
Enabling Cognitive Autonomy on Small Drones by

Efficient On-board Embedded Computing:

An ORB-SLAM2 Case Study

Erqian Tang, Sobhan Niknam, Todor Stefanov

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, the Netherlands

e.tang@liacs.leidenuniv.nl, s.niknam@liacs.leidenuniv.nl, t.p.stefanov@liacs.leidenuniv.nl

Abstract—In this paper, we present a case study which in-
vestigates whether/how Simultaneous Localization and Mapping
(SLAM), e.g., the ORB-SLAM2 application, can be executed
on a small, energy-efficient, multi-processor embedded platform
with an ARM big.LITTLE architecture, e.g., the ODROID-XU4
platform, mounted on a small drone with a limited energy
budget while meeting real-time performance requirements. More
specifically, we model and implement ORB-SLAM2 as a Kahn
Process Network (KPN) which exploits pipeline parallelism and
enables efficient mapping and execution of ORB-SLAM2 onto
ODROID-XU4. Moreover, our KPN model enables the appli-
cation of generic model transformations to exploit data-level
parallelism as well. Then, we propose and implement, on top
of the Linux operating system, an environment for efficient
execution of applications modeled as KPNs. Finally, we perform
a simple design space exploration (DSE) to investigate the trade-
off between system performance and power consumption when
alternative ORB-SLAM2 KPNs are executed on different config-
urations of the ODROID-XU4 platform. The obtained results of
this DSE clearly show the feasibility of running ORB-SLAM2 on
ODROID-XU4 in real time with a limited power budget for a
given range of flying time, thereby enabling cognitive autonomy
on small drones.

I. INTRODUCTION

In recent years, autonomous systems are emerging in both

civil life and industrial production saving labour and providing

convenience. Unmanned Aerial Vehicles (UAV), as one im-

portant representative of autonomous systems, can be utilized

in many scenarios because of its portability and efficiency,

for example, during search and rescue missions, military

surveillance, or target detection and monitoring. UAVs can fly

to a location and provide very fast and robust reaction. When

executing missions, conventional UAVs often rely on a sensing

system composed by an Inertial Measurement Unit (IMU) and

the Global Positioning System (GPS). This technology is now

also available in small UAVs, such as drones, for professional

or recreational applications. However, GPS information is

not sufficiently precise for altitude regulation when a small

drone flies a few meters above the ground and is not always

available or reliable in confined areas, such as cities, forests

and buildings. Even if reliable GPS information was available,

it would need to be combined with a precise map of the drone

surroundings in order to identify obstacle-free trajectories [1].

Cognitive autonomy is a possible solution to the aforemen-

tioned problems. Relying on images captured by an on-board

camera, a vision-based navigation method, called Simultane-

ous Localization and Mapping (SLAM) [2], enables to place

an autonomous vehicle at an unknown location in an unknown

environment, to build a map by only relative observations of

the environment while the vehicle moves, and then to use

this map simultaneously to navigate [3]. Typically, for real-life

applications, the required image processing speed of SLAM

is in the range of 10 to 20 frames per second (fps) where

the typical size of a frame is around 3 MB [4], [5], [6], [7],

[8]. However, due to its heavy computation workload, it is a

challenge to implement and run SLAM in real time at 10 to

20 fps on-board of a small drone with limited energy budget

and computational resources. One possible solution to this

challenge is to execute SLAM off-board [9] by transmitting

the images captured by the on-board camera to a ground

station and run SLAM on a powerful computer/server. For

example, when executing the SLAM parallel implementation

given in [10], [11] on a desktop environment with 4 Intel

Cores i7-6500U CPU @ 2.5GHz and 16GB RAM, the SLAM

performance is 22 fps which is sufficient for real-time applica-

tions. Unfortunately, this solution may significantly limit the

operational range of a drone due to limited transmission ability

of the radio [12]. Moreover, some transmission latency exists

inevitably which may influence negatively the system real-time

performance. To avoid the above mentioned problems, another

solution is to equip the small drone with a powerful embedded

computing platform which enables the execution of SLAM on-

board. For example, we can exploit GPU-based acceleration

of SLAM on the Jetson TX2 embedded platform as in [13]

or acceleration on FPGA-based platform as in [14] which

gives the required real-time SLAM performance. However,

such methods consume significant amount of power which

cannot meet a limited power budget of 9 to 12 W (see in

Section VI.B where this limited power budget comes from),

available for SLAM, in order to enable small drones to fly 19

to 20 minutes on a typical small drone battery where a lot of

power consumption goes to the motors.

Therefore, in this paper, we investigate whether/how SLAM

can be implemented and executed on a small, energy-efficient,

multi-processor embedded platform with an ARM big.LITTLE

architecture [15] while meeting the real-time performance

requirement of 10 to 20 fps with the power budget of 9 to

12 W. The specific SLAM, considered in this paper, is the

108

2019 22nd Euromicro Conference on Digital System Design (DSD)

978-1-7281-2862-7/19/$31.00 ©2019 IEEE
DOI 10.1109/DSD.2019.00026

ORB-SLAM2 application [10], [11] because it is a versatile,

complete, and the most accurate SLAM method supporting

monocular, stereo, and RGB-D cameras, thus it is very suitable

for use on UAVs including small drones. More specifically, the

paper contributions are summarized as follows:

• We propose and realize a parallel implementation of the

ORB-SLAM2 application using the Kahn Process Net-

work (KPN) [16] model of computation. To the best

of our knowledge, our work is the first to utilize the

KPN model on SLAM. Having ORB-SLAM2 modelled

and implemented as a KPN enables efficient mapping

and execution of SLAM onto embedded multi-processor

platforms as well as it enables the application of KPN

model transformations [17], [18] to exploit different forms

of parallelism thereby increasing the performance of the

SLAM method on embedded multi-processor platforms.

