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Chapter 1

Introduction

This chapter firstly provides a brief description of the kbgrckind and the premises
that have inspired the work. Then, it presents the desoripif the arising problems

and the solution approach, with an overview of the relatetkwiinally, the research

contributions of this thesis are stated.

1.1 Background

A System-on-Chip (SoC) is defined as a single integratediitivehich includes all
the components of a computer or other electronic systempisay System-on-chip is
comprised by one or more microprocessor or DSP cores, mebhocks of different
types, peripherals like counter-timers and external fates.

Nowadays many embedded systems are implemented with anspsie€Chip solution,
and this trend is likely to continue in the future. This is &ase putting a whole system
on a single chip gives better performance, in terms of powesemption and area
occupation, two of the most important features of an embedglstem. Moreover, the
packaging of a SoC is simpler, leading to smaller produatmsts.

Embedded applications are becoming increasingly complexever, thanks to tech-
nology improvement - Moore’s law predicts an exponentiahgh of the number of
transistor per chip over time - the computational resouvdeish a designer can ex-
ploit are increasing too. The main issue that arises is hdwllp capitalize on these
resources.

An estimation of this issue was presented in a research ma@&EMATECH [3].
The main result is depicted in Figurel.1. The graph showsthigaintegrated circuit
productivity has traditionally grown 58% per year, whileetdesigners productivity
grows only 21% per year. This difference leads to the sedd&froductivity Gap
Closing this gap would mean the full exploitation of techowyl development. This
can be achieved only by improved, new design approaches.

For this purpose, increasing the level of abstraction anding components play a
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Figure 1.1: The different growth of IC productivity and dgsers productivity leads to
the so-calledProductivity Gap

key role. Currently, most of the design methodologies amistoequire a Register
Transfer Level description of an architecture. This apphoa no longer adequate,
since architecture complexity of new systems is huge.

Besides, a single-processor embedded system cannot libadkxuirements of new
applications like high-throughput multimedia and Digi&gnal Processing. So, the
emerging system on chip architecture are becoming Mutic&sor System on Chip
(MPSo0C). Designing from scratch a MPSoC with a RTL desaipts an error-prone
and time-consuming process. We believe that an automatgdofvdesigning and
programming such architectures is essential, in order ¢oedse the design time and
meet the required performance.

The aim of this thesis project is to improve the#AmM (Embedded System-level Plat-
form Synthesis and Application Mapping) tool, which regmets an systematic and
automated way of architecture designing and programmiihgs ol is based on the
Kahn Process Network (KPN) [9] model of computation. Thisearch work is fo-
cused on the dynamic scheduling of the nodes which comgres&PN application.
This was mainly done by adding an operating system and magegenode of the
KPN as a thread.

In the context of automatic application mapping to archites; several design ap-
proaches have been developed by the research communityingtance, Jerraya et
al. propose a design flow approach in [4]. This design flow askigh-level parallel
programming model to abstract hardware/software interfadheterogeneous Multi-
processor System on Chip. This work is similar ®F&M, because both tools generate
a multiprocessor system basing on a set of parameterizegaiments as well as com-
munication controllers to connect processors to commtinitaetworks. However,
the ESPAM tool implements a whole system in much less time, becaudesign flow

is fully automated. By contrast, in [4], many steps of theigie®ave to be performed
manually.

Another example of similar design approaches is the Multdlestem, presented in [5].
The target applications of this tool are multimedia and dataming application. This
is also the target of our &AM tool. Both tools provide a design space exploration
framework, but they are different in the adopted model of potation. While our
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tool uses Kahn Process Networks, Multiflex is based on SymcaéMulti Processing
(SMP) model, using shared memory, and distributed systgettodomponent (DSOC)
object-oriented message passing model. Multiflex doesupgiat at all the automatic
derivation of SMP or DSOC, while in our case KPN can be derivean automated
way from a C, C++ code. So, design time includes the manudicapipn partitioning,
and it is longer than the &AM one.

The Task Transaction Level (TTL), presented in [6], dealhwhe programmation of
embedded multi-processors systems. TheAM programming approach is similar, in
sense that it works in the context of streaming applicatenms$ uses communication
primitives. TTL is more flexible because it supports more pamication primitives,
but the system programmation using TTL is slower becausedts a lot of manual
work.

From the comparison with the examples listed above, we nsghtthat the EPAM
tool is more systematic and automated, since it requires iemnual modifications.
However, developing an automated way of designing and progring a multiproces-
sor system leads to several problems.

The first one is that most of the applications are specifiegiguaisequential model of
computation (e.g. sequential programs written in Matla@G)fThis is because, from a
programmer point of view, it is easy to develop an applicatiath a monolithic thread

of control and a single memory. On the other hand, a sequiepgaification does not
allow to exploit the parallelism available in the applicetitself.

Currently the porting process, from a sequential complgiegtion to a multiproces-
sor system, is usually done by hand. This is a very errorganmd time-consuming
task, and the final result depends on the designer expefismake this porting pro-
cess in a systematic and automatic way it is essential to tieel ahat converts the
sequential specification to a parallel one, thus showingipdicit parallelism of the
application. For example, theNBEN tool [11] can convert a sequential code to sev-
eral concurrent tasks based on the Kahn Process Networkl mioctemputation, that

is suitable for stream-oriented applications.

