
Energy-Efficient Mapping of Real-Time Streaming
Applications on Cluster Heterogeneous MPSoCs

Di Liu∗, Jelena Spasic∗, Gang Chen†, Todor Stefanov∗
∗Leiden University, †Technical University of Munich

Email: {d.liu, j.spasic, t.p.stefanov}@liacs.leidenuniv.nl, cheng@in.tum.de

978-1-4673-8164-2/15/$31.00 c© 2015 IEEE

Abstract—In this paper, we propose a novel polynomial time
algorithm, called Frequency Driven Mapping, to map real-time
streaming applications specified as cyclo-static dataflow (CSDF)
graphs onto a cluster heterogeneous MPSoC. The objective of
our mapping approach is to reduce the energy consumption and
guarantee latency and throughput constraints. The main novelty
in our mapping algorithm is twofold: 1) By using hard-real-
time scheduling of CSDF graphs, we propose an efficient way
to determine a suitable processor type for each task in a CSDF
graph, where the energy consumption is minimized and through-
put and latency constraints are met; 2) According to an initial
mapping derived by a first-fit-decreasing heuristic, we propose a
remapping approach, where some tasks are remapped to unused
clusters in order to further reduce the energy consumption of
the system by cluster dynamic voltage/frequency scaling (DVFS).
The experimental results show that the proposed algorithm finds
more energy efficient mapping compared to existing approaches.
The energy savings due to our proposed algorithm are up to
34%.

I. INTRODUCTION

We have been in the multiprocessor era for many years,
where multiprocessor systems span from supercomputers to
embedded systems. In the embedded system domain, multiple
processors and other components are integrated into one chip
and this is widely known as Multiprocessor System-on-Chip
(MPSoC). The growth of MPSoC enables embedded systems
to run a plethora of complex applications, especially streaming
applications, which have high computational demands, e.g.,
video and audio streaming, video conferencing, etc. However,
the need for efficiently utilizing MPSoC resources brings several
challenges to system designers.

How to utilize the parallelism available in MPSoCs and how
to efficiently map the complex software to the hardware of
current MPSoCs are the two major challenges. To address the
former challenge, several Models of Computation (MoCs) have
been proposed to parallelize applications running on an MPSoC,
e.g., Kahn Process Network (KPN) [1], Synchronous Dataflow
(SDF) [2], and Cyclo-Static Dataflow (CSDF) [3], such that
applications can efficiently exploit the parallelism available in
MPSoCs. For the latter challenge, a significant amount of work
has been done to map the software to the hardware considering
different constraints, hardware architectures, and objectives [4],
e.g., throughput, latency, energy, etc.

Among these objectives, energy efficiency now has been
deemed as one of the main objectives for MPSoC system design.
To achieve the energy efficiency, dynamic voltage/frequency
scaling (DVFS) is a widely used technique to save energy, where
each processor is able to change the voltage and frequency
to reduce power consumption. However, with the advent of
manycore systems, per-core DVFS becomes impractical due to
the high hardware cost and area requirement [5]. In order to
balance the energy saving and hardware cost, cluster MPSoCs or
MPSoCs with several voltage frequency islands (VFI) emerge as

a solution. On cluster MPSoCs and VFI MPSoCs, all processors
on the same cluster or VFI operate at the same voltage and
frequency level. Two examples of a cluster MPSoC and VFI
MPSoC are ARM big.LITTLE [6] which has two clusters and
Intel SCC [7] which has 24 frequency islands and 6 voltage is-
lands. In addition, the cluster MPSoCs, e.g., ARM big.LITTLE
[6], also feature single-ISA heterogeneous cores/processors [8].
Due to the distinguished power-performance property of dif-
ferent types of processors, single-ISA heterogeneous MPSoCs
expose more opportunities to save energy, while the same ISA
provides an easy way for tasks to migrate with low overhead
[6]. Throughout this paper, when we refer to heterogeneous
MPSoCs, we mean single-ISA heterogeneous MPSoC systems.

Although the cluster heterogeneous MPSoC concept, de-
scribed above, has shown its energy efficiency in the state-of-
the-art chips, e.g., Samsung Exynos 5422 [9], there has been no
sufficient effort by the design community to devise a systematic
approach for mapping real-time streaming applications onto a
cluster heterogeneous MPSoC. Thus, motivated by this fact, in
this paper we propose a novel algorithm to efficiently map real-
time streaming applications onto cluster heterogeneous MP-
SoCs, which are subject to latency and throughput constraints,
such that the energy consumption of the cluster heterogeneous
MPSoC can be reduced by using cluster DVFS. The proposed
algorithm mainly consists of three phases: 1) The first phase
determines the processor type for each application task such
that the energy consumption can be reduced by utilizing the
available heterogeneity in the MPSoC, while guaranteeing the
performance constraints, i.e., throughput and latency; 2) Based
on the processor type assignment in the first phase, the second
phase maps tasks to clusters. Then by using cluster DVFS, the
energy consumption of the system can be reduced; 3) Based on
the second phase, the third phase remaps tasks to unused clusters
in order to further reduce the energy consumption.

In this paper, we have the following contributions:

• We propose a novel polynomial time algorithm, called Fre-
quency Driven Mapping (FDM), to map real-time stream-
ing applications onto a cluster heterogeneous MPSoC with
the aim of reducing the energy consumption and guaran-
teeing the latency and throughput constraints. The main
novelty in this algorithm is twofold: 1) By using the
hard-real-time scheduling of CSDF graphs, explained in
Section IV-B, we propose an efficient way to determine
a suitable processor type for each actor/task in the CSDF
graph, where the energy consumption is minimized and
throughput and latency constraints are met (the first phase
mentioned above); 2) According to an initial mapping
derived by the first-fit-decreasing (FFD) heuristic (the sec-
ond phase mentioned above) and the properties of cluster
MPSoCs, we remap some tasks to unused clusters in order
to further reduce the energy consumption (the third phase).

• We performed various experiments on real-life streaming
applications. The experimental results show that compared

TABLE I: The difference from [11] and [10]

heterogeneous performance scheduling

Colin et al. [10] Yes No Partitioned
Kong et al. [11] No No Partitioned
Ours Yes Yes Cluster

The works in [19], [20], [21] and [22]use per-core DVFS on
homogeneous MPSoCs to reduce energy consumption. In con-
trast, we consider cluster heterogeneous MPSoCs in our work.
Heterogeneous MPSoCs are known to be more energy efficient
than homogeneous MPSoCs [8]. Since finding a suitable type of
processor for each actor/task is really important with respect to
energy reduction and guaranteed performance, mapping tasks to
heterogeneous MPSoCs is a more challenging job than mapping
tasks to homogeneous MPSoCs. Moreover, adopting the per-
core DVFS approaches without considering the properties of
cluster MPSoCs may result in an energy inefficient mapping
[11].

IV. PRELIMINARIES

In this section, we first provide an overview of the CSDF
model. Then, the hard-real-time scheduling of the CSDF model
is introduced. After that, the system model and energy model
used in this paper are given.

