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ABSTRACT

Emerging embedded System-on-Chip (SoC) platforms are increas-
ingly becoming multiprocessor architectures. The advances in the FPGA
chip technology make the implementation of such architectures in a sin-
gle chip feasible and very appealing. Although the FPGA chip technol-
ogy is well developed by companies such as Xilinx and Altera, the con-
cepts and the necessary tool support for building multiprocessor sys-
tems on a single FPGA chip are still not mature enough. As a conse-
quence, system designers experience significant difficulties in 1) design-
ing multiprocessor systems on FPGAs in a short amount of time and 2)
programming such systems in order to satisfy the performance needs of
applications executed on them.

In this paper we present our concept for multiprocessor system de-
sign, programming, and implementation that addresses and solves the
above two problems in a particular way. We have implemented the con-
cept in a tool called ESPAM which is briefly introduced as well. Also,
we present some results obtained by applying our concept and ESPAM

tool to automatically generate multiprocessor systems that execute a
real-life application, namely a Motion-JPEG encoder.

1. INTRODUCTION

The complexity of embedded multimedia and signal processing applica-
tions has reached a point where the performance requirements of these
applications can no longer be supported by embedded system platforms
based on a single processor. Therefore, modern embedded system plat-
forms have to be multiprocessor architectures. Fortunately, the FPGA
chip technology available today allows to build such multiprocessor ar-
chitectures in a single chip. As examples we can mention the VirtexII-
Pro and StratixII families of chips developed by the two leading FPGA
companies Xilinx and Altera, respectively. In the recent years a lot
of attention has been paid by these companies to integrate enormous
amount of hardware resources in these chips. However, not sufficient
attention has been paid to the development of system-level concepts,
methodologies, and tools that utilize these resources for efficient de-
sign, programming, and implementation of high-performance multipro-
cessor systems. For example, the most developed tools for processor-
based systems on FPGAs are the Embedded Development Kit (EDK)
[1] for Xilinx chips and the System On a Programmable Chip (SOPC)
builder [2] integrated in the Quartus II software for Altera chips. One
can hardly find any multiprocessor design concept and methodology
behind these state of the art tools. Moreover, the tools mainly support
multiprocessor system design based on a shared bus and memory com-
munication between processors that limits significantly the performance
that can be achieved. Below we clarify our statements by discussing the
weak points of the Xilinx’ EDK. Similar weak points can be found in
the SOPC builder of Altera.

The Xilinx’ Embedded Development Kit (EDK) consists of a li-
brary of IP cores and some tools that aim at helping the designers in
building single or multiprocessor systems based on MicroBlaze and/or

PowerPC microprocessor. However, the EDK tools require input sys-
tem specifications which are so detailed that designing a single proces-
sor system is still error-prone and time consuming, let alone alternative
multiprocessor systems. Moreover, the EDK IP library supports very
limited communication structures for connecting processors, e.g, Pow-
erPCs can be connected only via slow PLB buses and shared memories,
MicroBlazes can be connected only via FSL links, PowerPCs and Mi-
croBlazes can not be connected easily and efficiently to form a heteroge-
neous system. These structures do not allow to build high-performance
multiprocessor systems. The design process even gets significantly dif-
ficult for a designer when it comes to the programming of a multiproces-
sor system. The EDK tools does not support at all the partitioning of an
application into concurrent tasks in order to allow efficient application
mapping onto several processors. This is the most important and dif-
ficult procedure for efficient programming that currently is performed
by hand. The EDK software environment provides only a compiler for
each processor type that can be used after the partitioning. Also, for the
programming, there is no support concerning the logical inter-processor
data communication and synchronization even for systems with shared
bus architectures. The hardware bus arbitration guarantees only that
a processor can access the resources connected to the bus but can not
schedule the accesses of different processors which is application de-
pendent.