Another problem is then how to map automatically this corentrmodel of the appli-
cation in a multiprocessor system. An RTL description carésly synthesized, in
an automatic way, using state-of-art synthesis tools. iBhliecause it is really close
to the physical implementation itself. But, as we have dised above, designing a
whole system from scratch with a RTL description is impoesiitbwadays, because
the emerging application have huge complexity, compardti@égast. Not only the
design of complex systems is error-prone and time-consyybint also the simulation
of such systems is extremely slow and computationally esipen\We believe that the
level of abstraction has to be increased, reaching a sed@yistem-Levelpecification.
But this process creates BAnplementation Gagbetween our level of specification and
the RTL one.
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1.2 Problem description

1.2.1 Closing the implementation gap with EPAM

EspAM (Embedded System-Level Platform Synthesis and Applindapping) is a
tool specifically designed to close thmplementation Gaghus converting a System-
Level specification to an RTL specification. Capitalizingtbis high level of abstrac-
tion, a designer can specify an architecture in a short abmfuime. The context in
which the ESPAM tool is designed is mainly multimedia and stream-orienigaliea-
tions.

In Figure 1.2 the basic &AM design flow is depicted. The desired application has
to be described as a Kahn Process Network, that is a netwonka@sed by concur-
rent processes (or nodes) communicating via FIFO chanhkis kind of Application
Specificatiorcan reveal the task-level parallelism, and can be deriveahzatically by
using, in our case, theN&EN tool.
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Figure 1.2: 5PAM design flow: starting from a System-level specification qilea-
tion, platform and desired mappingsBAM can generate an RTL description, suitable
to be synthesized and compiled with a commercial tool. Fintie resulting system
is downloaded to the target FPGA.

Then, the designer chooses the desired platform strustittetbe Platform Specifica-
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tionfile) and maps the nodes of tAgplication Specificatioto the platform, according
to the mapping described in tiMapping Specificatiofile. ESPAM allowsone-to-one
mapping (one node per processor) as wellrany-to-ongmore than one node per
processor). This process will be described in more detatise next chapter.

When theApplication PlatformandMapping Specificationare provided, the &AM
tool can automatically generate the RTL specification oftlutiprocessor system and
the programs that will run on each processor, following ¢h&sps:

1. aplatform instance is generated, according td?lagform Specificatiofile, and
checked for consistency (to avoid basic design errors) histgtep none of the
details of a target physical platform is considered, th&@la instance consists
of generic parameterized system components;

2. EspaM refines the platform instance using a library of IP cores,egating a
RTL description suitable for the implementation on the ¢éayghysical board;

3. the program code for each processor is generated, angdaiheApplication
SpecificatiorandMapping Specification

The output of EPAM is a RTL specification of the platform, composed by four parts
ThePlatform Topology Descriptiogives a detailed view of the multiprocessor system.
The Hardware Description of IP Coresontains predefined and custom IP cores used
in the Platform Description. ThBrogram Code for Processar$or each processor
included in the system, in order to execute the applicatestdbed at System-Level.
Finally, theAuxiliary Information which provides tight control on the overall specifi-
cations (e.g. precise timing requirements).

This precise RTL description is suitable to be used as immutdmmercial synthesizer
and compiler. In our case, Xilinx Platform Studio [13] is dge convert this RTL
description into the bitstream needed to program the t&B&A.

1.2.2 Static scheduling consequences

At this stage of the development, if more than two nodes oitR&l application are
mapped on a single computational resountarfy-to-onenapping on a single pro-
cessor), the EPAM tool generates a processor code in which these nodes andystri
statically scheduled For instance, if we consider the scheme depicted in Figige 1
nodesl and2 are fired in a precise, fixed order. A possible static schechrleassume
that nodel is fired first (eventually blocking on read/write), then nade fired. This
concept can be described with the pseudo-code example showigure 1.4. This
scheduling order cannot be changed at run-time.

This static scheduling policy leads to the following conseaces:

e It may happen that the execution of one of the nodes is blookeckading (if
the requested input FIFO is empty) or on writing (if no spaxevailable in
the desired output FIFO). If another node of the KPN is mapp#d the same
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MB 1 MB 2 MB 3

@

()
Figure 1.3: Many-to-one mappig example, onto MBand MB3. The lines con-

necting different KPN nodes represent FIFO channels, tlzgt lead to read or write
blocking.

for (n tines)

read fromnode_1 input FlFGCs;
execut e node_1;
wite to node_1 output FIFGCs;

read fromnode_2 input FlIFGCs;
execut e node_2;
wite to node_2 output FIFGCs;

}

Figure 1.4: Pseudo-code that describes the static schegduiito MB 2. Each node is
fired n times, but the scheduling order assumes that rfbdrist wait the completion
of nodel execution.

processing resource, it could be interesting to find out &otethat allows us to
implement a dynamic scheduling of KPN nodes. If one of theasad blocked,
the other one can be fired, reducing in this way the processergpent on idling.
This may also be very useful if we wanted to map more than opbcagpion, or
multiple instances of the same application, onto one piatfo

¢ In the case ofMmany-to-one mappingf the application igntrinsically dynami¢
finding a scheduler at compile-time is not possible becalsesxact order of
execution of the nodes is data dependent.

1.3 Solution Approach

The aim of this work is to improve thedPAM tool by providing a reliable method to
implement dynamic scheduling onto our multiprocessoresyist Of course, the case
considered is whemany-to-onanapping is applied (otherwise there is no need of a
“local” scheduling). The method we have developed is basetth® following steps:

1. Add operating system to each processor.We tested a couple of operating
systems, in order to make comparisons. The first OS is Xitddfrb], provided
by Xilinx. The second is FreeRTOS [17], which source codedomimentation
can be found on the internet. We looked for lightweight, danpand relatively
fast operating systems. This is because MPSoCs do not hateoarhemory
and sometimes we want real-time behavior.
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2. Divide each processor program code in threadsthat can be executed con-
currently. Kahn Process Network semantics is very usefulhfieead separation
because program code is based on intrinsically concurrecepses.