A. Cyclo-Static Dataflow (CSDF)

A CSDF graph is defined as a directed graph G = (V,E),
where V is a set of actors and E is a set of edges. Actor
τi ∈ V represents computation and edges represent the transfer
of data tokens between actors. Each actor τi ∈ V may con-
sume/produce a varied but predefined number of data tokens
in its consequent executions, called consumption/production
sequence.

It has been proven in [3] that a valid static schedule of a CSDF
graph can be generated at design-time if the graph is consistent
and live. A CSDF graph is said to be consistent if a non-trivial
solution exists for the repetition vector ~q = [q1, q2, . . . , qi]. An
entry qi indicates the number of invocations of actor τi in one
graph iteration of G. For more details, we refer the reader to [3].

B. Hard-Real-Time (HRT) Scheduling of CSDF

It has been shown in [23] that an acyclic CSDF graph can be
converted to a periodic taskset, if the worst-case execution time
(WCET) Ci of each actor is known. Consequently, a plethora of
well-developed real-time theories, e.g., scheduling theories and
schedulability tests, can be applied to schedule or analyze the
CSDF graph or to replace the complex design space exploration
for homogeneous MPSoC design [24].

To schedule actors of a CSDF graph G in HRT fashion,
the period of each actor needs to be computed according to
its repetition value and worst-case execution time (WCET). In
this paper, the overhead due to data communication among
actors is included in the WCETs. In order to deal with the
variance of different mappings, we take the worst-case commu-
nication overhead into account such that the feasibility of our
approach can be guaranteed.

To better understand the concept of computing the actors’
periods, we give the following definition:

Definition 1. The workload of an actor τi is Wi = qiCi and the

maximum actor workload of the graph is Ŵ = maxτi∈G{Wi}

As a result, the minimum period T̆i of actor τi can be
computed by the following equation [23]:

T̆i =
lcm(~q)

qi
⌈

Ŵ

lcm(~q)
⌉ (1)

where lcm(~q) is the least common multiple of the repetition
vector ~q (explained in Sectiontion IV-A). Here, the deadline

of each actor is set to be equal to its period, called implicit
deadline periodic task (IDP) in the real-time theory. In addition,
the conversion procedure of a CSDF graph to periodic tasks
computes the start time Si for each actor/task as well. Due to
the space limitation, we do not show the formula to compute
Si. Start time Si of actor τi is determined by the deadline of
its predecessor which finishes its execution last and the data
dependency between actor τi and its predecessors. The reader
is referred to [23] for the full formulae and explanation. With
the given and computed parameters mentioned above, actor τi
is characterized by a tuple τi = {Ci, Si, T̆i}.

After the periodic tasks are derived, the latency and through-
put of the CSDF graph scheduled in the HRT fashion can be
computed. Eq. (2) is used to compute the minimum latency of
the CSDF graph scheduled in HRT fashion.

L(G) = max
win→out∈W

(Sout + (gCout + 1)T̆out − (Sin + gPin T̆in)) (2)

where win→out is one path of setW which consists of all paths
from the input actor to the output actor. Here, Sout and T̆out
are the start time and period, respectively, of output actor τout,
while Sin and T̆in denote the start time and period, respectively,
of input actor τin. gCout and gPin are two constants which denote
the number of invocations the actor waits for the non-zero
consumption/production of tokens on a path win→out ∈ W .
The throughput of the CSDF graph is computed as follows:

R = 1/T̆out (3)

Note that when all actors have the minimum periods, the graph
can reach the minimum latency and the maximum throughput
achievable by the HRT scheduling. In this paper, we take these
minimum achievable latency and maximum achievable through-
put as the performance constraints. Note that we can set other
throughput and latency constraints by using the period scaling
technique [25] on the minimum periods computed by Eq. (1).

C. System Model

Since actors may run on different processor types, WCET Ci
varies according to the performance of the assigned processor
type. Hence, we first extend the task model used in Section
IV-B to support this WCET variation. We replace the scalar

Ci with a vector ~Ci which consists of two WCETs, CEE
i and

CPE
i , corresponding to the WCET of a task running on an EE

processor and on a PE processor, respectively. CEE
i and CPE

i are
the WCETs when EE and PE processors run at their maximum
operating frequencies supported by the hardware platform.

As we mentioned in Section II, we adopt cluster scheduling
in this paper. With cluster scheduling, we compute the minimum
voltage/frequency level offline and configure the cluster with the
computed voltage/frequency level. On each cluster, an optimal
global scheduling algorithm, e.g., PFair [15] or LLREF [16], is
deployed to schedule actors. A periodic taskset is schedulable
on a homogeneous multiprocessor system by an optimal global
scheduling algorithm, if U =

∑

∀τi∈V Ci/Ti ≤M [26], where
U is the total utilization of the taskset and M is the number
of processors. Since in our work we consider an optimal global
scheduling algorithm for each cluster, tasks mapped onto a PE
cluster are schedulable if UPE

k ≤ NPE
p , while tasks mapped onto

an EE cluster are schedulable if UEE
j ≤ NEE

p . UPE
k and UEE

j
are the utilization of PE cluster k and EE cluster j, respectively.
They are computed by the following equations:

UEE
j =

∑

∀τi∈V EE
j

CEE
i

T̆i

, UPE
k =

∑

∀τi∈V PE
k

CPE
i

T̆i

(4)

where V EE
j and V PE

k represent actors assigned to EE cluster j
and PE cluster k, respectively.

TABLE II: The ’uncore’ power consumption

f (GHz) 2 1.8 1.6 1.4 1.2 1 0.8

P PE
s (f) (W) 0.8 0.528 0.39 0.309 0.244 0.182 0.134

f (GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2

P EE
s (f) (W) 0.04 0.04 0.04 0.04 0.04 0.04 0.04

D. Energy Model
In this paper, we use the real measurements from the

ODROID XU-3 [27] board to build our power and energy mod-
els. The ODROID XU-3 has an Exynos 5422 chip [9], where
there are two clusters on the chip, one quad core Cortex A15
(big) and one quad core Cortex A7 (little). The power consump-
tion of a cluster consists of two parts, ‘processor’ and ’uncore’
[28]. The ’processor’ power consumption is power dissipated
by the processors, while the ’uncore’ power consumption is the
power consumption from some components not pertaining to a
processor, e.g., a shared cache, an integrated memory controller,
etc. The ‘uncore’ power consumption of the ODROID XU-3 is
shown in Table II, where the ‘uncore’ power consumption for
the PE (big) clusters and EE (little) cluster, at different operating
frequencies, are given. We can see that for the PE (big) cluster
the ‘uncore’ power consumption P PE

s (f) scales along with the
cluster operating frequency. We find that the ‘uncore’ power
consumption P PE

s (f) contributes approximately 20% to the total
power consumption of the big cluster. For the EE (little) cluster,
with the on-chip power sensor, we can not see the variation of
the ’uncore’ power consumption P EE

s (f) at different frequency
levels. Hence, in Table II, the ‘uncore’ power consumption
P EE
s (f) is the same for each frequency level. Note that since

one core on the little cluster has to be active for the operating
system, we are not able to measure the pure ‘uncore’ power
consumption P EE

s (f) for the little cluster. The values of P EE
s (f)

given in Table II include some power consumption from the
active core running the OS.