1.1. Paper Contributions

In this paper we address the problems stated above by presenting our
concept for multiprocessor system design, programming and imple-
mentation on FPGAs. We have devised, developed, and implemented
a general approach to connect and synchronize programmable proces-
sors of arbitrary types via several communication components which is
the main contribution of the paper. We have carefully identified and
developed a set of computation and communication components which
are used to build a multiprocessor system. Currently, our communica-
tion components are several types of shared buses, a crossbar switch,
and a point-to-point network. Regardless of the type of the communi-
cation component, our concept uses an inter-processor communication
and synchronization mechanism that involves distributed communica-
tion memories with First-In-First-Out (FIFO) organization. Since no
shared memories are used, the synchronization in the platform is im-
plemented in a very simple and efficient way by blocking read/write
operations on empty/full FIFO buffers in the communication memory.

We have also developed a methodology how to program multipro-
cessor systems (or how to map applications onto multiprocessor sys-
tems) in a systematic and automated way which is another important
contribution of this paper. In our approach we use the Kahn Process
Network (KPN) model of computation to specify an application as a
composition of concurrent tasks. We have chosen the KPN model be-
cause of its simple communication and synchronization mechanism.
In this paper we show that carefully exploiting and efficiently imple-
menting the simple communication and synchronization mechanism of



a KPN allows an efficient, systematic, and automated programming of
multiprocessor systems.

We have develop a tool called ESPAM (Embedded System-level
Platform synthesis and Application Mapping) that implements our con-
cept and methodology. More specifically, ESPAM allows a system de-
signer to specify a multiprocessor system at a high level of abstraction
in a short amount of time, say a few minutes. Then ESPAM refines this
specification to a real implementation in a systematic and automated
way. This reduces the design time from months to hours which we con-
sider as another contribution of our work.

1.2. Related Work

A recent work describing an exploration framework for building effi-
cient FPGA multiprocessor systems for dataflow and stream oriented
applications is presented in [3, 4]. This framework explores archi-
tectures and allocates application tasks to maximize throughput. The
architecture topologies are limited to a network of MicroBlaze pro-
cessors interconnected using buses (the slow On-chip Peripheral Bus
– OPB) and direct FSL links. This work is related to our work in the
sense that we also target FPGA multiprocessor systems for dataflow
and stream oriented applications using MicroBlaze processors. How-
ever, we have developed a different concept of how to connect proces-
sors into a homogeneous or heterogeneous multiprocessor system. Our
concept relies on communication controllers and memories for commu-
nication and synchronization between processors that allow to connect
not only MicroBlaze processors using buses and FSL links but also
MicroBlaze and/or PowerPC processors connected in a point-to-
point network or via a crossbar. In addition to that our concept is fully
implemented, i.e., our ESPAM tool generates automatically a synthe-
sizable (RTL) specification of a multiprocessor system along with the
program code executed on each processor. In the work [3, 4] men-
tioned above, the authors do not discuss if they generate automatically
RTL-synthesizable multiprocessor systems and how the systems are
programmed.

FPGA companies such as Xilinx, Altera, etc. provide approaches
and design tools attempting to facilitate efficient implementations of
single or multiprocessor systems on an FPGA. Recent survey of mul-
tiprocessor solutions with FPGAs [5] shows that these state-of-the-art
approaches and tools support only processor-coprocessor systems and
shared memory bus-based multiprocessor systems. In addition to that,
our concept for multiprocessor system design allows an automated im-
plementation and programming of multiprocessor systems which is gen-
eral enough to support different communication components (not only
shared bus). Moreover, our design methodology raises the design fo-
cus to a higher system level of abstraction that reduces the design time
significantly.

2. SYNTHESIS OF MULTIPROCESSOR PLATFORMS

In order to support systematic and automated synthesis of multiproces-
sor platforms we have carefully identified and developed a set of com-
putation and communication components. In this section we give a de-
tailed description of our concept for building a multiprocessor platform
using our components. The components are grouped into:

• Processing Components: Currently, we use the Xilinx VirtexII-
Pro FPGA technology and thus we support only MicroBlaze

and PowerPC programmable processors.

• Memory Components: We use the dual-port memory blocks em-
bedded in the VirtexII-Pro chips to implement processors’ local
program and data memories as well as data communication stor-
ages (buffers) between processors. Further on we will call the
data communication storages ”Communication Memories”.

• Communication Controller: The communication controller com-
ponent implements an interface between processing, memory,
and communication components.