3. Implement a valid and efficient thread scheduling policy. Three scheduling
policies have been tested: simple interrupt-driven rowtuity, round robin with
yielding on blocking and priority scheduling. Detailed degtions, implemen-
tations and results are presented in the following chapters

Given a reliable method of dynamic scheduling imany-to-onemapping context,
these are the possible new features that a system designexgait:

e Intrinsic (such as data-driven) dynamic applications cannbplemented onto
our multiprocessor platforms.

e Multiple instances of the same application can run in paréihterleaving). De-
pending on the application, a higher throughput can be aetlie

¢ In case of different applications running onto differenbgessors, if one of the
applications is significantly more complex than the otheests (in this case
threads) of this application can be transferred onto othmrgssors. In this way
the execution time of the different processors is more lzgldnleading to better
throughput.

1.4 Related work

Our work is mainly related to the previous ones related tadteam tool. Hardware
synthesis topics like implementation of heterogeneoushaearhrchical architecture
and integration of hardware IP cores are presented in [7S8)ce applications are
getting more and more complex nowadays, some of the tasksayglication have to
be executed by dedicated hardware IP cores, because theut®mn on programmable
processors like MicroBlaze or PowerPC could slow down thele/eystem. Our work
is different because it is focused mainly on software imprognts.

Furthermore, several works on evaluation of Operatingesgstrunning on MicroB-

laze have been presented. A comparison between differenatbpg systems is pre-
sented in a master thesis from Swiss Federal Institute dfii@ogy of Lausanne [18],
in the context of cryptographic applications running orf-setonfigurable platforms.
An evaluation of real-time operating systems such as Xil&krAsterix and uClinux

is provided in [19], based on interrupt latency and task@asp time tests. However,
none of these works fit to our specific goal, i.e. the evalmadifomulti-threading oper-

ating systems in the context of MPSoC based on the KPN modsraputation.
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1.5 Research contributions

These are the main research contributions of this thesis:

e The EspaMm tool has been modified in order to be suitable for dynamiciaeapl
tions and to increase the software design space. We havéodedea reliable
method to add an operating system to each microprocessoruandifferent
nodes of a KPN application as threads, that can be schedyhedrdcally.

e We provide a comparison between two operating systems, Igaiteernel and
FreeRTOS. Several tests have been done, using differeh¢tapgns and plat-
forms, measuring OS footprint and system throughput.

1.6 Equipment

All the experiments have been conducted on the ADM-XRC-IGRPprototyping
board placed in the LIACS laboratory (Leiden Institute ofvAdced Computer Sci-
ence) in The Netherlands. This prototyping board, develdpeAlpha Data Paral-
lel Systems Ltd [20], was used to implement the MPSoCs gesekitay ESPAM. Its
scheme is depicted in Figure 1.5. The board is connecteatB@i bus of a Pentium
processor. Six Zero Bus Turnaround external memory bankbeaccessed from this
external processor, with the infrastructures built by W&j [n order to set the input
data of the multiprocessor platform. Then, the system psE®these data and puts
the results into the external memory banks. Finally, thera processor reads the
content of the destination memory bank and can save/disptayts to verify correct-
ness.

All memory accesses from/to the external processor useG@hairface shown in the
left side of Figure 1.5.

These are the specifications of the ADM-XRC-II FPGA protatgpboard:

e High performance PCI and DMA controllers

Local bus speeds of up to 66MHz
Six banks of 256k/512kx32/36 ZBT SSRAM

User clock programmable between 0.5MHz and 100MHz

User front panel adapter with up to 146 free 10O signals

User rear panel PMC connector with 64 free 10 signals

e Supports 3.3V and 5V PCI signaling levels (VI/O)

As described earlier, the communication with the outsideldvis provided by the
six ZBT (Zero Bus Turnaround) SSRAM memories representeitheénright side of
Figure 1.5. Zero Bus Turnaround means that zero clock cactespent for turnaround,
transitions from write to read or viceversa.



1.7 Thesis organization 9

256K x 32/36

Yy

PCl PCl SSRAM
- i .
Bus Interface AD WVIRTEX-II ~ ~| 256K x32/36
<4+—Pp PLXO656 |« > v
s < [ SSRAM
Target/ \ 4 e hl N 256K x32/36
Initiator Ll
Control —p ¢
(DMA) :
¢ < SSRAM
M
a
4

Flash | —
Memory

SSRAM
256K x 32/46

¥ 3
Yy

Programmable XC2Vv3000-10000
Crocks FF1152

SSRAM
256K x 32/46

F 3
Yy

SSRAM
256K x 32/46

' 3

Yy

Select 10

Al

Pn4 1/O Front Panel I/O

r 3
Y

Figure 1.5: Scheme of the ADM-XRC-II FPGA prototyping board

1.7 Thesis organization

The rest of this thesis is organized as follows:

Chapter 2 describes our system design methodology, fagusirmain features and
basis of the EPAM tool. First, this chapter presents the KPN model of compurtat
on which our Application Model is based, and the tool that darive automatically
this specification from a sequential program. Second,ibchices the platform model
and synthesis with the $PAM design flow, followed by the program code generation
for each processor. Finally, how Xilinx Platform Studio (¥Pcan use the output of
our tool, for hardware synthesis and software compilatibhe output of XPS is a
bitstream that can be directly downloaded to program thgetdfPGA.

