

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

Modeling Adaptive Streaming Applications with
Parameterized Polyhedral Process Networks

Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov
Leiden Institute of Advanced Computer Science,

Leiden University,
The Netherlands

{tzhai, nikolov, stefanov}@liacs.nl

ABSTRACT
The Kahn Process Network (KPN) model is a widely used model-
of-computation to specify and map streaming applications onto mul-
tiprocessor systems-on-chips. In general, KPNs are difficult to
analyze at design-time. Thus a special case of the KPN model,
called Polyhedral Process Networks (PPN), has been proposed to
address the analyzability issue. However, the PPN model is not
able to capture adaptive/dynamic behavior. Such behavior is usu-
ally expressed by using parameters which values are reconfigured
at run-time. To model the adaptive/dynamic applications, in this
paper we introduce an extension of the PPN model, called Param-
eterized Polyhedral Process Networks (P3N), which still provides
design-time analyzability to some extent. We first formally define
the P3N model and its operational semantics. In addition, we de-
vise a design-time analysis to extract relations between parameters.
Based on the analysis, we propose an approach to ensure that con-
sistent execution of the P3N model is preserved at run-time. Using
an FPGA-based MPSoC platform, we present a performance eval-
uation of the possible overhead caused by the run-time reconfigu-
ration.

Categories and Subject Descriptors
F.1.1 [Theory of Computation]: Models of Computation; I.6.4
[Simulation and Modeling]: Model Validation and Analysis

General Terms
Design, Theory, Verification

Keywords
Model of computation, adaptive embedded systems, verification

1. INTRODUCTION
With the rapid increase of the complexity in multiprocessor system-

on-chip (MPSoC) designs, as well as in the applications these sys-
tems execute, the traditional design process at a low-level of ab-
straction becomes very error-prone and time-consuming. Rising
the abstraction level of the design process to electronic system level
(ESL) [1] seems to be an inevitable way to increase the design pro-
ductivity. In this respect, models of computation (MoC) play a
crucial role for the success of the ESL concept. That is, almost
all existing ESL approaches and tools rely on MoCs as a gener-
alized way to describe the system behavior. As a result, analyz-
ing and verifying desired properties of a given system specification
can be performed in a systematic and automated way. In addition,

specifying an application using a parallel MoC, usually as a set
of concurrent application tasks with a well defined mechanism for
inter-task communication and synchronization, facilitates the MP-
SoC programming. The parallel MoCs can be roughly categorized
into process-based and dataflow models. For example, models such
as Synchronous Dataflow (SDF) [13] and Cyclo-Static Dataflow
(CSDF) [5] are fairly popular due to their design-time analyzability.
Kahn Process Networks (KPN) [12] is another popular MoC, which
in contrast to SDF/CSDF, is a process-based model. Although re-
searches have indicated that the KPN model is suitable to specify
and map streaming applications targeting MPSoC platforms [7, 18,
11, 21], in general, analyzing KPNs is not possible at design-time.
Thus several special cases of the KPN model have been been pro-
posed [19, 14, 9]. Among them, the Polyhedral Process Network
(PPN) model [19] has the following advantages. That is, buffer
sizes [19] and throughput [16] are decidable at design-time as well
as automated HW/SW synthesis from PPNs is possible [11]. More-
over, PPNs can be automatically derived from sequential nested
loop programs by the pn compiler [20].

Nowadays, many streaming applications in the domain of mul-
timedia, image, and signal processing employ adaptive algorithms.
For example, a computer vision system processes different parts of
an image continuously to obtain information from several regions
of interest depending on the actions taken by the external environ-
ment. It is often desirable that the system should still continue be-
having correctly even though the input action is incorrect. Usually,
the adaptive behavior is captured by using parameters, which values
need to be updated at run-time. We call such parameters dynamic
parameters and their values are not known at design-time. Models
such as SDF/CSDF and PPN have the limitation of allowing only
static parameters. The values of the static parameters are fixed at
design-time and they can not be changed at run-time. As a conse-
quence, the adaptive behavior is not amenable to the models such
as SDF/CSDF and PPN.

To address the abovementioned problem, more expressive mod-
els are needed. For example, general models such as Boolean-
controlled Dataflow [6], Dynamic Data Flow [6], KPN [12], and
Reactive KPN [10] provide capability of modeling adaptive appli-
cation behavior. However, these general models are not analyzable
at design-time. Therefore, we are interested in a model which is
able to capture adaptive/dynamic behavior in applications while al-
lowing design-time analyzability to some extent. In this context,
Parameterized SDF/CSDF (PSDF/PCSDF) [4] and Scenario-aware
Dataflow (SADF) [3] models have been proposed as extensions of
the SDF/CSDF models. However, the expressiveness of adaptiv-
ity in SADF is limited. For PSDF/PCSDF, a complex consistency
check and computing schedules have to be performed at run-time.

To overcome these issues, in this paper we introduce a param-
eterized extension of the PPN model, called Parameterized Poly-
hedral Process Networks (P3N). P3N improves the expressiveness
of PPN, allowing to model adaptive streaming applications. Com-

116

9.1

pared to the aforementioned PSDF/PCSDF and SADF models, P3N
has higher expressive power and enables efficient techniques (less
complex) for run-time consistency check by performing part of the
consistency check at design-time.