• Communication Components: We have developed the following
components: a point-to-point network, a crossbar switch, and a
shared bus with several arbitration schemes. These components
determine the communication network topology of a multipro-
cessor platform.

Using the components described above a system designer can con-
struct many alternative platform instances easily, simply by connecting
processing, memory, and communication components. We have de-
veloped a general approach to connect and synchronize programmable
processors of arbitrary types via a communication component. Our ap-
proach is explained below using the example instance of a multipro-
cessor platform depicted in Figure 1. It contains several processors
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Fig. 1. Example of a Multiprocessor Platform.

connected to a communication component (in this example - a cross-
bar switch CB) using communication memories (CM) and communica-
tion controllers (CC). The processors transfer data between each other
through the CMs. A communication controller connects a communi-
cation memory to the data bus of the processor it belongs to and to a
communication component. Since any programmable processor has a
data bus, processors of different types can easily be connected into a
heterogeneous multiprocessor platform by using our CCs. Each CC im-
plements the processor’s local bus-based access protocol to the CM for
write operations and the access to the communication component (CB)
for read operations. In our approach each processor writes only to its
local communication memory and uses the communication component
only to read data from all other communication memories. Thus, mem-
ory contention is avoided. The CMs are organized as one or more FIFO
buffers. We have chosen such organization because the inter-processor
synchronization in the platform can be implemented in a very simple
and efficient way by blocking read/write operations on empty/full FIFO
buffers located in the communication memory.

2.1. Processing Components

Our processing components include the MicroBlaze (MB) softcore
processor and the PowerPC (PPC) hardcore processor. These are the
two processors supported by Xilinx. The VirtexII-Pro FPGAs can have
up to 4 PowerPCs integrated in the chip and thus our multiproces-
sor systems can contain up to 4 PowerPC processors. The number
of the MicroBlaze processors is limmited only by the programmable
resources available on the chip and it depends on the size of the targeted
FPGA.

2.2. Memory Components

We implement the program, data, and communication memories of a
processor by using the dedicated dual-port memory blocks (BRAM) of
the VirtexII-Pro FPGA. Logically, a communication memory is orga-
nized as one or more FIFO buffers. A FIFO buffer is seen by a proces-
sor as two memory locations in its address space. A processor uses the
first location to read/write data from/to the FIFO buffer, thereby realiz-
ing inter-processor data transfer. The second location is used to read the



status of the FIFO. The status indicates whether a FIFO is full (data can-
not be written) or whether a FIFO is empty (data is not available). This
information is used for the inter-processor synchronization. The FIFO
behavior is implemented by the Communication Controller described
bellow.

2.3. Communication Controller

The structure of the Communication Controller (CC) is shown in Fig-
ure 2. It consists of two blocks, namely Interface Unit and FIFOs Unit.
The Interface Unit contains an address decoder, fifos control logic, and
logic to generate read requests to the communication component.
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Fig. 2. Communication Controller.

When a processor has to write data to its local Communication Mem-
ory (CM), first it checks if there is room in the corresponding FIFO by
reading its status. If the FIFO is full, the processor blocks. Otherwise, it
sends the data to the CC. The Interface Unit decodes the FIFO address
sent by the processor along with the data and generates control signals
(select FIFO, write data, or read status) to the write logic of the FIFOs
Unit. The latter implements the FIFO behavior. For each FIFO buffer
the FIFOs Unit contains read and write counters that indicate the read
and write positions in the buffer. By observing the values of the coun-
ters the FIFO empty/full status is generated. Since the FIFO buffers
are implemented with dual-port BRAMs, the values of the correspond-
ing counters are used as read and write addresses for these BRAMs.
The FIFOs Unit also includes an interface logic (BRAM interface) that
realizes the access to the Communication Memory (CM) connected to
the CC. When a FIFO is accessed, the BRAM interface logic generates
the read/write strobes and propagate the data bus and the corresponding
read/write FIFO addresses to the BRAM memory (see the bottom part
of Figure 2). Note that since we use dual-port BRAMs and having sep-
arate read and write logic, a FIFO can be accessed for read and write
operations simultaneously by different processors. No more than two
FIFOs in a CM can be accessed at a time – one for read operation and
one for write operation. We do not consider this as a limitation of our
implementation because our processors can not access more than one
data memory locations at a time due to the processors’ sequential ex-
ecution of input and/or output data instructions. We implemented the
CC as a generic component and by using parameters we specify how
many FIFO buffers are realized by the CC and what is the size of each
FIFO buffer. In this way we obtain an optimal BRAM utilization be-
cause several FIFO buffers (if they are small enough) are placed within
one BRAM block. If the total buffers size is larger than the size of a
BRAM, the CM is implemented with several BRAMs.

