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ABSTRACT

We use the polyhedral process network (PPN) model of com-

putation to program embedded Multi-Processor Systems on Chip

(MPSoCs) platforms. If a designer wants to reduce the number of

processes in a network due to resource constraints, for example, then

the process merging transformation can be used to achieve this. We

present a compile-time approach to evaluate the system throughput

of PPNs in order to select a merging candidate which gives a system

throughput as close as possible to the original PPN. We show results

for two experiments on the ESPAM platform prototyped on a Xilinx

Virtex 2 Pro FPGA.

I. INTRODUCTION

The programming of embedded Multi-Processor System

on Chips (MPSoCs) is a notorious difficult and time con-

suming task as it involves the partitioning of applications

and synchronization of different program partitions. The pn

compiler [1] has been developed to ease this task. It derives

polyhedral process networks (PPNs), a specific case of Kahn

Process Networks (KPNs), from sequential nested loop pro-

grams. Thus, autonomous processes and FIFO communication

between different processes are automatically derived from

sequential program specifications, that allow a natural mapping

of processes to processing elements of the architecture [2].

In the pn partitioning strategy, a process is created for each

function call statement in the nested loop program. As a

result, the number of processes in the PPN is equal to the

number of function call statements in the nested loop program.

This partitioning strategy may not necessarily result in a

PPN that meets the performance or resource requirements.

To meet these requirements, a designer can apply algorithmic

transformations to increase parallelism by unfolding processes

[3] or to decrease parallelism by merging processes into a

single component [4]. For the unfolding transformation, it has

been shown in [5] that processes can be unfolded in many

different ways which can result in significant differences in

performance. Our current paper shows that the same holds

for the process merging transformation: many solutions exist

to merge different processes in a PPN with great differences

in performance results and it’s not trivial to select the best

solution. Therefore, in this paper, we focus on the process

merging transformation and present a compile-time solution

to evaluate different merging alternatives.

A. Problem Definition and Paper Contribution

The process merging transformation reduces the number of

processes in a PPN by sequentializing a selected number of

processes in a single compound process. Thus, less processes

need to be mapped on the platform’s processing elements, at

the price of possibly having less processes running in parallel.

A designer needs to apply the process merging transformation

in case i) the number of processes is larger than the number

of processing elements, or ii) the network is not well balanced

and therefore the same overall performance can be achieved

using less resources. For both cases, the problem is that many

different options exist to merge two or more processes. The

total number of options to merge different processes for a PPN

with n processes is
∑n

i=2

(

n

i

)

. To give an example for a

PPN with 5 processes there are
(

5
2

)

+

(

5
3

)

+

(

5
4

)

+

(

5
5

)

= 26 different options to merge 2, 3, 4, or 5 processes.

The challenge is how to find the best solution from all these

options. Therefore, the main contribution of this paper is: the

definition of an analytical throughput modeling framework

for polyhedral process networks. It is used to evaluate the

throughput of different process mergings in order to select

the best option which gives a system throughput as close as

possible to the original PPN.

B. Motivating Examples

With 3 motivating examples we show that selecting the best

merging option is not a straightforward task as it depends on

the inter-play of many factors which may not be evident at

first sight. The first factor to be considered is the workload

of a process. The workload WPi
of a process Pi denotes

the number of time units that are required to execute a

function, i.e., the pure computational workload, excluding

the communication. Figure 1 shows a PPN consisting of 6
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Fig. 1. Process Workload Influencing the System Throughput
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shows the number of readings/writings from/to each FIFO

channel. Process P2 , for example, has a workload of 10
time units and a single token is read/written from/to a FIFO

channel per process firing, which is denoted by ”[1 ]” and

can be repeated (possibly) infinitely many times. The network

has two datapaths DP1 = (P1 ,P2 ,P3 ,P6 ) and DP2 =
(P1 ,P4 ,P5 ,P6 ) that transfer an equal amount of tokens. We

