
Exploiting Just-enough Parallelism when Mapping
Streaming Applications in Hard Real-time Systems

Jiali Teddy Zhai
tzhai@liacs.nl

Mohamed A. Bamakhrama
mohamed@liacs.nl

Todor Stefanov
stefanov@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University, Leiden, The Netherlands

ABSTRACT
Embedded streaming applications specified using parallel Models of
Computation (MoC) often contain ample amount of parallelism
which can be exploited using Multi-Processor System-on-Chip
(MPSoC) platforms. It has been shown that the various forms
of parallelism in an application should be explored to achieve
the maximum system performance. However, if more parallelism
is revealed than needed, it will overload the underlying MPSoC
platform. At the same time, the revealed parallelism should be
sufficient such that the MPSoC platform is fully utilized. Therefore,
the amount of revealed and exploited parallelism has to be just-
enough with respect to the platform constraints. In this paper,
we study the problem of exploiting just-enough parallelism by
application task unfolding, when mapping streaming applications
modeled using the Synchronous Data Flow (SDF) MoC onto
MPSoC platforms in hard real-time systems. We show that our
problem of simultaneously unfolding and allocating tasks under
hard real-time scheduling has a bounded solution space and derive
its upper bounds. Subsequently, we devise an efficient algorithm to
solve the problem, while the obtained solution meets a pre-specified
quality. The experiments on a set of real-life streaming applications
demonstrate that our algorithm results, within reasonable amount of
time, in a system specification with large performance gain. Finally,
we show that our proposed algorithm is on average 100 times faster
than one of the state-of-the-art meta-heuristics, i.e., NSGA-II genetic
algorithm, while achieving the same quality of solutions.

1. INTRODUCTION
Streaming applications are widely used in embedded systems in

several application domains, such as image processing, video/audio
processing, and digital signal processing. The ample amount
of parallelism in streaming applications matches perfectly the
processing power of Multi-Processor System-on-Chip (MPSoC)
platforms, which contain an increasing number of Processing
Elements (PEs). Having many PEs available has imposed huge
challenges on both application developers and design tools to
identify and exploit the right amount of parallelism which can
utilize the PEs efficiently. To tackle the challenges, Models-of-
Computation (MoC) have been adopted as the parallel application
specification in most of the design approaches and tools [7]. For
example, Kahn Process Networks [11] and Synchronous Data Flow
(SDF) [14] are two prominent parallel MoCs. In such MoCs, a
streaming application is modeled as a directed graph, where the
graph nodes represent the application tasks and the graph edges
represent the data communication FIFO channels. The tasks execute
concurrently and communicate data explicitly via the FIFOs. In this
case, the task-level parallelism is naturally exposed.

However, in most cases, an initial graph given by application
developers to specify application behavior is not the most suitable
for a given MPSoC platform. This is because application developers
mainly focus on realizing certain application behavior, including
the identification of the functionality of tasks and the synchro-
nization/communication between these tasks. The computational
capacity of the MPSoC platform is often not fully taken into account.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

The authors in [12] showed that, for a set of representative streaming
benchmarks, the maximum achievable speedup of mapping the
initial graphs can only reach up to a limited number. To better
utilize the underlying MPSoC platform, the initial graph of an
application should be transformed to an alternative one that exposes
more parallelism while preserving the same application behavior.
To this end, task unfolding is an effective technique to generate
such alternative graphs. Basically, task unfolding replicates the
functionality of a task by a certain number of times, referred as
unfolding factor. Then, replicas of tasks concurrently process
different data, thereby exploring also data-level parallelism next
to the task-level parallelism.

Unfolding individual tasks in an initial graph by different un-
folding factors results in a large number of possible alternative
graphs. To transform the initial graph to an alternative one by
unfolding, the main problem is to determine a proper unfolding
factor for each task. This problem is challenging because platform
constraints must be considered during unfolding. The platform
constraints can be the number of available PEs and temporal
scheduling of tasks on the PEs. On the one hand in [22, 5, 20],
the authors determine an unfolding factor for each task such that
the obtained alternative graph exposes the maximum data-level
parallelism, without considering the platform constraints. However,
unfolding a task too many times reveals more parallelism than
needed. The overwhelming parallelism leads to an inefficient
mapping of replicas of tasks. That is, the excessive number of
replicas cannot be efficiently allocated and temporally scheduled
on the available PEs. Moreover, the excessive number of replicas
introduces significant memory overhead for both code and data.
On the other hand in [9, 12, 17], the authors assume that the
unfolding factor of a task cannot exceed the number of available
PEs. This assumption, however, restricts the amount of revealed
parallelism because a proper unfolding factor is not necessarily less
than or equal to the number of available PEs. As a consequence,
the aforementioned assumption might lead to under-utilized PEs.
From the discussion above, we can see that exploiting excessive or
insufficient parallelism may result in sub-optimal system utilization
and performance. Therefore, in this paper, we address the problem
of determining a proper unfolding factor of each task in a given
initial graph, such that the obtained alternative graph exposes
just-enough parallelism to fully utilize the available PEs. This is
achieved by considering the platform constraints when determining
the unfolding factors.

We solve the problem explained above when a streaming applica-
tion is modeled using the SDF MoC and mapped onto MPSoC
platforms with hard real-time constraints. The SDF MoC has
been successfully adopted in both industrial and academic tools.
We consider the problem in the context of hard real-time systems,
because many streaming applications nowadays require hard real-
time execution. For instance, collision avoidance algorithms used
in the avionics or automotive industry require very strict timing
guarantees. At the same time, it has been reported in [1] that these
algorithms require approximately 170 million calculations for each
frame update, with the expectation of being executed on up to 64
PEs.

1.1 Paper Contributions
We propose an efficient approach to exploit just-enough paral-

lelism in streaming applications modeled using the SDF MoC in
hard real-time systems, in order to increase the performance that
can be guaranteed on an MPSoC platform. More specifically, our
problem is to determine simultaneously which actors (i.e., tasks)
to unfold by what factor, and the allocation of unfolded actors
onto PEs. We show that the solution space of our problem is
bounded and derive its upper bounds. We then propose an efficient

algorithm to find a solution to the problem, while the obtained
solution meets a pre-specified quality. In addition, we evaluate the
efficiency and time complexity of the proposed algorithm on 11
real-life applications. Finally, we show that our algorithm is, on
average, 100 times faster than a state-of-the-art meta-heuristic, i.e.,
NSGA-II genetic algorithm [4], while achieving the same quality of
the solution.

1.2 Scope of Work
In this paper, we assume that a given SDF graph is acyclic.

Such assumption covers a large set of applications as it has been
empirically shown in [18] that around 90% of streaming applications
can be modeled as acyclic SDF graphs. Once a cycle exists in an
SDF graph, one can always fuse all actors in the cycle into a single
stateful actor. A stateful actor is the one whose next execution
depends on the current execution. As a consequence, our approach
does not unfold stateful actors. Furthermore, the data source
and sink actors, which are connected to the external environment,
are not unfolded. The target platform assumed in this work is a
homogeneous programmable MPSoC with distributed memory. The
interconnection structure between PEs must provide guaranteed
communication latency, e.g., Æthereal network-on-chip [8].

