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Abstract. At Leiden Embedded Research Center (LERC), we are building a tool
chain called Compaan/Laura that allows us to map fast and efficiently applica-
tions written in Matlab onto reconfigurable platforms. In this chain, first the Mat-
lab code is converted automatically to executable Kahn Process Network (KPN)
specification. Then a tool called Laura accepts this specification and transforms
the specification into design implementations described as synthesizable VHDL.
In this paper, we present our methodology implemented in the Laura tool, to auto-
matically convert KPNs to synthesizable VHDL code targeted for mapping onto
FPGA-based platforms. With the help of Laura, a designer is able to either fast
prototype signal processing and multimedia applications directly in hardware or
to extract very fast valuable low-level quantitative implementation data such as
performance in terms of clock cycles, time delays and silicon area.

1 Introduction

The potential of achieving high-performance implementations onto FPGA-based sys-
tems (platforms) has been demonstrated by the FPGA research community for applica-
tions in the domain of signal processing, multimedia, and imaging. These performance
improvements depend very much on the expertise of the hardware designer, who has to
possess an accurate knowledge of the underlying FPGA platform and the application.
Moreover, the mapping of applications onto this type of platforms is in most cases done
manually, which leads to a slow, difficult, and error prone design process. Therefore,
we have developed a methodology that allows fast and efficient mapping of a class of
multimedia and signal processing applications onto FPGA-based platforms. Part of this
methodology is captured in the Laura tool that we present in this paper. Central to our
methodology is the use of the Kahn Process Network (KPN) [3] model of computation
to specify applications. The Laura tool accepts applications written in this KPN model
and produces synthesizable VHDL code that implements the application for a specific
FPGA platform.

Our methodology uses the KPN model of computation as it is a convenient model to
specify imaging applications like Stereo Vision, multimedia applications like MJPEG,
and classical signal processing applications like Digital Beam-forming. The model re-
veals the inherent parallelism of an application that is exploited when mapping the
application onto FPGA platforms that are inherently fine-grained parallel platforms.
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The KPN specification represents an application in terms of distributed control and dis-
tributed memory, which in our case is derived from a sequential code written in Matlab
using a tool called Compaan. The distributed control and distributed memory are key
to obtain efficient implementations on FPGAs for stream oriented applications. This
is in great contrast to the original Matlab code that is using a single thread of control
and shared memory. Other work describing the mapping of Matlab code (or C for that
matter) onto FPGA uses other computational models like CDFG [2] or CSP [5]. These
models are well suited for control dominated applications, but less for stream oriented
applications.

We present our methodology to map an application written in Matlab onto an FPGA
platform in Section 2. In Section 3, we look in more detail at the Laura tool that we
have developed. In Section 4, we explain in more detail, using a running example, how
Laura constructs an architecture in VHDL. In Section 5, we present experiments that
have been obtained by using Laura for three applications. We conclude this paper in
Section 6.

2 Integrating Laura in an FPGA-based design flow

The Laura tool takes as an input a KPN specification of a given application and gener-
ates synthesizable VHDL code that targets a specific FPGA platform. In general, spec-
ifying an application as a KPN is a difficult task. Therefore, we use our compiler called
Compaan [4] that fully automates the transformation of Matlab code into Kahn Process
Networks (KPNs). The applications Compaan can handle, have to be specified as pa-
rameterized static nested loop programs, which is a subset of the Matlab language. We
have designed the Laura tool to operate as a back-end of the Compaan compiler, real-
izing a fully automated design flow that maps sequential algorithms written in Matlab
onto reconfigurable platforms. This design flow is shown in Figure 1.
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In the first part of the design flow, an application specification is given in Matlab.
This is because Compaan only accepts Matlab code. Nevertheless, the design flow is
equally applicable to C code or Java code, as their model of computation is equal to the
imperative model of computation of Matlab. The Compaan compiler itself is composed
of a number of tools. One tool in Compaan performs an aggressive array-dataflow anal-
ysis by exploring all data-dependencies in the original program. The result of this tool
is a data structure representing the dependence graph of the program. Another tool in
Compaan converts this data structure into a KPN specification.