observe that process P2 determines the system throughput,

which is illustrated with the time lines at the bottom of

Figure 1. The first time line shows the rate τin at which tokens

arrive at the network, i.e., each time unit. The second time line

shows the system throughput of the original PPN, denoted

by τPPN
out . Process P6 needs 13 time units (1+10+1+1) to

produce its first token. Then, it produces a new token each

10 cycles which is dictated by the slowest process P2 . If

we apply the process merging transformation to processes

P2 and P3 , then compound process P23 becomes the most

computationally intensive process of the network. Processes

P2 (10 time units) and P3 (1 time unit) are sequentialized

and thus it will take 10+1=11 time units instead of 10 time

units for process P6 to produce a new token, as shown in the

time line denoted by τP23
out . We observe that the throughput

of this network is lower than the original PPN. The fourth

time line, denoted by τP45
out , shows the system throughput

after merging processes P4 and P5 . In this case, however,

we see that the system throughput is not affected, i.e., it is

the same as the original PPN, because the two merged and

sequentialized processes do not dictate the system throughput.

Thus, a designer can safely merge these processes and achieve

the same system throughput as the original PPN. With the

following example, we show that considering the process

workload WPi
only is not enough; a second factor that needs to

be taken into account is the rate of producing tokens. Consider
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the PPN in Figure 2 which is topologically the same as in the

previous example. The only difference is that both datapaths

transfer a different number of tokens. This is indicated with

the patterns [110000] and [001111] at which process

P1 writes to its outgoing FIFO channels. A ”1” in these

patterns indicates that data is read/written and a ”0” that no

data is read/written. So, the FIFO channel connecting P1 and

P2 , for example, is written the first two firings of P1 , but

not in the remaining 4. As a consequence of these patterns,

more tokens are communicated through the second datapath

DP2 . Therefore, we observe that, despite process P2 largest

workload of 10 time units, process P4 with a workload of 6

is more dominant. Therefore, merging processes P4 and P5

leads to a lower network throughput compared to merging P2

and P3 , as can be seen in the time lines τ
P45
out and τP23

out in

Figure 2. We observe a trend which is completely different

from the previous example. According to Figure 2, a designer

can safely merge processes P2 and P3 as opposed to P4 and

P5 to achieve a system throughput that is equal to the original

PPN. In the last motivating example, we consider the PPN

shown in Figure 3. The processes always read and/or write a

single token when they are fired. Therefore, one could expect

that this example is different from the example in Figure 2,

but similar as in Figure 1. We show, however, that neither

case applies and that a third factor needs to be taken into

account. In this example, process P1 is the computationally

most intensive process with a workload of 53 time units. If a

designer wants to merge processes, a logical choice would be

to merge P2 and P3 and not to consider the heavy process

P1 . Processes P2 and P3 both have a workload of 25 time
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Fig. 3. Sequentialized FIFO Accesses Influencing the System Throughput

units and thus the compound process P23 has a summed

workload of 50 time units, which is smaller than process P1

(53 time units). For this reason, we expect performance results

that are equally good as the original PPN. However, when we

measure the performance results of both the original PPN and

the transformed PPN on the ESPAM platform [6], there is

a 20% degradation in the performance results. Although the

workload of compound process P23 is lower than P1 , the

compound process reads sequentially from two input channels

and writes sequentially to two output channels. This makes

it the heaviest process in the network. So, besides sequential

execution of the process workloads, we observe that sequential

FIFO reading/writing is another aspect that should be taken

into account. The 3 examples above show that it is not trivial

to merge processes and to achieve performance results as close

as possible to the original PPN. Therefore, we want to have

a compile-time framework to evaluate the system throughput

such that the best possible merging can be selected.