1.1 Paper Contributions
In this paper, we introduce the Parameterized Polyhedral Process

Networks (P3N) model and define its operational semantics which
allows for flexible update of parameter values at run-time. In addi-
tion, we propose a consistency check approach which is applied at
both, design-time and run-time. Based on the P3N semantics, we
have devised a design-time approach to extract relations between
parameters if they are dependent. This leads to a consistent param-
eterization of the model and moreover, it simplifies the run-time
consistency check. Finally, we show that the P3N model is suitable
for targeting MPSoC implementations. A quantitative evaluation
of the overhead due to run-time change of parameter values is per-
formed on an FPGA-based MPSoC platform.

1.2 Related Work
In [15], a general mathematical model and semantics for recon-

figuration of dataflow models are proposed. This approach ana-
lyzes where and how parameter values can be changed dynamically
and consistently according to dependence relations between param-
eters. Our P3N model provides similar semantics for reconfigura-
tion. In particular, for P3Ns, it is possible to extract dependence
relation between dependent parameters at design-time, which is not
discussed in [15].

In PSDF/PCSDF [4], separate init and sub-init graphs are pro-
posed to reconfigure body graphs in a hierarchical manner. In the
PSDF/PCSDF models, for every combination of parameter values,
both computing a schedule and verifying consistency need to be re-
solved at run-time. In contrast, our P3N model does not require
computing schedules at run-time because all processes are self-
scheduled based on the KPN semantics. Therefore, at run-time,
only the consistency check has to be performed. The consistency
check is furthermore facilitated by the efficient approach we have
devised (and present further in this paper) to extract relations be-
tween dependent parameters at design-time.

In SADF [3], detector actors are introduced to parameterize the
SDF model. In SADF, all scenarios are explicitly specified by valid
parameter combinations. This guarantees the consistency of the
model, therefore, no run-time consistency check is required. In
addition, all the production and consumption rates of the dataflow
channels are constant within a scenario/configuration. In contrast,
the P3N does not have such a restriction. That is, production and
consumption patterns in the P3N model may still vary during the
execution of a particular configuration. This makes the P3N model
more expressive than SADF.

For all parameterized models discussed above, the overhead due
to reconfiguration of parameters at run-time has never been eval-
uated when these models are executed on MPSoC platforms. In
contrast, in this paper we study the overhead introduced by the run-
time consistency check and the reconfiguration of our P3Ns on real
MPSoC implementations.

The remaining part of the paper is organized as follows. Sec-
tion 2 formally defines the P3N model and its operational seman-
tics. In Section 3, we present the approach we have devised to en-
sure consistent parameterization of P3Ns. Section 4 quantitatively
evaluates performance overhead caused by the reconfiguration and
the consistency check performed at run-time. Section 5 concludes
this paper.

2. FORMAL DEFINITION AND
OPERATIONAL SEMANTICS

In this section, we formally define the P3N model (Sec. 2.2) and
its operational semantics (Sec. 2.3). Since the P3N model is an

 for(i=0; i<=10; i++) {
 for(j=0; j<=8; j++){
 if(i <= 5 && j >=4)
 READ(in1, IP1);
 else
 READ(in1, IP2);
 READ(in2, IP3);

 out = F3(in1, in2);

 WRITE(out, OP5);
 WRITE(out, OP6);
 } }

Process P3

(a)

P1 P3

P2

ch3

P2

PPN

OP5

P1 P3

P2

ch1

ch4 ch3

(M)

IP10
(N)

IP11

(c)

1 while(1){
2 READ(M , IP8)
3 READ(N , IP9)
4 for(i=0; i<=M; i++) {
5 for(j=0; j<=N-2 * i; j++){
6 if(i <= N)
7 READ(in1, IP1);
8 else
9 READ(in1, IP2);
10 READ(in2, IP3);

11 out = F3(in1, in2);

12 WRITE(out, OP5);
13 WRITE(out, OP6);
 } } }

Process P3

ch2

ch1

OP5

ch9
ch8

OP1 IP1

ch7

OP6

OP6

Parameterized PPN

OP5

Ctrl

OP6

ch4

OP5

OP6
`

IP3

ch8

ch9

IP1

IP3

(M)

IP8
(N)

IP9

(b)

(d)

IP2ch2 ch3

IP8

IP9

IP1

IP3

IP2

OP2

IP7

(M)

OP8

OP9
OP7

ch2

ch1

IP2 ch2

ch1

ch3

IP1

IP3

IP2

Figure 1: (a) An example of a PPN, (b) process P3 in the PPN,
(c) an example of a P3N, and (d) process P3 in the P3N.
extension of the PPN model, to better understand the P3N model,
we first introduce the PPN model with an example.