In the second part of the design flow, Laura transforms a KPN specification together
with predefined IP cores into synthesizable VHDL code. The IP cores are needed as they
implement the functionality of the functions used in the original Matlab program. They
are provided to Laura by the IP cores box in Figure 1.

In the third part of the design flow, the generated VHDL code is processed by Com-
mercial Tools to obtain quantitative results. These results can be interpreted by design-
ers, leading to new design decisions. These decisions are reflected by writing a new
Matlab program that exposes, for example, more or less parallelism. For that purpose,
we have developed a tool called MatTransform that manipulates the Matlab input spec-
ification in a Source-to-Source fashion to generate more instances of the application,
in which each instance exposes a different level of concurrency without altering the
algorithm’s behavior [8]. The concurrency is altered by performing high-level trans-
formations like loop unrolling (unfolding), retiming (skewing), and code merging. By
rewriting Matlab code, we can explore different mappings of a Matlab algorithm in
an efficient way. When an obtained algorithm instance meets the requirements of the
designer, the corresponding VHDL output is synthesized by a commercial tool and
mapped onto an FPGA platform.

3 The Laura tool

The KPN model of computation [3] assumes concurrent autonomous processes that
communicate in a point to point fashion over unbounded FIFO channels, using a blocking-
read synchronization primitive. Each process in the network is specified as a sequential
program that executes an internal function. At each execution (also referred to as an
iteration) this function reads/writes data from/to different FIFO channels. Because of
the unboundedness of the FIFO channels, the KPN cannot be translated directly into a
VHDL representation and mapped onto a hardware platform. Instead, a blocking-write
primitive is needed next to the blocking-read. Also, the FIFO channel sizes now need
to be fixed such that no deadlock occurs. Using the method presented in [6], we find a
bound on the size of the FIFOs such that the network will not deadlock.

To convert a KPN specification into hardware, we have implemented in Laura a
strategy that divides the conversion process into two parts: a platform independent part
and a platform dependent part. In the platform independent part, we define an abstract
model of the architecture on which we map a KPN application. The model of architec-
ture defines the key components of the architecture and their attributes. It also defines
the semantic model, i.e., how the various components interact with each other. Hence,
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the architecture also implements autonomous processes, that communicate over chan-
nels using blocking read and blocking write semantics.

The abstract architecture model is captured in Laura in terms of a class-hierarchy.
This class hierarchy describes a network of virtual processors. Each of them is com-
posed of four units: a Read unit, a Write unit, an Execute unit and a Controller unit. The
first three units are synchronized by the Controller unit of the processor. Each FIFO
channel in the KPN specification is represented by a Hardware Channel unit.

In the platform dependent part we start to add information to the abstract architec-
ture model that is specific for the target platform. At this stage, we include IP cores in
the Execute units that implement the functions of the original application. Also, we set
attributes of the components like bit-width and size of the Hardware Channels.

When an architecture model is established for a given KPN specification, we convert
the architecture model into VHDL code using a Visitor Design Structure. For each com-
ponent in the abstract architecture, we have a small piece of VHDL code that expresses
how to represent that component on the target architecture. The visitor structure gives
Laura a lot of flexibility. If needed, the output can easily be convert to other formats like
Verilog or SystemC.

The steps that make up the Laura tool are shown in Figure 2. In the first step, the
KPNToArchitecture method converts the given KPN specification into an equivalent
network of virtual processors (Network of Virtual Processors). This is a platform inde-
pendent step as no information on the target platform is taken into account. In the second
step, platform specific information is mapped onto the abstract architecture model lead-
ing to a network of Synthesizable Processors (Network of Synthesizable Processors).
In the third step, the architecture model is visited by a VHDL visitor to generate the
VHDL code.

4 Laura in action

To make clear how a Matlab program is converted into a VHDL code, we explain the
steps done in Laura using the very simple Matlab program given in Figure 4. This
program consists of three loops. In the first loop, variable a(j) is initialized using
function Init, which represents a Source. In the second loop, the function Compute
performs an operation on a(j-1), introducing a self-loop. Finally, the last loop takes
the result of a(6) using function Pass, representing a Sink. The Matlab program is
given to the Compaan compiler that converts it into a KPN representation consisting
of three different processes. A graphical representation of this KPN is given in the top-
part of Figure 3. One process (P1) is the Source, one process implements the Compute
function (P2), and one process is the Sink (P3). The picture clearly shows the self-loop
of function Compute. As said before, each process contains a sequential program. In
Figure 5, the sequential program for process P2 is given in C++ using the YAPI [1]
format.