C. Scope of Work

First of all, we consider acyclic PPN graphs. Cycles in

a PPN are responsible for sequential execution of some of

the processes involved in the cycle. The sequential execution

can vary from a single initial delay, to a delay at each firing

of some of the processes. For accurate throughput modeling,

these cycles must be taken into account which we do not study

in this work. Secondly, it is important to state that our goal

is not to compare different PPNs, but to compare transformed

PPNs derived from a single PPN. Therefore, in the throughput

modeling, we do not take into account latencies. Thus, we do

not calculate the total execution time of PPNs, but only want

to capture the throughput trend instead. The reason is that



the framework should be fast, and only as accurate as needed

to correctly capture the throughput trend for different process

mergings. Thirdly, the process workload WPi
is a parameter

in our system throughput modeling. It should be provided by

the designer who can obtain it, for example, by executing the

function once on the target platform. Although our approach

is extensible to heterogeneous MPSoCs, we restrict ourself

to MPSoCs with homogeneous cores. Therefore, the process

workload of a given process is a constant for all the cores in

the platform. Finally, we do not study the effect of different

buffer sizes. Although buffer sizes play an important role in

the performance results, there are studies [7] showing that

saturation points can be found where performance does not

increase for larger buffer sizes. The pn compiler can find such

points and we use buffer sizes that correspond to these points,

i.e., the buffer sizes that give maximum performance.

II. SOLUTION APPROACH

Before introducing the solution approach for throughput

modeling, we first give some notations that are used through-

out the rest of the section. We introduce the solution approach

with an example, and then define all concepts in detail. Finally,

we present the overall algorithm for the throughput modeling.

A. Notations

A function call statement has a number of input and output

arguments and therefore the corresponding process in the

PPN has a number of input/output ports to read/write data.

Consequently, the structure of the process consists of a list of

input ports, a function call, and a list of output ports. We refer

to these networks as Polyhedral Process Networks (PPNs),

as input/output ports and iteration domains are polytopes that

can be efficiently manipulated and analyzed. The iteration

space domain of a process Pk corresponds to all iterations

of statement k in the nested loop program and is defined

as DPk
= {x ∈ Z

d | Ax + b ≥ 0}, where d is the

depth of the loop nest. For process P in Figure 6, the

iteration space domain is a two dimensional space defined

as DP = {(i, j) ∈ Z
2 | 0 ≤ i ≤ 9 ∧ 0 ≤ j ≤ 9}. The

n-th input port domain IPn
Pk

of process Pk is defined as a

subset of the process iteration space where data is read from

an incoming FIFO channel: IPn
Pk

⊆ DPk
. Similarly, we define

an output port domain OPn
Pk

⊆ DPk
as the subset where data

is written to an outgoing FIFO channel. In Figure 6, the FIFO

read/write primitives are guarded by if-statements defining the

input/output port domains. So, the first input port domain is

defined as IP1
P = {(i, j) ∈ Z

2 | 0 ≤ i, j ≤ 9 ∧ i < 5}.

B. Process Throughput and Throughput Propagation

The solution approach for the overall Polyhedral Process

Network (PPN) throughput modeling relies on calculating

the throughput τPi
of a process Pi for all processes and

propagation of the lowest process throughput to the sink

nodes. For a process Pi, the propagation consists of selecting

either the aggregated incoming FIFO throughput τFaggr
or the

isolated process throughput τ iso
Pi

:

τPi
= min(τFaggr

, τ iso
Pi

), (1)

Before defining formally τFaggr
and τ iso

Pi
(in Sections II-C -

II-E), we first give an intuitive example of the solution

approach applied on the PPN shown in Figure 3 and explain

the meaning of Equation 1. First, the workload of each process

is taken into account and let us assume that it takes 10, 20, 10,

10 time units for processes P1 ,P2 ,P3 ,P4 , respectively, for

firing its function. This means that, for example, P1 can read

and produce a new token every 10 time units if there is input

data. Thus, we define the isolated process throughput to be

τ iso
P1 = 1

10 tokens per time units (excluding communication

costs for the sake of simplicity). Similarly for the other

processes, we define τ iso
P2 = 1

20 , τ iso
P3 = 1

10 , τ iso
P4 = 1

10 .

However, the required input data for a process can be delivered

with a different throughput, i.e., the aggregated incoming

FIFO throughput τFaggr
. Consequently, the lowest throughput

(τFaggr
or τ iso

Pi
) determines the actual process throughput τPi

.

Therefore, the minimum throughput value is selected as shown

in Equation 1. This is repeated for all processes by iteratively

applying Equation 1 on each process to select the lowest

throughput and to propagate it to the sink processes. First, the

PPN graph is topologically sorted to obtain a linear ordering of

processes, i.e., P1 ,P2 ,P3 ,P4 . In step I) of Figure 4, process
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Fig. 4. Throughput Propagation Example

P1 is the first process to be considered. While it receives

tokens at each time unit (τin = 1), it is ready to fire again

after 10 time units due to the process workload (τ iso
P1 = 1

10 ).