• As a consequence of the above contribution, we show

how to apply state-of-the-art and generic KPN model

transformations such as process replication and splitting

in order to exploit data-level and pipeline parallelism. By

doing this, we can increase the performance of ORB-

SLAM2 up to 18.21 fps on the existing popular embedded

platform ODROID-XU4 [19] which is based on the ARM

big.LITTLE multi-process architecture. Our achieved per-

formance (up to 18.21 fps) is up to 3.72 times higher

than the performance (around 4.9 fps) of the existing

open-source thread-based parallel implementation of ORB-

SLAM2 executed by us on the same platform.

• We propose and implement, on top of the Linux oper-

ating system, an environment for efficient execution of

applications modelled as KPNs. We use this environment

to do real implementations and tests of ORB-SLAM2 on

the ODROID-XU4 platform and to obtain all experimental

results presented in this paper.

• By using the three aforementioned contributions, we per-

form a simple design space exploration (DSE) to investi-

gate the trade-off between system performance and power

consumption when alternative ORB-SLAM2 KPNs are

executed on different configurations of the ODROID-XU4

platform. The obtained results of this DSE clearly show

that it is possible to run SLAM on a small embedded

platform in real time (10 to 20 fps) with a limited power

budget of 9 to 12 W, thereby enabling cognitive autonomy

on small drones.

The remainder of the paper is organized as follows: Sec-

tion II gives an overview of the related work. Section III gives

background information including details about the embedded

platform we use and the ORB-SLAM2 application we work

on. Section IV presents the KPN model and transformations

on ORB-SLAM2. Section V introduces our execution envi-

ronment for KPNs. Section VI presents our DSE and obtained

results. Finally, Section VII ends the paper with conclusion.

II. RELATED WORK

To the best of our knowledge, our work is the first trying

to efficiently implement and run the ORB-SLAM2 application

on a multi-processor embedded platform based on the ARM

big.LITTLE architecture. Therefore, in this section, we discuss

some related works of implementing the ORB-SLAM2 appli-

cation on other embedded platforms. Moreover, we consider

that SLAM acceleration is very important in order to enable

cognitive autonomy on small drones which is also one of our

major contributions. So, we also discuss some related works

on accelerating the SLAM algorithm itself.

Bourque [13] utilizes GPU devices on Jetson TX2 to enable

on-board real-time visual ORB-SLAM. For the bottleneck

Tracking thread, he moves the computational intensive part to

the GPU by using asynchronous CUDA kernels for efficient

acceleration. This approach achieves performance of up to

14.51 fps, on average, which meets real-time performance

requirements. However, [13] does not consider the system

power consumption. GPU devices consume a lot of power

when doing large scale parallel computation which may cause

reduced flying time for a small UAV system with limited

energy budget. In contrast, we utilize the KPN model and

its transformations for the ORB-SLAM implementation on a

multi-process system. Our work on ORB-SLAM can achieve

performance of up to 18.21 fps with only 8 processor cores.

Moreover, we are able to perform DSE, thereby investigating

the trade-off between system performance and power con-

sumption and finding a system configuration with real-time

performance and limited power budget for a given range of

flying time.

Fang et al. [14] considers both real-time performance and

power consumption when implementing and running ORB-

SLAM. FPGA-based hardware is designed for dealing with

the feature extraction computation - the most heavy task of

ORB-SLAM. At the same time, as the FPGA hardware system

consumes much energy when running, the system clock is set

to only 203 MHz in order to meet the energy budget. However,

the energy consumption of 5.6W is calculated only for this

particular feature extraction hardware accelerator instead of

the whole ORB-SLAM system. The energy consumption of

the whole SLAM system including the un-accelerated parts

executed on ARM processors still exceeds the energy budget

limitation, in which case, it still cannot be utilized on a

small drone. In contrast, our method balances acceleration

and energy consumption for the whole SLAM system and is

more credible and useful when running applications on a small

drone. What is more, our method is based on software design

and is more flexible when doing transformations like process

replication and communication channel assignment. At the

same time, we utilize the KPN model and its transformations

on top of Linux, so our method is an application and platform

agnostic method which can be easily utilized on other similar

embedded platforms. Please note that some existing tool flows,

e.g., Daedalus [20], [21], can automatically parallelize a given

sequential application and provide the parallel KPN model

of the application. However, these tool flows impose certain

restrictions for a given application source code as input, e.g.,

an application written as a static affine nested loop program

(SANLP) in C in Daedalus, and using such existing tool flows

109

for parallelizing complex applications, e.g., SLAM written

in C++, is either time consuming or infeasible. Therefore,

manual parallelization is necessary and inevitable for complex

applications.

Some researchers have attempted to accelerate SLAM by

reducing the complexity of the algorithm itself. For example,

DP-SLAM [22] is an algorithm based on distributed particle

mapping instead of traditional predetermined landmarks. Real-

time performance and accuracy are achieved. However, this

algorithm cannot be utilized on a small drone due to its

dependency on a laser range finder - a relatively heavy

weight equipment (appropriate for a ground autonomous robot

systems) that cannot be mounted on small drones. In contrast,

our approach can be utilized on a small drone because the

ORB-SLAM2 application relies only on a monocular on-board

camera, which is much lighter and can be easily carried by a

small drone into the sky.