The sequential program produced by Compaan always follows a particular sequence
of events. These events are highlighted by the three different boxes in Figure 5. The first
box, contains the code that reads data from input ports. The actual computation takes
place in the second box (i.e., performing the function Compute from the Matlab pro-
gram of Figure 4). In the third box, we show the code that writes out data produced
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by the computation. The three boxes are enclosed by a for-loop, indicating that the se-
quence of events needs to be repeated for a given number of times. As a consequence,
this process operates in a stream based fashion, an operation model which is very ap-
plicable to multi-media and digital signal processing applications.

4.1 KPNToArchitecture

The KPN shown in the upper part of Figure 3 is mapped by the KPNToArchitecture
step in Laura onto an abstract architecture model. This model is composed of Virtual
Processors and bounded hardware communication channels. The lower part of the Fig-
ure 3 represents the network of virtual processors that has the same topology as the
input KPN. This is because Laura currently performs a one-to-one mapping. The three
processes P1, P2, and P3 are mapped onto the virtual processors VP1, VP2, and VP3,
respectively. The KPN unbounded FIFO channels Ch1, Ch2, and Ch3 are mapped onto
the bounded hardware FIFOs FIFO1, FIFO2, and FIFO3, respectively.

Every virtual processor is composed of four units: a Read unit, a Write unit, an
Execute unit, and a Controller unit, as shown in Figure 6. The Execute unit is the com-
putational part of a virtual processor. It has Input Arguments that provide to the unit the
necessary data for execution and Output Arguments that are the result of the compu-
tation process. In our model, the Execute unit fires when all the input arguments have
data and always produces data to all the output arguments. The Read unit is responsible
for assigning all the input arguments of the Execute unit with valid data. Since there are
more input ports than arguments, the Read unit has to select from which port to read
data. This information is stored in the Control Table of the Read unit. The Input Port
is the input interface that connects the virtual processor with a communication chan-
nel. The Output Port is the output interface that connects the virtual processor with a
communication channel. The Write unit is responsible for distributing the results of the
Execute unit to the relevant processors in the network. A write operation can be exe-
cuted only when all the output arguments of the execute unit are available for the write
unit. A Control Table is used to select the proper Output Port according to the current
iteration of the virtual processor.
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for j = 1 : 1 : 1,
[ a(j) ] = Init;

end
for j = 2 : 1: 6,

[a(j)] = Compute (a(j-1));
end
for j =6 : 1 : 6,

[] = Pass(a(j));
end

Fig. 4. A very simple Matlab Program

1 void P2 ::main() �
2 for (int i = 2 ; i <= 6 ; i += 1 ) �

3 if (i-2 == 0) � READ
4 //reads a token from a channel
5 in_0 = read(IP1);
6 �
7 if (i-3 >= 0) �
8 //reads a token from a channel
9 in_0 = read(IP2);
10 �

11 out_0 = Compute(in_0) ; EXECUTE

12 if (-i+5 >= 0) � WRITE
13 //writes a token to a channel
14 write( OP1, out_0);
15 �
16 if (i-6 == 0) �
17 //writes a token to a channel
18 write( OP2, out_0);
19 �

20 � // for i
21 �

Fig. 5. Process P2

The virtual processor’s Controller synchronizes all the processor’s units and keeps
track of how many times the processor has already fired. The Read unit and the Write
unit can block the next firing when a blocking-read or a blocking-write situation occurs,
thereby stalling the complete processor. A blocking-read situation occurs when data is
not available at a given input port. A blocking-write situation occurs when data cannot
be written to a particular output port.
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Fig. 7. VP2 in the example shown in Fig. 3

