
System Adaptivity and Fault-tolerance in
NoC-based MPSoCs:

the MADNESS Project Approach
Paolo Meloni∗, Giuseppe Tuveri∗, Luigi Raffo∗, Emanuele Cannella†, Todor Stefanov†, Onur Derin‡,

Leandro Fiorin‡ and Mariagiovanna Sami‡
∗Department of Electrical and Electronic Engineering

University of Cagliari, 09123 Cagliari, Italy
Email: {paolo.meloni, giuseppe.tuveri, luigi}@diee.unica.it

†LIACS, Leiden University, 2333 CA Leiden, The Netherlands
Email: {cannella, stefanov}@liacs.nl

‡ALaRI, Faculty of Informatics, University of Lugano, 6904 Lugano, Switzerland
Email: {derino, leandro.fiorin}@liacs.nl, sami@elet.polimi.it

Abstract—Modern embedded systems increasingly require
adaptive run-time management. The system may adapt the
mapping of the applications in order to accommodate the
current workload conditions, to balance load for efficient resource
utilization, to meet quality of service agreements, to avoid thermal
hot-spots and to reduce power consumption. As the possibility
of experiencing run-time faults becomes increasingly relevant
with deep-sub-micron technology nodes, in the scope of the
MADNESS project, we focus particularly on the problem of
graceful degradation by dynamic remapping in presence of run-
time faults.

In this paper, we summarize the major results achieved in the
MADNESS project until now regarding the system adaptivity
and fault tolerant processing. We report the first results of the
integration between platform level and middleware level support
for adaptivity and fault tolerance. A case study demonstrates
the survival ability of the system via a low-overhead process
migration mechanism and a near-optimal online remapping
heuristic.

I. INTRODUCTION

Designing multi-processor embedded systems, effectively
exploiting the integration capabilities provided by modern
technology processes and, at the same time, complying with
the complexity of current and future applications, is a com-
plicated activity. IP cores provided by different parties have
to be efficiently integrated and programmed exposing the
designer to a wide range of degrees of freedom. Moreover, the
landscape of applications on the market pushes the needs for
high performance and, nevertheless, requires the underlying
architecture to be flexible. The MADNESS project aims at the
definition of novel methods supporting the designer to accom-
plish the previously mentioned complex objectives. The work
envisioned within the project will result in the construction

The research leading to these results has received funding from the Eu-
ropean Community Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 248424, MADNESS Project, from ARTEMIS JU -
ASAM Project, and by the Region of Sardinia, Young Researchers Grant, PO
Sardegna FSE 2007-2013, L.R.7/2007 “Promotion of the scientific research
and technological innovation in Sardinia”.

of an integrated framework for the application-driven design
of MPSoCs. The framework, whose overview is presented
in detail in [1], will be composed of several tools and IPs,
interacting to achieve the identification and the implementa-
tion of the optimal system configuration. A relevant part of
the project is focused on Design Space Exploration (DSE),
which is supported with advanced FPGA-based prototyping
techniques. The DSE process is applied and evaluated on
industrially-relevant design cases which involve the integration
of industrial components, such as application-specific process-
ing elements and structured interconnects. With respect to
similar projects, one main point of novelty in MADNESS is
the emphasis on runtime system adaptivity and fault tolerance
as two main factors to be considered when designing the
system.
In this paper, we summarize the major results achieved

in the MADNESS project until now regarding the system
adaptivity and fault tolerance mechanisms. We report the first
results of the integration between platform level support and
middleware level support for adaptivity and fault tolerance.
A case study demonstrates the survival ability of the system
in reaction to faults in the processing elements by online
remapping mechanisms of the application tasks.

II. THE MADNESS PROJECT APPROACH

Modern embedded systems increasingly require adaptive
run-time management. The workload that a system has to
deal with cannot be completely predicted at design-time. For
example, new applications can be loaded at run-time or,
to comply with limited power and energy budget, power-
aware application management techniques are often needed,
such as the dynamic balancing of the workload between the
processing cores. Moreover, with deep-sub-micron technology,
the possibility of experiencing faults in the circuitry is sig-
nificant, requiring the system to feature support for graceful
degradation of the performance in case of malfunctioning.