Any SLAM algorithm relies on a place recognition pro-

cedure [23]. A fast place recognition technique is presented

in [24], detecting loop closure of the real-time position of

a moving robot and establishing feature point correspondence

between image sequences in real time by only using a conven-

tional CPU and a single camera. Both reliability and efficiency

of the localization and the building of a map are shown

on very different public datasets depicting indoor, outdoor,

static and dynamic environments. However, this approach has

a limitation when applied on small drones because the fast

place recognition technique cannot handle severe situations

like inevitable vibration and drastic movement of a small

drone. The reason is that this technique lacks rotation and scale

invariance for an image sequence. This limits the flying speed

and movement amplitude of a small drone to a large extent. In

contrast, the ORB-SLAM2 application, we use, has a complete

feature point correspondence between images which makes a

small drone relatively robust in unstable situations caused by

drastic movement, vibration, and high speed.

III. BACKGROUND

In this section, we introduce the hardware platform, the

functionality/open source reference implementation of the

ORB-SLAM2 application we consider, as well as the EuRoC

MAV Dataset we utilize when performing experiments.

A. Hardware Platform

ODROID-XU4 [19] is the heterogeneous multi-processing

embedded platform, we use, to execute our application, to

increase the performance, and to explore the design space

in order to find the trade-off between the system real-time

performance and power consumption. The ODROID-XU4 has

the Samsung Exynos5422 chip, where there are two clusters

on the chip, one quad core Cortex-A15 (big) and one quad

core Cortex-A7 (LITTLE). The big core runs at a maximal

frequency of 2.0 GHz and is considered as performance-

efficient core. The LITTLE core runs at a maximal frequency

of 1.4 GHz and is considered as energy-efficient core. Basi-

cally, this ARM big.LITTLE architecture is utilized on many

portable devices like mobile phones and robots. The cores in

each cluster operate at the same voltage and frequency level.

The voltage and frequency level of a cluster can be changed

within a specific range. Different combinations of utilized

big.LITTLE cores and operating frequencies give us a diversity

of possible system configurations to perform DSE in order

to find configurations with system performance and power

consumption which meet our requirements. Therefore, in this

paper, we utilize ODROID-XU4 as our hardware platform for

obtaining real-world and credible experimental results.

B. Application

ORB-SLAM2 [10], [11] is a versatile and accurate, com-

plete SLAM application supporting monocular, stereo, and

RGB-D cameras which are commonly used in automation

and robotic systems. It is an ORB feature-based method [25].

ORB are binary features invariant to rotation and scale (in a

certain range), resulting in a very fast feature recognition with

good invariance to view points. Thus, ORB-SLAM2 guaran-

tees efficiency when computing and matching feature points

for every frame in an image sequence. This ORB-SLAM2

application first pre-processes the input image sequence to

extract ORB features, and then the same ORB features are used

in the following image processing tasks. In general, there are

three main tasks in the ORB-SLAM2 application: Tracking,

Local Mapping, and Loop Closing. Tracking is responsible

for localizing a robot with the help of finding feature matches

in every frame by comparing the current frame features with

previously extracted ORB features stored in a local map. Also,

it decides when to insert a new key frame for the whole map.

Local Mapping takes over the new key frames and perform

local Bundle Adjustment [26] to reconstruct the surrounding

environment optimally. Loop Closing searches for loops in a

robot movement path by analyzing every new key frame. If a

loop is detected, a similarity transformation is then performed,

and accumulated drift in the robot path is reported to the

SLAM system for correction. In this way, a run-time accurate

algorithm is provided.

When this ORB-SLAM2 application is implemented as

described in [11], Tracking, Local Mapping, and Loop Closing

are realized as three main threads that run concurrently. These

three threads constitute the SLAM system, as shown in Fig.1.

For each frame entering the SLAM system, only task-level

parallelism is exploited when the frame is processed. However,

neither data-level nor pipeline parallelism is exploited to

process multiple frames simultaneously.

Even though the ORB-SLAM2 application supports various

input sensors like monocular, stereo, and RGB-D cameras, our

study considers only a monocular camera because it is light

enough to be installed on a small drone. The evaluation on

29 popular public datasets shows that ORB-SLAM2 is able

to achieve state-of-the-art accuracy, thereby being the existing

most accurate SLAM solution in most cases and is suitable

for UAV computer vision.

110

SLAM system

Tracking

LocalMapping

LoopClosing

Fig. 1: Original SLAM [11]

LoadImages
(LI)

FIFO0

Map
Tracking

(T)
FIFO1

LocalMapping
(LM)

FIFO2

LoopClosing
(LC)

Fig. 2: KPN model of ORB-SLAM2

C. Datasets

For our experiments, we use the EuRoC MAV Dataset

[27], designed by the autonomous system lab of ETH Zurich.

It contains images, synchronized IMU measurements, and

accurate motion and structure ground-truth. This dataset is

captured by a real drone in an indoor environment, thus it

is very suitable for our case study.

IV. KPN MODEL AND TRANSFORMATIONS

In this section, we explain our KPN model and the trans-

formations, we apply on the ORB-SLAM2 application.

A. KPN Model of ORB-SLAM2

In order to exploit efficiently the parallelism available in

ORB-SLAM2 by processing multiple frames simultaneously,

we propose and realize a parallel implementation of the ORB-

SLAM2 application using the KPN model of computation.