Recall that a processor can access FIFOs located in other proces-
sors’ CMs via a communication component for read operations only.
First, the processor checks if there is any data in the FIFO the proces-
sor wants to read. When a processor checks for data, the Interface Unit
sends a request to the communication component for granting a connec-
tion to the CM in which the FIFO is located. A connection is granted
only if a communication line is available and there is data in the FIFO.
If a connection is not granted, the processor blocks until a connection is

granted. When a connection is granted the CC connects the data bus of
the communication component (the upper part of the ’communication
component side’ in Figure 2) to the data bus of the processor and the
processor has a direct access to the CM in which the FIFO is located.
The data (one or many 32-bit words) is transferred without any addi-
tional delay (reading a 32-bit word from a BRAM requires only 2 clock
cycles). After the data is read the connection has to be released. This al-
lows other processors to access the same CM. When data is read from a
FIFO of a CM, the signals to the read logic of the FIFOs Unit (FIFO Sel
and Read) are generated by the communication component (the bottom
part of the ’communication component side’ in Figure 2) as a response
of a request from another CC. The BRAM interface logic generates the
address and the read strobe to the BRAM and propagate the read data
bus to the communication component interface.

The described blocking mechanism when accessing the CMs has
to be done in the processors. The blocking can be realized in hard-
ware (usually processors have dedicated embedded hardware to stall
the processor) or in software by executing empty loops. We use the
latter approach because it is more general. Different processors are
stalled in hardware in different ways and therefore our CC has to be
aware of many possibilities. This will result in a more complex and
less generic controller. Realizing the blocking mechanism in software
makes the controller more generic, thereby simplifying the integration
of different types of processors into a multiprocessor system (not only
MicroBlaze and PowerPC).

2.4. Crossbar Communication Component

In this section we present the implementation of our Crossbar commu-
nication component. Our general approach to connect processors that
communicate data through communication memories (CM) with FIFO
organization allows the crossbar structure to be very simple. This re-
sults in a smaller crossbar with reduced number of communication and
routing resources and thus reducing the design area and power con-
sumption. The structure of our crossbar component is depicted in Fig-
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ure 3. It consists of two main parts, crossbar switch (CBS) and cross-
bar controller (CBC). The CBS implements uni-directional connections
between communication memories and processors – recall that a pro-
cessor uses a communication component only to read data. We use
multiplexers for the CBS implementation instead of building tri-state
busses. This is because the latest FPGA technology relies on multiplex-
ers to make on-chip buses, rather than on-chip tri-states. Each processor
and its local CM are connected to a communication controller (CC) as
shown in Figure 1. The CC is connected to the crossbar using one I and
one I

′ interface depicted in Figure 3. For example, processor P1 and
its local communication memory CM1 are connected to CC1 which is



connected to I1 and I1
′. Processor P1 can read data from all CMs in the

system through interface I1
′. Interface I1 connects CM1 to the cross-

bar and through I1 every processor can access this CM1. Due to the
uni-directional communications and the FIFO organization of CMs, the
number of signals and busses that has to be switched by our crossbar are
reduced a lot. Since the addresses for accessing CMs are generated lo-
cally by the CCs, address busses are not switched through the crossbar.
The crossbar switches only 32-bit data buses in one direction only and
two control signals per bus. These control signals are the Read strobe
and the Empty status flag for a FIFO.