Chapter 3 presents the basic implementation concepts arhwhr solution approach
is based. It starts from the usefulness of dynamic schegluhen dealing with in-
trinsic dynamic application, multiple application or mple instances of the same
application. Then it provides the definition of thread anel ithtroduction to Pthread
standard for thread management and its Application Progiaminterface. Finally, it
describes the thread scheduling policies we have testetklgpd&Round-robin, Round-
robin with yielding on blocking, and priority scheduling.

Chapter 4 introduces the two application we used to test woamiic scheduling im-
plementations. The first example is the Sobel edge detealgmmithm and the second
is an M-JPEG encoder. Both of these applications have be@pedaonto a five-
processor system, using the standaskAiv design flow. The obtained results will
be used to make performances comparison with the platforesepted in Chapter 5,
which are based on dynamic scheduling of the nodes.

The Xilkernel operating system is presented in Chapter %s Glmapter describes also
how the scheduling concepts introduced in Chapter 3 aresimghted using this OS.
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First, the modifications common to all different schedulpddicies are listed. Then,
for each of the different solutions, a more detailed desiorpof required implemen-
tation steps is provided. The chapter finishes with the gasmn of some advanced
examples of dynamic scheduling implementations on multiessor systems, like M-
JPEG and Sobel applications or multiple instances of Sqi@ication mapped on the
same platform.

Chapter 6 deals with the FreeRTOS introduction and impleatiem details. One of
the system examples in Chapter 5 is reproduced using Fre8Rihorder to make
comparisons on performances and memory occupation owkerhea

A brief “getting started” tutorial on dynamically scheddlsystem design is provided
in Chapter 6, starting from the C application code to theagihysical implementation
of the system. All the RGEN and ESPAM tool operations, and manual modifications,
are listed.

Chapter 8 presents the final conclusions, based on tests.eSome future works, that
can improve the results obtained in this thesis, are alscritbesl.



Chapter 2

Embedded System-level Platform
synthesis and Application Mapping

This chapter provides a more detailed description of teeA (Embedded System-
level Platform synthesis and Application Mapping) toolabidition to the information
written in the first chapter, we give a simple descriptionhef Kahn Process Network
model of computation and the basic ideas of tiesEN tool, that translates the initial
sequential application into a KPN application. Then, wespret the main concepts of
how the platform and the code for each processor is geneaatedow Xilinx Platform
Studio can be used as back-end of our design flow.

2.1 Derivation of Kahn Process Networks

As Figure 1.2 shows, the ESPAM tool needs an applicationrigiegmn different from
the sequential one. For the programmer’s point of view,gigisequential description
(e.g. Matlab or C, C++) is much easier, but this kind of dggn is extremely hard to
map automatically onto a multiprocessor system becaustntbad-level parallelism
is not explicit. Of course a designer can try to map an apidineby hand, but this
process is very slow and can lead to errors in the implementatVe believe that a
correct-by-construction process is the way to make platfeynthesis and application
mapping easier and faster.

For the ESPAM tool, the Kahn Process Network [9] model of computation wassen
because it is parallel and allows distributed memory anttidiged control. Further-
more, its operational semantics are simple, but generaiginfor multimedia or signal
processing applications.

2.1.1 Kahn Process Networks description

In Figure 2.1 a simple example of a KPN is depicted. The nétwas a set of nodes
(P1, P2, P3) that represents different processes. The KPN model of atetipn
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assumes that processes are concurrent and autonomousorhmunication is done
by a point-to-point connection with unbounded FIFO chasnel

read
execut e
wite

read read
execut e read

wite execut e
wite

Figure 2.1: Simple example of a KPN. Next to each node theesponding compu-
tation and communication primitives (reading, executing ariting) are presented.
These primitives describe the node behavior.

Each node of the network is described by sequential codeute@ concurrently to
the other nodes. For example, in Figure 2.1 proé&sBrst reads a token from its in-
put port, then executes the computation and finally writéa ttathe other processes,
P2 andP3, throughCH1 andCH2 respectively. In the meanwhile, #2 andP3 have
tokens in their input FIFOs, they can continue their ex@cutioncurrently. The execu-
tion order of the different nodes is determined only by tharctel through which the
processes communicate. If a node has data to read and fieeteperite, its execution
will continue.

The KPN model of computation offers the following features:

e Regardless to the scheduling order of the different nodhesfimal result is the
same, i.e. the KPN model is deterministic. This allows usxplat different
scheduling policies when mapping processes to hardwareftovase.

e The inter-process communication is synchronized by a ligctead. This is a
very simple primitive, easily implementable in hardwaresoftware.

e Thereis no global scheduler, since control is completedtrithuted to individual
processes. So, dividing a KPN over different reconfiguraol@ponents is a
simple task.

e There is no notion of global memory. Each inter-process camaoation is dis-
tributed over FIFOs, so there is no risk of resource comenti

These features make easy the mapping of a KPN applicati@ifispéion onto a multi-
processor platform and this model of computation matchgswell our system design
methodology.
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2.1.2 The MNGEN tool

Typically, applications are specified with a sequentiafjlaage such as Matlab or C,
C++. Thisis why this way of application specification is emyapplication designers,
since there is only one thread of control and a single mem@ny.the other hand,

a sequential specification does not reveal the availabla@lpbsm in the application

itself. So, a parallel specification is needed if we want foitedize the resources of a
multiprocessor system.