We see that the actual process throughput is determined by

the process itself (it is the slowest) and Equation 1 is used

to find this: τP1 = min(1, 1
10 ) = 1

10 with which it writes to

both its outgoing FIFO channels F1 and F2 . If we continue

with the second process in step II), we see that P2 receives

tokens from P1 with a throughput of τP1 = 1
10 , however,

P2 is twice slower than P1 which is delivering the data:

τP2 = min( 1
10 , 1

20 ) = 1
20 . Thus, we know that P2 writes

its results to FIFO channel F3 with a throughput of 1
20 . For

brevity, we skip P3 and consider the next process P4 in step

IV). Process P4 reads from two FIFO channels F3 and F4 ,

which are written by P2 and P3 with different throughputs.

Therefore, the FIFO throughput must be aggregated in order

to have a single throughput value at which data arrives. If

we assume that both channels are read per firing of P4 , then

the slowest FIFO throughput determines the aggregated FIFO

throughput. For this example, 1
20 is the slowest component

and we set τFaggr
= 1

20 . Applying Equation 1 shows that

the data is delivered with a lower throughput than P4 can

actually process: τP4 = min( 1
20 , 1

10 ) = 1
20 and set this to be

the process throughput. In this way, we have propagated the

slowest throughput from P2 to the sink process P4 , which in

the end determines the system throughput. In the next sections

we exactly define how all terms can be calculated.



C. Isolated Throughput of a (Compound) Process

The isolated throughput of a process Pi, denoted by τ iso
Pi

,

is the throughput of a process when it is completely isolated

from its environment. This means that the isolated process

throughput is determined only by the workload WPi
of a

process and the number of FIFO reads/writes per process firing

provided that no blocking occurs:

τ
iso
Pi

=
1

WPi + x · CRd + y · CWr
=

1

C
fire

Pi

, (2)

where x and y denote how many FIFOs are read and written

per process firing and CRd and CWr the costs for read-

ing/writing a single token from/to a FIFO channel. To the cost

for a single process firing we refer as C
fire
Pi

. It is important to

note that two factors as identified in the motivating examples

are taken into account here: the process workload by WPi
,

and the number of sequential FIFO accesses by x and y. As

a function always needs values for its input arguments in order

to fire, the number of FIFO reads x is equal to the number of

function input arguments. This is different for writing output

values as, for example, these can be broadcasted or written

in some regular patterns. Therefore, we calculate an average

number of FIFO writes y per iteration by summing all points in

the output port domains and dividing this by the total domain

size:

y =

∑n

i=1
|OP i|

|DPj |
(3)

In a similar way, we must also model the firing cost for

a compound process Pm in order to evaluate the system

throughput for a PPN with merged processes. Assume that

Pm is formed by merging processes Pi and Pj with iteration

domains DPi
and DPj

, respectively. We define the isolated

compound process throughput as τ iso
Pm

= 1

C
fire

Pm

, where

C
fire

Pm
=
|DPi |

|DPj |
· (Cfire

Pi
+ C

fire

Pj
) +
|DPj | − |DPi |

|DPj |
· (Cfire

Pj
) (4)

with |DPi
| < |DPj

|. To model the cost C
fire
Pm

for firing

the compound process, we take into account the generated

schedule of the compound process as produced by the pn and

ESPAM tools [6]. The execution of the process functions is

interleaved as much as possible. This means that per firing of

the compound process, all functions are sequentially executed

if this allowed by the inter-process dependencies. In case

of inter-process dependencies, an offset is calculated for the

producer-consumer pair to ensure correct program behavior,

and then the function execution is interleaved again. Therefore,

we calculate fractions where the execution of the functions

overlap and multiply it with the firing costs of these functions,

i.e., the first term in Equation 4. And then we consider for

the remaining firings the cost of the process with the largest

domain size only, i.e., the second term in Equation 4. Note that

the coefficients in Equation 4 represent these fractions which

should sum up to 1. This formula can be generalized for any

number of processes, but we omit it for the sake of brevity.