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.122

301

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.122

517

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.122

517

Within MADNESS, to cope with these issues, we have
devised techniques that allow to change the mapping of the
application processes onto the processing cores at run-time.
The development of these techniques required the introduction
of dedicated support at several levels.
At the architectural level, the MADNESS approach con-

siders a distributed-memory tile-based template, where tiles
are interconnected through a NoC, to support the high flex-
ibility and scalability demands. The architectural template
is customizable in terms of the number of processors and
network topology. It has been extended with newly developed
hardware IPs that facilitate the run-time management and that
expose to the applications the needed communication and
synchronization primitives. Extensions will be described more
in detail in Section IV.
At the software level, a specific layered infrastructure has

been devised, that enables the execution of applications de-
scribed using the Polyhedral Process Network (PPN) model
of computation [2]. PPNs were chosen because their simple
operational semantics allows low-overhead management of
the state of the application tasks at run-time. The software
infrastructure, actually in charge of managing the mapping
of the PPN tasks, the communication between them and the
migration process, will be described in Section V.
Moreover, fault tolerance support has been introduced at

both software and hardware levels. The idea is to improve de-
pendability of the system by exploiting the migration method
in case of run-time faults in the processing cores. The tasks
mapped on faulty cores have to be migrated to fault-free
ones at run-time, so that the application can continue its
execution without disruption. To this aim, several extensions
to the migration mechanism are needed. Firstly, fault detection
must be enabled so that the migration can be triggered.
Secondly, given that a faulty processor cannot participate in the
remapping process, dedicated hardware is needed to ensure the
migration functionality to survive in case of malfunctioning.
Finally, a remapping decision must be taken in such a way
to incur the least performance degradation. The details of the
proposed solutions are described in Section VI.

III. RELATED WORK

A survey regarding the state-of-the-art in run-time manage-
ment is provided in [3], where system adaptivity and fault
tolerance are envisioned as important research challenges.
The infrastructure developed in our work addresses system
adaptivity and fault tolerance by allowing process remapping
at run-time. In addition, our work includes a set of heuristics
that can make remapping decisions in case of faults.
In [4], Almeida et al. describe a framework oriented to

system adaptivity which is close to our approach. In their
work, the goals of scalability and system adaptivity are
achieved using a completely distributed task migration policy
over a purely distributed-memory multiprocessor. Similar to
our approach, their platform is programmed using a process
network model of computation. However, our work is funda-
mentally different because it enables the migration to happen
at any time within the main body of the processes. This is a
basic requirement in order to allow fault tolerance, because

faults can happen at any time. By contrast, in [4] the process
migration is enabled only at fixed points during the execution
of processes.
Dynamic task remapping is also performed in [5], [6]

by means of a task migration mechanism implemented at
user-level or middleware/OS level respectively. Both these
approaches require the user to specify checkpoints in the
code at which migration can take place. In our approach
this is not needed because the state that has to be migrated
is automatically determined, thanks to the properties of the
adopted model of computation (Polyhedral Process Networks
[2]). Another difference concerns the inter-processor commu-
nication implementation. The systems considered in [5], [6]
use a shared memory paradigm to implement inter-processor
communication.We argue that our approach, which uses a pure
distributed memory, intrinsically provides better scalability.
Task remapping for reliability purposes has been investi-

gated in [7] with the goal of throughput minimization on multi-
core embedded systems. The fundamental difference from our
approach is the use of design-time analysis for all possible
scenarios and the storage of all remapping information in the
memory. We argue that this technique incurs a large memory
requirement to store all fault scenarios.
In [8], a system-level fault-tolerance technique for appli-

cation mapping, which aims at optimizing the entire sys-
tem performance and communication energy consumption, is
proposed. In particular, the authors address the problem of
spare core placement and its impact on system fault-tolerance
properties, and propose a run-time fault-aware technique for
allocating the application tasks to the available, reachable,
and fault-free cores of embedded NoC platforms. In [8],
application components running on a faulty core are migrated
altogether to available non-employed spare cores, whereas,
in our approach, tasks on the faulty core can possibly be
remapped to different fault-free cores.