The KPN model of computation is a network of concurrent

autonomous processes that communicate data in a point-to-

point fashion over FIFO channels, using blocking read/write

synchronization primitives. The read primitive blocks the exe-

cution of a process if the current channel from which a process

reads data is empty. Similarly, the write primitive blocks the

execution of a process if the current channel to which a process

writes data is full. In this way, the autonomous concurrent

processes of the KPN model operate and synchronize based

on the status (full/empty) of the communication channels.

Our specific KPN model of ORB-SLAM2 is shown in Fig.

2 and it consists of four main processes, namely, LoadImages

(LI), Tracking (T), LocalMapping (LM), and LoopClosing

(LC). They are connected via three communication channels,

namely, FIFO0, FIFO1, and FIFO2. Also, a shared memory is

accessible to all four processes. Each process in the network

is specified as a sequential program that executes concurrently

with other processes. Process LoadImages reads an image

sequence captured by a camera and formats the image data

for further processing. Please note that LoadImages is a part

of the Tracking process in the original SLAM shown in

Fig. 1. However, to improve the application performance,

we split the Tracking process in the original SLAM into

two processes LoadImages and Tracking that are executing

in pipeline fashion. The computation part of the following

processes, Tracking, LocalMapping, and LoopClosing, is sim-

ilar to the one explained in Section III.2. When executing,

these processes produce key frames, key feature map points,

and a covisibility graph which together constitute a Map of

the surrounding environment. This Map is stored and updated

in the shared memory during image sequence processing.

Writing data to the map is synchronized by mutexes to avoid

conflicts. At the same time, the key frames are the only data

tokens communicated between processes via the FIFOs. No

data tokens are communicated between different processes via

(hidden) global shared memory structures.

Our KPN model of the ORB-SLAM2 application has the

following favourable characteristics:

• It is deterministic, which means that irrespective of the

chosen schedule to execute the processes, always the

same input/output relation exists. This gives us a lot of

scheduling freedom that we can exploit when mapping and

executing the processes onto a multiprocessor system.

• The inter-process synchronization is done by a blocking

read and a blocking write on FIFO channels. This is a

very simple synchronization protocol that can be realized

easily and efficiently in hardware or software.

• Different processes of the KPN model can run au-

tonomously and explicitly communicate/synchronize via

the communication FIFO channels. No data tokens are

communicated between different processes via other hid-

den channels. Therefore, a generic transformation such

as process replication can be easily, systematically, and

effectively applied on our KPN model.

Compared with the ORB-SLAM2 implementation in [11],

very briefly described in Section III.2, which exploits only

task-level parallelism inside one frame, our KPN model of

ORB-SLAM2 in Fig. 2 exploits pipeline parallelism by pro-

cessing multiple frames simultaneously, i.e., four frames are

processed at the same time. As a consequence, our KPN model

of ORB-SLAM2 achieves accelerated performance of up to

7.1 fps compared to 4.9 fps of the original ORB-SLAM2 in

Fig. 1. For a real-world scenario with a small drone, this

improved performance is still insufficient to meet the real-

time performance requirement of 10 to 20 fps. However,

our KPN model of ORB-SLAM2 allows to apply generic

transformations for further acceleration.

B. Transformation of ORB-SLAM2 KPN model

In our initial KPN model of ORB-SLAM2 in Fig. 2, there

are four processes in the main pipeline utilizing four CPU

cores when executed on the ODROID-XU4 platform. Given

the fact that further acceleration of ORB-SLAM2 is needed

to reach real-time performance and only 4 out of the 8 CPU

cores on ODROID-XU4 are utilized, we transform our KPN

model by replicating bottleneck processes in order to create

more parallel processes, thereby speeding up the computations.

By monitoring the status of FIFO0, FIFO1 and FIFO2 in our

initial KPN model of ORB-SLAM2, we find that the LoadIm-

ages process is blocked most of the time on writing to FIFO0

111

1,4,7...3n-2

3,6,9...3n

1,4,7...3n-2

2,5,8...3n-1 2,5,8...3n-1

3,6,9...3n

T2LI

T1

T3

LM1

LM2

LM3

LC

Fig. 3: Transformed KPN model

because FIFO0 is constantly full, as well as the LoopClosing

process is blocked most of the time on reading from FIFO2

because FIFO2 is constantly empty. This means that processes

Tracking and LocalMapping are the bottleneck processes in the

pipeline. Therefore, we replicate each bottleneck process twice

in order to fully utilize the 8 CPU cores on ODROID-XU4

by having 8 concurrent processes as shown in Fig. 3. By this

KPN model transformation, data-level and pipeline parallelism

is exploited when executing our transformed model. This is

because 8 frames are processed simultaneously, compared to

only 4 frames in our initial KPN model shown in Fig. 2.

After loading images and formating them into frames,

process LoadImages distributes the frames to the replicas of

the Tracking processes. As shown in Fig. 3, from LoadImages

(LI) to Tracking 1 (T1), Tracking 2 (T2), and Tracking 3

(T3), we distribute the frames of the input sequence alter-

nately. Then, when the frames are processed by Tracking and

LocalMapping, they will be collected by LoopClosing (LC) at

the end of the pipeline in exactly the same order.