Describing an application directly using a parallel moded@mputation is a very dif-
ficult, time-consuming and error-prone process. The ainh®fNGEN tool [11] is to
close this gap between a sequential specification and dedaraldel of computation.

The input given to the RGEN tool must be a SANL (Static Affine Nested Loop) pro-
gram, made by a set of statements, each possibly enclosedps &nd/or guarded by

conditions. All of these conditions and statements musffioeealinear expressions of

iterators and parameters. For each function call of thees#tepl program a node the

PNGEN tool generates a KPN node.

The output of the RGEN tool is a process network specified with XML code, com-
patible with ESPAM Application Specification. So, this tool can be used as atfeoal
for EsPAM. In the implementation of the process network, channelst imeismple-
mented as bounded FIFOs, thus blocking on write can alsa.otow@avoid deadlocks,
the INGEN tool determines also FIFO channel minimum sizes. Edgesdmptbcess
network correspond to variables shared between the functitls. Figure 2.2 depicts
an input-output example of the tool.

int main(void){

int i, j;

static int image[1000][1000];
static int Jx [1000][1000];
static int Jy [1000][1000];
static int av[1000][1000];

=
for (j=1; j<= M;j+){
for (i=1; i <= N;i+)
readPixel  (&image[ J][il);
}
’ Camen > onten
for (1j=2; j<= M-1; j++){
for(2;i <= N-ivs){ PNGEN
gradient( &image[ 1),
e )
| C v >
gradient( ...

Sequential Code Process Network

}

for(j=2; j <= M-1; j++){

Figure 2.2: Example of input and output of the&EN tool. Starting from a sequential
program, a KPN specification of the application can be autwaldy generated. The
complete program code of the sequential application isighed in Appendix A.
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2.2 Platform model

The platform model of our tool is a library of generic paraented components. This
set of components has to be flexible enough to allow a gooduepiace variety. The
platform model includes:

1. Processing Components: programmable processors assvdidicated pro-
grammable hardware [7,8] can be used as processing resair@er platforms.
In this project the only processing components used aredBleze processors,
since we use Xilinx Virtex-1l FPGA as physical platform tedtogy.

2. Memory Components: these components are used to dedatdand program
memories connected to each processor as well as buffersahaéect different
processing components of the system. The communicatiomeket program
and data memory and the processor is controlled by a memaityotier. The
communication memory components are implemented usingptwamemo-
ries, and they are organized as one or more FIFO buffers.

3. Communication Components: several ways of communicatre included in
the ESPAM platform model. The most efficient option for a multiprocassys-
tem is a point-to-point network, but also a crossbar swituth @ shared bus are
available.

4. Communication Controllers and Links: communicationtooliers are needed
to synchronize the communication between different preiogsresources, at
hardware level. Links are used to connect any two comporwéragr platform
model.

For each of these components, many parameters can be sstl/@mports, speed for
processors; memory sizes and types, etc.

2.3 EspAM Design flow

The EspaM design flow, introduced in the first chapter, is depicted guie 1.2. The
input given to the tool is a System-level description madehoge entries, written in
XML format:

1. Application Specification. As mentioned in Section 2.1, the application is de-
scribed as a Kahn Process Network, that can be derived atitaithaby the
PNGEN tool.

2. Platform Specification. This file describes the platform topology at a very high
level of abstraction. The designer does not need to speafyony structures,
interface controllers and communication protocols: th# itself takes care of
this task. An example of Platform Specification is shown igufe 2.3. In the
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first part, lines 2-5, four processors are instantiated. drbesbar communica-
tion component is included with lines 7-12. Finally, linke @pecified with lines
14-29. These links are needed to connect each processa tomtimunication
component.

1 <platformnanme ="nyPl atforn>

<processor nane "uPl1l"> <port nane "1 OL"/> </ processor>

<processor name = "uP2"> <port nane = "IOLl"/> </processor>
<processor nanme = "uP3"> <port nane = "I OL"/> </processor>
5 <processor nanme = "uP4"> <port nane = "I OLl"/> </processor>
<network nane = "CB" type = "Crossbar">
<port nanme = "10L"/>
<port nanme = "1 QR"/>
10 <port name = "1Q3"/>
<port name = "1 O4"/>

</ net wor k>

<l'ink nane = "BUS1"/>

15 <resource nane = "CB" <port nane = "10L"/>
<resource nane = "uPl"<port name = "10Ll"/>
</1ink>
<link nanme = "BUS2"/>
<resource nane = "CB" <port name = "IQ"/>
20 <resource nane = "uP2"<port nane = "10L"/>
</1ink>
<link name = "BUS3"/>
<resource nane = "CB" <port name = "1"/>
<resource nane = "uP3"<port nane = "10L"/>
25 </link>
<link name = "BUS4"/>
<resource nane = "CB" <port nane = "I O4"/>
<resource nane = "uP4"<port name = "10Ll"/>
</link>

30 </platforme

Figure 2.3: Example of Platform Specification, written in XNbrmat.

Starting from this Platform Specification, theBam tool generates an elaborate
platform as follows. First, the tool puts processing and eamication com-
ponents into the design. Second, it attaches program adnd&mories and
respective memory controllers to each processor. The $iteese memories is
determined by the values set within the Platform Specificefiie. Third, based
on the type of processors considered in the first step, ithggites, instanti-
ates and connects all necessary communication contralfet£ommunication
memories for data communication between the processors.

