

Fig. 7. Resource Utilization and Performance Results.

Performance Results. The numbers presented in this subsection
are collected by running both M-JPEG multiprocessor system im-
plementations on our FPGA board. For each MPSoC we measured
the exact number of clock cycles needed to process one image frame
of size 128 by 128 pixels. These numbers, depicted in Figure 7b,
are taken from simple hardwired timers automatically integrated by
ESPAM in each system. The left bar shows the performance of the
MPSoC using the proposed hierarchical memory system for data
communication. The M-JPEG application contains 13 FIFO chan-
nels, in this case, all mapped onto a single off-chip memory which
is the worst case scenario possible. The numbers in Figure 7b show
16.9% drop in performance compared to the 5-processor P2P sys-
tem (22.57M vs 18.74M clock cycles) which is an acceptable trade-
off — recall that we save 31% of the BRAMs. We consider the
performance of the hierarchical memory system to be very efficient
because 1) the off-chip (ZBT) memory of our prototyping board is
more than 2 times slower than the on-chip BRAMs, i.e., if faster off-
chip memory is used, the performance will be better; 2) a single off-
chip memory is shared between 5 processors, and at the same time
the achieved performance is close to the performance of 5-processor
system using distributed memories. Recall that our approach targets
splitting of the communication, i.e., large channels are mapped onto

(slower) off-chip memory and small channels onto (faster) on-chip
memories. This separation leads to better performance compared to
the worst case scenario we show in our experiment. Notice how-
ever that because of the memory requirements of some applications
this worst case scenario, i.e., using only an off-chip memory for data
communication, might be the only possible approach to implement
these applications using MPSoCs.

7. CONCLUSION
In this paper we presented our general approach (implemented in
the ESPAM tool) to use an external (off-chip) memory for inter-
processor data communication in multiprocessor systems on FPGAs.
While the state-of-the-art development tools support off-chip mem-
ory access based on multi-master shared bus architectures (with or
without DMA), we propose a hierarchical memory system that uses
a programmable controller to transfer data between the off-chip and
on-chip memories using DMA mechanism. Our approach guaran-
tees no contention when a local memory is accessed by a processor
and the DMA controller at the same time. Therefore, no arbitration
is needed and no communication overhead is introduced which leads
to better overall performance.

The results presented in this paper show that our approach of
connecting processors through the proposed hierarchical memory
system is efficient in terms of resource utilization and performance.
For an M-JPEG encoder application mapped onto 5 MicroBlaze
MPSoC with our hierarchical memory system, the implementation
of this memory system adds only 5% to the utilized FPGA resources
and saves 31% of the on-chip BRAMs compared to 5 MicroBlaze
MPSoC which does not use external (off-chip) memory. The on-chip
memory saving allows larger MPSoCs to be built.
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