When our transformed KPN model in Fig. 3 is executed

in the ODROID-XU4 platform, we map the processes to the

CPU cores as follows: LoadImages (LI), Tracking 1 (T1),

LocalMapping 1 (LM1), and LoopClosing (LC) are mapped on

the four big cores. Tracking 2 (T2), LocalMapping 2 (LM2),

Tracking 3 (T3), and LocalMapping 3 (LM3) are mapped on

the four LITTLE cores. By doing this, all of the 8 cores on

the ODROID-XU4 platform are fully utilized and the system

performance reaches 18.21 fps, thereby meeting our real-time

performance requirement of 10 to 20 fps.

Thanks to our KPN model of ORB-SLAM2 and the pos-

sibility to apply transformations on it, if more CPUs are

available, for example on other hardware platforms, we can

easily and fully utilize them to get the maximum performance

out of the platform by continuing to transform the model and

revealing/exploiting more parallelism.

V. EXECUTION ENVIRONMENT FOR KPNS

In this section, we present the execution environment, we

have designed and developed, for specifying an application as

a KPN and running it on top of Linux. First, in Section V.1,

we describe how a KPN topology is specified by creating

FIFOs and processes, connecting them, and launching the

execution of the specified KPN. Second, we give more details

on how the functional behavior of a KPN process is specified

in Section V.2. Finally, in Section V.3, we show how the

FIFO communication and blocking read/write synchronization

mechanism between KPN processes is realized by introducing

Listing 1: Example of KPN topology specification

1 vo id main (i n t a rgc , c h a r ** a rgv) {
2 / * C r e a t e FIFO0 * /
3 s i z e f i f o 0 i n t o k e n s = 1 0 ;
4 s i z e t o k e n 0 = s i z e o f (KeyFrame) / s i z e o f (i n t)

+(s i z e o f (KeyFrame)%s i z e o f (i n t)
+(s i z e o f (i n t)−1)) / s i z e o f (i n t) ;

5 s i z e f i f o 0 = s i z e f i f o 0 i n t o k e n s *
s i z e t o k e n 0 ;

6 / / A l l o c a t e memory f o r FIFO0
7 f i f o 0 = c a l l o c (s i z e f i f o 0 +2 , s i z e o f (i n t)) ;
8 / * C r e a t e FIFO1 and FIFO2 * / { . . . }
9 / * C r e a t e and l a u n c h p r o c e s s T r a c k i n g * /

10 t h r e a d I n f o . c o r e i d = 1 ;
11 t h r e a d I n f o . inFIFO = f i f o 0 ;
12 t h r e a d I n f o . outFIFO = f i f o 1 ;
13 t h r e a d I n f o . s i z e t o k e n i n F I F O = s i z e t o k e n 0 ;
14 t h r e a d I n f o . s i z e t o k e n o u t F I F O = s i z e t o k e n 1

;
15 t h r e a d I n f o . s i z e i n F I F O = s i z e f i f o 0 ;
16 t h r e a d I n f o . s i z e o u t F I F O = s i z e f i f o 1 ;
17 t h r e a d T r a c k i n g (& Track ing , &t h r e a d I n f o) ;
18 / * C r e a t e and l a u n c h p r o c e s s ReadImages ,

LocalMapping , and LoopClos ing * / { . . . }
19 / * F i n a l p r o c e s s s y n c h r o n i z a t i o n * /
20 ReadImages . j o i n () ; T r a c k i n g . j o i n () ;
21 LocalMapping . j o i n () ; LoopClos ing . j o i n () ;}

the software read/write communication and synchronization

primitives we have designed.

A. KPN topology specification and launching

The topology of a KPN model is specified using the C++

language in the top-level main() function and consists of

three main parts. The first part specifies the creation of all

FIFOs and the allocation of memory for them. Taking data

type int to be the minimum data unit which can be stored in

a FIFO, the size of the FIFO is calculated and the necessary

memory is allocated using the standard calloc() function.

The second part specifies the connections of the created FIFOs

to KPN processes as well as the creation and launching of the

processes as threads. We use POSIX Threads (Pthreads) [28]

and the corresponding API integrated in Linux. Finally, in the

third part, we synchronize the different threads by waiting for

all of them to finish before exiting the main program.

Consider the KPN model of ORB-SLAM2 in Fig. 2 as an

example. The KPN topology specification and launching is

illustrated in Listing 1. Firstly, we create and set parameters

for the three FIFOs (see Lines 2 to 8). For example, consider

FIFO0 specified in Lines 2 to 7. We set the required size of

FIFO0 in number of data tokens as shown in Line 3. Then

the size in int of one token (in this example a complex

data object KeyFrame) is calculated as shown in Line 4.

Having these two parameters, we can calculate the size of

FIFO0 in number of int (Line 5) and allocate the necessary

memory (Line 7) for FIFO0 by calling the standard function

calloc() provided in Linux. Here, we allocate two more

memory cells for FIFO0 in order to store the read/write

112

Listing 2: Example of KPN process specification

1 vo id T r a c k i n g (vo id * t h r e a d a r g) {
2 t h r e a d I n f o = (t h r e a d I n f o *) t h r e a d a r g ;
3 s e t a f f i n i t y (t h r e a d I n f o . c o r e i d) ;
4 w h i l e (1) {
5 / * r e a d d a t a from FIFO and s t o r e i n CPU * /
6 readSWF CPU (t h r e a d I n f o . inFIFO ,

memobj cpu , t h r e a d I n f o . s i z e t o k e n i n F I F O ,
t h r e a d I n f o . s i z e i n F I F O) ;