2. RELATED WORK
The approach in [17] is closely related to our work, although

the considered problem is relaxed, i.e., without considering timing
constraints, compared to our problem. A genetic algorithm based
heuristic is proposed to determine the unfolding factor of an actor
and allocation of all replicas. The unfolding factor of an actor
cannot exceed the number of PEs, which might result in sub-optimal
solutions as we show later in Sec. 5. Moreover, we show in the
experiments that our approach outperforms significantly the genetic
algorithm based heuristic in terms of running time.

In [12], an Integer Linear Programming (ILP) formulation gives
exact solutions to minimize makespan on any PE while simultane-
ously unfolding actors in an SDF graph and allocating them on PEs.
In the ILP formulation, an unfolding factor of an actor cannot exceed
the number of available PEs. This assumption might lead to sub-
optimal system performance as discussed previously. Moreover, it
has been shown in [5] that the ILP formulation is even intractable for
benchmarks with medium graph size. For instance, it takes around
70 hours to solve the ILP formulation for the FFT benchmark with 26
actors on 4 PEs (see Table 2 in [5]). In practice, real-life applications
have been shown to contain up to 2868 actors [18]. Therefore, it
is clear that the ILP-based approach suffers from severe scalability
issues. In contrast, our proposed algorithm solves the combined
problem within a reasonable amount of time as demonstrated later
in Sec. 7.

To address the scalability issue of [12], the authors in [5] propose
to decompose the combined problem into two problems and solve
them separately. The separation of the two problems often leads
to inferior performance, as both problems are strongly related. In
contrast, our proposed algorithm is capable of solving the combined
problem simultaneously. Moreover, our algorithm takes into account
timing constraints, while the work in [5] does not.

In the context of synthesizing an SDF graph using dedicated
hardware, the authors in [10] also determine which actors to unfold
and by what factor. The addressed problem is easier than ours
because there is no need to consider allocation of actors after
unfolding in case of hardware synthesis.

In [13], a synchronous programming model is used for the
application specification under hard real-time scheduling. The term
“synchronous” in this context refers to the fact that a master thread
can fork a job into several parallel execution segments and they join
upon completion. These parallel execution segments are, to some
extent, similar to unfolded actors in our case. There is also no need
to consider allocation of parallel segments at compile-time because
migration at run-time is allowed targeting MPSoC platforms with
shared memory. In contrast, we solve the problem of allocating
actors at compile-time. Recall from Sec. 1.2 that we consider the
MPSoC platforms with distributed memory. On such platforms,
migration of actors at run-time introduces non-negligible overhead.

3. BACKGROUND
In Sec. 3.1, we first introduce the application specification, i.e., the

SDF MoC, and the unfolding operation on SDF graphs. After that
in Sec. 3.2, hard real-time scheduling of the SDF MoC is reviewed.
These are essential for better understanding our problems formally
defined in Sec. 4 and contributions presented in Sec. 5 and 6.

A1
1

A2
8

A3
12

A4
2

A5
1

2 1 1 21 1 11

(a) G1

A1,1
1

A2,1
[8, 8, 8]

A3,2
12

A3,1
12

A3,3
12

A4,1
[2, 2, 2]

A5,1
1

1 [1, 1, 1] 1[1, 1, 1]

[2, 0, 0]

[0, 2, 0]

[0, 0, 2]

1 1

1 1

1 1

[2, 0, 0]

[0, 2, 0]

[0, 0, 2]

(b) G2

Figure 1: (a) An example of an SDF graph and (b) its equivalent
CSDF graph by unfolding actor A3 by factor 3.

3.1 Unfolding of SDF Graphs
The SDF MoC is defined as a directed graph G = (A,E), where

A is a set of n actors and E is a set of communication edges. An
actor Ai ∈ A executes by first consuming data tokens from all its
incoming edges, performing certain computation, and subsequently
producing data tokens to all its outgoing edges. The number of
tokens consumed from an edge or produced to an edge is known a-
priori and given as a constant integer. It has been shown in [14] that,
to have a valid periodic schedule, an SDF graph has to be consistent
with a non-trivial repetition vector ~q ∈ Nn. An entry r(Ai) ∈ ~q
denotes how many times an actor Ai ∈ A has to be executed in every
graph iteration of G. Additionally, for each actor Ai, we associate a
Worst-Case Execution Time (WCET) Ci and its code size S i. For
a summary of all the notations used in the paper, please refer to
Appendix A.

An SDF graph G1 is shown in Figure 1(a). The actors A1 and A5
are the data source and sink actors, respectively. G1 has five actors
and a repetition vector ~q = [1, 1, 2, 1, 1]T . The WCET of each actor
is shown below its name, e.g., C3 = 12 for actor A3.

The unfolding operation on an SDF graph used in this paper is
conceptually similar to the one used in [5, 9, 10, 12], in which two
special constructs splitter and joiner are employed for the unfolded
actors. Given a vector ~f ∈ Nn of unfolding factors, where fi denotes
the unfolding factor for actor Ai, the unfolding operation replaces
Ai by fi replicas of itself. Then, instead of inserting a splitter and
joiner before and after the fi replicas of Ai, we transform the initial
SDF graph to a functionally equivalent Cyclo-Static Data Flow
(CSDF) [3] graph. The CSDF MoC generalizes the SDF MoC in the
sense that each CSDF actor may produce or consume a variable but
predefined number of data tokens in consecutive executions, called
production/consumption sequence. Similar to the SDF MoC, the
necessary condition for the existence of a valid periodic schedule for
a given CSDF graph is to have a non-trivial repetition vector ~q′. To
ensure the functional equivalence, the production and consumption
rates of an SDF actor are modified accordingly to the production
and consumption sequences in the resulting CSDF graph. This
modification results in a different repetition vector of the obtained
CSDF graph to ensure its consistency.

The algorithm for performing the unfolding of actors in SDF
graphs is given in Algorithm 2 in Appendix C. The algorithm
accepts as inputs an SDF graph G and a vector ~f of unfolding
factors. The algorithm produces as an output a CSDF graph G′,
where Ai, f denotes the f th replica of Ai with repetition r(Ai, f) given
by:

r(Ai, f) =
r(Ai) · lcm(~f)

fi
, (1)

where r(Ai) is the repetition of actor Ai in the initial SDF graph and
lcm(~f) denotes the least common multiple of fi ∈ ~f . It follows that
the repetition vector of G′, denoted by ~q′ ∈ Nn′ where n′ =

∑
Ai∈A

fi,
is given by ~q′ = [r(A1,1), · · · , r(A1, f1), · · · , r(An, fn)]T . After obtaining
~q′ using Eq. 1, production/consumption sequences of each CSDF
actor are generated accordingly.