2.1 Preliminaries – the PPN MoC [19]
A PPN consists of several autonomous processes communicating

via FIFO channels. The PPN model is a special case of the KPN
model because the processes in PPNs are structured and execute
in a particular way. That is, a process first reads data from FIFO
channels, then executes a function (computational behavior), and
writes results to FIFO channels. Processes are synchronized based
on the KPN semantics, i.e., any process is blocked when attempting
to read an empty FIFO. Meanwhile the PPN model assumes finite
FIFO buffers. Therefore, processes also block when attempting to
write to a full FIFO. The pn compiler [20] computes a safe buffer
size of each channel that guarantees the absence of deadlock in the
network. The processes in the PPN model are represented in the
polytope model [8]. Formally, a polytope P is defined as P =
{~x ∈ Zd | A · ~x ≥ b}. An example of a PPN with processes P1,
P2, and P3 is depicted in Fig. 1(a). Process P3, shown in Fig. 1(b),
first reads data from input ports to initialize variable in1 and in2.
After executing function F3, process P3 writes the result out to
output ports. The execution of process P3 is specified by a two-
dimensional polytope, {(i, j) ∈ Z2 | 0 ≤ i ≤ 10 ∧ 0 ≤ j ≤
8}. The execution of read and write primitives is a subset of the
polytope guarded by if -conditions. For instance, process P3 reads
input data from port IP1 when (i, j) ∈ {(i, j) ∈ Z2 | 0 ≤ i ≤
5 ∧ 4 ≤ j ≤ 8}.

2.2 Parameterized Polyhedral Process Networks
An example of a P3N is given in Fig. 1(c). Although its dataflow

topology is the same as the PPN in Fig. 1(a), process P2 and P3
are reconfigured by two parameters M and N which values are up-
dated by the environment at run-time using process Ctrl and FIFO
channels ch7, ch8, ch9. Process P3 is shown in Fig. 1(d). We use
this example throughout the paper. Below, we formally define the
P3N model.

Definition 1. A Parameterized Polyhedral Process Network
(P3N) is defined by a tuple (P, Pctrl, E), where
• P = {P1, ..., PJ} is a set of dataflow processes,
• Pctrl is the control process,

117

9.1

• E = {Ch1, ..., ChH} is a set of FIFO channels.

For the P3N shown in Fig. 1(b), P = {P1, P2, P3} is the set of
dataflow processes. Process Ctrl is the control process Pctrl. E =
{ch1, ch2, ch3, ch4, ch7, ch8, ch9} is the set of FIFO channels.

Definition 2. A dataflow process P is described by a tuple (IP ,
OP , FP , DP), where
• IP = {IP1, ..., IPK} is a set of input ports,
• OP = {OP1, ..., OPL} is a set of output ports,
• FP is the process function defined by a tuple (MP , ARGin,

ARGout), where ARGin and ARGout are sets of variables
and MP : ARGin → ARGout is a mapping relation,
• DP is the process domain defined by a parametric polyhe-

dron.

Definition 3. A parametric polyhedron P(~p) [19] is a polyhe-
dronP affinely depending on a parameter vector~p = (p1, ..., pm)

T ,
i.e., P(~p) = {(w, x1, ..., xd) ∈ Zd+1 | A · (w, x1, ..., xd)

T ≥ B ·
~p+b}, where ~p is bounded by a polytope P~p = {~p ∈ Zm | C ·~p ≥
d}. A bounded polyhedron is called a polytope.

In Fig. 1(d), dataflow process P3 has input ports IP3 = {IP1, IP2,
IP3, IP8, IP9} and output ports OP3 = {OP5, OP6}. Pro-
cess function FP3 = (F3, {in1, in2}, out) maps variables in1
and in2 to variable out with mapping relation F3. Assume that
the range of parameters M and N is bounded by the polytope
PP3

(M,N) = {(M,N) ∈ Z2 | 0 ≤ M ≤ 100 ∧ 0 ≤ N ≤ 100},
then the process domain of P3 is represented as a parametric poly-
hedron DP3(M,N) = {(w, i, j) ∈ Z3 | w > 0 ∧ 0 ≤ i ≤
M ∧ 0 ≤ j ≤ N − 2i}.

Definition 4. An input port IP of process P is described by a
tuple (CH, V , DIP), where
• CH is the FIFO channel connected to the port if CH ∈ E ;

CH is the environment to which the port is connected if CH
= ⊥,
• V is a variable which:

– binds the port to process function FP if V ∈ ARGin;
– binds the port to process domain DP or other port do-

mains DIP, DOP if V ∈ ~p;
• DIP is the input port domain defined by a parametric polyhe-

dron, where DIP ⊆ DP .

Definition 5. An output port OP of process P is described by
a tuple (CH, V , DOP)
• CH is the FIFO channel connected to the port if CH ∈ E ;

CH is the environment to which the port is connected if CH
= ⊥,
• V is a variable which binds the port to process function FP

if V ∈ ARGout,
• DOP is the output port domain defined by a parametric poly-

hedron, where DOP ⊆ DP .

In Fig. 1(d), input port IP1 of process P3 is defined as IP1 =
(ch1, in1, DIP1), where DIP1(M,N) = {(w, i, j) ∈ Z3 | w >
0 ∧ 0 ≤ i ≤ min(M,N) ∧ 0 ≤ j ≤ N − 2i}. Similarly, output
port OP5 is defined as OP5 = (⊥, out,DOP5), where OP5 is con-
nected to the environment through variable out and DOP5(M,N) =
DP3(M,N).