Although the ‘uncore’ power consumption may be related to
the frequency as shown in Table II, it is different from the dy-
namic power consumption which also relates to the frequency.
Dynamic power is only consumed when there is a workload on
the processors, whereas the ‘uncore’ power consumption always
exists as long as the cluster is on. Based on the above discussion,
we use the following power model for each cluster,

P (f) = αfb +Npβ + Ps(f) (5)

where the first term is the dynamic power consumption, β is
the static power consumption of one processor and Np is the
number of processors on the cluster. Ps(f) is the ’uncore’ power
consumption and f is the frequency level. In this paper, we
use power parameters from ODROID XU-3 as our reference,
so parameters α, b, and β are estimated by using curve fitting
with real power measurements from the ODROID XU-3 board.
The estimated parameters for each processor type are shown in
Table III.

TABLE III: The estimated parameters

processor type α (W/MHzb) b β (W)

PE (big) 3.03 × 10−9 2.621 0.155

EE (little) 2.62 × 10−9 2.12 0.0278

To validate our power model, described above, we measure
the power consumption from the board and compare it with
the estimations obtained from our model. We keep one core
on and run a computation-intensive job on the core. Then, we
measure the power consumption at different frequency levels
for each cluster through the on-chip power sensors. Fig. 2 plots
two curves for the PE (big) cluster, one for the measured power
consumption and another for the estimated power consumption,

 0

 500

 1000

 1500

 2000

 2500

 3000

800
1000

1200
1400

1600
1800

2000

P
ow

er
 (

m
W

)

Frequency (MHz)

Big_Measurement
Big_Estimation

Fig. 2: Power model validation of PE (big) cluster

 68

 70

 72

 74

 76

 78

 80

 82

200
400

600
800

1000
1200

1400

Po
w

er
 (

m
W

)
Frequency (MHz)

Little_measurement
Little_estimation

Fig. 3: Power model validation of EE (little) cluster

while Fig. 3 plots two curves for the EE (little) cluster, one for
the measured power consumption and another for the estimated
power consumption. In the two figures, the y-axis shows the
power consumption, while the x-axis shows the different op-
erating frequency levels. From the figures, we can see that the
estimated curves are close to the measured curves, so our power
model is sufficiently accurate.

To compute the total system energy consumption, we need to
introduce the concept of hyper-period (hp),

hp = lcm(T̆1, T̆2, , . . . , T̆i) (6)
where the lcm is the least common multiple. For periodic tasks,
every hyper-period has the same workload, i.e, all tasks will
execute for a certain number of times. Hence, with the definition
of hyper-period, we can build the energy model of an MPSoC
within one hyper-period as follows:

E = Es + Ed (7)
where Es is the total static energy consumption and the total

‘uncore’ energy consumption which is computed as:

Es = hp
(

NEE
ac

∑

j=1

Ps
EE(fj)+

NPE
ac

∑

k=1

P PE
s (fk)+NEE

ac NEE
p βEE+NPE

ac N
PE
p βPE

)

(8)
NEE

ac is the number of active EE clusters and NPE
ac denotes the

number of active PE clusters. NPE
p and NEE

p denote the number
of processor per PE cluster and EE cluster, respectively. fj and
fk are the operating frequency levels for the corresponding EE
cluster and PE cluster, respectively. βEE and βPE are the power
parameters shown in the last column of Table III.

The total dynamic energy consumption Ed in Eq. (7) is
computed as:

Ed = hp
(

NEE
ac

∑

j=1

∑

∀τi∈V EE
j

CEE
i

Ti

αEE(fj)
bEE +

NPE
ac

∑

k=1

∑

∀τi∈V PE
k

CPE
i

Ti

αPE(fk)
bPE

)

= hp

NEE
ac

∑

j=1

UEE
j αEE(fj)

bEE + hp

NPE
ac

∑

k=1

UPE
k αPE(fk)

bPE

(9)

vld iq idct mc
e1 e3 e4

[594] [1] [1] [1] [1] [594]

Fig. 4: H.263 Decoder

where fj and fk are the operating frequencies of the corre-
sponding EE cluster and PE cluster, respectively. αEE, bEE, αPE

and bPE are the estimated power parameters for an EE cluster
and a PE cluster, shown in Table III.

V. PROPOSED MAPPING ALGORITHM

In this section, we present our mapping algorithm, called
Frequency Driven Mapping (FDM), which is able to energy-
efficiently map real-time streaming applications to cluster het-
erogeneous MPSoCs while guaranteeing the throughput and
latency constraints. The complete FDM algorithm is given in
Algorithm 4. Before we explain FDM in details in Section V-D,
we would like to introduce the three foundations of FDM which
are described in Section V-A, V-B, V-C below.

A. Processor Type Assignment
In a heterogeneous MPSoC, choosing the type of processor

for each task in an application is crucial. To support this state-
ment, we show an example with a real-life streaming applica-
tion, H.263 decoder, which is modeled as an SDF graph which
is a subset of CSDF. Hence, the HRT scheduling explained in
Section IV-B is applicable to the SDF. The SDF-modeled H.263
decoder consists of 4 tasks/actors and 3 edges, as shown in
Fig. 4. The parameters of each actor in the H.263 decoder are
shown in Table IV, where CPE

i and CEE
i denote the WCETs in

clock cycles (cc) of the actor on the PE cluster and EE cluster,
respectively. qi is the repetition value which is used to compute
the workload explained in Definition 1.

TABLE IV: The parameters of H.263

CPE
i (cc) CEE

i (cc) qi

vld 26018 52036 1
iq 559 1118 594
idct 500 1000 594
mc 10958 21916 1

In Table V, different processor type assignments for all
actors are presented. Column 1 shows the number identifying
processor type assignments, and column 2 to 5 show which type
of processor each actor is assigned to where we highlight the
EE processor type. The last two columns show the latency and
the throughput of these processor type assignments, which are
computed by using Eq. (2) and Eq. (3) and the parameters in
Table IV. In these two columns, we highlight the values which
satisfy the latency and throughput constraints. Intuitively, we
want to have more actors running on EE processors as long
as the latency and throughput constraints are met. According
to the figures in Table V, we can see that an inappropriate
processor type assignment significantly degrades the system
performance and violates the constraints. Looking at processor
type assignments 2 and 3, assigning either task iq or idct to the
EE type of processor leads to a violation of the performance
constraints. On the other hands, processor type assignment 5
assigns both tasks vld and mc to the EE type of processor
while the performance constraints are met. Thus, determining
a good processor type assignment is essential for heterogeneous
MPSoCs.