Suppose that a vector of unfolding factors is given as ~f =
[1, 1, 3, 1, 1] for G1 in Figure 1(a). Algorithm 2 outputs a CSDF
graph G2 shown in Figure 1(b) with three replicas A3,1, A3,2 and
A3,3 for actor A3 in G1. The unfolding results in a repetition vector
of G2 as ~q′ = [r(A1,1), r(A2,1), r(A3,1), r(A3,2), r(A3,3), r(A4,1), r(A5,1)]T

= [3, 3, 2, 2, 2, 3, 3]T . For example, SDF actor A4 executes only

once (r(A4) = 1) in G1 per graph iteration, while executing three
times (r(A4,1) = 3) in G2 per graph iteration. Three consumption
sequences of actor A4,1 in G2 behave similar to a joiner, with which
A4,1 collects data tokens from the three replicas A3,1, A3,2 and A3,3.
Analogous to a splitter, actor A2,1 with three production sequences
distributes tokens to the three replicas.

3.2 Hard Real-time Scheduling of (C)SDF
The authors in [2] showed that the actors in acyclic CSDF graphs

can be executed in a strictly periodic fashion. Note that this result
applies also to acyclic SDF graphs, since the SDF MoC is a special
case of the CSDF MoC. As a result, a variety of hard-real-time
scheduling algorithms, such as Earliest Deadline First (EDF, [15]),
can be applied to temporally schedule the actors allocated on a PE.

To execute the actors in an acyclic (C)SDF graph in a strictly
periodic fashion, the period of each actor needs to be computed first.
To do so, we introduce the following definition:

Definition 1. The workload of a (C)SDF actor Ai per graph
iteration, denoted by Wi, is given by Wi = r(Ai)Ci, where r(Ai)
is the repetition of Ai and Ci is the WCET of Ai.
Accordingly, we define the maximum workload per graph iteration,
denoted by ŴG, as ŴG = maxAi∈A(r(Ai)Ci). The period of an actor
Ai, denoted by Ti where Ti ∈ N, has a lower bound, denoted by Ťi.
It is given in [2] as follows:

Ťi =
lcm(~q)
r(Ai)

⌈ ŴG

lcm(~q)

⌉
, (2)

where lcm(~q) is the least common multiple of all repetition entries
in ~q. The actual period Ti of an actor Ai is given by Ti = sŤi, where
s ∈ N is the period scaling factor of the graph. For a given (C)SDF
graph G, s is a constant that is used to scale the periods of all its
actors. The deadline of each actor is the start of its next period, i.e.,
the deadline is equal to the period (often called implicit deadline).
Once a period Ti of each actor is derived, we can compute the
utilization ui ∈ (0, 1] of actor Ai as ui = Ci/Ti. Based on this, we
can also compute the utilization of a CSDF graph G, denoted by
UG, as UG =

∑
Ai∈A

Ci/Ti. The throughput of a graph G when its
actors are scheduled as strictly periodic actors is determined by the
period of the sink actor. In the rest of the paper, we denote the lower
bound on the period of the sink actor by Ťsnk, and the actual period
of the sink actor by Tsnk. Accordingly, the throughput of the graph
is 1/Tsnk.

In this work, we consider that the schedule on each PE is built
according to the EDF scheduling algorithm, which is known to be
optimal on a uniprocessor system [15]. A set of actors allocated on
a PE is schedulable using EDF if and only if their total utilization
does not exceed 1. The schedule itself can be built either off-line
for efficiency, or on-line for flexibility according to the system
requirements. The problem of allocating actors onto PEs is similar
to the bin-packing problem and can be solved using either exact
or approximate allocation algorithms. An example of an exact
allocation algorithm is proposed in [16], which returns an optimal
allocation of actors. One disadvantage of using an exact algorithm
is its high computational complexity. Therefore, to have a trade-off
between optimality of the allocation and computational complexity,
we choose in this paper an approximate allocation algorithm, namely
the First-Fit Decreasing (FFD) algorithm, which has a proven worst-
case approximation ratio RFFD = 11

9 [21].
For instance, consider the CSDF graph G2 in Figure 1(b) with

repetition vector ~q′ = [3, 3, 2, 2, 2, 3, 3]T as computed in Sec. 3.1.
The WCET Ci, f of each actor Ai, f is shown below its name. The
throughput of G2 is determined by the period of the sink actor
A5,1. We first compute ŴG2 = r(A3,1) · C3,1 = 24 and lcm(~q′) = 6.
By solving Eq. 2, we obtain that the minimum period of the sink
actor A5,1 is Ťsnk = 6

3 · d
24
6 e = 8. This means that the maximum

throughput of G2 is 1
8 . The strictly periodic execution of all actors

in G2 is visualized in Figure 2. The bars indicate the execution
of the actors in their periods and the up arrows denote the earliest
starting time of each actor. It can be seen that actor A5,1 executes
for 1 time unit every 8 time units. The total utilization of G2 is
UG2 = 1

8 + 8
8 + 12

12 + 12
12 + 12

12 + 2
8 + 1

8 = 4.5. To achieve the maximum
throughput 1

8 assuming the EDF scheduling algorithm and the FFD
allocation algorithm, 5 PEs are required.

Using the scaling factor s defined earlier, we can have a trade-off
between processing resources and guaranteed performance as shown
in the following lemma:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

A1,1

A2,1

A3,1

A3,2

A3,3

A4,1

A5,1

Figure 2: A schedule showing the strictly periodic execution
of the actors in G2. The x-axis represent the time. The last
execution of A2,1, A3,1, A3,2, and A3,3 in the figure is truncated
due to space limits.

Lemma 1. Let G be a CSDF graph that is schedulable using a
scheduling algorithm SA and an allocation algorithm AA on m̌ PEs,
when the period of each actor Ai is equal to Ťi. G is schedulable
using the same SA and AA on

⌈ m̌
s

⌉
PEs, when the period of each

actor Ai is equal to sŤi.
The proof of Lemma 1 can be found in Appendix B. Considering
G2 in Figure 1(b), it can be scheduled on d 5

2 e = 3 PEs achieving
a period Tsnk = 2 × Ťsnk = 16, i.e., throughput 1

16 by scaling all
minimum periods by s = 2.

Now, suppose that AA is an approximate allocation algorithm
with an approximation ratio RAA. Then, we can have the following
corollary of Lemma 1:

Corollary 1. Let G be a CSDF graph that is schedulable using
a scheduling algorithm SA and any exact allocation algorithm on
m̌ PEs, when the period of each actor Ai is equal to sŤi. G is
schedulable using SA and any approximate allocation algorithm AA,
with approximation ratio RAA, on m̌ PEs, when the period of each
actor Ai is equal to sRAAŤi.