There are two additional control busses within each I interfaces,
namely ’Request’ and ’FIFO Sel’ as shown in the left part of Figure 3.
The ’Request’ buses are used by the CCs to generate requests for grant-
ing a connection as described earlier and also for releasing a connection
after the data is read. The requests are processed by the crossbar con-
troller (CBC) using Round-Robin policy. If a request is for granting
a connection, the CBC checks its request table whether the required
connection is available at the moment. The request table contains infor-
mation about the status (available or not available) of all connections.
The table is updated each time a connection is granted or released. If the
requested connection is not available at the moment, the CBC suspends
the current request and proceeds with the next one. If the requested
connection is available, the CBC puts the address of the FIFO to be ac-
cessed on the FIFO Sel bus of the proper crossbar interface I . Then,
the controller checks the FIFO status by reading the Empty signal of
the same interface I . We call this stage accepting a request. If there is
data in the FIFO, the CBC grants the connection by switching properly
the CBS, updates its request table, and proceeds with the next request.
If there is no data available the CBS suspends the current request and
proceeds with the next one. When the request is for releasing a connec-
tion, the CBC just updates the request table and proceeds with the next
request.

2.5. Shared Bus Communication Component

We have developed a shared bus communication component with sev-
eral arbitration policies, namely Round-Robin, Fixed Priority, and Time
Division Multiple Access (TDMA). In general, in a shared bus multi-
processor architecture a bus arbiter grants the bus to only one processor
at a certain point of time. To implement such shared bus arbiter we
have modified our Round-Robin crossbar controller (CBC): 1) the re-
quest table format has been limited to allow the granting of only one
request for connection at a time; 2) Fixed Priority and TDMA policies
for processing multiple requests were added. To implement the bus we
have to connect and switch multiple wires using multiplexers or tri-state
buffers. In general, using multiplexers there is no difference in the im-
plementation of the switch logic of a crossbar compared to the switch
logic of a bus. Therefore, for the switch logic of our bus we use the CBS
of our crossbar component. By developing a shared bus component we
show that our approach to connect and synchronize programmable pro-
cessors of arbitrary types via a communication component is general
enough and applies not only to a crossbar component.

2.6. Point-to-Point Network

In this section we describe how we implement a point-to-point com-
munication in our platforms. Point-to-point means that processors in
a multiprocessor platform have direct connections between each other.
The number of direct connections and the topology of the point-to-point
network depend on the applications to be mapped. Since there is no
communication component such as a crossbar or a bus, there are no re-
quests for granting connections thus no additional communication de-
lay is introduced in the platform. Because of this, the highest possible
communication performance can be achieved in a multiprocessor plat-
form. We use the example in Figure 4 to explain how we build point-
to-point multiprocessor platforms with MicroBlaze and PowerPC

processors. The example platform contains two MicroBlaze (MB1
and MB2) and one PowerPC (PPC) processors. In compliance with
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our concept for building multiprocessor platforms described earlier the
processors communicate data through CMs with FIFO organization.
In case of point-to-point connections each CM is nothing more than
a single FIFO component. Thus, we implement the CMs by using a
FIFO IP core called Fast Simplex Link (FSL) provided by Xilinx. The
CMs (FSLs) are connected directly to the read and write FSL ports
of the Microblaze processors MB1 and MB2 – see Figure 4. Each
MicroBlaze processor has 8 embedded dedicated very fast read/write
FSL interface ports. The PowerPC processor does not have FSL ports.
Therefore, to connect one or more FSLs to a PowerPC processor we
use a very simplified version of our communication controller (CC) de-
scribed in Section 2.3. The simplified CC only translates the processor
data bus signals to FSL input/output signals. It is parameterized and it
supports up to 128 FSLs for read and write operations. A simplified CC
is used with MicroBlaze processors as well. If there are more than
8 FSLs to be connected to a MicroBlaze processor, then 8 of them
are connected directly to FSL ports and the rest are connected to the
MicroBlaze data bus through a CC.