From the example given above, in order to efficiently assign
actors to processor types, it is important to identify those tasks
which will violate the performance constraints if assigning them
to the EE type of processor. By considering the characteristics
of the HRT scheduling of CSDF introduced in Section IV-B,
we propose an efficient way to split tasks into two categories,

TABLE V: Different processor type assignments for the H.263
decoder

Processor Type Assignment L R(token/
vld iq idct mc (cycles) cycles)

1 EE PE PE PE 996697 1/332046
2 PE EE PE PE 1993394 1/664092
3 PE PE EE PE 1783000 1/594000
4 PE PE PE EE 996697 1/332046
5 EE PE PE EE 996697 1/332046

bottleneck and non-bottleneck tasks. The bottleneck actors/tasks
should be assigned to PE processors in order to guarantee
the performance, while the non-bottleneck actors/tasks can be
assigned to EE processors for the purpose of energy saving. We
introduce the following proposition:

Proposition 1. For a CSDF graph scheduled using hard-real-
time scheduling, increasing WCET Ci of task τi will not increase
the latency and reduce the throughput, if the maximum workload

Ŵ remains the same.

Proof: By looking at Eq. (2), we can see that the latency is
only determined by the start times and periods of the input and
output actors. On the one hand, from Eq. (1), it is not difficult to
see that Ŵ is the variable part to compute period T̆i, because qi
and lcm(−→q) are both constants. Hence, as long as the maximum

workload Ŵ does not increase, increasing other actors’ WCETs
will not change any actor’s period. As a result, the throughput
will not be reduced. On the other hand, start time Si depends on
the data-dependency and the deadlines of precedent actors. The
data-dependency will not change in any case, while Di = T̆i

and period T̆i does not change. Hence, Si remains the same as
well. As a result, the latency does not increase.

It follows from Proposition 1 that some actors in the graph
can execute slowly, while not degrading the application perfor-
mance. Thus, Proposition 1 can help us to classify the actors
into the two categories mentioned above. If the actor is assumed
to be executed on an EE processor (longer WCET) and its
new workload Wi does not change the maximum workload
Ŵ , then it is a non-bottleneck actor and can be assigned to
an EE cluster without degrading the application performance.
Otherwise, the actor should be assigned to a PE cluster in order
to guarantee the performance. We look back at the example of
the H.263 decoder. From Table V, since executing vld and mc

on the EE type of processor does not lead to an increase of Ŵ ,
this assignment does not violate the performance constraints.
Therefore, we can use Ŵ PE as a threshold to determine which
type of processor an actor should be run on, where Ŵ PE is the
maximum actor workload assuming that all actors run on PE
processors. Algorithm 1 presents a pseudo-code showing how to
classify the actors, where V EE and V PE denote actors assigned
to EE type and PE type of processors, respectively. To reduce
the complexity of the processor type assignment, first we sort
the actors in order of increasing workload assuming all of them
are assigned to EE processors - see Line 1 in Algorithm 1.
Then, with the sorted actors, we use Ŵ PE as the threshold and
deploy a binary search algorithm to find the pivotal point by
which we can split the sorted actors into two sets, one for the
EE type of processor and another for the PE type of processor.
Since it is impossible to guarantee that the binary search can
always find one actor whose W EE

i is equal to Ŵ PE, we pick
up the one with the biggest index as the pivotal point, where
the condition W EE

i ≤ Ŵ PE is met. Since the sorting algorithm
has a complexity of O(|V | log |V |) and the complexity of the
binary search is O(log |V |), the complexity of Algorithm 1 is
O(|V | log |V |).

The processor type assignment can: (1) assign actors of an

Algorithm 1: Processor Type Assignment

input : G = (V,E)
output: V EE and V PE

1 V ← Sort ∀τi ∈ V in increasing order of W EE
i of τi

2 b← Binary search to find the position in V with the

biggest index , where actor τi can meet W EE
i ≤ Ŵ PE.

3 V EE ← V [0 : b]
4 V PE ← V − V EE

5 return V EE and V PE

TABLE VI: Different mappings for H.263 decoder
PE Clusters Actor Mapping Energy Consumption

vld iq idct mc (µJ)
WFD 2 PE1 PE2 PE1 PE1 1378
FFD 1 PE1 PE1 PE1 PE1 1226

application graph to two different types of processors and (2)
allow to initially decide whether the system has enough re-
sources to schedule this application. Suppose that UEE and UPE

are the total utilization of V EE and V PE returned by Algorithm
1, respectively. If UEE > NEE

c × NEE
p , the tasks from V EE are

not schedulable on EE clusters. If tasks on the EE clusters are
not schedulable, we can move some of them to PE clusters such
that the tasks can run on the system. Based on Proposition 1, it
is trivial to observe that reassigning the tasks in set V EE to set
V PE, i.e., assigning these tasks to the PE type of cluster, is still
able to guarantee the performance constraints. However, if tasks
on the PE clusters are not schedulable, i.e., UPE > NPE

c ×NPE
p ,

that means that with the throughput and latency constraints the
application is not schedulable on the system.

B. Task mapping

When the processor type assignment is determined as de-
scribed in Section V-A, tasks need to be mapped onto clusters.
The task mapping is analogous to a bin-packing problem which
is known to be an NP-hard problem [14]. Several well-known
heuristic algorithms for the bin-packing problem, e.g., first-fit,
best-fit, etc, have been proposed. In terms of energy efficiency,
the worst-fit-decreasing (WFD) algorithm is evaluated as the
best mapping heuristic [29] for the partitioned scheduling. [11]
also uses an WFD-like approach. However, by using the follow-
ing example, we will show that WFD does not work very well
in the context of a cluster MPSoC with cluster scheduling.

Here, we use a cluster homogeneous MPSoC to illustrate this
problem, where the homogeneous MPSoC has two PE clusters,
each with four identical PE processors. Table VI shows two
mappings for the H.263 decoder in Fig. 4 by using two different
mapping algorithms, worst-fit-decreasing (WFD) and first-fit-
decreasing (FFD). The mapping derived by WFD consumes
more energy than the mapping obtained by FFD. The reason is
that WFD tries to distribute the heavy tasks to different clusters,
where these heavy tasks have large utilization and need a high
operating frequency in order to meet their deadlines. In the
context of a cluster MPSoC, these heavy tasks constrain the
minimum operating frequency of the cluster. On the contrary,
FFD always strives to find the first available cluster to map,
where this strategy is more likely to map the heavy tasks with
the same or close utilization to the same cluster. Then, the
system can efficientlly utilize cluster DVFS to reduce the energy
consumption. Hence, in our approach we use FFD to map tasks
to clusters in order to obtain an initial mapping. Given this initial
mapping from FFD, we can compute the minimum operating
frequency of a cluster. However, the frequency of a cluster is
not only determined by the task with the largest utilization, but
also the total utilization of the tasks has to be taken into account.
The following example shows the effect of the total utilization.