Let us consider the P2 process as it is specified by the sequential code given in
Figure 5. This code is analyzed in the KPNToArchitecture step to instantiate the cor-
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responding components of the virtual processor. The Read unit is generated based on
the information contained between lines 3 and 10. Two input ports, IP1 and IP2, are
required to read the input argument in 0 of the Execute unit. Because a 2-to-1 relation-
ship exists between the input ports and the input argument, a Control Table is needed
to select the proper input port for reading the input argument at a particular iteration
of the processor. For the example, the Control Table ��� �����	�
������������


is derived based
on the number of firings (line 2) and the if statements from lines 3 and 7. The Write
unit is instantiated according to the lines 12 to 19. It requires two output ports OP1 and
OP2 to write the output argument out 0 of the Execute unit. Again a Control Table is
derived based on the number of firings (line 2) and the if statements from lines 12 and
16. The Control table is equal to ��� � ���������
�	�
����


. The Control unit of the processor
is instantiated as a counter that iterates � from � to � . For the Execute unit an interface
is defined, based on the information contained in line 11. This interface is used again
in the Mapping step (Figure 2) when an IP core is connected to the Execute unit. The
complete virtual processor that corresponds to process P2, is shown in Figure 7.

4.2 Mapping

The Mapping step is used to include additional information to the abstract architecture
model. This is information about the IP cores used by the virtual processors and the
bit-width of data. At this step, the width and size of a hardware channel is provided.
Furthermore, the notion of a clock event is taken into consideration.

We use IP cores in designing new hardware applications to reduce the design time.
This means that we add in the Mapping step the functionality of the Execute unit in
terms of an IP core. In order to select the appropriate IP core, the Mapping step searches
through a library of predefined cores until it matches the required functionality. The
found IP core is subsequently associated to the Execute unit of the virtual processor.
For the IP cores which are pipelined, additional information needs to be provided to the
Control unit to accommodate the control for the pipelining.

The final result of the mapping step is an annotated architectural model called Net-
work of Syntesizable Virtual Processors (NSVP) that is targeted to a particular FPGA
platform.

4.3 Visitor

The last step of Laura generates the correct VHDL code for the NSVP structure. First,
the communication network is generated, followed by the various processors, and fi-
nally a test bench. Within the Visitor there is a well-defined relationship between the
components of the abstract architecture model and its representation in VHDL. This
means that we have a VHDL template for each component. For example, there is a
template for the various units in a processor as well as for the processor itself. The re-
lationship is often one-to-one, but for example in the case of the hardware communica-
tions channels, a one-to-many relationship exists. A hardware communication channel
operates as a data buffer that can be realized using flip-flops, a look-up table, or internal
BRAM memory. This gives the Visitor a lot of flexibility to derive alternative VHDL
code taking advantage of specific elements of the target platform.



8

5 The experiments

Our experimental results are obtained by evaluating the synthesizable VHDL code gen-
erated by Compaan/Laura for three computational intensive algorithms. The first one
is the Sequence Alignment algorithm [7] from the field of bio-informatics. Using the
unfolding transformation provided by the MatTransform [8] tool box of Compaan, we
generate three different networks. The application specific processor uses an IP core
called Match that is composed of two adders and a comparator. The second algorithm
is the implementation of the 2D-DCT function that is used in data compression algo-
rithms such as MJPEG. In this case, we used the freely available 2D-DCT IP core from
the Xilinx web site. The third one implements the QR factorization algorithm used in
signal processing applications. It has two IP cores, Vectorize and Rotate, provided by
QinetiQ, Ltd [10]. Table 1 shows the complexity of the input KPNs given by the num-

Experiment No. of Processors No. of Channels Pipeline Stages Multipliers

Sequence Alignment 7 13 0 0
Seq. Alignment Unfold 2x2 10 40 0 0
Seq. Alignment Unfold 3x3 15 83 0 0

2D-DCT 4 4 92 6
QR(Rotate, Vectorize) 5 18 55, 42 8, 8

Table 1. The Process Network complexity

ber of processors and communication channels that has to be handled by the Laura tool.
The complexity of the IP cores used to implement the application specific processor is
given by the number of hardware multipliers and the pipeline depth used to implement
the core.