7 / * Computa t ion p a r t o f T r a c k i n g * / { . . . }
8 / * w r i t e d a t a from CPU t o FIFO * /
9 writeSWF CPU (t h r e a d I n f o . outFIFO ,

memobj cpu , t h r e a d I n f o . s i z e t o k e n o u t F I F O ,
t h r e a d I n f o . s i z e o u t F I F O) ; }}

pointers explained in Section V.3. The creation of FIFO1 and

FIFO2 is done in the same way as described above. Secondly,

we create and launch the four processes as threads in Lines

9 to 18. For example, consider process Tracking specified in

Lines 10 to 17. We define a data structure threadInfo to

store several items, needed to launch the process and connect

it to FIFOs, including core_id, inFIFO, and outFIFO.

core_id specifies on which CPU core process Tracking

should run (Line 10). inFIFO and outFIFO are pointers

to the FIFO channels connected to process Tracking, for

reading and writing data tokens, respectively (see Lines 11

to 16). Process Tracking is created and launched as Pthread

Tracking in Line 17. The data structure threadInfo and a

pointer to function Tracking(), explained in Section V.2,

are the two parameters passed to Pthread Tracking. We follow

the aforementioned approach to create and launch the other

processes (ReadImages, LocalMapping, and LoopClosing).

Finally, in order to make sure that all processes finish before

exiting from the main program, we use the thread.join()

method, provided by the Pthread API (see Lines 19 to 21).

B. Behaviour specification of KPN processes

The functional behaviour of a KPN process is specified

in C++ as a function. The data structure threadInfo,

explained in Section V.1, is the only parameter passed to

the function. Within the function, there are no limitations

on the C++ code that can be used to describe the com-

putation done by the process. However, the process must

communicate data tokens and synchronize with other pro-

cesses by using only our read/write software primitives

introduced in Section V.3. Consider again process Tracking

in Fig. 2 as an example. Listing 2 shows how we specify

its functional behavior. Firstly, we instruct Linux on which

CPU core to run process Tracking by setaffinity() in

Line 3. Then, process Tracking starts a while loop to do

its computation (in Lines 4 to 9). Inside the loop, process

Tracking reads a data token from FIFO0 (inFIFO) and stores

it to local memory memobj_cpu (Line 6), does computation

(Line 7), and writes data from local memory memobj_cpu

to FIFO1 (outFIFO)(Line 9). Our software primitives

readSWF_CPU() and writeSWF_CPU() are used for

Listing 3: Read Primitive

1 vo id readSWF CPU (vo id * pFIFO , vo id * memobj cpu
, i n t s i z e t o k e n , i n t s i ze FIFO) {

2 w h i l e (((i n t *) pFIFO) [0] = = ((i n t *) pFIFO) [1])
3 { p t h r e a d y i e l d () ;}
4 i n t r c n t = ((i n t *) pFIFO) [1] ;
5 f o r (i n t i =0 ; i<s i z e t o k e n ; i ++){
6 ((i n t *) memobj cpu) [i]=

((i n t *) pFIFO) [(r c n t & 0x7FFFFFFF) +2+ i] ; }

7 r c n t += s i z e t o k e n ;
8 i f ((r c n t & 0x7FFFFFFF) == s ize FIFO) {
9 r c n t &= 0 x80000000 ; r c n t ˆ= 0 x80000000 ;}

10 ((i n t *) pFIFO) [1] = r c n t ;}

Listing 4: Write Primitive

1 vo id writeSWF CPU (vo id * pFIFO , vo id *
memobj cpu , i n t s i z e t o k e n , i n t
s i ze FIFO) {

2 w h i l e (((i n t *) pFIFO) [1]==
(i n t) (((i n t *) pFIFO) [0] ˆ 0 x80000000))

3 { p t h r e a d y i e l d () ;}
4 i n t w cnt = ((i n t *) pFIFO) [0] ;
5 f o r (i n t i =0 ; i<s i z e t o k e n ; i ++){
6 ((i n t *) pFIFO) [(w cnt&0x7FFFFFFF) +2+ i]=

((i n t *) memobj cpu) [i] ; }
7 w cnt+= s i z e t o k e n ;
8 i f ((w cnt & 0x7FFFFFFF) == s ize FIFO) {
9 w cnt &= 0 x80000000 ; w cnt ˆ= 0 x80000000 ;}

10 ((i n t *) pFIFO) [0] = w cnt ;}

data communication and synchorinization. readSWF_CPU()

blocks the execution of process Tracking when inFIFO

is empty and writeSWF_CPU() blocks the process when

outFIFO is full. If the process is blocked, the control is

returned back to Linux to try to execute other processes

mapped on the same CPU core or to continue executing the

currently blocked process later when data/space is available

on its FIFOs.

C. Data Communication and Synchronization between KPN

processes

As we discussed in Section V.1 and Section V.2, we have

designed read and write primitives for data communication

and synchronization between KPN processes. These primitives

are shown in Listing 3 and Listing 4. Four parameters are

passed to the primitives, i.e., a pointer to the memory array

allocated for a FIFO (pFIFO), a pointer to local CPU memory

(memobj_cpu), the size of the data tokens communicated

via the FIFO (size_token), and the size of the FIFO

(size_FIFO). The primitives realize a FIFO as a circular

buffer [29] using the memory array (pFIFO) allocated for the

FIFO. The read and write primitives implement the read/write

access to the data stored in the circular buffer by manipulating

two pointers (write and read) to the memory array. These two

pointers are stored in the first two cells of the memory array

113

TABLE I: Mappings considered in DSE

Cortex-A15 (big) Cortex-A7 (LITTLE)