An example of such detailed platform is shown in Figure 2.m@unica-
tion Controllers (CC) connect a communication memory (CMjie commu-
nication component - in this example, the crossbar (CB) -tarttie processor
(uP) it belongs to. Each CC provides the communication betvpeocessor and
CM for write operations, obeying processor’s local bus asqaotocol. CC are
also needed to access the communication component (CBgddraperations.
The synchronization between different processors is implged using block-
ing read/write on the FIFO buffers included in Communicatfidemories.

3. Mapping Specification. This entry defines which node of the KPN applica-
tion will be assigned to each processor. Two types of maparegsupported:
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/ Legend: \
uP - Microprocessor

MC - Memory Controller

MEM - Program and Data Memory

CC - Communication Controller

KCM - Communication Memory /

Figure 2.4: Detailed platform, generated bgrHAM using the Platform Specification
file of Figure 2.3.

many-to-oneor one-to-one As depicted in Figure 2.5ne-to-onamplies that

the number of processors is equal to the number of nodes KRN so each
processor will take care of the execution of just one nddigny-to-onenmapping

is required when the number of processors is less than theeruwhnodes in the
KPN. In such a case, the inter-process communication betwedes mapped
onto the same processor is still provided by external FIFiser than shared
memory.

Application
Specification

MB 1
—
o]

MB _2

i
CH3

One-to-one Mapping Many-to-one mapping

Figure 2.5: Basic example ohe-to-oneandmany-to-onenapping (data and program
memories are not represented).
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2.4 Automated programming of multiprocessor platforms

An important step of our EPAM tool is the automated generation of program code for
each processor. Both C and C++ are supported. In our caseanwease MicroBlaze
GNU tools such amb-gcccompiler,mb-asassembler anchb-Idloader-linker to gen-
erate ELF executable files from these sources. Each praocesst be programmed
following this concept: its behavior must match the one efribde(s) it represents.

The program for each processor includes control code angutation code. The
computation part performs the specific operations of thepadiKPN node on the re-
ceived data. The control code, based@mnloops andf -statements, decides how many
times data reading and writing, as well as computation, megterformed. A simple
example of program code is shown in Figure 2.6. If more thammode is mapped
onto the same processor, the tool determines a valid sahealal/oid deadlocks.

1 #include ‘‘primtives.h"’
#i ncl ude ‘* MenoryMap. h"’

struct nyType{
5 bool fl ag;
int data[64];

%
int N=384;

10  void main(){
nyType in_0O;
myType out _0;

for (int k=0; k<N, k++){
15 read(p2, & n_0, sizeof(nmyType));
conpute(in_0, out_0);
wite(pl, &out_0, sizeof(nmyType));

}

Figure 2.6: Simple example of processor program code. &1 the program per-
forms a read requessizeof(myTypd)ytes are transferred from pg® to the variable
in_0. In line 17 there is a write primitive, following a similars@antic. Data compu-
tation is executed in line 16. This sequence of read, exataind write is executeld
times (sedor-loop in line 14)

2.4.1 Software communication primitives

The software communication primitives generated Isp&v basically implement the
blocking read/write synchronization. Blocking on writenscessary because in the
physical implementation, buffers can not be unbounded. dcgssor can access a
FIFO as two memory locations in its address space. The firgseésl to read and
write data; the second is a “status” location, where a flagtisfshe FIFO is full (no
more space available for writing) or empty (no data to reddje tool automatically
generates correct-by-construction FIFO addresses.

As shown in Figure 2.7 (lines 8 and 17), blocking is impleneenby emptywhile-
loops, in which the condition is set by the FIFO status. Thaipeters of théor-loops
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(lines 6 and 15) determine how many bytes are written to at fiean the input/output
channels.

1 #ifndef _PRIMTIVES H_
#define _PRIMTIVES H_

voi d read(bytex port, void+ data, int |enght){
5 int xi sEnpty = port+1l
for(int i=0; i<length;i++){
//reading is blocked if a FIFOis enpty
whi | e(*i sEnpty) {}
(bytex data)[i]=+port; //read froma FIFO
10 }
}

void wite(bytex port, void+ data, int |enght){
int xisFull = port+1
15 for(int i=0; i<length;i++){
//writing is blocked if a FIFOis ful
whi l e(xi sFull){}
xport=(bytex data)[i]; //wite to a FIFO

}
20 }
#endi f

Figure 2.7: Reading and writing primitives used bgrawm.

2.5 Xilinx Platform Studio

As depicted in Figure 1.2, thedeam tool can generate a very detailed RTL descrip-
tion of a multiprocessor system. This low-level descriptis suitable to be used as
input for a commercial synthesizer/compiler in order todarce the final bitstream
that programs the FPGA of the prototyping board. In our eXas)his back-end tool
is Xilinx Platform Studio (XPS) [13], that will be describédiefly in the this section.

Xilinx Platform Studio (XPS) is a graphical user interfat®itt integrates all of the
processes from design entry to design debug and verificatidhe context of the

Embedded Development Kit (EDK). EDK is a series of softwa@g for designing

embedded processor systems on programmable logic, andrssifige IBM PowerPC
hard processor core and the Xilinx MicroBlaze soft processeoe. In this thesis we
have used only the MicroBlaze soft processor [24], that isduced instruction set
computer (RISC) optimized for implementation in Xilinx FR& Since MicroBlaze

is a soft processor core, the number of this kind of processoour systems is only
limited by the resources of the target FPGA. The MicroBlaaeeds highly config-

urable, allowing users to choose the features that bettéefit design.