IV. ARCHITECTURAL SUPPORT

As previously mentioned, in the proposed approach the
system architecture can be seen as a network of tiles, inter-
connected by means of an NoC communication infrastructure,
as depicted in Fig. 1.
The communication network is built by using an extended

version of the the ×pipes-lite library of synthesizable com-
ponents [9]. The topology can be completely arbitrary, since
it includes a fabric of routers and links that can be almost
entirely customized. Network access points are Network In-
terfaces (NI), that are in charge of constructing the packets
on the basis of the communication transactions requested by
the cores. NIs, placed at the interface between processing
elements and the communication network, have been extended
with support for message-passing communication model. A
programmable message manager with DMA capabilities is
integrated with the NI inside a module called Network Adapter
(NA), described more in detail in Section IV-B. The processing
element architecture is not fixed. Any kind of RISC or ASIP
processor with standard bus-based signal interface can be
easily integrated. No instruction set extensions are needed,
since communication and synchronization mechanisms are

302518518

Fig. 1. A general overview of an example template instance

managed accessing memory-mapped registers at the network
interfaces. The template obvioulsy allows the connection of
peripheral controllers that can be connected as network nodes
and receive transactions initiated by processing elements.

A. Programming model

Reference primitives implementing message-passing com-
munication are built, according to the general definition of
such model, upon two base functions: send() and receive().
These two primitives are implemented in C, and interact
with the hardware structures described in Section IV-B. Ac-
cording to the usual message-passing signatures, to send a
message with a send(), the programmer has to specify the
address (SendAddress hereafter) inside the private memory
that contains the information to be sent (message data), a tag
assigned to the message (SendTag), the size of the transfer
(SendDim), and the ID of the destination processor (or process,
in case of multi-context execution in the processing elements -
SendID). The receive() parameters are the tag of the expected
message (ReceiveTag), the sender ID (ReceiveID) and the
address where the received message data has to be stored
(ReceiveAddress). Two implementations of the receive() are
provided, with blocking and non-blocking behaviour.

B. Message Passing support

The Network Adapter architecture is depicted in Fig. 1 (left
side). Both the instruction and data private memories of the
processor have two access ports, in order to allow the processor
to keep on accessing code and data from one instruction and
one data port, while, at the same time, the other ports can
be used to directly load/store data from/to the memory in
case of message send/receive. In this way, communication and
computation can overlap, potentially leading to a significant
speed-up. The NA integrates a local bus, that, according to the
address requested by the processor interface, enables access
to:

• the private memory,
• a module called DMA message-passing handler (MPH),
• a set of performance counters to obtain statistics about

the application execution

In the figure, the gray part represents the additional circuitry
supporting fault tolerance, that will be described in Section VI.
The MPH embeds a set of memory-mapped registers that are
programmed by the processor, to control send and receive
operations, setting the previously described parameters.

It also includes an address generator in charge of generating
the addresses when the private memories must be accessed
from the port reserved for message passing.

When the processor wants to call a send(), the microcode
that implements the primitive stores the required values into
the send-related memory-mapped registers. As soon as the
registers are programmed, the address generator starts to
load SendDim words from the memory, starting from address
SendAddr, and propagates them to the NI. The destination
address requested for the network transaction is obtained by
the address generator according to the content of SendID,
translating the destination process ID into the network address
of the destination processor private memory.

At the other end of the communication, the processor needs
to execute a receive() to complete the transaction. It may
happen that the receive() has not been called at the moment
the packets composing the message actually arrive to the
destination network node. In this case the message data is
stored in the memory, inside a (configurable) memory buffer
reserved for such a purpose. The identification fields related to
the incoming message (sender, tag, buffer address) are stored
inside an event file, in order to enable the receive() primitive to
retrieve the message from the memory when it will eventually
be executed. The receive() microcode, as a first step, stores the
parameters inside three memory-mapped registers. Once such
registers are programmed, the processor must keep accessing
the DMA, scanning the event file locations, to check if the
message under reception is already inside the buffer. In the
case of a match, the processor copies the message data from
the buffer to the ReceiveAddress. If the message is not found
in the event file, the processor keeps polling the DMA handler,
where a dedicated circuitry is in charge of comparing the
incoming messages with the contents of the three registers.
In case of matching, the message data is stored in memory,
directly at the location identified by ReceiveAddress. In order

303519519

Fig. 2. Proposed software stack in MADNESS

to allow partial buffer de-fragmentation, the buffer is treated
as a list.

C. Interrupt generation support

A tag decoder has been instantiated inside the Network
Adapter. It is in charge of detecting a set of pre-determined
tag configurations, that are reserved for the purpose of remote
interrupt generation. In case of matching, the tag decoder
triggers an interrupt signal that is connected to the processor
interrupt controller. This feature can be used to allow a
processor in the system to generate an asynchronous event
on another processor, such as, for example, the initiation of
the migration process.