mapping core4 core5 core6 core7 core0 core1 core2 core3

map1 LI T LM LC – – – –

map2 LI T1 LM1 LC T2 LM2 – –

map3 LI T1 LM1 LC T2 LM2 T3 LM3

(pFIFO[0] and pFIFO[1]). Consider the read primitive

in Listing 3. First, it checks whether the FIFO is empty by

comparing the relative position of the read and write pointers

(Line 2). As long as the FIFO is empty, the read primitive

gives control back to Linux by pthread_yield() (Line

3). When there is data available in the FIFO, one data token

at the head of the FIFO is copied from the FIFO to the local

CPU memory in Lines 5 to 6. Finally, the position of the read

pointer (r_cnt) is updated in Lines 7 to 10 to point to the

new head of the FIFO. The write primitive in Listing 4 has

similar behaviour with the one described above.

VI. DESIGN SPACE EXPLORATION

In this section, we describe the simple DSE, we have

performed, in order to investigate the trade-off between system

performance and power consumption when alternative ORB-

SLAM2 KPNs are executed on different configurations of the

ODROID-XU4 platform. The goal of this DSE is to verify

that, thanks to our contributions presented in this paper, ORB-

SLAM2 can run on a small embedded platform in real time

(10 to 20 fps) with a limited energy budget. First, we explain

the setup for our DSE in Section VI.1. Then, in Section VI.2,

we justify the considered constraints in our DSE based on

a real-life scenario. Finally, in Section VI.3, we present the

results of our DSE.

A. DSE setup

By using our execution environment (Section V), we

map and run the ORB-SLAM2 KPN model and its trans-

formed alternatives (Section IV) onto the ODROID-XU4

small embedded platform (Section III.1) which features

an ARM big.LITTLE 8-core system, and we explore

84 system configurations. Each configuration is described

by a tuple (mapping, fbig, fLITTLE), where mapping ∈
{map1,map2,map3} is a specific KPN model of ORB-

SLAM2 mapped onto specific cores of the ARM big.LITTLE

system, fbig ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} is the fre-

quency in GHz at which the big cores run, and fLITTLE ∈
{0.8, 1.0, 1.2, 1.4} is the frequency in GHz at which the

LITTLE cores run. The three mappings map1, map2, and

map3 considered in our DSE are given in Table 1. For

example, map1 is the KPN model in Fig. 2 mapped onto the 4

big cores and map3 is the KPN model in Fig. 3 mapped onto

all 8 cores. The symbol ”–” in the table denotes an unutilized

core.

For each system configuration, we obtain its system per-

formance and average power consumption by performing real

measurement when executing ORB-SLAM2 on the ODROID-

XU4 platform. The system performance in fps is the inverse

Fig. 4: Performance-Power Consumption Trade-off

of the measured average time interval needed for processing

a single frame, using steady_clock::now() function in

Linux. The average power consumption of the ODROID-XU4

platform is Pave = (V ×
∫ t

0
I(t)dt)/t, where the current I(t) is

obtained by precisely measuring (sampling) the current drawn

by the ODROID-XU4 platform during the time interval t of the

ORB-SLAM2 execution under the platform operating voltage

V .

B. Considered constraints in DSE

By performing our DSE, we look for system configurations

where the ORB-SLAM2 performance is constrained in the

interval of 10 to 20 fps ([10, 20]fps) with a constrained

power consumption budget of 9 to 12 W ([9, 12] W). The

performance constraint of [10, 20]fps comes from the required

image processing speed of real-life applications using SLAM

as discussed in Section 1. The power consumption constraint

of [9, 12]W comes from a real-life scenario where a small

drone has to fly for 19 to 20 minutes ([19, 20]min) without

recharging the battery. In order to enable such small drone

to fly for [19, 20]min, the constrained power budget for our

ODROID-XU4 embedded platform is determined as follows.

We mount the ODROID-XU4 platform, which weight is

around 100 g, on a small quad-copter which weight is 573

g and it has 4 T-motors [30] and a total battery capacity of

1800 mAh. Thus, the total weight of the considered quad-

copter is 100 + 573 = 673g, which can be lifted in the

sky by the 4 T-motors where the power consumption of the

motors is Pmotors = 71W . Then, the power budget left for the

ODROID-XU4 platform is Podroid = (C×V)/t−Pmotors =
(1800mAh× 14.8V)/[19, 20]min− 71W = [9, 12]W , where

C is the battery capacity, t is the required flying time range,

and V is the operating voltage of the battery.

C. DSE results

In Fig. 4, we show the obtained results for all 84 system

configurations we have explored. Every point in Fig. 4 corre-

sponds to a system configuration where the X coordinate is

the system performance and the Y coordinate is the system

average power consumption. The points near the solid black

curve are the pareto-optimal design points from which we

114

TABLE II: Corresponding configurations of pareto points

Point Mapping
Frequency

System speed Average power Flying time
big LITTLE

A map3 1.8GHz 1.0GHz 17.24 fps 11.70W 19min 20s

B map3 1.8GHz 0.8GHz 16.70 fps 11.00W 19min 29s

C map3 1.6GHz 0.8GHz 15.60 fps 9.57W 19min 50s

have to select corresponding system configurations which meet

our design constraints (Section 6.2), i.e., system performance

of 10 to 20 fps and power consumption of 9 to 12 W.