Definition 6. A control process Pctrl is described by a tuple (Ictrl,
Fctrl, Octrl, Dctrl), where
• Ictrl = {(⊥, p1, DIP), ..., (⊥, pm, DIP)} is a set of input ports.
• Fctrl is the process function defined by a tuple (Eval, {~p,
~pold}, ~pnew), where ~p, ~pold and ~pnew are parameter vectors.
Eval : (~p,~pold) → ~pnew is the specific mapping relation dis-
cussed in Sec. 2.3 and Sec. 3.

• Octrl = (Ch1, V,DOP), ..., (Chi, V,DOP) is a set of output
ports, where V ∈ ~pnew.
• Dctrl is the process domain, where Dctrl = DIP = DOP =
{w ∈ Z | w > 0}.

Control process Ctrl of the P3N shown in Fig. 1(c), is given in
Fig. 2(a). Its structure and behavior are discussed in Sec. 2.3 in
detail.

Definition 7. A channel Ch ∈ E is defined by a tuple (OCh,
ICh), where
• OCh is given by a tuple (PO , OPCh), where PO is the process

that writes data to channel Ch through output port OPCh,
• ICh is a given by a tuple (PI , IPCh), where PI is the process

that reads data from channel Ch through input port IPCh.

In P3Ns, the process domain and port domains are formally de-
fined as parametric polyhedrons, which allows for formal, math-
matical analysis and manipulation. The polyhedral representation
can be easily converted to sequential nested-loop programs and vice
versa [2]. Thus, for the sake of clarity, we present processes in the
form of sequential programs in the examples of this paper.

2.3 Operational Semantics
In general, the processes in the P3N model execute autonomously

and communicate via FIFO channels obeying the KPN semantics.
In this section, we formally define the additional, specific opera-
tional semantics of the P3N model that makes it different from the
general KPN model.

Definition 8. A process iteration of process P is a point
(w, x1, ..., xd)∈ DP , where the following operations are performed
sequentially: reading one token from each IP if (w, x1, ..., xd) ∈
DIP, executing process function FP , and writing one token to each
OP if (w, x1, ..., xd) ∈ DOP.

In process P3 shown in Fig. 1(d), a process iteration (lines 6-13)
consists of reading one token for variable in1 from either input port
IP1 or IP2, one token for variable in2 from input port IP3, execut-
ing process function F3, and writing one token for variable out to
output ports OP5 and OP6.

Definition 9. Given two vectors ~a,~b ∈ Zn, ~a ≺ ~b denotes that ~a
is lexicographically smaller than~b, iff

n∨
i=1

(
ai < bi ∧

i−1∧
j=1

aj = bj
)

Definition 10. A process cycle CYCP (S, ~pi) ∈ DP is a set
of lexicographically ordered process iterations. It is expressed as a
polytope CYCP (S, ~pi) = {(w, x1, ..., xd) ∈ Zd+1 |A·(w, x1, ..., xd)

T

≥ B · ~pi + b ∧ w = S}, where S ∈ Z+ and ~pi ∈ P
P
~p .

Definition 11. Process execution EP is a sequence of process
cycles denoted by CYCP (1,~p1)← CYCP (2,~p2)← ...← CYCP (i,~pi),
where i→∞ and ~pi ∈ P

P
~p .

Overall, every process in a P3N executes infinite number of process
cycles in accordance with Def. 11. For instance, CYCP3(2, (7, 8))
denotes the second process cycle that corresponds to the execution
of the nested for-loops (lines 4-13) when (M,N) = (7, 8) during
the execution of process P3 given in Fig. 1(d).

In the P3N model, parameters in dataflow processes can change
values during the execution, i.e.,~pi 6= ~pi+1. Thus, it is necessary to
define the operational semantics related to changing of parameter
values. Similar to quiescent points in [15], we also define the points
at which changing values of ~p is permitted.

Definition 12. A point QP (S, ~pi) ∈ CYCP (S, ~pi) of dataflow
process P is a quiescent point if CYCP (S, ~pi) ∈ EP and
¬(∃(w, x1, ..., xd) ∈ CYCP (S, ~pi) : (w, x1, ..., xd) ≺ QP (S, ~pS)).

118

9.1

1 M_new = M_init
2 N_new = N_init
 while(1){
3 READ_PARM (M, IP10)
4 READ_PARM (N, IP11)

5 [M_new, N_new] =
 Eval(M, N, M_new, N_new)

6 WRITE_PARM (M_new, OP7)
7 WRITE_PARM (M_new, OP8)
8 WRITE_PARM (N_new, OP9)
 }

Process Ctrl

(a) (b)

 [M_new, N_new]
 Eval(M, N, M_old, N_old){

 // checking parameters
 par_ok = Check(M, N);

 if(par_ok){
 return (M, N)
 else {
 return (M_old, N_old)
 } }

Process Function Eval

IP10

IP11

ch8

ch7OP7

OP9

OP8

ch9

Figure 2: (a) Control process Ctrl and (b) process function Eval.
According to Def. 12, dataflow processes can change parameter
values at the first process iteration of any process cycle during the
execution. For instance, process P3 given in Fig. 1(d) updates pa-
rameters (lines 2-3) before executing the nested for-loops in every
process cycle. Generally, updating parameters at each quiescent
point is initiated by reading FIFO channels which are connected to
the control process.