V. SOFTWARE INFRASTRUCTURE

Each tile of the system described in Section IV is endowed
with the software stack depicted in Fig. 2. The application
level resides at the top of the software stack. In MAD-
NESS, applications are specified using the Polyhedral Process
Networks (PPNs) model of computation. PPNs represent a
special class of Kahn Process Networks, and are composed of
concurrent processes that communicate using bounded FIFO
channels. The PPN semantics forces a process to block on
read, when trying to read a data token from an empty FIFO,
and block on write, when trying to write data to a full FIFO.
The simple operational semantics of PPNs allows for an easy
adoption of system adaptivity and fault tolerance policies. For
instance, the process state that has to be transferred upon
process migration does not have to be specified by hand by
the designer and can be smaller compared to other solutions.
At the bottom of the software stack, the local operating

system provides basic functionalities such as process manage-
ment (process creation/deletion, setting process priorities) and
multitasking capabilities.
The middleware level of the software stack, highlighted in

the left part of Fig. 2, comprises the three main components
described below, in Section V-A, V-B and V-C.

A. PPN communication API

Based on the programming model described in Sec-
tion IV-A, the PPN communication API provides a set of
primitives which allow the execution of applications modeled
as PPNs on NoC-based MPSoC platforms. In particular, this
API must enforce the semantics of the PPN model of computa-
tion over NoC implementations with no direct remote memory
access, as the one considered in MADNESS.
Several methods to implement the PPN communication over

NoC-based MPSoCs are described in [10], namely Virtual

Fig. 3. Producer-consumer inter-tile communication implementation

Connector, Virtual Connector with Variable Rate, and Request-
driven. However, in MADNESS we adopt the Request-driven
communication approach as it leads to an easier implementa-
tion of the migration mechanism due to the reduced number
of synchronization points between processes.
An example of a PPN producer-consumer processes com-

municating over a NoC is shown in Fig. 3. In the Request-
driven approach, each FIFO buffer of the original PPN graph
is split into two buffers, one on the producer tile and one on
the consumer tile. For instance, B1 in the top part of Fig. 3
is split in BP

1
on tile1 and BC

1
on tile2. The size of these

buffers is set such that, for all channels Bi in the original
graph, BP

i = BC
i = Bi. Moreover, the transfer of tokens

from the producer tile to the consumer tile is initiated by the
consumer. This means that every time the consumer is blocked
on a read at a given FIFO channel, it sends a request to the
producer to send new tokens for that channel. The producer,
after receiving this request, sends as many tokens as it has in
its software FIFO implementing that channel.
Interrupt-based request messages: In [10] we implemented

the Request-driven approach using a passive middleware. This
means that the synchronization protocol was implemented by
polling the Network Adapter buffer on each tile to fetch
incoming requests and then react consequently. Compared
to [10], we have extended the architectural support for the
Request-driven approach. With the mentioned extension, re-
quest messages generate an interrupt on the producer tile. In
this case the interrupt handler can serve the incoming request
immediately.
This interrupt-based implementation of the handshake has

several advantages. For instance, it relieves the processor
from the burden of periodically performing non-blocking
receives to check for requests incoming from the successor
processes. Moreover, the asynchronous trigger can improve the
predictability of the communication scheduling. Request mes-
sages can be served at any time, as soon as they arrive at the
producer tile, improving the communication and computation
overlapping. However, in the passive middleware, sending data
only at fixed points during the execution allows easier control
of the state of the handshake in case of task migration. A
preliminary assessment of the effectiveness of the interrupt-
based request mechanism is presented in Section VII-A.

B. Process migration mechanism

In the MADNESS project we have developed and evaluated
a predictable and reliable process migration mechanism which
is briefly described in the following. A simple example of a

304520520

Fig. 4. Migration scenario

process migration scenario is depicted in Fig. 4. The figure
shows the tiles directly involved in the process migration
procedure, which are:

- the source tile, namely the tile which runs the process
before the migration;

- the destination tile, which is the tile that will execute the
process after the migration;

- the predecessor tile(s), which runs the predecessor pro-
cess(es);

- the successor tile(s), which executes the successor pro-
cess(es).