All points (system configurations) within the shaded area in

Fig. 4 meet these constraints but the solid red points A, B,

and C correspond to the pareto-optimal system configurations

that we look for. These configurations are described in Table

2. For example, configuration A in Table 2 indicates that

ORB-SLAM2 achieves real-time performance of 17.24 fps

consuming 11.70 W of power which guarantees a flying time

of 19min and 20s of the quad-copter, described in Section

6.2, if the KPN model in Fig. 3 is run on the ODROID-

XU4 platform mounted on the quad-copter. For this system

configuration, the KPN processes are mapped on all ARM

big.LITTLE cores according to map3 in Table 1, and the big

and LITTLE cores run at 1.8 and 1.0 GHz clock frequency,

respectively. The obtained results of this DSE clearly show that

it is possible to run SLAM on a small embedded platform in

real time (10 to 20 fps) with a limited power budget of 9 to

12 W, thereby enabling cognitive autonomy on small drones.

VII. CONCLUSIONS

In this paper, we presented an ORB-SLAM2 case study

which clearly showed that cognitive autonomy on small drones

is possible by efficient on-board embedded computing. To

enable such cognitive autonomy, we modeled and implemented

ORB-SLAM2 as a KPN which exploits pipeline parallelism

and enables efficient mapping and execution of ORB-SLAM2

onto a small embedded multi-processor platform such as

ODROID-XU4. Moreover, our KPN model enables the appli-

cation of generic model transformations to exploit data-level

parallelism as well. As a consequence, we achieved an in-

creased performance of ORB-SLAM2 up to 18.21 fps. Finally,

the results of our DSE for performance-power consumption

trade-off showed the feasibility of running ORB-SLAM2 on

the small embedded platform ODROID-XU4 in real time (10

to 20 fps) with a limited power budget of 9 to 12 W.

REFERENCES

[1] D. Floreano and R. J Wood. Science, technology and the future of small
autonomous drones. Nature, 521(7553):460, 2015.

[2] S. Thrun. Simultaneous localization and mapping. In Robotics and

cognitive approaches to spatial mapping. Springer, 2007.

[3] M. Dissanayake et al. A solution to the simultaneous localization
and map building (slam) problem. IEEE Transactions on robotics and

automation, 2001.

[4] M. Mattamala et al. The nao backpack: An open-hardware add-on for
fast software development with the nao robot. arXiv preprint arXiv,
2017.

[5] T. Caselitz et al. Monocular camera localization in 3d lidar maps. In
IROS, 2016.

[6] S. Ross et al. Learning monocular reactive uav control in cluttered
natural environments. In ICRA, 2013.

[7] J. Langelaan and S. Rock. Towards autonomous uav flight in forests. In
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.

[8] D. Hulens et al. How to choose the best embedded processing platform
for on-board uav image processing? In VISAPP, 2015.

[9] A. Wada et al. A surveillance system using small unmanned aerial
vehicle (uav) related technologies. NEC Technical Journal, 8(1), 2015.

[10] R. Mur-Artal et al. Orb-slam: a versatile and accurate monocular slam
system. IEEE Transactions on Robotics, 31(5), 2015.

[11] R. Mur-Artal and J. D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions

on Robotics, 33(5):1255–1262, 2017.
[12] H. Chao et al. Band-reconfigurable multi-uav-based cooperative remote

sensing for real-time water management and distributed irrigation con-
trol. In IFAC World Congress, volume 17, pages 11744–11749, 2008.

[13] D. Bourque. CUDA-Accelerated Visual SLAM For UAVs. PhD thesis,
WORCESTER POLYTECHNIC INSTITUTE, 2017.

[14] W. Fang et al. Fpga-based orb feature extraction for real-time visual
slam. In ICFPT, 2017.

[15] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7.
ARM White paper, 17, 2011.

[16] K. Gilles. The semantics of a simple language for parallel programming.
Information processing, 74:471–475, 1974.

[17] S. Meijer et al. Combining process splitting and merging transformations
for polyhedral process networks. In ESTIMedia, 2010.

[18] S. Meijer et al. On compile-time evaluation of process partitioning
transformations for kahn process networks. In CODES+ISSS, 2009.

[19] Odroid. https://www.hardkernel.com.
[20] H. Nikolov et al. Systematic and automated multiprocessor system

design, programming, and implementation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2008.
[21] T. Stefanovet et al. Daedalus: System-level design methodology for

streaming multiprocessor embedded systems on chips. Handbook of

Hardware/Software Codesign, 2017.
[22] A. Eliazar and R. Parr. Dp-slam: Fast, robust simultaneous localization

and mapping without predetermined landmarks. In IJCAI, volume 3,
2003.

[23] J. H. Lee et al. Place recognition using straight lines for vision-based
slam. In ICRA, 2013.

[24] D. Gálvez-López and J. Tardos. Bags of binary words for fast place
recognition in image sequences. IEEE Transactions on Robotics, 2012.

[25] E. Rublee et al. Orb: An efficient alternative to sift or surf. In ICCV,
2011.

[26] E. Mouragnon et al. Monocular vision based slam for mobile robots.
In ICPR, 2006.

[27] M. Burri et al. The euroc micro aerial vehicle datasets. I. J. Robotics

Res., 2016.
[28] D. Butenhof. Programming with POSIX threads. Addison-Wesley

Professional, 1997.
[29] S. Bhattacharyya et al. Memory management for dataflow programming

of multirate signal processing algorithms. IEEE Trans. Signal Process-

ing, 1994.
[30] T-motor. http://store-en.tmotor.com/goods.php?id=388.

115