The control process plays an important role in the P3N’s opera-
tional semantics. It reads parameter values from the environment
and propagates only valid parameter values to the dataflow pro-
cesses. Valid parameter values lead to consistent execution of P3Ns
(See Sec. 3). The validity of the parameter values is evaluated by
process function Eval defined in Def. 6. The control process sends
the latest parameter combination that has been evaluated as valid,
which means that P3Ns always respond to changes of the environ-
ment as fast as possible. Also, the dataflow processes need to read
the parameter values in the correct order. Therefore, to keep the
same order of parameter values for all dataflow processes, the con-
trol process writes to the the control channels, e.g., channels ch7,
ch8, ch9 in Fig. 1(c), only when all control channels have at least
one location available. In case that any of these FIFOs is full, the in-
coming parameter combination is discarded and the control process
continues to read the next parameter combination from the environ-
ment. Furthermore, the depth of the FIFOs of the control channels
determines how many process cycles of the dataflow processes are
allowed to overlap.

Let us consider the P3N shown in Fig. 1(c). The behavior of the
control process Ctrl is given in Fig. 2(a). Process Ctrl starts with
at least one valid parameter combination (lines 1-2) and then reads
parameters from the environment (lines 3-4) every a pre-specified
time interval. For every incoming parameter combination, the pro-
cess function Eval (line 5) checks whether the combination of
parameter values is valid. The implementation of function Eval
is given in Fig. 2(b). In Sec. 3, we present details about the im-
plementation of function Check. If the combination is valid, then
function Eval returns the current parameter values (M, N). Oth-
erwise, the last valid parameters combination (propagated through
M_new, N_new in this example) is returned. After the evaluation
of the parameter combination, process Ctrl writes the parameter
values to output ports (lines 6-8) when all channels ch7, ch8, and
ch9 have at least one location available.

3. CONSISTENCY
As defined in Sec. 2, P3Ns operate on input streams with infi-

nite length. Thus, the P3Ns, we are interested in, must be able to
execute without deadlocks and only using FIFOs with finite capac-
ity. This kind of P3Ns is considered to be consistent. In this section,
we first define the consistency condition of the P3N model and then
present an approach to preserve the consistent execution of P3Ns at
run-time.

Definition 13. A P3N is consistent if ∀Ch = ((PO,OP), (PI , IP)),
i → ∞, ⇒ |DCYC

OP | = |DCYC
IP |, where DCYC

OP = CYCPO (i,~pj) ∩
DOP, DCYC

IP = CYCPI (i,~pt) ∩ DIP, PO and PI are dataflow pro-
cesses, CYCPO (i,~pj) ∈ EPO , and CYCPI (i,~pt) ∈ EPI .

CYC P3 (1, M 1, N 1)

CYC P3 (i, M i, N i)

P2 P3
ch3

......

CYC P2 (1, M 1)

CYC P2 (i, M i)

ch3

ch3

Q P2 (i, M i)

Q P2 (1, M1)

Q P3 (i, M i, N i)

Q P3 (1, M 1, N 1)

......

OP3 IP3

Figure 3: Consistent execution of process P2 and P3 w.r.t. chan-
nel ch3.

Figure 4: Which combinations (M, N) do ensure consistency
of P3N?
Consider channel ch3 connecting processes P2 and P3 of the P3N
given in Fig. 1(c). The execution of processes P2 and P3 is illus-
trated in Fig. 3. The access of both processes to channel ch3 is de-
picted in Fig. 4. Def. 13 requires that, for each corresponding pro-
cess cycle of both processes CYCP2(i,Mi) and CYCP3(i,Mi, Ni),
the number of tokens |DCYC

OP3 (M)| produced by process P2 to chan-
nel ch3 must be equal to the number of tokens |DCYC

IP3 (M,N)| con-
sumed by process P3 from channel ch3.

It is not trivial to preserve the consistent execution of a P3N as
defined in Def. 13. First of all, at each quiescent point QP during
the execution of a process, the incoming parameter values ~pj and ~pt

are unknown at design-time, which may result in different |DCYC
OP |

and |DCYC
IP | at run-time for any channel Ch connecting dataflow pro-

cesses. Therefore, whether a P3N can be executed consistently with
a given parameter combination, has to be checked at run-time. Sec-
ondly, computing |DCYC