D. FIFO Channel Throughput

The throughput of a FIFO-channel is determined by the

throughput of the processes accessing it. Let us consider the

example shown in Figure 5. Assume that P1 fires 500 times,

i.e., |DP1 | = 500, and each time it writes to F1 and F2 .

P1 P2
W

P2
= 5W 10

P1
=

DP1 = 500

D’P1 = 1000

F1
1010 10 10..

500 tokens

..

500=P2D

F2 ..

Fig. 5. FIFO Channel Throughput

Process P1 needs 10 time units to produce a token. Con-

sumer process P2 is twice faster and needs only 5 time units

to consume a token, but still it receives tokens only each 10

time units due to the slower producer. As a result, P2 blocks

on reading and waits for data, which follows the operational

semantics of the PPN model of computation: a process stalls

if it tries to read from an empty FIFO channel and proceeds

only if data is available again. This example shows that, to

calculate the FIFO throughput τfi
of a FIFO channel fi, the

minimum is taken of the FIFO write throughput τWr
fi

and the

FIFO read throughput τRd
fi

:

τfi
= min(τWr

fi
, τ

Rd
fi

), (5)

where τWr
fi

= τP1 (see Equation 1) and τRd
fi

= τ iso
P2 (see

Equation 2). Let us consider another example where P1 fires

1000 times, i.e., |D′
P1 | = 1000 as also shown in Figure 5.

Assume that in one iteration of P1 data is written to FIFO

channel F1 , and in the next iteration to F2 . This is repeated

such that in total 500 tokens are written to both FIFOs F1 and

F2 . To compensate for a producer that does not write data to

a FIFO channel at each iteration, we define a coefficient that

divides the total number of tokens transfered over a channel

by the iteration domain size of a producer process Pi. This

coefficient denotes an average production rate, expressed in

a number of producer iteration points. Note that this takes

into account the different production rates of processes as

also identified in the motivating example in Figure 2. By

multiplying this coefficient with the process throughput, we

define FIFO write/read throughput τWr
fi

and τRd
fi

of a FIFO

channel fi as shown in Equations 6 and 7. In this way, we

model a lower throughput if necessary.

τWr
fi

=
|OP

j
Pi
|

|DPi
|
· τPi

(6) τRd
fi

=
|IP

j
Pi
|

|DPi
|
· τ iso

Pi
, (7)

For the example, we see that τWr
f1 = 500

1000 · 1
10 = 1

20 and the

FIFO read throughput is τRd
f1 = 500

500 · 1
5 = 1

5 . Consequently,

the FIFO throughput is τf1 = min( 1
20 , 1

5 ) = 1
20 tokens per

time unit.

E. Aggregated FIFO Throughput

The throughput of a process τPi
is either determined by the

FIFO throughput from which it receives its data, i.e., τFaggr
,



or by the computational workload of the process itself, i.e.,

τ iso
Pi

, as shown in Equation 1. τ iso
Pi

is computed with Equation

2. Here we show how to compute τFaggr
. The throughput of

the incoming FIFO channels are aggregated according to the

way the function input arguments are read. Three examples are

given at the right-hand side in Figure 6. Process P has one
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Fig. 6. Process Structure (left) and FIFO Throughput Aggregation (right)

input argument value a that is read from two different input

ports IP1 and IP2 . Thus, two tokens are delivered, but only

one is read for each firing of the consumer process. The other

token will be read in another firing. To model the throughput at

which data arrives, the sum is taken of the FIFO throughput F1

and F2 . Effectively, this means that the aggregated incoming

FIFO throughput becomes higher, which corresponds to the

behavior that one token is needed but two are delivered. Note

that any imbalance in the number of tokens transfered over

each FIFO channel has already been taken into account in the

FIFO read/write throughput as defined in Equation 6 and 7.