3. PROGRAMING OF MULTIPROCESSOR PLATFORMS

In our methodology for programing a multiprocessor platform the main
step is the partitioning of an application into concurrent tasks where the
inter-task communication and synchronization is explicitly specified in
each task. Such partitioning can be done by hand or automatically (see
next section) and it allows each task or group of tasks to be compiled
separately by a standard compiler in order to generate an executable
code for each processor in the platform. The partitioning of an ap-
plication into concurrent tasks requires the use of a parallel model of
computation (MoC) in order to specify functionally the application. We
use the Kahn Process Network [6] MoC for application specification.
In general, a Kahn Process Network (KPN) is a network of concurrent
autonomous processes that communicate data in a point-to-point fash-
ion over unbounded FIFO channels, using a blocking-read on an empty
FIFO as synchronization mechanism. Since in our platform implemen-
tation the FIFO channels are bounded, we use a blocking-write on full
FIFO as well. A simple example of a KPN is shown in the right part
of Figure 5. Three processes A, B, and C are connected through FIFO
channels. Each process in the network performs a sequential computa-
tion concurrently with the other processes. In the left part of the same
figure we show simple example of code executed by process B. The
process reads data from its input channel via port p2 (line 3). If data
is not available the process blocks on reading until data arrives. Then
it performs a computation on the data (line 4), and writes the result to
its output channel via port p1 (line 5). Lines 3 to 5 are repeated several
times. Lines 8 to 23 show the blocking read/write synchronization prim-
itives. As we described in Section 2.3 we implement them by executing
empty loops (lines 12 and 20).

We motivate our choice of using KPNs by observing that on the
one hand a KPN specifies an application as a composition of concurrent
processes where the computation, control, and memory are distributed.
On the other hand, the multiprocessor platforms we consider have com-
ponents that run in parallel, i.e., the computation, control, and memory
are distributed over the components. Thus, the KPN parallel process-
ing model matches our concept of building multiprocessor platforms



C

void process_B::main()
for ( int k=1; k<=N; k++ )

read( p2, inData, 10 );
compute( inData, outData );
write( p1, outData, 10 );

}
}
void read( *port, *data, length )

for
int *isEmpty = port + 1;

// reading is blocked if a FIFO is empty
while
data[i] = *port; // read data from a FIFO

( int i=o; i<length; i++ )10

}
}15
void write( *port, *data, length )

for
int *isFull = port + 1;

// writing is blocked if a FIFO is full
while

( int i=o; i<length; i++ )

20

}
}23
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Fig. 5. Kahn Process Network Example.

very well and the mapping of KPN specifications onto the latter can be
done in a systematic and automated way. This is achieved by exploit-
ing the following characteristic of a KPN: 1) The control is completely
distributed to the individual processes and there is no global scheduler
present. As a consequence, mapping a KPN over a number of pro-
cessors is a simple task; 2) The exchange of data is distributed over
FIFO channels. There is no notion of a global memory that has to be
accessed by multiple processes (processors). Therefore, resource con-
tention does not occur; 3) The synchronization between the processes is
by blocking read/write on FIFO channels. Such synchronization is im-
plemented very easily and efficiently using software primitives in our
multiprocessor platforms.

4. AUTOMATED MULTIPROCESSOR DESIGN

We have implemented our concept for multiprocessor platform synthe-
sis, programing, and implementation in a tool called ESPAM. In this
section we give a brief overview of our design methodology using ES-
PAM that is depicted as a design flow in Figure 6. ESPAM requires
as input three specifications: 1) Platform Specification describing the
topology of a platform using our components presented in Section 2; 2)
Application Specification describing an application as a Kahn Process
Network (KPN), i.e., network of concurrent processes communicating
via FIFO channels; 3) Mapping Specification describing the relation be-
tween all processes and FIFO channels in Application Specification and
all components in Platform Specification. We describe the input spec-
ifications using XML format. In our case describing a multiprocessor
platform is a very simple task that can be performed in a few minutes
because ESPAM requires a high-level platform specification which does
not contain any details about the physical interfaces of the components.
The platform specification contains only a simple topology description,
i.e., processing components connected directly to each other or via a
communication component. Similarly, writing the mapping specifica-
tion takes a few minutes as well. The only time-consuming task is to
specify an application as a KPN. However, for applications specified
as parameterized static affine nested loop programs in Matlab or C the
generation of KPNs is automated by the COMPAAN tool [7, 8].