OP | and |DCYC
IP | is challenging as well. Below,

we demonstrate the difficulties associated with checking the consis-
tency using channel ch3 given in Fig. 4 as an example. One ques-
tion that naturally arises is which combinations of (M,N) ensure
the consistency condition as defined by Def. 13. For instance, if
(M,N) = (7, 8), P2 produces 25 tokens to ch3 and P3 consumes
25 tokens from the same channel after one corresponding process
cycle of both processes. It can be verified that P2 produces 13 to-
kens to ch3 while P3 requires 20 tokens from it if (M,N) = (3, 7)
in a corresponding process cycle. Thereby, in order to complete one
execution cycle of P3 in this case, it will read data from ch3 which
will be produced during the next execution cycle of P2. Evidently
this leads to an incorrect execution of the P3N. From this example,
we can clearly see that the incoming values of (M,N) must satisfy
certain relation to ensure the consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-
time, still some analysis can be done at design-time. First, from
Def. 13, we can see that both DCYC

OP and DCYC
IP are parametric poly-

topes. We can check the condition |DCYC
OP | = |DCYC

IP | by comparing
the number of integer points in both parametric polytopes DCYC

OP
and DCYC

IP . In this work, we use the Barvinok library [17] to count
integer points inside a parametric polytope. The Barvinok library
can solve the counting problem in polynomial time. In general, the
number of integer points inside a parametric polytope is defined as
a list of (quasi-)polynomials. A quasi-polynomial is a polynomial
with periodic numbers as coefficients. For instance, considering in-
put port IP3 shown in Fig. 4, DCYC

IP3 (M,N) = {(i, j) ∈ Z2 | 0 ≤
i ≤M ∧ 0 ≤ j ≤ N − 2i}. The number of tokens |DCYC

IP3 (M,N)|
read by function READ(in2, IP3) in one process cycle is rep-

119

9.1

Algorithm 1: Generation of polynomials for function Check

Input: A P3N
Result: A list of (quasi-)polynomials

1 foreach channel Ch corresponding (OPPO , IPPI) do
2 Compute |DCYC

OP | and |DCYC
IP | using the Barvinok library;

3 foreach (quasi-)polynomial qOP(~pj) in |DCYC
OP | do

4 Get chamber C ;
5 foreach (quasi-)polynomial qIP(~pt) in |DCYC

IP | do
6 Get chamber C′ ;
7 Compute qres(~pjt) = qOP(~pj)− qIP(~pt);
8 Compute chamber Cres = C ∪ C′ ;
9 if qres(~pjt) = 0 then

10 Consistency is preserved for chamber Cres;
11 else if qres(~pjt) is a non-zero constant then
12 Eliminate chamber Cres;
13 else
14 Store (quasi-)polynomial qres(~pjt) with Cres ;

resented as the list of polynomials found by the Barvinok library:{
1 +N +N ·M −M2 if (M,N) ∈ C1
1 + 3

4
N + 1

4
N2 + 1

4
N − 1

4
· {0, 1}N if (M,N) ∈ C2

(1)

where C1 = {(M,N) ∈ Z2 | M ≤ N ∧ 2M ≥ 1 + N} and
C2 = {(M,N) ∈ Z2 | 2M ≤ N} are called chambers. Also,
the second polynomial is a quasi-polynomial, in which {0, 1}N
is the periodic coefficient with period 2. For instance, function
READ(in2, IP3) reads 1+ 3

4
×7+ 1

4
×72+ 1

4
×7− 1

4
×1 = 20

tokens in one process cycle if (M,N) = (3, 7) ∈ C2. Below, we
present the approach we have devised to extract all parameter com-
binations that satisfy the consistency condition defined in Def. 13.
Algorithm 1 summarizes the analysis we performed at design-time.
Recall that the condition |DCYC

OP | = |DCYC
IP | must be satisfied for

a consistent execution of a P3N. Thus, for each channel connect-
ing dataflow processes, we first compute |DCYC

OP | and |DCYC
IP | (line

2). Two lists of (quasi-)polynomials are obtained. If a P3N can
execute consistently with a certain parameter combination, indi-
vidual (quasi-)polynomials in both lists must be equivalent. We
check the equivalence by subtracting the (quasi-)polynomials from
both lists symbolically. The symbolic subtraction (line 7) can re-
sult in a zero constant, non-zero constant, or (quasi-)polynomial.
If the result is a zero constant (line 9), the consistency is always
preserved for all parameters within the range of chamber Cres. At
run-time, these parameters are propagated immediately to destina-
tion dataflow processes. If a non-zero constant is obtained (line
11), all parameters within the range of chamber Cres are discarded
at run-time, because these parameter values would break the con-
sistency condition of the resulting P3N. In the third case (line 14),
the result is a (quasi-)polynomial in which only some parameter
combinations within the range of chamber Cres are valid for the
consistency condition. We provide two alternatives to extract all
valid parameter combinations within this range by solving the re-
sulting equation qres(~pjt) = 0. In the first alternative, the equation
can be solved at design-time against all possible parameter com-
binations. A table, which contains all solutions, i.e., all valid pa-
rameter combinations, is generated and stored in function Check.
At run-time, the control process only propagates those incoming
parameter combinations that match an entry in the table. In the
second alternative, function Check evaluates qres(~pjt) against zero
with incoming parameter values at run-time.