Process P ′ is the second example, which reads its two input

arguments values a and b from FIFOs F1 and F2 . Thus, both

FIFOs are read per firing of P ′. If one FIFO throughput is fast

and the other one is slower, then the slowest FIFO throughput

determines the aggregated FIFO throughput and, in such cases,

the minimum throughput is taken. Thirdly, the general case

is illustrated with process P ′′ and combines the previous

two examples. It has multiple function input arguments and

multiple incoming FIFO channels per input argument. The

aggregated FIFO throughput τFaggr
is calculated by taking the

sum per function input argument, and then the minimum of

these values denotes the aggregated FIFO throughput:

τFaggr = min(

n
∑

i

τ
Rd
fi

, ...,

m
∑

j

τ
Rd
fj

). (8)

Up to now, we have formally defined all the components that

allow the throughput calculation and propagation to be done

in a systematic and automated way. The pseudo code of the

throughput calculation and propagation algorithm is shown in

Algorithm 1. This algorithm was explained with the example

in Section II-B.

III. EXPERIMENTS AND RESULTS

In this section we map two different nested loop kernels

on the ESPAM platform prototyped on a Xilinx Virtex 2 Pro

FPGA. Each process is mapped one-to-one on a MicroBlaze

Algorithm 1 : PPN Throughput Estimation Pseudo-code

Require: PPN : a Polyhedral Process Network
Require: WPi : the computational workload of all processes.

list ← Create topological ordering for PPN
for all process Pi ∈ list do

1) τ iso
Pi

= set isolated throughput(Pi, WPi)
2) Set τRd

fj
for all incoming FIFOs fj and

τFaggr = calc fifo aggr(τRd
fj

, .., τRd
fn

)

3) τPi = min(τ iso
Pi

, τFaggr )
4) Set τWr

fj
for all outgoing FIFO fj of Pi.

end for
return τPPN

out = τsink

softcore processor and the processors are point-to-point con-

nected. FIFO communication is implemented with FSL links

and a FIFO access costs 7 clock cycles. We investigate if our

throughput modeling captures the differences in performance

results for different process merging configurations and pro-

cess workloads.

A. Experiment I

We merge two light-weight producers (workload of 54 time

units) into a single process in this experiment and should

observe that the new compound process does not become the

process that dictates the system throughput. Then, we increase

the workload of the producers to 59 time units to achieve

the opposite and test whether this is captured by the model.

Figure 7 shows the nested loop program in A), the derived

114
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for (i=0; i<M; i++) 

   c[i] = P3 (a[i],b[i]);

  for (i=0; i<M; i++) {

    a[i] = P1 (a[i]);

    b[i] = P2 (b[i]);

  }

     C (c[i]);

  for (i=0; i<M; i++)
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Fig. 7. PPNs and Performance Results on the ESPAM Platform

PPN in B), and the PPN with producers P1 and P2 merged

in C). We calculate the throughput of the PPN before and after

merging by applying Algorithm 1.

0 list = {P1 , P2 , P3 , C}
1.1 τ iso

P1 = 1
54+0+7 = 1

61
1.2 {∅} = get in fifos(P1)
1.3 τP1 = min( 1

61 ,∞) = 1
61

1.4 {F1} = get out fifos(P1)
1.4.1 τWr

F1 = 1000
1000 · 1

61 = 1
61

:
3.1 τ iso

P3 = 1
105+(2·7)+7

= 1
126

3.2 {F1 , F2} = get in fifos(P3)
3.2.1 τRd

F1 = 1000
1000 · 1

126

3.2.2 τRd
F2 = 1000

1000 · 1
126

3.2.3 τF1 = min(τWr
F1 , τRd

F1 )