The structure of the PPN process has been modified to
allow migration at any point within the process main body.
For further details refer to [10].
The migration mechanism requires actions from all the tiles

depicted in Fig. 4. The migration decision, namely which
process has to be migrated and where, is taken by the resource
manager using the policies described in Section VI-C. Then,
the resource manager sends a specific control message to the
source tile. The source tile broadcasts this control message to
the destination, predecessor and successor tiles to complete
the migration procedure.
For each of the tiles involved in the migration procedure,

the detailed list of required actions are explained below.
1) Actions on the source tile: On the source tile, the process

has to be stopped, and its state saved and forwarded to the
destination tile. For a given PPN process, the state is composed
only of its input and output FIFO buffers and its iterator set.
The iterator set is a set of variables which defines the current
iteration of the PPN process. The source tile takes also care of
propagating the migration decision to the other tiles involved
in the migration procedure. This propagation is depicted by
the dashed arrows in Fig. 4.
2) Actions on the destination tile: The destination tile re-

ceives a specific message for process activation. The migration
procedure is handled by creating the required software FIFOs
and by activating the replica of the migrated process using the
corresponding OS call. Before the process replica is started,
the state of the migrated process is resumed. This implies that
the input and output FIFOs of the migrated process are copied,
and the execution starts from the beginning of the iteration that
has been interrupted on the source tile.
3) Actions on predecessor and successor tile(s): On these

tiles, the only required step is the update of the middleware

tables where the current mapping of the processes in the
system is stored. This way, new tokens or new requests meant
for the migrated PPN process will be sent to the destination
tile.

C. Run-time manager

The run-time manager is the entity which makes deci-
sions concerning the adaptation of the system to changing
resource availability and/or changing user requirements. In
the MADNESS project the developed run-time manager is
focused on fault tolerance and uses the techniques described
in Section VI-C. In this context, the main responsabilty of the
run-time manager is to decide to which resources to migrate
the processes running on a tile which experiences a permanent
fault. However, the tasks of the run-time manager may be
different, according to the desired goals.

VI. FAULT TOLERANCE SUPPORT

The MADNESS project focuses on the development of fault
tolerance solutions which are not dependent on a technology-
related low-level fault model, but rather on technology-
abstracting functional-level error models. The implemented
fault tolerance approaches focus on the detection of run-
time faults and on the use of reconfiguration strategies at
different levels. In the MADNESS framework, three main
types of components are considered, i.e., processing cores,
storage elements, and NoC modules. In this paper, the solutions
proposed for the case of processing cores are described.

A. Fault detection

For the detection of faults in the processing cores, one of
the two approaches are used depending on the criticality of
the application.
1) Self-testing module: If the application is not critical

and a limited amount of error propagation is acceptable, a
self-testing routine is executed periodically by the processing
element to detect its permanent faults [11]. The self-testing
module (shown in grey in Fig. 1) calculates a signature of the
results of the execution of the software routine, and compares
it with a pre-calculated and pre-loaded correct signature. In
case of a mismatch, a fault detection signal is raised. The
self-testing routine should have a high fault coverage, a small
code size and a fast execution time.
2) PPN-level self-checking patterns: For critical applica-

tions, concurrent self-checking techniques are employed at
the process network level [12]. In the case of the N-modular
redundancy (NMR) pattern, N instances of the same task
are created and guarded within a fork and a voter task.
The fork task simply forwards same copies of the token
to each redundant instance of the task, whereas the voter
task determines the most recurring result produced by the
redundant task instances. For N ≥ 3, the voter is able to
detect the faulty node and mask the error. In order to yield
higher reliability, the redundant instances should be mapped
onto different processing elements. The task graph can be
transformed with patterns in various ways leading to different
levels of reliability.

305521521

B. Task migration hardware module

Task migration can be used as a reconfiguration mechanism
to survive in presence of faulty processing cores. However one
fundamental restriction in such a scenario is that the faulty
processor cannot aid in carrying out the migration procedure.
As a remedy to this problem, a task migration hardware
(TMH) module is proposed which is responsible for extracting
the critical data from the faulty tile.
As shown in Fig. 1, the TMH resides alongside the network

adapter of each tile. It receives a fault detection signal from the
self-testing module. Upon the detection of the fault, the TMH
initiates the migration procedure that consists of the following
steps:

• the TMH isolates the faulty processing core,
• the TMH notifies the run-time manager (RM) that resides

on a fault-free core,
• the RM calculates the new mapping of the tasks,
• the RM asks the TMH for tasks’ state and FIFO tokens,
• the TMH sends tasks’ state and FIFO tokens to the RM,
• the RM carries out the software-based task migration as

described in Section V-B.
The main figure of merit adopted when designing this

module has been circuit complexity, so as to guarantee that
failure rate will be much lower than the processing core.
Moreover, the TMH and the software-based task migration
procedure are loosely coupled such that the modifications to
the software-based task migration procedure in the later stages
would not affect the functionality of the TMH, thus incurring
minimal changes to the TMH, if any.