Example 1. Consider a cluster with two processors and three
tasks with utilization {0.5, 0.5, 0.5}. The three tasks can be
mapped to the cluster because the total utilization of the tasks is
0.5 + 0.5 + 0.5 < 2. The frequency of this cluster however can
not be set according to the task’s maximum utilization which is
0.5, because the total utilization is 1.5 and the utilization bound
(the number of processor) is 2. If the frequency is scaled with
0.5, then the total utilization of this task set becomes 1.5

0.5 > 2
which means the task set is not schedulable on the cluster.

Considering the example above, the frequency of a cluster
should be computed as follows:

fj = max(max
∀τi∈Vj

{ui},
Uj

Np
)× fmax (10)

where ui is the utilization of task τi ∈ Vj and Vj is the set
of tasks mapped to cluster j. fmax is the maximum frequency
of the type of processor used in the cluster. Uj is the total
utilization of Vj and Np is the number of processors in the
cluster. Usually, a cluster only supports a set of finite discrete
frequency levels. Hence, we select the minimum frequency from
the frequency set which is greater than or equal to frequency fj
in Eq. (10).

With Eq. (10), we classify the clusters into two categories,
namely U-cluster and T-cluster, which later will be used in our
remapping phase described in Section V-C.

Definition 2. An U-cluster is a cluster where max
∀τi∈Vj

{ui} <
Uj

Np
.

U-cluster means that the operating frequency of the cluster is
determined by the total utilization.

Definition 3. A T-cluster is a cluster where max
∀τi∈Vj

{ui} ≥
Uj

Np
.

T-cluster means that the operating frequency of the cluster is
determined by the task which has the largest utilization. Hence,
we call such task a constrained task.

Definition 4. In a T-cluster, a constrained task is the task
which has the largest utilization.

C. Remapping
The FFD algorithm described in Section V-B enables to

quickly map tasks to clusters. On a given MPSoC platform,
FFD might just use a few clusters to run the application tasks
and leave the rest of the available clusters unused. This would
lead to a few used clusters with high utilization whose frequency
can not be scaled down. Hence, based on the FFD mapping,
we propose a remapping approach to explore the possibility
to energy-efficiently utilize the unused clusters on the system
such that we can balance or offload the workload of some
clusters to the unused clusters in order to further scale down the
clusters’ operating frequencies to reduce the total system energy
consumption.

Our remapping approach is based on analysis for the U-
cluster and T-cluster categories introduced and defined in Sec-
tion V-B. Below, we discuss how to remap tasks for both
categories of clusters in order to reduce the energy consumption.

1) U-cluster: According to Definition 2, in an U-cluster, the
frequency of the cluster is determined by the total utilization.
Hence, we strive to remap some tasks to an unused cluster to
reduce the total utilization, which in turn allows to scale down
the frequency further. In order to minimize the energy consump-
tion, we need to find how many tasks should be remapped and
what the optimal frequencies are for the initial cluster and the
new cluster to be used.

Consider that we have an initial U-cluster onto which a task
set with utilization U is mapped. We split the task set into two

Algorithm 2: Split tasks for U cluster

input : A task set Γ
output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← Γ, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if U2 ≤ U1 then
5 Γ1 ← Γ1 − τi;
6 Γ2 ← Γ2 + τi;

7 else
8 Break;

9 return Γ1 and Γ2;

subsets, one with utilization U1 and another with U2. We remap
the task set with U2 to an unused cluster, and keep the task set
with U1 on the initial cluster. Then the energy consumption of
the new mapping can be computed as follows:

E = hp
(

U1αf
b
1 +Npβ + Ps(f1) + U2αf

b
2 +Npβ + Ps(f2)

)

(11)
where f1 is the operating frequency of the initial cluster, and f2
is the operating frequency of the new cluster. In Eq. (11), there
are four variables, U1, U2, f1, and f2. Since frequencies f1 and
f2 depend on U1 and U2, respectively, and U1 is related to U2,
these interrelationship between them makes it difficult to find
optimal values for all variables in order to minimize Eq. (11).
Hence, with the consideration of simplifying the procedure, we
use a load balancing approach to split tasks on an U-cluster
into two tasksets. The split tasksets have close total utilizations.
Algorithm 2 presents the pseudo-code of splitting the tasks
for an U-cluster. We first sort tasks in order of decreasing
utilization. Then, we assign the tasks one by one to the taskset
Γ2. As soon as the utilization U2 of Γ2 is greater than or equal
to the utilization U1 of Γ1, the algorithm terminates and returns
Γ1 and Γ2. Due to the sorting algorithm used in Line 1, the
complexity of Algorithm 2 is O(|Γ| log(|Γ|)).

The remapping will switch on a new cluster, so the remapping
should provide enough energy reduction to compensate the
static and ‘uncore’ power consumption of the new cluster. In
order to test whether it is worthwhile remapping tasks to an
unused cluster, we provide the following proposition to validate
the efficiency of the remapping.

Proposition 2. Given a taskset Γ and its subsets Γ1 and Γ2,
their utilizations are U , U1, and U2, respectively, where U1 +
U2 = U , and taskset Γ is assigned to one cluster. The cluster
is an U-cluster. Then, moving taskset Γ2 to an unused cluster
can reduce the energy consumption, if the following condition is
met:

U1α(f
b−f b

1)+U2α(f
b−f b

2) > Ps(f1)+Ps(f2)+Npβ−Ps(f)
(12)

where f is the operating frequency of the initial cluster before
remapping, and f1 and f2 are the operating frequencies of the
initial cluster and the new cluster after remapping, respectively.

Proof: Before the remapping, the energy consumption of
the initial cluster is as follows:

E = hp
(

Uαf b +Npβ + Ps(f)
)

(13)
After the remapping, the energy consumption of the two clusters
is:
En = hp

(

U1αf
b
1 +Npβ +Ps(f1) +U2αf

b
2 +Npβ +Ps(f2)

)

(14)
To guarantee that the remapping leads to less energy consump-
tion, we need the following inequality satisfied:

E > En

Since we consider symmetric clusters, by substituting Eq. (13)

Algorithm 3: Split tasks for T-cluster

input : A task set Γ
output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← ∅, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if τi can run at a lower frequency then
5 for j = i to |Γ| do
6 Γ1 ← Γ1 + τj ;

7 Γ2 ← Γ− Γ1;
8 Break;

9 return Γ1 and Γ2;

and (14) in the inequality and eliminating the same terms on
both sides, we obtain the following condition:

U1α(f
b−f b

1)+U2α(f
b−f b

2) > Ps(f1)+Ps(f2)+Npβ−Ps(f)
(15)

2) T-cluster: According to Definition 3, in a T-cluster, the
frequency of the cluster is determined by the constrained task
(Definition 4). However, within one cluster, the FFD discussed
in Section V-B might map some other tasks which have lower
utilization and could operate at a lower frequency. In this case,
remapping these tasks to an unused cluster operated at a lower
frequency may result in an overall reduced energy consumption.

Example 2. Given two clusters with two processors each
and a task set with three tasks where the utilizations are
{0.9, 0.3, 0.3}, the FFD maps all tasks to one cluster, and the
cluster is a T-cluster. The frequency is determined by the task
with utilization 0.9. However, if we map the two tasks with
utilization 0.3 to the unused cluster, the frequency of the initial
cluster is not changed, but the new cluster operates at a lower
frequency which can significantly reduce the overall energy
consumption.