XPS can be used to create hardware systems from the scratchr@vides a complete
library of IP cores. Custom IP cores can be added to a desigvelhsand system
designers can also write applications for each procesdbegflatform. However, de-
signing and programming a multiprocessor system using XRI$ may lead to errors
in the implementation and for sure it is a very time-consugrprocess. Our &AM
tool takes care of this task, generating all necessary filea XPS project, starting
from the System-level specification shown in Figure 1.2.
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2.5.1 XPS project suite generation

An example of the project suite files, generated t®pkv according to the input re-
quirements of XPS, is presented in Figure 2.8.

<PROJECT_SUI TE>

- system xnp

- system nhs

- system nss

- code/: software program code

[ aux_func. h

|=---mmmm - Menor yMap. h

[ P_1/: program code for processor P_1
R P_1.cpp

|=-mm - P_2/: program code for processor P_2
R P_2.cpp

|--- etc/: optional files for inplenmentation tools
| === bi t gen. ut

| === bi t gen_spartan3. ut

[ fast_runtine. opt

| === downl oad. cnd

|--- data/: UCF files

|=---mmmm - system ucf

|=-mm - syst em ADMXRCI | . ucf

|=---mmmm - system defaul t. ucf

|=-mm - system zbt . ucf

| --- pcores/: customized IP cores for the EDK project
|=--mmmee - buffers_v1_00_a/

[ cb_wrapper_v1_00_a/

[ fifo_if_ctrl_v1l 00 a/

[ fin_ctrl_v1l 00_a/

[ host _design_ctrl _v1 00 _a/

[=mmmm e LMB_VB_CTRL_v1_00_a/

[ mux_v1 00_a/

[ myCLKRST _v1_00_a/

[ opb_zbt_control ler_v1_00_a/
[ VB_W apper _v1_00_a/

[ zbt _main_v1l 00 _a/

Figure 2.8: XPS project suite automatically generated byyE®PpAM tool.

Starting from the top of the project suite of Figure 2.8, thase the description of the
included files and folders:

e system.xmpThe Xilinx Microprocessor Project (XMP) is the top-levebject
file for an EDK design. It includes options like the versiomrher, the location
of MHS and MSS files, the FPGA architecture family and sofensettings for
the project.

e system.mhsThe Microprocessor Hardware Specification (MHS) file ddmsi
which components are used in the project and specifies theections between
these components. A typical entry of an MHS file is shown inuFég2.9,
in which a MicroBlaze processor is instantiated, custonhi@etting the hard-
ware version and some parameters) and connected to its(RBES MB_1 and
PBUSMB_1) and to the system clockysclk_s). A MHS file defines the config-
uration of our multiprocessor system, and includes bustactare, peripherals,
processors, connections and address space.
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BEG N mi crobl aze
PARAMETER | NSTANCE = MB_1
PARAMETER HW VER = 4. 00. a
PARAMETER C NUMBER OF PC BRK = 1

PARAMETER C_NUMBER_OF_RD_ADDR BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR BRK = 0
PARAMETER C FSL_LINKS = 0

BUS_I| NTERFACE DLMB =
BUS_| NTERFACE | LMB = >
BUS_| NTERFACE DOPB = nb_opb
PORT CLK = sys_clk_s

END

Figure 2.9: Part of an MHS file, in which a MicroBlaze processoinstantiated,
customized and connected to relevant signals.

e system.mssThe Microprocessor Software Specification (MSS) file inelsidi-
rectives for drivers, libraries and operating systems tthatproject needs. The
MSS file is closely related to the MHS file. For example, evayifpral instance
in the MHS implies a correspondent driver instance in the M@8Bexample of
an entry defined in an MSS file is presented in Figure 2.10

BEG N OS

PARAMETER OS_NAME = st andal one
PARAMETER OS_VER = 1.00. a
PARAMETER PROC_| NSTANCE = MB_1
END

BEG N PROCESSOR
PARAMETER DRI VER_NAME = cpu
PARAMETER DRI VER VER = 1.01.a
PARAMETER HW | NSTANCE = MB_1
PARAMETER COVPI LER = - gcc
PARAMETER ARCHI VER = - ar

END

Figure 2.10: Part of an MSS file, related to the hardware m®t@fMB_1 MicroBlaze
processor of Figure 2.9. The first part defines the OS, whistaisdalondi.e., no OS
is used onto this processor). In the last part driver, coenpihd archiver foMB_1 are
specified.

e code folder This folder includes the program code for each processoitaad
important header files, namehux funct.nand MemoryMap.h These are files
common to all processors. Thex funct.hfile provides read/write primitives as
well as wrappers for all the function calls of the initial dipption. TheMem-
oryMap.hfile defines the addresses of some components of the platfkem |
data and program memories, communication memories andnekt@emory
controllers.

¢ etc folder Contains optional file related to system physical impleragomn.
e data folder In this folder several User Constraint Files (UCF) are stpeach

one for a different target FPGA board. UCF specifies conggaielated to a
specific FPGA device, such as pin location, timing, and ifquiput standards.
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e pcores folderThis directory stores the customized IP cores for the EDKgato
These IP cores are included in the library of components showigure 1.2.

The project suite generated bysBam and described above is fully compatible with
Xilinx Platform Studio. A few manual modifications are neddas described in Chap-
ter 7. Xilinx Platform studio provides backward compattljlthus even the latest ver-
sion of XPS is able to synthesizesBam multiprocessor systems. When importing a
project, an automatic XPS wizard performs the necessargri€saipgrade.
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Chapter 3

Application of Multi-threading concepts
INn ESPAM

This chapter describes the solution approach that we hayatedl In case ofmany-
to-onemapping on a processor, the program code is divided in cosuthreads,
that can be scheduled in a dynamic way. The first section ss&suabout the use-
fulness of dynamic scheduling when dealing with an intardynamic application,
multiple application or multiple instances of the same mgpion. Then, the second
section introduces the definition of thread and describe®thread standard for thread
management and its Application Programming Interface.allinthe third section
shows which scheduling policies we have tested, namely &oolnin, Round-robin
with yielding on blocking, and Priority scheduling.