C. Online task remapping strategies

A fundamental step in the fault tolerance support is deciding
the new cores where the tasks formerly executed by the faulty
cores shall continue their execution. In order to provide a
graceful degradation, the remaining fault-free cores of the
platform should be used as optimally as possible. The remap-
ping problem can be solved by an exhaustive analysis done
at design-time that evaluates all possible fault scenarios of
the system and embeds in the memory the optimal remapping
results to be used when faults are encountered. An alternative
approach is using online task remapping heuristics, whereby
the decision is taken by a remapping heuristic executed at
run-time. Such an approach requires less memory, does not
require a heavy design time analysis and can work even if
the application running on the platform is not known a priori.
However the degradation estimations may not be as accurate
due to the usage of an analytical model rather than more
detailed simulation models. In the MADNESS project, we
have been investigating both approaches. However, in this
paper, we adopt the online heuristics approach, in particular,
the NMS-A heuristic proposed in [13].
The heuristic can be summarized as follows: let Lj be the

set of tasks assigned to core nj . Lf is the set of tasks to
be migrated from the faulty node nf . TN

j is the sum of the
execution times of tasks assigned to node nj . T TN

cap ij
is the

execution time of task ti if assigned to node nj . The task
ti ∈ Lf is remapped on the core that minimizes its finishing

Fig. 5. PPN specification of the M-JPEG encoder.

TABLE I
EXECUTION TIMES OF M-JPEG PROCESSES

Process Execution time (c.c.)
P0 1923
P1 123626
P2 69254 (avg)
P3 47989 (avg)

time. Inputs to the NMS-A algorithm are the initial mapping
L, faulty node set nf , and TN before the fault occurrence. The
output is the new mapping L. The heuristic is implemented
on the MADNESS platform as a part of the run-time manager
shown in Fig. 2, and it is called upon the reception of the fault
detection message from the TMH.

VII. EXPERIMENTAL RESULTS

To evaluate the integration of the implemented system adap-
tivity and fault tolerance techniques, we present an experiment
that refers to a benchmark case-study application. The applica-
tion is mapped on a 2x2 mesh of general-purpose processors
implemented on an FPGA board. Firstly, we verify that the
PPN communication API enables inter-tile communication and
we compare the passive and active implementation of the
middleware. Then, we present a remapping process, exploiting
the migration mechanism according to the on-line remapping
strategies. Finally, we test the accuracy of such strategies to
verify the optimality of the chosen migration pattern. We used
the M-JPEG encoder application as a benchmark application.
Its PPN specification is shown in Fig. 5. The size of tokens
ranges between 16 and 1024 bytes, and all of the channels are
written 128 times, except the output of initVideoIn which is
written only once. Fig. 5 also shows how some processes have
been merged to map the application on the NoC platform, e.g.
VLE and videoOut processes have been merged into process
P3. The numbers of clock cycles required for the execution
of each process of the M-JPEG application are summarized in
Table I. These numbers show that this application has a high
computation/communication ratio.

A. Flow control functionality assessment

Mapping the application on the hardware platform allowed
us to test the functionality of the PPN communication APIs. As
mentioned, the M-JPEG application is computation-intensive,
so communication latencies due to the flow control do not have
a deep impact on the overall performances [10]. We tested
the Request-driven flow control by comparing the previously
proposed approach with interrupt-based implementation. The

306522522

Fig. 6. M-JPEG process scheduling when migrating P1 using the proposed remapping heuristic and migration mechanism.

������ �	
���

����������

����������

����������

����������

����������

����������

����������

����������

����������� �!��"!��#�

�
$
�
�
%
"!
�
�
�&
'
�
��
#
��

()�

()	!�"�

Fig. 7. Impact of the interrupt-based request messages on the Request-driven
flow control on two benchmark applications.

two approaches do not lead to significant differences in the M-
JPEG case study, as shown in Fig. 7. Thus, in order to compare
them over a more communication-intensive benchmark, we
repeated the experiment executing a Sobel filtering kernel on
the platform. In this case, the execution time was significantly
reduced (ca. 64%), as expected.