4. PROBLEM FORMULATION
Now, we formally define our problem introduced in Sec. 1 as

follows:
Problem 1. Given an SDF graph G, where the actors are sched-

uled as strictly periodic actors, and m available PEs. Suppose that
each actor Ai in G is to be unfolded by an unfolding factor fi. Find,
for each actor Ai, the minimum value of fi and the allocation of each
replica Ai, f , where 1 ≤ f ≤ fi, such that the period of the sink actor
Tsnk in the unfolded graph is minimized.
If Problem 1 is considered as primal, we can have its equivalent
dual problem defined as follows:

Problem 2. Given an SDF graph G, where the actors are sched-
uled as strictly periodic tasks, and m available PEs. Suppose that
each actor Ai in G is to be unfolded by an unfolding factor fi. Find,
for each actor Ai, the minimum value of fi and the allocation of
each replica Ai, f , where 1 ≤ f ≤ fi, such that the total utilization∑

Ai, f ∈A
′ Ci, f /Ti, f of the unfolded graph on m PEs is maximized.

It can be seen that Problems 1 and 2 are not trivial. In general,
for a given SDF graph, the number of possible alternative graphs
that can be generated using unfolding grows exponentially as the
number of actors increases. Furthermore, for each alternative graph,
we have to perform allocation of unfolded actors which is by itself
an NP-hard problem.

5. BOUNDING THE SOLUTION SPACE
In order to solve Problems 1 and 2 defined in Sec. 4, we need

first to bound the solution space, i.e., to bound the values of the
unfolding factors fi. Bounding the solution space ensures that the
algorithm devised in Sec. 6 terminates. We define the upper bound
on unfolding factors as follows:

Definition 2. Let G be an SDF graph, where the actors in G are
scheduled as strictly periodic actors, and assume that the number
of PEs is unlimited. Suppose that every actor Ai in G is to be
unfolded by a factor fi resulting in a CSDF graph G′, where Ťi, f is
the minimum period of each replica Ai, f and Ci, f = Ci is its WCET.
The upper bound on fi, denoted by f̂i, is the minimum value which
results in utilization Ci, f /Ťi, f = 1.0 for each replica Ai, f in G′.

In other words, unfolding an SDF graph G by a vector of

unfolding factors ~̂f = [f̂1, · · · , f̂n] results in a graph G′ with
utilization UG′ = n′, where n′ is the number of actors in the
unfolded graph. Hence, unfolding any actor Ai by an unfolding

A1,1
1

A2,1
[8, 8]

A2,2
[8, 8]

A3,1
12

A3,2
12

A3,3
12

A3,4
12

A4,1
[2, 2, 2, 2]

A5,1
1

[1, 0]

[0, 1]

[1, 1]

[1, 1]

1[1, 1, 1, 1]

[2, 0]

[0, 2]

[2, 0]

[0, 2]

1 1

1 1

1 1

1 1

[2, 0, 0, 0]

[0, 2, 0, 0]

[0, 0, 2, 0]

[0, 0, 0, 2]

Figure 3: G3: Optimal alternative graph of G1 in Figure 1(a)
with unfolding factors f2 = 2, f3 = 4 when scheduled on 2 PEs.

factor f ∗i > f̂i cannot result in any increase in the total utilization
of the unfolded graph. Moreover, the unfolded graph achieves the
maximum achievable throughput since the sink actor fully utilizes

the PE on which it executes. Therefore, ~̂f defines the solution space
that has an impact on the total utilization of the unfolded graph.

Determining the upper bound ~̂f is not trivial. One common

assumption, e.g., in [9] and [12], is to set ~̂f = [m,m, · · · ,m],
where m is the number of PEs. In this section, we show, using an
example, that this assumption sometimes limits the solution space.
As a consequence, the limited solution space might not contain the
optimal solution to Problems 1 and 2.

Let us consider G1 in Figure 1(a) and suppose that 2 PEs are
available. The optimal alternative graph of G1 is G3, shown in Fig-
ure 3, when the vector of unfolding factors is ~f = [1, 2, 4, 1, 1]. The
repetition vector of G3 can be computed according to Eq. 1 as ~q′ =
[r(A1,1), r(A2,1), r(A2,2), r(A3,1), r(A3,2), r(A3,3), r(A3,4), r(A4,1), r(A5,1)]T

= [4, 2, 2, 2, 2, 2, 2, 4, 4]T . It follows that ŴG3 = 2 × 12 and
lcm(~q′) = 4. Solving Eq. 2 yields the minimum period of the sink
actor A5,1 as Ťsnk = 4

4 · d
24
4 e = 6. To achieve Ťsnk = 6, 6 PEs are

required. Then, we can scale all periods of the actors in G3 by s = 3,
which yields a period Tsnk = 3Ťsnk = 18. According to Lemma 1,
the graph G3 is schedulable on d 6

3 e = 2 PEs. After scaling the
periods of all actors, the total utilization UG3 of G3 on 2 PEs is 2.0,
thereby no shorter period can be achieved. Thus, G3 is the optimal
alternative graph of G1 for 2 PEs with an unfolding factor f3 = 4,
which is greater than the number of PEs available. Therefore, this

example shows that the optimal solution is beyond ~̂f = [2, 2, 2, 2, 2],

which defines the solution space if we set ~̂f = [m,m, · · · ,m]. Hence,
we conclude that the upper bound on an unfolding factor is not
necessarily equal to the number of PEs.

Now, we derive the upper bound on the unfolding factor for each
actor in the initial SDF graph by stating the following theorem:

Theorem 1. Given an SDF graph G, where the actors are
scheduled as strictly periodic actors. Suppose that each actor Ai is
to be unfolded by a factor fi. The upper bound on fi according to
Definition 2 can be computed as follows:

f̂i = lcm{x1, x2, · · · , xn}/xi, (3)

where xi = lcm{W1,W2, · · · ,Wn}/Wi (Wi is the workload of actor
Ai given by Definition 1).
The proof of Theorem 1 is given in Appendix B.

Now, we give an example on how to compute ~̂f . For G1
in Figure 1(a), ~x containing the values of xi is given by ~x =

[24, 3, 1, 12, 24]. Then, we obtain lcm(~x) = 24, and ~̂f = [1, 8, 24, 2, 1].

6. THE ALGORITHM
Considering the upper bounds on unfolding factors ~̂f derived in

Sec. 5, we devise, in this section, an efficient algorithm to solve
Problems 1 and 2 as defined in Sec. 4.

The algorithm accepts as an input the following: 1) the initial
SDF graph G; 2) the number of available PEs m; 3) the vector

containing the upper bounds on the unfolding factors ~̂f computed
using Eq. 3; and 4) a pre-specified quality factor ρ ∈ (0, 1], which is
used to terminate the algorithm. The outputs of the algorithm are:
1) a vector of unfolding factors that is the solution to Problems 1
and 2; 2) the allocation of the unfolded SDF graph on m PEs; 3)
the minimum achievable period of the sink actor in the unfolded

SDF graph on m PEs which is the objective of Problem 1; and 4) the
maximum utilization of the unfolded SDF graph on m PEs which is
the objective of Problem 2.