3.2.3 τF1 = min( 1
61 , 1

126 ) = 1
126

3.2.4 τF2 = min( 1
61 , 1

126 ) = 1
126

3.2.5τFaggr = min( 1
126 , 1

126 ) = 1
126

3.3 τP3 = min( 1
126 , 1

126 ) = 1
126

3.4 {F3} = get out fifos(P3)
3.4.1 τWr

F3 = 1000
1000 · 1

126 = 1
126

4.1 τ iso
C = 1

114+7+0 = 1
121

4.2 {F3} = get in fifos(C )
4.2.1 τRd

F3 = 1000
1000 · 1

121 = 1
121

4.2.2 τF3 = min( 1
126 , 1

121 ) = 1
126

4.3 τC = min( 1
126 , 1

121 ) = 1
126

5 τP P N
out = τC = 1

126

Fig. 8. Throughput Estimation of Processes P1 ,P3 ,P4

Figure 8 shows the analysis for process P1 ,P3 and P4 . We

omit the analysis for P2 as it similar to P1 . In process P3 ,

two FIFO throughput values are aggregated as shown in step

3.2.5. We find a process throughput of τP3 = 1
126 for process



P3 , which is propagated to C such that the system throughput

is τPPN
out = τC = 1

126 as well. When we compute the system

throughput for the PPN with processes P1 and P2 merged,

we find a system throughput of τPPN ′

out = 1
126 . This means

that we predict that the original PPN and transformed PPN′

perform equally well. This is confirmed by the actual measured

performance results shown in Figure 7 D). The first bar denotes

the cycle numbers for the original PPN, and the second bar

for the transformed PPN′. Then we increase the workload of

the producer processes and intentionally create a compound

process that is the most compute intensive process and check

if this is captured by our throughput model. When we analyze

the throughput we find 1
126 and 1

152 for the original and

transformed PPN, respectively. The calculation indicates that

the throughput of the merged PPN is lower, which is confirmed

by the third and fourth bar in the measured performance results

in Figure 7 D).

B. Experiment II

In this experiment we consider a more complicated network

shown in Figure 9 that combines different properties. First of

all, it has processes with different domain sizes. Processes P1

and P2 fire 500 times, while the other processes fire 1000

times. As a result, coefficients will scale down the F1 and F2
FIFO read throughput. Secondly, two data paths come together

in process P3 where one token is needed per firing of P3

similar to the example in Figure 6 B). Thirdly, in process

P6 two datapaths are joined as well where both tokens are

needed for each firing, similar to the example in Figure 6 C).

We estimate the system throughput by applying Algorithm 1

a[i] = P3(a[i]);
b[i] = P4();

b[i] = P5(b[i])

P6(a[i],b[i]);

for (i=0; i<1000; i++) {

}

}

P1

P2

P5

P6

P3

P4

F1

F2

F3

F4

F5

500

500

1000
1000

1000

1000

a[i] = P1();

a[i] = P2();

for (i=0; i<1000; i++) {

if i%2 =0

if i%2=1

Fig. 9. Nested-loop Program and its Derived PPN

again and test the throughput modeling with 3 different process

workload configurations. Each configuration is a tuple where

the first value corresponds to the workload of process P1,

the 2nd value to workload of P2, etc. Figure 10 shows the

measured performance results and for each configuration the

original PPN in Figure 9 is used as a reference (the first bar)

and different mergings are shown in the 2nd, 3rd and 4th

bars. For example, the second bar denotes the performance

results after merging processes P1, P2 and P3. If we take

the 2nd workload configuration as an example, our model

finds the following throughputs: 1
85 , 1

121 , 1
85 , 1

115 , 1
113 . Thus,

the estimation indicates that the first merging ( 1
121 ), leads to

a lower throughput than the original PPN ( 1
85 ). The second

merging ( 1
85 ) gives the same performance results, and the

third ( 1
115 ) and fourth ( 1

113 ) are worse than the original PPN.

From these estimations, we conclude that processes P3 and

P4 can be merged and achieve the same system throughput.

This estimation is correct as confirmed by the actual measured

performance results shown in Figure 10.
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Fig. 10. Measured Results on the ESPAM Platform

IV. RELATED WORK

While many works focus on the code generation of clustered

or grouped tasks itself, as it often called in the domain of

Synchronous Data Flow (SDF) graphs [8], we analyze and

model networks with a given compound process and schedule

to compare different PPN instances. There are other works

on throughput computation, but they are developed for SDF

and CSDF models [9], [10]. An approach is presented in [11]

to automatically synthesize a multiprocessor architecture for

process networks under particular mapping and performance

constraints. This is different from our work, as the process

networks are not analyzed.

V. CONCLUSION

We have presented a solution approach for throuhgput

modeling of polyhedral process networks to evaluate process

merging transformations. Our approach takes into account

all factors that influence the throughput. Therefore, we can

accurately capture the throughput trend and select the best

possible merging as illustrated with the experiments.
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