Example 2 illustrates how we can remap tasks of a T-cluster.
We find the actors which can run at a frequency lower than
the current cluster frequency and remap them to an unused
cluster. Algorithm 3 presents the pseudo-code of splitting tasks
of a T-cluster. The complexity of Algorithm 3 is O(|Γ| log |Γ|)
due to the sorting algorithm used in Line 1. The remapping
will need more static power consumption and ‘uncore’ power
consumption due to the new cluster switched on. Thus, the
efficiency of the remapping should be verified. The following
proposition presents an efficient way to check this.

Proposition 3. Given a taskset Γ and its subsets Γ1 and Γ2,
their utilizations are U , U1, and U2 respectively, where U =
U1 + U2, and taskset Γ is assigned to one cluster. The cluster
is a T-cluster and the constrained actor is in subset Γ2. Then,
moving taskset Γ1 to an unused cluster can reduce the energy
consumption, if the following condition is met:

U1 · α · f
b > U1 · α · f

b
1 +Npβ + Ps(f1) (16)

where f and f1 are the operating frequencies of the initial and
new cluster, respectively.

Proof: Assume that taskset Γ is assigned to one cluster and
its operating frequency is f . Before the remapping, the energy
consumption of the initial cluster can be computed as follows:

E = hp
(

U · α · f b +Npβ + Ps(f)
)

(17)
If taskset Γ1 which is a subset of Γ is remapped to an unused
cluster, the operating frequency of the new cluster is f1. Since
the constrained task is in taskset Γ2 and taskset Γ2 remains on
the initial cluster, the frequency of the initial cluster does not
change. After the remapping, the energy consumption of the two

clusters is the following:
En = hp

(

U2·α·f
b+Npβ+Ps(f)+U1·α·f

b
1+Npβ+Ps(f1)

)

(18)

The assignment with two clusters is more energy-efficient, if
E > En. Since U = U1 + U2, we replace U2 with U − U1 in
Eq. (18). By substituting Eq. (17) and (18) and eliminating the
same terms on both sides of inequality E > En, we obtain:

U1 · α · f
b > U1 · α · f

b
1 +Npβ + Ps(f1) (19)

D. The FDM Algorithm

In this section, we present our overall mapping algorithm,
called Frequency Driven Mapping (FDM). The inputs to FDM
are a CSDF graph and a cluster heterogeneous MPSoC, and
the outputs are the task mapping to clusters and the minimum
operating frequency for each cluster which is active. Algorithm
4 shows the pseudo-code of FDM. In Line 1, FDM applies
Algorithm 1 explained in Section V-A to split tasks into two sets
V PE and V EE which denote the tasks assigned to PE type and EE
type of processors, respectively. In Algorithm 1, the processor
type assignment completes the assignment procedure with the
guarantees of the performance constraints. Hence, if the task
sets V EE and V PE derived by Algorithm 1 are schedulable on
the given MPSoC, the throughput and latency constraints are
met for the application. From Line 2 to 5, we check whether
the input MPSoC has enough resources to schedule the real-
time streaming application. If there is no enough EE type of
processors, we select some tasks from set V EE and assign them
to set V PE such that we have enough EE processors to schedule
the tasks in set V EE. The tasks are selected in order of decreasing
utilization, and the selection is terminated as soon as the tasks in
set V EE are schedulable on the EE processors. However, if there
is no enough PE type of processors, that means the application is
not schedulable on the input MPSoC. The algorithm terminates
and signals failure at Line 5. After this schedulability check, we
use the FFD heuristic discussed in Section V-B on PE clusters
and EE clusters to map tasks to clusters in Line 6. After this
phase, we obtain the initial mapping and the corresponding
active cluster set, i.e., Φac shown in Line 6. An element in set
Φac is a cluster which includes the tasks mapped to the cluster
and the operating frequency of the cluster computed by Eq. (10).

With the obtained initial mapping, a remapping procedure
starts from Line 7. In this procedure, we go through every cluster
in the active cluster set Φac to check what category the cluster
falls into, U-cluster or T-cluster. From Line 8 to 14, we do
remapping for an U-cluster. At Line 8 and 9, if a cluster is an
U-cluster of type EE or PE and there is an unused cluster of
the same type available (PE or EE), we split the tasks into two
sets by using Algorithm 2 and we use Proposition 2 to validate
the remapping in Line 10. If the remapping leads to energy
reduction, we complete the remapping. Otherwise, the mapping
remains unchanged. From Line 15 to 21, we do remapping for
a T-cluster. For a T-cluster, we use Algorithm 3 to split tasks
in Line 16 and we use Proposition 3 to validate the remapping
in Line 17. Note that after we do a remapping the new cluster
φunused is added to the active cluster set Φac shown in Line
12 and 19. Then later the new cluster also will undertake the
remapping procedure as long as there is an unused cluster of the
same type and it can meet the remapping conditions. Finally,
FDM updates the operating frequencies of each cluster in set
Φac in Line 22 by using Eq. (10). At Line 23, FDM outputs
the final mapping and the operating frequency of each active
cluster. Since the complexity of Algorithm 2 and 3 are both
O(|V | log(|V |)), in the worst case the complexity of FDM is
O(N × |V | log(|V |)), where N is the total number of clusters
in the input MPSoC and |V | is the total number of actors in the
input CSDF graph.

Algorithm 4: Frequency Driven Mapping

input : A CSDF graph G and a cluster heterogeneous MPSoC
output: A task mapping for each cluster and the minimum

operating frequency for each active cluster
1 V PE, V EE ←Apply Algorithm 1 to split all actors τi ∈ V to two

parts;
2 if ⌈UEE⌉ > NEE

c ×NEE
p then

3 Map some actors τi to PE clusters in order of decreasing
utilization such that ⌈UEE⌉ ≤ NEE

c ×NEE
p ;

4 if ⌈UPE⌉ > NPE
c ×NPE

p then
5 return Unschedulable;

6 Φac ←Apply FFD on PE clusters and EE clusters to generate
an initial task mapping and compute the frequency of each
active cluster by using Eq. (10);
/* Remapping procedure */

7 for j=1 to |φac| do

8 if max∀τi∈Vj
{ui} <

Uj

Np
& an unused cluster of the same

type is available then
// U-cluster

9 Vj,1, Vj,2 ← Apply Algorithm 2 to split tasks;
10 if Vj,1 and Vj,2 can meet the condition in Proposition

2 then
11 Keep ∀τi ∈ Vj,1 on the initial cluster and remap

∀τi ∈ Vj,2 to unused cluster φunused;
12 Φac ← Φac + φunused;

13 else
14 Keep the initial mapping;

15 if max∀τi∈Vj
{ui} ≥

Uj

Np
& an unused cluster of the same

type is available then
// T-cluster

16 Vj,1, Vj,2 ← Apply Algorithm 3 to split tasks;
17 if Vj,1 can meet the condition in Proposition 3 then
18 Keep ∀τi ∈ Vj,2 on the initial cluster and remap