6.1 Algorithm Description
The algorithm builds, incrementally during its execution, a list of

nodes in which each node represents a possible vector of unfolding
factors ~f . Initially, the list contains only a single node which
corresponds to the given initial SDF graph with a vector of unfolding
factors ~f = ~1. Then, we compute the minimum period of the
sink actor Tsnk in the initial SDF graph G, when G is allocated
on m PEs, and its total utilization UG. Both values initialize a
tuple (Tbest,Ubest) which holds the period and total utilization of the
current best solution. During the execution of the algorithm, new
nodes are created and added to the list, where a node represents an
alternative CSDF graph G′ of the initial graph G with a vector ~f of
unfolding factors. Each entry fi ∈ ~f ranges from 1 up to f̂i derived
in Eq. 3.

A newly created node inherits from its previous node a copy
of the unfolding factors vector ~fprev used by the previous node to
generate the unfolded graph G′prev. After that, we search in G′prev
for the bottleneck actor, denoted by Ab, f , which is the one with the
maximum workload ŴG as defined in Sec. 3.2. If multiple actors
have the same maximum workload, then the one with the smallest
code size is selected. Next, we increment by one the entry fb in
the inherited unfolding factors vector ~fprev, thereby, obtaining ~fcurr.
Then, we unfold the initial graph G by the factors in ~fcurr which
results in a CSDF graph G′curr. The next step is to evaluate the
unfolded graph G′curr when it is allocated on m PEs. The procedure
for evaluating G′curr is explained in details in Sec. 6.2. The result
of the evaluation procedure is the minimum period of the sink
actor Tsnk in G′curr, when G′curr is allocated on m PEs, and the total
utilization of the graph Ucurr. If the obtained Ucurr is higher than
Ubest corresponding to the current best solution (i.e., Tsnk smaller
than Tbest), then Tbest and Ubest are updated with Tsnk and Ucurr,
respectively. Otherwise, Tbest and Ubest remain unchanged.

The creation of new nodes is terminated when one of the following
conditions is met:

1. The total utilization UG′ of the CSDF graph at the current
node satisfies UG′ ≥ ρm, where ρ ∈ (0, 1] is the quality factor
given as an input to the algorithm. If ρ = 1, then this means
that each PE is fully utilized, which means that no shorter
period can be obtained.

2. The unfolding factor fi of an actor Ai exceeds either its upper
bound f̂i if Ai is stateless, or 1 if Ai is stateful or a data
source/sink actor. Recall that stateful actors together with the
data source and sink actors cannot be unfolded.

After the creation of new nodes is terminated, we select the first
node in the list that has a minimum sink period and a total graph
utilization equal to Tbest and Ubest, respectively. The selected node
contains the solution to Problems 1 and 2.

6.2 Evaluating the Unfolded Graphs
As explained in Sec. 6.1, at each node, the initial SDF graph

G is unfolded to produce a CSDF graph G′ = {A′,E′}. Then, we
compute two values for G′: 1) the minimum sink actor period Tsnk
when G′ is allocated on m PEs; and 2) its total utilization UG′ . In this
section, we explain in details how these two values are computed.
Recall from Sec. 3.2 that Tsnk is given by Tsnk = sŤsnk, and UG′ can
be computed as follows:

UG′ =
∑

Ai, f ∈A
′

Ci, f

sŤi, f
. (4)

Recall also that the objective of Problem 2 is to maximize the
utilization. Therefore, we need to find a value of scaling factor
s, such that all actors in G′ are schedulable on m PEs and UG′

is maximized. To do so, we first bound the search range for s by
deriving its lower and upper bounds. Using any allocation algorithm,
we have from Lemma 1 a lower bound on s, denoted by š, as follows:

š =

⌈ 1
m

∑
Ai, f ∈A

′

Ci, f

Ťi, f

⌉
. (5)

That is, for any AA, the scaling factor s cannot be smaller than š.
From Corollary 1 in Sec. 3.2, we compute, using the approximation

Algorithm 1: The procedure for evaluating an unfolded graph.
Input: A CSDF graph G′, number of available PEs m, and the

period and total utilization corresponding to the current
best solution Tbest and Ubest.

Result: alloc which is an m-partition describing the allocation
of the actors in G′ onto m PEs

1 Compute š using Eq. 5 and ŝ using Eq. 6 ;
2 for s = š to ŝ do
3 Compute the period Ti, f of each actor Ai, f as Ti, f = sŤi, f ;
4 if Tsnk ≥ Tbest then
5 return ∅ ;
6 Compute the utilization UG′ using Eq. 4;
7 Find an m′-partition of the actors in G′, denoted by alloc,

using the FFD algorithm and assuming the EDF scheduling
algorithm;

8 if m′ ≤ m then
9 Ubest = UG′ , Tbest = Tsnk;

10 return alloc ;

ratio of the FFD allocation algorithm RFFD = 11/9 given in Sec. 3.2,
the upper bound on the scaling factor s, denoted by ŝ, as follows:

ŝ =

⌈ 11
9m

∑
Ai, f ∈A

′

Ci, f

Ťi, f

⌉
+ 1. (6)

Once the lower and upper bounds of s are found using Eq. (5) and
Eq. (6), respectively, we perform a linear search to seek the smallest
s, such that a CSDF graph G′ is schedulable on m PEs. Specifically,
we check if an m-partition of all actors in G′ exists, assuming
the EDF scheduling algorithm and the FFD allocation algorithm
explained in Sec. 3.2. The complete procedure for evaluating the
unfolded graphs is depicted in Algorithm 1. If the period resulting
from a given scaling factor s is greater than Tbest, then Algorithm
1 terminates immediately to speed-up the search (see line 4 in
Algorithm 1).

6.3 Example
Now, we illustrate our algorithm using graph G1 in Figure 1(a)

and schedule it on 2 PEs (i.e., m = 2). Suppose that ρ = 0.95, i.e.,
the algorithm terminates when UG′ ≥ 0.95× 2 = 1.9. The whole list
produced by the algorithm is illustrated in Figure 4. The numbers
inside the nodes correspond to the sequence in which the nodes
are created. The algorithm starts with the initial G1 in node 0 and
computes the scaling factors š and ŝ which result in UG1 = 1.5 and
period Tsnk = 24. At this point, Ubest is initialized to 1.5 and Tbest
to 24. Node 1 inherits from node 0 a vector of unfolding factors
equal to [1, 1, 1, 1, 1]. After that, we search in G′prev = G1 for the
bottleneck actor which is A3. Next, we increment f3 in the inherited
vector of unfolding factors at node 1 resulting in ~f = [1, 1, 2, 1, 1].
Then, G′ is generated and Algorithm 1 is invoked. Since Ubest cannot
be improved (see line 4 in Algorithm 1), the algorithm continues by
creating node 2. At node 2, a new bottleneck actor A2,1 is introduced.
Therefore, at node 3, the unfolding factor f2 is incremented by 1.
Then, the algorithm continues to node 4, at which one termination
criterion is met, namely UG′ ≥ 1.9. As a result, ~f = [1, 2, 4, 1, 1] is
the solution with Tbest = 18 and Ubest = 2.0.