Let us consider the example shown in Fig. 4 again. We apply
Algorithm 1 to extract the valid parameter combinations. Besides
|DCYC

IP3 (M,N)| as given in Eq. 1, |DCYC
OP3 (M)| = 3M + 4 is ob-

tained. Subtraction between the (quasi-)polynomials in |DCYC
OP2 (M)|

Figure 5: Two alternatives of Function Check in Fig. 2(b).

and |DCYC
IP2 (M,N)| yields two qres(M,N):{

(1 + N + N ·M −M2)− (3M + 4) = 0 if (M,N) ∈ C1
(1 + 3

4N + 1
4N

2 + 1
4N −

1
4 · {0, 1}N)− (3M + 4) = 0 if (M,N) ∈ C2

(2)
where chambers C1 and C2 are equal to the chambers in Eq. 1.
Clearly this correspond to the third case in Algorithm 1 (line 14).
The structure of two alternatives of function Check is given in Fig. 5.
The solutions of Eq. 2 stored in table tab is shown in Fig. 5(a),
whereas evaluating Eq. 2 directly against zero at run-time is de-
picted in Fig. 5(b). In this example, if the range of the parameters
is 0 ≤ M,N ≤ 100, then there are only 10 valid parameter com-
binations. In addition, if 0 ≤ M,N ≤ 1000, the valid parameter
combinations are 34, and if 0 ≤ M,N ≤ 10000, the number of
combinations is 114.

4. EXPERIMENTS AND RESULTS
In order to evaluate the run-time overhead introduced by the re-

configuration of our P3N model, in this section, we present the re-
sults we have obtained by mapping a P3N onto a Xilinx Virtex 2
FPGA platform. We have selected a synthetic P3N with complex
quasi-polynomials in order to quantify the performance penalty
caused by evaluating complex quasi-polynomials at run-time. In
order to measure the run-time reconfiguration overhead, we have
also implemented the reference PPNs. These PPNs contain only
the dataflow processing of the corresponding P3N. The experiments
have been conducted using the open-source ESPAM toolflow [11]
and the Xilinx Platform Studio (XPS) tool. The generated MP-
SoCs consist of several MicroBlaze soft-core processors connected
using Xilinx’ Fast Simplex Link (FSL) FIFOs. To avoid additional
execution overhead, in these experiments, every process has been
mapped onto a separate MicroBlaze processor.

The P3N we consider is depicted in Fig. 6. It is formed by the
processes in Fig. 4 and one additional process P4. Fig. 6 also shows
the representation of processes P3 and P4 in order to show the
domains DCYC

OP5 (M,N) and DCYC
IP5 (N) of ports OP5 and IP5, con-

nected to channel ch5. Consequently, applying Algorithm 1 yields
the following two polynomials for channel ch5:{
(1 + N + N ·M −M2)− (3N + 1) = 0 if (M,N) ∈ C1
(1 + 3

4N + 1
4N

2 + 1
4N −

1
4 · {0, 1}N)− (3N + 1) = 0 if (M,N) ∈ C2

(3)
where C1 = {(M,N) ∈ Z2 | M ≤ N ∧ 2M ≥ 1 + N} and
C2 = {(M,N) ∈ Z2 | 2M ≤ N}. For channel ch3, the depen-
dence relation of parameters M and N is already given in Eq. 2.

Figure 6: P3N of our experiment

120

9.1

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5

#
cy

cl
es

Workload Configurations

PPN
Param. PPN - table
Param. PPN - polynomial

(W = 100) (W = 200) (W = 800)(W = 500) (W = 1000)

Figure 7: Performance results of PPN and P3N implementa-
tions
In a first implementation alternative, we solved Eq. 2 and Eq. 3 at
design-time and stored all possible parameter values that have been
found in a table into function Check of control process ctrl. In a
second implementation alternative, the polynomials in Eq. 2 and
Eq. 3 have been evaluated directly in function Check at run-time.
Furthermore, we have configured five different workloads of the
dataflow processes by gradually increasing the execution latency
of processes P2, P3, and P4. We have run the MPSoC implementa-
tions on an FPGA board for 10 different valid parameter combina-
tions, i.e., process ctrl reconfigures the dataflow processes 10 times
within parameter range 0 ≤M,N ≤ 1001.

Fig. 7 shows the execution time of the reference PPNs and the
two alternative P3N implementations, respectively. The vertical
axis in Fig. 7 corresponds to the execution time of the networks.
The horizontal axis corresponds to different workload configura-
tions. The workload W (in clk cycles) indicates execution latency
of P2, P3, and P4 in different workload configurations. In the all
five workload configurations, the P3Ns in which the checking for
valid parameter combinations has been implemented with a table
causes negligible run-time overhead, when compared to the refer-
ence PPNs (see the second bar and the first bar of each workload
configuration, respectively).