Following the platform specification, ESPAM constructs a platform
instance and runs a consistency check on that instance. The platform in-
stance is an abstract model of a multiprocessor platform because at this
stage no information about the target physical platform is taken into
account. The model defines only the key components of the platform
and their attributes. Then, ESPAM refines the abstract platform model
to an elaborate (detailed) parameterized RTL model which is ready for
an implementation on a target physical platform. We call this refine-
ment process platform synthesis. Finally, ESPAM creates program code
for each processor in the multiprocessor system in accordance with the
application and mapping specifications.
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As an output ESPAM generates files that can be imported directly
as a project in the Xilinx Platform Studio (XPS) [1]. The files suit of
this project consists of four parts: 1) Platform Description defining in
great detail the processors network (multiprocessor platform) in Hard-
ware Specification File (MHS) and Software Specification File (MSS);
2) Hardware descriptions of IP cores containing VHDL files of IP cores
used in 1). Some of them are predefined library components (proces-
sors, memories, etc.) taken from Library IP Cores, see Figure 6. The
others are custom IP cores generated by ESPAM. They are needed as
a glue/interface logic between components in the platform; 3) Program
code for processors — to execute the application on the synthesized
multiprocessor platform, ESPAM generates program source code files
for each processor in the platform; 4) Auxiliary information containing
the XPS project file and files that define precise timing requirements and
prioritizing signal constraints, e.g., the User Constraints File (UCF).
With the four parts described above, the XPS tool can implement the
multiprocessor system at the gate level and it can generate the VirtexII-
Pro bit-stream file used to configure the FPGA chip.

5. EXPERIMENTS AND RESULTS

In this section, we present some of the results we have obtained by
implementing and executing a Motion JPEG (M-JPEG) encoder ap-
plication onto several multiprocessor platforms using our design flow
depicted in Figure 6. We use the ADM-XPL FPGA board manufac-
tured by Alpha Data Parallel Systems Ltd [9]. The board contains one
VirtexII-Pro FPGA (xc2vp20-FF896-6) which has 2 PowerPC micro-
processors integrated in it. We implemented multiprocessor systems
with 2 MicroBlaze and 2 PowerPC processors connected in a point-
to-point (P2P) network, through a crossbar, and through a shared bus.
As described in Section 4, the inputs to our system design flow are the
Application, Platform, and Mapping Specifications. We started with the
M-JPEG application given as a sequential C program and derived the
Application Specification (KPN) using the COMPAAN tool. For each
platform, we wrote the Platform and Mapping Specifications by hand
in approximately 10 minutes. This is a very simple task because our
specifications are at a high level of abstraction (not RTL level). Hav-
ing all three input specifications, our ESPAM tool generated the output
(a multiprocessor system at RTL level) within three minutes. Then we
imported the generated output files to the XPS tool for physical imple-
mentation, i.e., mapping, place, and route onto our prototyping FPGA.
It took the XPS tool about an hour for the physical implementation. All
tools run on a Pentium IV machine at 1.8GHz with 1GB of RAM.

5.1. Synthesis Results

In Table 1 we present the overall resource utilization of the multiproces-
sor systems we consider in our experiments. We also present the utiliza-



tion results for the communication controllers (CC), a 4-port crossbar
component (CB), and a 4-port shared bus component (BUS) respec-
tively. The FPGA resources are grouped into slices that contain 4-Input
Look-Up tables and Flip-Flops. The first three rows in the table show
that the multiprocessor systems utilize around 40% of the slices in the
FPGA. Also, the last three rows show that our communication compo-
nent (CB or BUS) together with the CCs in each system utilize very
small portion of the FPGA slices – around 5%. These numbers clearly
indicate that our concept to connect processors through communication
components and communication memories is very efficient in terms of
slice utilization. The last column in Table 1 shows that the multipro-
cessor systems utilize almost 100% of the on-chip memory which is
only 176KB – 88 BRAM blocks of 2KB each. This high utilization
is not related to inefficiency in our concept to connect processors via
communication memories because for each M-JPEG system we use a
maximum of 9 BRAM blocks to implement FIFO buffers, distributed
over 4 communication memories. The high BRAM utilization is due
to the fact that the M-JPEG is relatively complex application. Almost
all BRAM blocks are used for the program and data memory of the 4
microprocessors in our platforms (on average 38KB per processor).