7. EVALUATION
In this section, we present the results of evaluating our algorithm

using a set of real-life streaming applications. We evaluate the
algorithm by performing two experiments. In the first experiment,
we run our algorithm on the applications and report the following:
1) the performance gain resulting from mapping the SDF graph
unfolded using the unfolding factors obtained from our algorithm,
compared to mapping the initial SDF graph without unfolding; and
2) the total time needed to execute our algorithm.

In the second experiment, we compare our proposed algorithm
with one of the state-of-art search meta-heuristics, since problems
1 and 2 in general can be readily formulated and solved by these
meta-heuristics, such as genetic algorithms, simulated annealing,
etc. However, meta-heuristics normally require parameter tuning
to achieve a good solution. In this work, we select a particular
meta-heuristic, namely Genetic Algorithms (GA) for two reasons:
1) they have been applied by several researchers to solve similar
problems (e.g., [17]), and 2) several researchers have reported the

0

1

2

3

4

~f = [1, 1, 1, 1, 1], š = 1, ŝ = 1,
UG1 = 1.5, Tsnk = 24, (Tbest,Ubest) = (Tsnk,UG1) = (24, 1.5)

Bottleneck: A3

~f = [1, 1, 2, 1, 1], š = 2, ŝ = 2,
UG′ = 1.5, Tsnk = 24, (Tbest,Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 1, 3, 1, 1], š = 3, ŝ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest,Ubest) = (24, 1.5)

Bottleneck: A2,1

~f = [1, 2, 3, 1, 1], š = 3, ŝ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest,Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 2, 4, 1, 1], š = 3, ŝ = 4
UG′ = 2.0, Tsnk = 18, (Tbest,Ubest) = (Tsnk,UG′) = (18, 2.0)

Figure 4: The list produced by the algorithm for G1 in
Figure 1(a) on 2 PEs.

optimal parameter settings for GA in the context of our problem
(e.g., [19]). In particular, we compare our proposed algorithm with
the NSGA-II genetic algorithm [4]. Specifically, we compare two
metrics: 1) the total execution time needed by each algorithm to find
a solution; and 2) the total code size of the returned solution.

We conducted all experiments on 11 real-life streaming applica-
tions from the StreamIt benchmarks suite [9]. The exact characteris-
tics of the benchmarks are outlined in Table 2 in Appendix D. The
experiments were performed on an Intel Core 2 Duo T9600 CPU
running at 2.80 GHz with Linux Kubuntu 10.4.

7.1 Evaluating the Proposed Algorithm
First, we present the performance gain resulting from mapping

the unfolded SDF graph, compared to mapping the initial SDF
graph without unfolding. We do so by running the algorithm on the
benchmarks and mapping each application on a number of PEs that
varies from 2 up to 128 PEs. We evaluate the trade-off between the
performance gain and total execution time by setting different quality
factors ρ ∈ {0.8, 0.85, 0.9, 0.95}. To measure the performance gain,
we compute, for each benchmark, the ratio between the sink actor
period resulting from mapping the unfolded SDF graph, and the
period resulting from mapping the initial SDF. This ratio is denoted
by Ω and is given by Ω = (Tsnk of G′)/(Tsnk of G), where G′ is the
unfolded graph, and G is the initial SDF graph. A lower value of
Ω indicates a shorter sink actor period in the unfolded graph, and
therefore, a higher throughput. In Figure 5(a), each vertical line
shows the variations in Ω for all the benchmarks. The marker at the
middle of each vertical line represents the Geometric Mean (GM) of
Ω, while the upper and lower ends of the line represent the maximum
and minimum values of Ω, respectively. It can be seen that mapping
the unfolded SDF graphs of the benchmarks achieves significant
performance improvement compared to mapping the initial SDF
graphs of the benchmarks. As the number of PEs increases, the
unfolded SDF graphs utilize the PEs much better than the initial
SDF graphs. For example, on 64 and 128 PEs, mapping the unfolded
SDF graphs with quality factor ρ = 0.95 achieves a GM of Ω equal to
0.2 and 0.1, respectively. The DCT benchmark benefits significantly
from the algorithm and achieves a GM of Ω equal to 0.021 and 0.042
on 128 and 64 PEs, respectively. Even when a small number of
PEs is available, the unfolded SDF graphs still achieve, with quality
factor ρ = 0.95, a GM of Ω equal to 0.92 and 0.85 on 2 and 4 PEs,
respectively.

During the experiment, we also find that the unfolding factor of
an actor, obtained using our algorithm, is not necessarily equal to
the number of PEs. For example, the obtained unfolded SDF graph
of the Vocoder benchmark, when mapped onto 8 PEs, requires the
RectangularToPolar actor in the initial SDF graph to be unfolded
by a factor of 20. This confirms our statement in Sec. 5.

We also evaluate the total execution time of our algorithm,
denoted by tours, when it is invoked on the benchmarks. Figure 5(b)
shows the total execution time of our algorithm in seconds for all the
benchmarks. For all benchmarks, our algorithm takes a GM of 6.07
seconds for 128 PEs with utilization ratio ρ = 0.95. The Serpent
benchmark (the largest graph size with 120 actors) takes the longest
running time (78.90 seconds), while the DCT benchmarks takes
the shortest running time (1.09 seconds). As the quality factor ρ
is decreased from 0.95 to 0.9, the GM of the running time drops
to 2.49 seconds for 128 PEs. These results show clearly that our

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128

Ω
 =

 (
T

s
n

k
 o

f
G

’)
/(

T
s
n

k
 o

f
G

)

Number of PEs

ρ = 0.95
ρ = 0.9

ρ = 0.85
ρ = 0.8

(a) Period ratio (lower is better)

 0.1

 1

 10

 100

2 4 8 16 32 64 128

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 o
f

o
u

r
a

lg
o

ri
th

m
 (

in
 s

e
c
o

n
d

s
)

Number of PEs

ρ = 0.95
ρ = 0.9

ρ = 0.85
ρ = 0.8

(b) Running time of our algorithm

 1

 10

 100

 1000

D
C
T

FFT
Filterbank

TD
E

D
ES

Serpent

Bitonic

M
PEG

2

Vocoder

FM
R
adio

C
hannel

R
a

ti
o

tGA/tours
Stotal(GA)/Stotal(ours)

(c) The ratios of total execution time and total
code size for the GA and our algorithm

Figure 5: (a and b) Results of evaluating our proposed algorithm and (c) comparing our algorithm vs. GA.

algorithm results, within a reasonable amount of time, in a large
performance gain.