For the P3Ns which evaluate the polynomials at run-time (the
third bar of each configuration), we have made the following obser-
vations. First, configurations 1 and 2 show a relatively large over-
head. This is because these configurations correspond to the situ-
ation where execution latency of processes P2, P3, and P4 is very
small. That is, the dataflow processes are very light-weight, there-
fore, they are mostly blocked on reading from the control channels
in order to update values of parameters M and N . In this way, con-
figurations 1 and 2 give a good indication about the time needed
to evaluate the polynomials. Second, if we increase the execution
latency of the dataflow processes, then the introduced overhead is
significantly reduced, see configurations 3, 4, and 5 in Fig. 7. In
these three configurations, the overhead is only 9%, 5%, and 4%,
respectively. In addition, we have observed that the absolute values
of the overhead (in clk cycles) stay constant. This is because in
these three configurations, the dataflow completely overlaps with
the evaluation of the polynomials. We have found that the differ-
ence with the reference PPN is caused by i) the time for the first
evaluation of the polynomials at the beginning of the P3N execu-
tion, i.e., in the beginning no overlap is possible, and ii) the time
to read the parameter values from the control channels, i.e., such
reading is not present in the reference PPNs. This is an important
observation because it shows that the run-time reconfiguration of
the P3N model can be very efficient. Moreover, in most real-life
streaming applications, a process execution latency is large enough
to cancel out the overhead caused by the evaluation of the poly-
nomials. For example, a discrete cosine transform (used in JPEG

1The evaluation results using parameter ranges, from 0 ≤M,N ≤
100 to 0 ≤ M,N ≤ 10000 and different number of reconfigura-
tions are consistent but not reported here due to space limitations.

encoders) implemented on a MicroBlaze processor requires a cou-
ple of thousand of clk cycles. Therefore, we conclude that the
introduced run-time overhead is reasonable considering the more
expressive power that the P3N model provides than other models.

5. CONCLUSIONS
In the paper, we introduced the Parameterized Polyhedral Pro-

cess Network (P3N) model that is able to capture adaptive/dynamic
application behavior. Such behavior is usually expressed by pa-
rameters which values are updated at run-time. We proposed a
design-time approach which enables consistent execution of the
P3N model at run-time. We evaluated the possible run-time over-
head caused by the parameterization of the P3N model by designing
and executing MPSoCs on an FPGA-based platform. The obtained
results show that the parameterization we proposed is efficient in
terms of the execution overhead introduced by the implementation
of the process networks.

Acknowledgements
The research leading to these results has been partly supported by
the ARTEMIS Joint Undertaking under grant agreement no. 100029,
from SenterNovem, and Dutch Technology Foundation STW, project
NEST, no. 10346. We also thank the anonymous reviewers for pro-
viding thoughtful comments.

6. REFERENCES
[1] A. Gerstlauer et al. Electronic System-Level Synthesis

Methodologies. IEEE TCAD, 28(10):1517–1530, Oct. 2009.
[2] C. Bastoul. Code Generation in the Polyhedral Model Is Easier Than

You Think. In Proc. of PACT, pages 7–16, 2004.
[3] B.D. Theelen et al. A scenario-aware data flow model for combined

long-run average and worst-case performance analysis. In Proc. of
MEMOCODE, 0:185–194, 2006.

[4] B. Bhattacharya and S. Bhattacharyya. Parameterized dataflow
modeling for DSP systems. IEEE Trans. Signal Process., 2001.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-static data flow. IEEE Trans. Signal Process., 1996.

[6] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model. PhD thesis, EECS
Department, University of California, Berkeley, 1993.

[7] E. A. de Kock. Multiprocessor mapping of process networks: a JPEG
decoding case study. In Proc. of ISSS, pages 68–73, 2002.

[8] P. Feautrier. Automatic Parallelization in the Polytope Model. In The
Data Parallel Programming Model, pages 79–103, 1996.

[9] P. Feautrier. Scalable and structured scheduling. Int. J. Parallel
Program., 34:459–487, October 2006.

[10] M. Geilen and T. Basten. Reactive process networks. In Proc. of
EMSOFT, pages 137–146, New York, NY, USA, 2004. ACM.

[11] H. Nikolov et al. Systematic and automated multiprocessor system
design, programming, and implementation. IEEE TCAD, 2008.

[12] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of Information Processing. 1974.

[13] E. Lee and D. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Trans. Comput.,
1987.

[14] L. Mandel, F. Plateau, and M. Pouzet. Lucy-n: a n-Synchronous
Extension of Lustre. In Proc. of MPC, Québec, Canada, June 2010.

[15] S. Neuendorffer and E. Lee. Hierarchical reconfiguration of dataflow
models. In Proc. of MEMOCODE, pages 179–188, June 2004.

[16] S. Meijer et al. Throughput modeling to evaluate process merging
transformations in polyhedral process networks. In DATE, 2010.

[17] S. Verdoolaege et al. Counting integer points in parametric polytopes
using barvinok’s rational functions. Algorithmica, 2007.

[18] T. Stefanov et al. System design using kahn process networks: The
compaan/laura approach. In Proc. of DATE, pages 340–345, 2004.

[19] S. Verdoolaege. Handbook on signal processing systems, chapter
Polyhedral process networks. Springer, 2010.

[20] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: a tool for improved
derivation of process networks. EURASIP J. Embedded Syst., 2007.

[21] W. Haid et al. Efficient execution of kahn process networks on
multi-processor systems using protothreads and windowed FIFOs. In
Proc. of ESTIMedia, pages 35–44, Grenoble, France, 2009. IEEE.

121

9.1