Table 1. Resource Utilization (xc2vp20-FF896-6).
#Slices #4-Input LUT #Flip-Flops #BRAMs

4 Proc. Shared Bus 3640 (39%) 4722 (25%) 2354 (12%) 85 (99%)
4 Proc. Crossbar 3653 (39%) 4748 (25%) 2357 (12%) 85 (99%)

4 Proc P2P System 3263 (35%) 3929 (21%) 2405 (12%) 88 (100%)
4 CCs 288 (2%) 468 (2%) 116 (1%) —

4 Port CB 397 (3%) 587 (3%) 56 (1%) —
4 Port Bus 366 (3%) 541 (2%) 47 (1%) —

Based on our experience we conclude that the main limitation of
how large multiprocessor system can be build on a single FPGA chip
still remains the amount of the on-chip memory. Fortunately, the main
FPGA chip vendor Xilinx started to realize this limitation. Therefore,
in every new Xilinx FPGA chip the amount of the on-chip memory
increases. For example, the largest Virtex4-FX FPGA contains 552
BRAMs. Using the FPGA on-chip memory instead of external memo-
ries is crucial for our high-performance multiprocessor systems because
external memories are slower than the on-chip BRAMs. In addition to
that, the MicroBlaze processor can be connected to an external mem-
ory only through the slow on-chip peripheral bus (OPB) which will re-
duce the performance even more if external memory is used.

5.2. Performance Results

The performance numbers presented in this section are collected by
running real M-JPEG multiprocessor system implementations on our
FPGA board. For all multiprocessor systems we have HW/SW demos.
These systems were generated by our ESPAM tool. For each multipro-
cessor system we measured the exact number of clock cycles needed to
process an image with size 128 by 128 pixels. These numbers, depicted
in Figure 7, are taken from simple hardwired timers and counters auto-
matically integrated by ESPAM in each system. The most left bar shows
the performance of the M-JPEG application ran on a single processor as
sequential program. We use this performance number for comparison
with our multiprocessor systems. The achieved speedup by the shared
bus multiprocessor system (the second bar) is only 1.42x as the theoret-
ical maximum is 4x. This clearly shows that a shared bus architecture is
not an efficient architecture for building high-performance multiproces-
sor systems. We achieved performance speedup of 2.60x for the system
with a crossbar component and 3.75x for the system with point-to-point
(P2P) connections. The performance difference between this system
and the system with the crossbar component is due to the fast FSL links
used in the point-to-point communications. The performance speedup
of a P2P system implemented without FSL links is almost the same
(2.75x) as the speedup of the system with the crossbar component – see
the third and the fourth bar in Figure 7.

Based on the performance numbers presented above we conclude
that: 1) the M-JPEG application mapped onto 4 processors with FSL
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Fig. 7. Performance Results.

point-to-point connections gives a speedup closer to the theoretical max-
imum (4x) compared to a single processor system; 2) for the M-JPEG
application mapped onto 4 processors, communication through a cross-
bar does not sacrifice the performance compared to point-to-point com-
munication without fast FSL links.

6. CONCLUSION

In this paper we presented our general approach (implemented in the
ESPAM tool) for automated design, programming and implementation
of multiprocessor systems on FPGAs. While the state-of-the-art de-
velopment tools supports shared bus architectures only, our approach
is general enough to be applied on multiprocessor systems with differ-
ent communication topologies. Moreover, it allows these systems to be
programmed in automated way which significantly reduces the design
time.

The results presented in this paper show that our approach of con-
necting processors through communication controllers and communica-
tion memories is efficient in terms of slice utilization and performance
speedup. The amount of the on-chip memory is the main limiting fac-
tor of how large multiprocessor system can be build on a single FPGA
chip. For an M-JPEG encoder application mapped onto 2 MicroBlaze

and 2 PowerPC processors the communication logic utilizes only 5%
of the FPGA resources. We achieved speedup of 3.75x as the theoret-
ical maximum is 4x. The implementation utilizes all available on-chip
memory.
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