7.2 Comparison with Genetic Algorithm
To compare our algorithm with the GA-based heuristic, we

perform the following steps. First, we run the GA to map each
benchmark onto 64 PEs. It outputs an achievable period T and
total utilization UGA. Then, we run our algorithm to map the same
benchmark onto 64 PEs with a termination criterion UG′ ≥ UGA.
This criterion ensures a fair comparison since our algorithm runs
till it finds the same or better solution in terms of the sink actor
period and total utilization compared to the best solution found by
the GA-based heuristic. Then, we compare two metrics: 1) the total
execution time of each algorithm; and 2) the total code size resulting
from the unfolding factors returned by each algorithm. The total
code size is computed as

∑
Ai, f ∈A

′ S i, f , where S i, f is the code size
for actor Ai, f .

In this work, we use the NSGA-II implementation from the DEAP
framework [6]. For the GA-based heuristic, each individual (also
known as a chromosome) encodes a particular unfolding vector ~f
of the initial SDF graph and the allocation of the replicas on m PEs.
The structure of an individual is visualized in Figure 6. Basically, in
an individual, each SDF actor Ai in the initial graph has f̂i cells as
derived in Eq. 3, indicating that Ai may have up to f̂i replicas. Each
cell may have a value varying from 0 up to m. A value of 0 denotes
that the replica does not exist, while a value of 1 up to m denotes the
PE on which the replica is allocated. Then, we formulate Problem 1
as a multi-objective optimization problem with two objectives. The
first objective is to minimize the sink actor period, and the second
one is to minimize the total code size of the unfolded graph. During
the search, we use the evaluation function shown in Algorithm 3
in Appendix C. The GA outputs a set of Pareto points, for which
we select the one with the shortest achievable period. In order to
control the GA, we use the parameters reported in [19], because the
target application domain and used platforms are similar to ours.
The values of these parameters are given in Table 3 in Appendix D.

Figure 5(c) shows two ratios. The first ratio (shown in white bars)
is the total execution time ratio given by tGA/tours, where tGA is the
total time needed by the GA, and tours is the total time needed by
our algorithm. The second ratio in Figure 5(c) (shown in black bars)
is the total code size ratio given by S total(GA)/S total(ours), where
S total(GA) is the total code size of the solution obtained using the GA,
and S total(ours) is the total code size of the solution obtained using
our algorithm. Our algorithm is on average 104 times faster than the
GA-based heuristic. For example, to unfold and map the FMRadio
benchmark onto 64 PEs, our algorithm takes only 3 seconds, while
the GA-based heuristic takes 2439 seconds. This means that our
algorithm, for the FMRadio benchmark, is 813 times faster. We also
see from Figure 5(c) that our algorithm results in less total code size
compared to the GA-based heuristic. These results show clearly that
our algorithm outperforms the GA-based heuristic in terms of: 1)
the time needed to obtain the solution; and 2) the total code size of
the obtained solution.

8. CONCLUSIONS
In this paper, we addressed the problem of exploiting just-enough

parallelism when mapping a streaming application modeled using
the SDF MoC in hard real-time systems. Exploiting just-enough
parallelism is achieved by simultaneously unfolding and allocating

the SDF actors onto an MPSoC platform, while considering the
number of available PEs and hard real-time scheduling of actors
on the PEs. We showed that the solution space to our problem is
bounded and subsequently derived its upper bound. We devised an
efficient algorithm to solve the problem and evaluated the algorithm
on a set of real-life applications. The experiments showed that our
algorithm results a system specification with large performance gain.
We also compared our algorithm with one of the state-of-the-art
meta-heuristics, i.e., NSGA-II genetic algorithm, and showed that
our algorithm is on average 100 times faster than the GA, while
achieving the same quality of the solution.

9. ACKNOWLEDGMENT
This work is supported by the Dutch STW NEtherlands STream-

ing (NEST) project and CATRENE/MEDEA+ TSAR project.

10. REFERENCES
[1] EU FP-7 parMERASA project. http://www.parmerasa.eu/.
[2] M. Bamakhrama and T. Stefanov. Hard-real-time scheduling of data-dependent

tasks in embedded streaming applications. In Proc. EMSOFT, 2011.
[3] G. Bilsen et al. Cyclo-static data flow. IEEE Trans. Signal Process.,

44:397–408, 1996.
[4] K. Deb et al. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput., 6(2):182 –197, 2002.
[5] S. M. Farhad et al. Orchestration by approximation: mapping stream programs

onto multicore architectures. In Proc. ASPLOS, 2011.
[6] F.-A. Fortin et al. DEAP: Evolutionary algorithms made easy. J. Mach. Learn.

Res., 2171–2175(13), 2012.
[7] A. Gerstlauer et al. Electronic system-level synthesis methodologies. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., 28(10):1517–1530, 2009.
[8] K. Goossens et al. Æthereal network on chip: concepts, architectures, and

implementations. IEEE Des. Test. Comput., 22(5):414 – 421, 2005.
[9] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs. In Proc. ASPLOS, 2006.
[10] A. Hagiescu et al. A computing origami: folding streams in FPGAs. In Proc.

DAC, 2009.
[11] G. Kahn. The semantics of a simple language for parallel programming. In

Proc. of IFIP Congress. 1974.
[12] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on

multicore platforms. In Proc. PLDI, 2008.
[13] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks

on multi-core processors. In Proc. RTSS, 2010.
[14] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Trans. Comput., 36:24–35, 1987.
[15] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM, 20(1):46–61, 1973.
[16] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, 1 edition, 1990.
[17] A. Stulova et al. Throughput driven transformations of synchronous data flows

for mapping to heterogeneous MPSoCs. In ICSAMOS, 2012.
[18] W. Thies and S. Amarasinghe. An empirical characterization of stream

programs and its implications for language and compiler design. In PACT, 2010.
[19] M. Thompson. Tools and techniques for efficient system-level design space

exploration. PhD thesis, University of Amsterdam, 2012.
[20] H. Yang and S. Ha. Pipelined data parallel task mapping/scheduling technique

for MPSoC. In Proc. DATE, 2009.
[21] M. Yue. A simple proof of the inequality FFD (L) ≤11/9 OPT (L) + 1, ∀L for

the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica, 1991.
[22] J. T. Zhai, H. Nikolov, and T. Stefanov. Mapping of streaming applications

considering alternative application specifications. ACM Trans. Embed. Comput.
Syst., 12:34:1–34:21, 2013.