∀τi ∈ Vj,1 to unused cluster φunused;
19 Φac ← Φac + φunused;

20 else
21 Keep the initial mapping;

22 Update the operating frequencies of clusters in set Φac by
using Eq. (10);

23 return Φac;

TABLE VII: The Streaming Applications
APP |V | |E| L R(token/

(cycles) cycles)
Beamformer 57 70 61152 1/5076
Bitonicsort 40 46 2280 1/95
CHVocoder 55 70 28400 1/35550
DCT 8 7 380928 1/47616
DES 53 60 46080 1/1024
FFT 17 16 204544 1/12032
FMRadio 43 53 17208 1/1434
MP3 14 18 16795242 1/1866138
MPEG 23 26 138240 1/7680
Serpent 120 128 370296 1/3336
TDE 29 28 1071840 1/36960
Vocoder 114 147 291360 1/9105

VI. EVALUATION

In this section, we present three experiments to demonstrate
the efficiency of the proposed FDM algorithm compared to the
existing approaches proposed in [10] and [11]. We apply our
FDM and the mapping approaches from [10] and [11] on cluster
heterogeneous and homogeneous MPSoCs. We choose [10] and
[11] to compare with, because the mapping approaches in [10]
and [11] are specifically devised for cluster MPSoCs as we
consider in this work. Therefore, their work is the most related
and relevant to our approach.

We select 11 real-life streaming applications from the

TABLE VIII: Cluster Heterogeneous MPSoC configurations

Configuration Granularity PE clusters EE clusters

MPSoC 2 20 28 2 procs 20 28
MPSoC 4 10 14 4 procs 10 14
MPSoC 8 5 7 8 procs 5 7

StreamIt [12] benchmark suite and the MP3 decoder [30], where
all streaming applications are modeled as CSDF graphs. We
use the same parameters, i.e., WCETs of application tasks, as
specified in [23]. An overview of all streaming applications is
given in Table VII. |V | denotes the number of tasks/actors in a
CSDF graph, while |E| denotes the number of edges. L is the
minimum achievable latency andR is the maximum achievable
throughput which are computed by using Eq. (2) and Eq. (3),
when the applications are scheduled by the HRT scheduling
described in Section IV-B. In our experiments, for each ap-
plication, we set as constraints the corresponding minimum
achievable latency and the maximum achievable throughput (L
andR given in Table VII) and when we map the applications to
the target platforms.

As target platforms, we consider three heterogeneous MP-
SoCs with different number of clusters and cluster granularities.
We use ’MPSoC x pe ee’ to denote a cluster heterogeneous
MPSoC, where ‘x’ denotes the number of processors per cluster,
‘pe’ and ‘ee’ denote the number of PE clusters and EE clusters,
respectively. The three considered MPSoCs are described in
Table VIII. Column ‘granularity’ shows the number of proces-
sors per cluster, while column ‘PE clusters’ and ’EE clusters’
show the number of PE clusters and EE clusters in the MPSoC,
respectively.

For a cluster, we use the power model described in Eq. (5),
where the power parameters are given in Table III and Table II.
In our experiments, we use our FDM approach and the reference
mapping approaches described in [10] and [11] to map the
tasks of the streaming applications to the three MPSoCs and we
compute the energy consumption of each application to MPSoC
mapping configuration using Eq. (7), (8) and (9). The metric
for the evaluation of each configuration is the energy reduction
achieved by our proposed FDM approach over the different
reference mapping approaches. We use the following equation
to compute the energy reduction:

r =
Eref − EFDM

Eref

(20)

where Eref is the energy consumption of an application to MP-
SoC mapping configuration obtained by a reference mapping
approach and EFDM denotes the energy consumption achieved
by our proposed FDM with cluster DVFS.

A. Comparison with [10] on Heterogeneous MPSoCs
In this section, we compare our proposed FDM approach to

the mapping approach proposed in [10]. In [10], the authors
proposed several mapping approaches for cluster heterogeneous
MPSoCs, and in our experiments we select the best mapping
approach evaluated in [10] and refer to it as CKR. In this ex-
periment, the CKR is considered as the reference point and the
energy reduction for each application benchmark is computed
by using Eq. (20).

Fig. 5 depicts the energy reduction for each benchmark
mapped on the three different MPSoCs, where the x-axis shows
the benchmarks and the y-axis shows the energy reduction. For
7 out of 12 benchmarks, our proposed FDM+DVFS approach
finds a mapping that consumes less energy compared to the one
obtained by the CRK approach. The main reason is that the CKR
approach is similar to the FFD algorithm but it does not consider
remapping to efficiently utilize the unused clusters. Hence,
for the 7 benchmarks, the remapping approach in our FDM
algorithm outperforms the CKR. For the other 5 benchmarks,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Beamformer

BitonicSort

ChVocoder

DCT
DES

FFT
FM

Radio

M
P3

M
PEG

Serpent

TDE
Vocoder

E
n

er
g

y
 R

ed
u

ct
io

n

MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Fig. 5: Comparison between FDM+DVFS and CKR+DVFS

TABLE IX: Summary of Fig. 5

2 procs 4 procs 8 procs

FDM+DVFS average 7% 7.7% 8.9%
Max energy reduction 25% 27% 29%

TABLE X: Summary of Fig. 6

2 procs 4 procs 8 procs

FDM+DVFS average 6.3% 8.5% 9.4%
Max energy reduction 19% 21% 34%

the remapping is not beneficial for them, so our proposed FDM
approach achieves the same results as the CKR approach.

The energy reduction results are summarized in Table IX.
We see that the average energy reduction is 7%, 7.7%, and
8.9% for the three MPSoCs with 2, 4 and 8 processors per
cluster, respectively. Among all experiments, the maximum
energy reduction occurs to benchmark DES which is 25%, 27%,
and 29% for the three MPSoCs with 2, 4, and 8 processors per
cluster, respectively.

B. Comparison with [11] on Heterogeneous MPSoCs

In this experiment, we compare our FDM approach with the
approach proposed in [11] which we refer to as KYD. Since
[11] only considers cluster homogeneous MPSoCs, we apply
our processor type assignment proposed in Section V-A, i.e.,
Algorithm 1, to determine the processor type for each actor and
then utilize the KYD approach to map the actors to clusters.
Thus, in this experiment, ‘Algorithm 1+KYD+DVFS’ is used
as the reference mapping approach in Eq. (20).

The energy reduction for the different benchmarks mapped
on the different MPSoCs is depicted in Fig. 6. For 7 out
of 12 benchmarks, our FDM+DVFS finds a mapping which
consumes less energy than the mapping approach ’Algorithm
1+KYD+DVFS’. For the rest of the benchmarks, our proposed
approach finds a mapping that consumes the same energy
as the reference mapping approach. For benchmarks Chan-
nelVocoder, DCT, MP3 and FMRadio, their actors which are
assigned to PE type of clusters have very similar workload,
hence evenly distributing heavy tasks by the KYD approach can
find the energy efficient mapping as our FDM approach does.
For benchmark Vocoder, only two heavy tasks are assigned
to PE clusters and running them on different clusters leads
to energy efficiency, so the KYD approach can find the best
mapping by mapping these two tasks to two different clusters
as our FDM approach does.