B. Remapping heuristic and process migration overhead

We evaluate the proposed process migration mechanism and
remapping heuristic overhead using the setup shown in the left
part of Fig. 6. The processes P0−P3 in the figure refer to the
specification represented in Fig. 5. Initially, P0 is mapped on
tile3, P1 on tile1, P2 and P3 on tile4. This process mapping
results in a total execution time of the M-JPEG application
of Texe(noMig) = 17, 332, 807 clock cycles (c.c.) if no
migration is performed.
However, in this experiment at time τ0 we trigger an

interrupt on tile3, which activates the run-time manager. This
interrupt emulates a message sent from the TMH of tile1,
indicating that the processing element is faulty. Thus, the
processes running on it have to be migrated somewhere else.
The migration procedure is then started. It can be divided in the
timing intervals shown in the right part of Fig. 6 and described
below.

• [τ0, τ1]: this is the time required by the run-time manager
to make the remapping decision

• [τ1, τ2]: in this time interval the source tile (tile1) sends
all the process state to the destination tile

• [τ2, τ3]: between these two instants the destination tile
(tile2) copies the process state to its local memory and
starts the execution of the migrated process

In total, the migration procedure takes (τ3 − τ0) = 28, 934
clock cycles. Note that the execution of the migrated process

Fig. 8. Initial mapping and the two single fault scenarios showing all possible
remappings.

has to be restarted from the beginning of the interrupted
iteration. Thus, all the time spent since the beginning of the
interrupted iteration on tile1 has to be added to the total
overhead. The worst case overhead due to the re-execution
of the interrupted iteration is as large as the execution time
of a whole iteration of the interrupted process, in this case
P1. The worst-case total overhead in the scenario depicted in
Fig. 6 then grows up to (τ3−τ0)+Texe(P1) = 152, 560 clock
cycles. Compared to the total execution time of the application
without migration (Texe(noMig)), this represents only 0.88%
of the time.
Note that the TMH modules are not integrated yet in

the MADNESS reference platform. This is why we have
to emulate their behavior in software. However, we argue
that the migration overhead calculated above for the software
implementation will still remain small, and likely smaller, in
case of a hardware implementation of TMH modules.

C. Evaluation of the remapping strategy

In this section, the quality of the heuristic is evaluated
using the M-JPEG case study by comparing the remapping
obtained by the NMS-A heuristic with actual measurements.
Given a 2x2 NoC-based platform with processing elements
n1, n2, n3, n4 and an initial mapping of M-JPEG tasks I :
P0 → n3, P1 → n1, P2 → n2, P3 → n4 as shown in Fig. 8(a),
we consider two single fault scenarios for n1 and n2. As shown
in Fig. 8(b), for the case of n1 faulty, all possible remappings
are R1 (P1 → n2), R2 (P1 → n3) and R3 (P1 → n4).
Similarly, Fig. 8(c) shows the case of n2 faulty for which
all possible remappings are R1 (P2 → n1), R2 (P2 → n3)
and R3 (P2 → n4). The total execution times of the M-JPEG
application for all possible remappings, TRi

, are measured on
the platform using the RD-int flow control and also calculated

307523523

Fig. 9. Comparison of measured and calculated performance degradation of
all possible remappings when n1 is faulty as shown in Fig. 8(b).

Fig. 10. Comparison of measured and calculated performance degradation
of all possible remappings when n2 is faulty as shown in Fig. 8(c).

by the analytical model.
The performance degradation with respect to the execution

time of the initial mapping, TI , is calculated according to
Equation 1.

Performance degradation(Ri) =
TRi

− TI

TI

(1)

Measured and calculated values are used in Equation 1 for
calculating the measured and analytical model degradation
results shown in Fig. 9 and 10 for faulty n1 and faulty n2

cases, respectively. Note that in some cases, for instance R2
in Fig. 9, the remapping can lead to a performance speedup. In
R2, this is because the reduction of the communication time
over the NoC overcompensates the increased computational
workload on n3.
The optimal remapping is the one which yields to the

smallest performance degradation. For the faulty n1 scenario,
NMS-A heuristic yields to the remapping R2 which is the
optimal decision. For the faulty n2 scenario, it yields to the
remapping R2 which is only .07% worse than the optimal one
(R3). NMS-A makes the optimal decision according to the
analytical model and the discrepancy between the analytical
model and the actual measurements causes a sub-optimal
decision in reality. However, as shown in Fig. 9 and 10, the
analytical model estimates the degradation within 3% of the
measured values. The inaccuracy of the analytical model is due
to the blockings in the communication and the unaccounted
context switching times when several tasks are running on a
processor.