APPENDIX
A. NOTATIONS

Table 1: Notations used in the paper.
N the set of natural numbers excluding zero

x̌ lower bound (minimum) of a value x

x̂ upper bound (maximum) of a value x

lcm least common multiple

dxe smallest integer that is greater or equal to x

Ai ith actor, where 1 ≤ i ≤ n

Ci worst-case execution time of the actor Ai

(equivalent to µi in [2])

fi unfolding factor for actor Ai

G a (C)SDF graph, G = {A,E}

m number of PEs

n number of actors in a (C)SDF graph

r(Ai) repetition of actor Ai in one graph iteration

ρ quality factor ρ ∈ (0, 1]

s scaling factor for periods of all actors in a (C)SDF graph

S i code size of actor Ai

Ti period of actor Ai (equivalent to λi in [2])

ui utilization factor of actor Ai, ui =
Ci
Ti

UG total utilization of (C)SDF graph G,
UG =

∑
Ai∈A

Ci/Ti

Wi workload of actor Ai per graph iteration,
Wi = r(Ai) ·Ci

B. PROOFS
Proof. (of Lemma 1) Let USA be the utilization bound of a

scheduling algorithm SA. If G is schedulable on m̌ PEs using SA
and any AA, then this means that the total utilization of the actors
on each PE j, where 1 ≤ j ≤ m̌, is UPE j ∈ (0,USA]. If we scale the
periods of the actors in G by s, then this means that UPE j ∈ (0, USA

s].
Therefore, it is possible to combine the actors in every s PEs into 1
PE. Hence, the number of PEs needed after scaling the periods is⌈ m̌

s

⌉
.

Proof. (of Theorem 1) Suppose that G′ is the CSDF graph
obtained by unfolding each actor Ai in the initial SDF graph G
by f̂i. From Definition 2, it follows that every replica Ai, f in G′ has
Ťi, f = Ci, f = Ci. Therefore, we can re-write Eq. 2 as:

Ci =
lcm(~q′)
r(Ai, f)

⌈ ŴG′

lcm(~q′)

⌉
(7)

where r(Ai, f) is the repetition of Ai, f in G′. Eq. 7 can be re-written
as:

r(Ai, f)Ci = lcm(~q′)
⌈ ŴG′

lcm(~q′)

⌉
(8)

Since lcm(~q′)dŴG′/ lcm(~q′)e is constant, then we re-write Eq. 8 as:

r(A1,1)C1 = r(A1,2)C1 = ... = r(A1, f1)C1 = ... = r(An, fn)Cn (9)

Now, we can write r(Ai, f) = xi · r(Ai), where r(Ai) is the repetition of
Ai in the initial SDF graph and xi is an integer factor. That is:

x1r(A1)C1 = x2r(A2)C2 = · · · = xnr(An)Cn (10)

Eq. 10 can be re-written as:

x1W1 = x2W2 = · · · = xnWn (11)

where Wi is the workload of actor Ai according to Definition 1. The
minimum solution to Eq. 11 is:

xi = lcm{W1,W2, · · · ,Wn}/Wi (12)

Since r(Ai, f) = xir(Ai) and the graph is unfolded by ~̂f , we can
substitute this in Eq. 1 to get:

xir(Ai) =
r(Ai) lcm(~̂f)

f̂i
(13)

which can be re-written as:

xi f̂i = lcm(~̂f) (14)

Since lcm(~̂f) is constant, then Eq. 14 can be re-written as:

x1 f̂1 = x2 f̂2 = · · · = xn f̂n (15)

The minimum solution to Eq. 15 is:

f̂i =
lcm{x1, x2, · · · , xn}

xi
(16)

C. ALGORITHMS

Algorithm 2: Unfolding an SDF graph.

Input: An SDF graph G = {A,E} with a vector ~f of unfolding factors.
Result: The equivalent CSDF graph G′ = {A′,E′}

1 A′ = ∅,E′ = ∅ ;
2 foreach Ai ∈ A do
3 Add fi ∈ ~f replicas of Ai toA′ ;

4 Set repetition entry r(Ai,ii) =
r(Ai)·lcm(~f)

fi
,∀ii ∈ [1, fi] ;

5 foreach E ∈ E do
6 Get source actor Ai and sink actor A j of edge E ;
7 Get production rate prd(E) and consumption rate cns(E) ;
8 lcm_pc = lcm(prd(E), cns(E)) ;
9 if f j is dividable by fi then OP = f j/ fi; IP = 1;

10 else if fi is dividable by f j then IP = fi/ f j; OP = 1;
11 else IP = fi/ f j; OP = 1;
12 for ii = 1 to fi do
13 Add OP output ports to Ai,ii;
14 for k = 1 to OP do
15 Initialize a production sequence Pi,ii of length r(Ai,ii) to 0;
16 Pi,ii[p] = prd(E),∀p ∈ [(k − 1) lcm_pc

prd(E) + 1, k lcm_pc
prd(E)] ;

17 if f j is dividable by fi then j j = (ii − 1)OP + k ;
18 else if fi is dividable by f j then j j = ii/IP ;
19 else j j = k ;
20 Initialize a consumption sequence C j, j j of length r(A j, j j) to 0;
21 C j, j j[c] = cns(E),∀c ∈ [(ii − 1) lcm_pc

cns(E) + 1, ii lcm_pc
cns(E)] ;

22 Create a new channel E′ connecting replica Ai,ii to replica A j, j j ;
23 Add channel E′ to E′ ;

24 Compact the production and consumption sequences of each actor inA′;

Algorithm 3: Evaluation function in the GA-based meta-
heuristic

Input: An individual to be evaluated
Result: An achievable period and total code size.

1 Check if the given individual is valid ;
2 if the individual is invalid then return (−1, −1) ;
3 Build the vector of unfolding factors ~f from the individual ;
4 Generate the CSDF graph G′ by unfolding G with ~f using Algorithm 2;
5 Compute the minimum achievable period Ťi, f of each actor Ai, f using to Eq. 2 ;
6 Compute š according to Eq. 5 ;
7 s = š ;
8 while true do
9 Compute the period Ti, f of each actor Ai, f as Ti, f = sŤi, f ;

10 if G′ is schedulable on m PEs then
11 Compute total code size S total =

∑
Ai, f ∈A

′ S i, f ;

12 Get the period Tsnk of the sink actor in G′ ;
13 return (Tsnk, S total) ;

14 else
15 s = s + 1 ;

D. EXPERIMENTS
Table 2: Benchmark characteristics.

Benchmark Num. of Actors Num. of Edges Has Stateful Actors?
DCT 8 7 No
FFT 17 16 No

Filterbank 85 99 No
TDE 29 28 No
DES 53 60 No

Serpent 120 128 No
Bitonic 40 46 No
MPEG2 23 26 Yes
Vocoder 114 147 Yes
FMRadio 43 53 No
Channel 55 70 No

A1,1 ... A1, f̂1 ... An,1 ... An, f̂n

j ... 0 ... 1 ... 2
Figure 6: An example of an individual. The first replica of A1 is
allocated on the jth PE and the f̂1th replica of A1 does not exist.

Table 3: Parameters for the genetic algorithm.
Parameter Recommended value in [19]

Population size 80

Number of generations 300

Crossover rate 0.9

Mutation rate 0.05

Mating rate 0.1