The results are summarized in Table X. We can see that the
average energy reduction of the three MPSoCs is 6.3% for the
MPSoC with 2 processors per cluster, 8.5% for the MPSoC
with 4 processors per cluster, and 9.4% for the MPSoC with 8
processors per clusters. The maximum energy reduction is 19%
in benchmark Beamformer for 2 processors per cluster, 21%
and 34% in benchmark DES for 4 processors per cluster and 8
processors per cluster, respectively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

ChVocoder

DCT
DES

FFT
FM

Radio

M
P3

M
PEG

Serpent

TDE
Vocoder

E
n

er
g

y
 R

ed
u

ct
io

n

MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Fig. 6: FDM+DVFS vs. Algorithm 1+KYD+DVFS

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

ChVocoder

DCT
DES

FFT
FM

Radio

M
P3

M
PEG

Serpent

TDE
Vocoder

E
n

er
g

y
 R

ed
u

ct
io

n

MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Fig. 7: FDM+DVFS vs. KYD+DVFS on homo MPSoCs

C. Comparison with [11] on Homogeneous MPSoCs

The KYD approach [11] is originally proposed for cluster
homogeneous MPSoCs. In order to have a fair comparison,
we apply our FDM approach to homogeneous MPSoCs and
compare it with the KYD approach to show the efficiency of our
FDM approach. Since we need to guarantee the throughput and
latency constraints shown in Table VII, running the benchmarks
on a cluster homogeneous MPSoC comprised of EE clusters
will violate the performance constraints. Thus, we only map the
applications to the PE clusters available in the cluster MPSoCs
described in Table VIII, thereby considering cluster homoge-
neous MPSoCs that can meet the performance constraints for
every application.

Fig. 7 depicts the energy reduction of each benchmark
mapped on the three different MPSoCs by only using the PE
clusters. In Fig. 7, we see that for benchmark Vocoder on
platform ’MPSoC 2 20 28’, the mapping derived by our FDM
approach consumes 3% more energy than the KYD approach.
With this fine granularity of the cluster size, i.e, the small
number of processors per cluster, benchmark Vocoder has a
lot of mapping possibilities. Since the KYD has a design space
exploration which enables to explore more mappings and our
FDM only improves the mapping generated by the FFD heuris-
tic, in the case of benchmark Vocoder our FDM does not find
a more energy efficient mapping compared to KYD. However,
except benchmark Vocoder on platform ’MPSoC 2 20 28’,
our FDM approach outperforms the KYD in all other cases by
finding more energy efficient mappings.

The results of this experiment are summarized in Table XI.
We see that for different MPSoCs our FDM approach can reduce
the energy consumption by an average of 10%, 16.6% and
18.5%. The maximum reduction occurs for benchmark Serpent
which is 31% and 34% for the MPSoCs with 2 and 4 processors
per cluster, respectively. For the MPSoC with 8 processors
per cluster, benchmark Bitonicsort has the maximum energy
reduction which is 38%.

TABLE XI: Summary of Fig. 7

2 procs 4 procs 8 procs

FDM+DVFS average 10% 16.6% 18.5%
Max energy reduction 31% 34% 38%

VII. CONCLUSIONS

In this paper, we proposed a polynomial time algorithm to
energy-efficiently map real-time streaming applications with
latency and throughput constraints to cluster heterogeneous
MPSoCs. Compared with existing approaches on cluster het-
erogeneous MPSoCs and cluster homogeneous MPSoCs, the
experimental results show that our proposed approach outper-
forms the existing approaches by finding a more energy efficient
mapping. Our approach can save up to 34% and 38% more
energy on the cluster heterogeneous MPSoCs and the cluster
homogeneous MPSoCs, respectively.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of Information Processing. North-Holland, 1974.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[3] G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. Signal Process.,
vol. 44, no. 2, pp. 397–408, 1996.

[4] A. K. Singh et al., “Mapping on multi/many-core systems: survey of
current and emerging trends,” in DAC, 2013.

[5] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in ISLPED, Aug 2007.

[6] ARM, “http://www.arm.com.”
[7] J. Howard et al., “A 48-core ia-32 message-passing processor with dvfs

in 45nm cmos,” in ISSCC, Feb 2010, pp. 108–109.
[8] R. Kumar et al., “Single-isa heterogeneous multi-core architectures: the

potential for processor power reduction,” in MICRO, 2003.
[9] Exynos 5422, “http://www.samsung.com/.”

[10] A. Colin et al., “Energy-efficient allocation of real-time applications
onto heterogeneous processors,” in RTCSA, 2014.

[11] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-time
tasks on cluster-based multicores,” in DATE, March 2011, pp. 1–6.

[12] W. Thies et al., “An empirical characterization of stream programs and
its implications for language and compiler design,” in PACT, 2010.

[13] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, p. 35, 2011.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, 1979.

[15] J. Anderson and A. Srinivasan, “Pfair scheduling: beyond periodic task
systems,” in RTCSA, 2000.

[16] H. Cho et al., “An optimal real-time scheduling algorithm for multipro-
cessors,” in RTSS, 2006.

[17] A. Bastoni et al., “An empirical comparison of global, partitioned, and
clustered multiprocessor edf schedulers,” in RTSS, 2010.

[18] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms,” in RTCSA, 2007.

[19] A. K. Singh et al., “Energy optimization by exploiting execution slacks
in streaming applications on multiprocessor systems,” in DAC, 2013.

[20] R. Xu et al., “Energy-aware scheduling for streaming applications on
chip multiprocessors,” in RTSS, 2007, pp. 25–38.

[21] Y. Wang et al., “Overhead-aware energy optimization for real-time
streaming applications on multiprocessor system-on-chip,” TODAES,
2011.

[22] G. Chen et al., “Energy optimization with worst-case deadline guarantee
for pipelined multiprocessor systems,” in DATE, 2013.

[23] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in EMSOFT,
2011.

[24] M. Bamakhrama et al., “A methodology for automated design of hard-
real-time embedded streaming systems,” in DATE, 2012, pp. 941–946.

[25] J. T. Zhai et al., “Exploiting just-enough parallelism when mapping
streaming applications in hard real-time systems,” in DAC, 2013.

[26] S. K. Baruah et al., “Proportionate progress: A notion of fairness in
resource allocation,” in STOC, 1993.

[27] ODROID, “http://www.hardkernel.com/.”
[28] V. Gupta et al., “The forgotten ’uncore’: On the energy-efficiency of

heterogeneous cores,” in USENIX ATC, 2012.
[29] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor

real-time systems,” in IPDPS, 2003, p. 113.
[30] S. Stuijk et al., “SDF3: SDF For Free,” in ACSD, June 2006, pp. 276–

278.