For each benchmark algorithm, a description of the algorithm in Matlab was written
and passed through Compaan and Laura. We verified the hardware in two ways. The first
way is by simulating the generated hardware using a VHDL simulator and comparing
the results to the output of the algorithm executed in the Matlab interpreter. The second
way is by implementing the generated hardware onto our reconfigurable platform and
comparing the results to the Matlab output. The VHDL simulator provided the total

Experiment Cycles Clock delay (ns) Used Slices Used Area Virtex II-6000

Sequence Alignment 865 16.030 1321 3%
Seq. Alignment Unfold 2x2 466 15.751 3127 9%
Seq. Alignment Unfold 3x3 293 18.511 5874 17%

2D-DCT 364 19.733 1610 4 %
QR(N=7,T=21) 19181 24.390 11270 33 %

Table 2. Experimental Results

number of cycles needed to execute a given algorithm, as shown in the Cycles column of
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Table 2. We use the XST synthesizer and the Xilinx Foundation 5.1i tool to synthesize,
place, and route the output of Laura. The clock delay and the total amount of slices
needed to implement the networks onto a Virtex II-6000 are also provided in Table 2.

To study the overhead introduced by our methodology in terms of cycle delays and
area (i.e., used slices), we conducted a second experiment. In this experiment, we com-
pare a single IP core with the same core embedded in a network. For a single IP core
we determine its clock speed and area and compare this to the speed and area taken
by the same IP core used in an application network. This gives an indication about the
overhead introduced by our methodology. Table 3 shows the delays and the area used

Experiment Working Processor Clock Delay Slices Delay Overhead Area Overhead

Sequence Alignment Match 6.156 66 2 � 20 �

Seq. Alig. Unfold 2x2 4 � Match 6.156 264 2 � 11.8 �

Seq. Alig. Unfold 3x3 9 � Match 6.156 594 3 � 10 �

2D-DCT 2D-DCT 13.656 1365 1.4 � 1.17 �

QR Vectorize, Rotate 15.862 3442 1.5 � 3.27 �

Table 3. Trade off between Computation and Communication

by the IP cores, the influence of communication on clock delay (Delay Overhead), and
the used area (Area Overhead). We notice that for fine-grained core implementations
the area needed to communicate data in a distributed way is dominant. For example, in
case of Sequence Alignment, 20 times more area is needed then a stand-alone version
of the Match IP core. The communication takes more that 2 times longer in terms of
clock-delay than the stand-alone version, due to the routing of the hardware channels
on the FPGA. The network of embedded coarse-grained cores, i.e., 2D-DCT, Vector-
ize and Rotate, introduce considerable less clock-delay than the network of embedded
fine-grained cores, i.e., Match. The area overhead depends mainly on the network com-
plexity in terms of channels used. See the difference in number of channels between
2D-DCT and QR in Table 1.

6 Conclusions and Limitations

In this paper, we have presented the Laura tool that implements our methodology to
map KPNs generated by the Compaan tool onto a reconfigurable platform such as FP-
GAs. Although the tool generates only VHDL code, it can be reconfigured to generate
other kinds of output, such as Verilog or SystemC. A number of experiments have been
conducted for applications in the field of bio-informatics, image processing, and sig-
nal processing. The experiments show that we are able to derive fully automatically a
hardware implementation from Matlab code. Because Laura implements Kahn Process
Networks into hardware, it is well suited for stream oriented applications. Laura is not
suited to map control dominated applications. To study the impact of the KPN model
on the hardware realization, we investigated the trade off between a stand-alone IP core
and an integrated IP core. We found that for more coarse-grained IP cores, the presented
methodology gives the best results.
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A number of limitation can still be found in Laura. The first issue is that Laura
can handle only FIFO communication between processors. High-level code transfor-
mations, such as unfolding and skewing, can introduce out-of-order communication
between processors [9]. In such case a FIFO can no longer be used in the communi-
cation between processes. Future work includes extending the communication compo-
nents to include this out-of-order communication. The second issue is that Laura gen-
erates hardware implementations for non-parameterized KPN models, while Compaan
is capable of deriving parameterized descriptions. Future work will focus on generating
parameterized hardware networks. The third issue is that communication channels are
not always used at their full capacity. We would like to collapse some of these channels
onto one channel to share its hardware to reduce communication requirements.
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