VIII. CONCLUSIONS

This paper presents the methods developed within the
MADNESS project to allow system adaptivity and fault toler-

ance on NoC-based MPSoCs. The proposed approach involves
different layers of the system design. At the application
level, the PPN MoC has been selected, due to its simple
operational semantics and the facilitation of system adaptivity
mechanisms. At the middleware level, we have developed a
communication approach to implement inter-tile PPN commu-
nication and a predictable process migration mechanism. At
the hardware level, the platform has been extended in order
to support the PPN MoC and to enable a predictable and
efficient process migration mechanism. The process migration
mechanism, in turn, can be exploited by the run-time manager
to cope with permanent faults by migrating the processes
running on the faulty processing element. A fast heuristic is
used to determine the new mapping of processes to tiles. We
show in a real-life case study that this heuristic is able to find
near-optimal remappings. Moreover, the experimental results
prove that the overhead due to the execution of the remapping
heuristic, together with the actual process migration, is almost
negligible compared to the execution time of the whole ap-
plication. This means that the proposed approach allows the
system to react to faults without a substantial impact on the
user experience.

REFERENCES

[1] E. Cannella, L. D. Gregorio, L. Fiorin, M. Lindwer, P. Meloni, O. Neuge-
bauer, and A. D. Pimentel, “Towards an esl design framework for
adaptive and fault-tolerant mpsocs: Madness or not?” in Proc. of the
9th IEEE/ACM Sym. on Embedded Systems for Real-Time Multimedia
(ESTIMedia’11), October 2011.

[2] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved
derivation of process networks,” EURASIP J. Emb. Sys., vol. 2007.

[3] V. Nollet, D. Verkest, and H. Corporaal, “A Safari Through the MPSoC
Run-Time Management Jungle,” Signal Processing Systems, vol. 60,
no. 2, pp. 251–268, 2010.

[4] G. M. Almeida, G. Sassatelli, P. Benoit, N. Saint-Jean, S. Varyani,
L. Torres, and M. Robert, “An Adaptive Message Passing MPSoC
Framework,” Int. J. of Reconfigurable Computing, vol. 2009, p. 20, 2009.

[5] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: a feasibility study,”
in Proc. of the conf. on Design, automation and test in Europe, ser.
DATE’06, 2006, pp. 15–20.

[6] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “Assessing Task
Migration Impact on Embedded Soft Real-Time Streaming Multimedia
Applications,” EURASIP J. Emb. Sys., vol. 2008, 2008.

[7] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and S. Ha, “A task
remapping technique for reliable multi-core embedded systems,” in
Proc. of the 8th Int. Conf. on Hardware/software codesign and system
synthesis, 2010, pp. 307–316.

[8] C.-L. Chou and R. Marculescu, “Farm: Fault-aware resource manage-
ment in noc-based multiprocessor platforms,” in Design, Automation Test
in Europe Conf. Exh. (DATE), 2011, march 2011, pp. 1 –6.

[9] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,
“Xpipes: a Latency Insensitive Parameterized Network-on-Chip Archi-
tecture for Multi-Processor SoCs,” in Proc. of the 21st Int. Conf. on
Computer Design, ser. ICCD’03, Washington, DC, USA, 2003, pp. 536–.

[10] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov, “Adaptivity
Support for MPSoCs based on Process Migration in Polyhedral Process
Networks,” VLSI Design, vol. 2012, no. Article ID 987209, p. 17 pages.

[11] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghu-
nathan, and S. Ravi, “Systematic software-based self-test for pipelined
processors,” in 43rd Design Automation Conf.,, 2006, pp. 393–398.

[12] O. Derin, E. Diken, and L. Fiorin, “A middleware approach to achieving
fault-tolerance of kahn process networks on networks-on-chips,” Int. J.
of Reconfigurable Computing, vol. 2011, no. Article ID 295385, p. 15pg.

[13] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies
for fault-tolerant network-on-chip multiprocessors,” in Proc. of the 5th
ACM/IEEE Int. Sym. on Networks-on-Chip, 2011, pp. 129–136.

308524524