3.1 Usefulness of dynamic scheduling

The first consideration that may come in mind is why a dynamaieduling can be
more useful than the simple static scheduling, autométigainerated by the &AM
tool. Some of the possible scenarios, in which a dynamicddivey can be more
useful or even compulsory are listed below.

1. Intrinsic dynamic application. In the context ofmany-to-onemapping onto
a multiprocessor platform, intrinsic dynamic applicatman be mapped only if
dynamic scheduling is implemented. Let us consider thdgrtatpresented in
Figure 3.1. If the scheduling is static, the ndei&is firedn, times, then nod@3
is firedns times, and so on, until the end of the computation. If the iappbn
is data-dependent, proceB4 does not send data through chann@ldl and
CH2in an order known at compile time. Thus, it may happen thatgssP2
is blocked on read (there is no dataGi1) and proces®1 will not send data
through channeCH1 anymore. In this situation, node3 will also be blocked
forever, since the firing order cannot be changed. This leadsleadlock of the
system. In case of intrinsic dynamic application, stattestule cannot be found
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at compile time.

MB 1 MB 2

ﬁ(~

e

Figure 3.1: Simplenany-to-oneexample on processtMB_2. Each channel is imple-
mented by one or more FIFO(S) in our systems.

2. Multiple applications running on the same platform. With a dynamic schedul-
ing approach, multiple applications can be mapped ontodheesplatform. In
Figure 3.2 a symbolic example of this concept is depicted.ulseconsider the
execution onMB_3. It may happen thaP_3 and P_4 are blocked in reading,
waiting for data from nod@®_2. In this case, processor time is wasted if they are
the only nodes mapped onttB_3.

If, on the same processor, another node of a different it is mapped (in
the shown example?_7), we can exploit the processor time spent in idling by
executing this additional process. However, determinatcsicheduling of the
nodes mapped on each processor wouldtbbeasta vary complicated task, since
it would imply a combined dataflow analysis of the two apgdimas. In same
cases it could be impossible, for instance when at least bilne @pplications is
dynamic.

MB 2 ~ MB 3

P1 > P3

Figure 3.2: Symbolic example of multiple applications ringnonto the same plat-
form. Each arrow represents one or more FIFO channel(s).

o

P5

® @ ¢
A

®

A similar scenario arises when multiple instances of theesaplication is
mapped on the same platform. The aim of this solution is tly fexploit the
processor time, removing the time spent in idling.
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3. Execution time balancing of different applications. Let us consider Fig-
ure 3.3(a), where two applications are mapped onto two aeparocessor. |If
one of the two applications is much more complicated thawther (naively we
can assume that the number of processes is proportiongblicapon complex-
ity), the execution finishes much earlier in the low-loadeacpssor. Therefore,
we can put some of the complexity (in this case, some of thes)aaf the heavy
application on the other processor (as shown in Figure B.3{khis improves
the throughput of the whole system because both applicatitbfinish in less
time than the slowest application of Figure 3.3(a). This is/\the execution
time of the two applications is more balanced.

MB 1

MB 2

)

MB 1

MB 2

(@) (b)

Figure 3.3: Symbolic example of two applications, very eliént in complexity, run-
ning onto two separate processors. The complex applicastiexecuted in less time in
the second case (b).

3.2 Multi-threading

Since multi-threading is the basis on which we have develape method of dynamic
scheduling for KPN processes, some definitions (taken fran32]) are needed to
describe our solution approach.

Threads are generally part of a process, that is an instarf@mogram sequentially
executed by a processor.

Technically, a thread is defined as an independent streamstyfictions that can be
scheduled to run as such by the operating system. From arcaim developer
point of view, a thread can be a procedure that can run inakgly/concurrently
from the main program. Usually a thread is defined within aess, which is created
by the operating system and requires a fair amount of ovdrteech as information
about program resources and program execution state. Sahese informations may
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be process ID, user ID, group ID, working directory, prograstructions, registers,
program counter, stack pointer, heap, file descriptors amchrmore.

Threads use and exist within these process resources,eyetith able to be sched-
uled by the operating system and run as independent enfitiegely because they
duplicate only the essential resources that enable themiso & executable code:
program counter, stack pointer, registers, schedulinget@s and few more. This
means that managing threads is faster than managing tasta,d®e of the different
overhead. Multi-threading generally occurs by time-damsmultiplexing (“time slic-
ing”) on single-processors systems, while on multi-preces or multi-core systems
threads can be executed literally in parallel. Time divisioultiplexing implies that
some of the processor time is spent in context switching atasaving informations
of the running process and restoring the informations oht process.

Historically, hardware vendors have implemented their e@rsion of threads. To
allow portability of threaded applications, a standardgpaonming interface was re-
quired. For UNIX systems, this standard is referred to asIR@8eads, or Pthreads.
This is the standard used in Xilkernel, the first OS we havetesn our platforms. In

this operating system, as in many other lightweight OS el&eno concept of thread
groups combining to form a process and scheduling is doine grbcess context level.
So, in this thesis we will use the concept of a thread and obegss as synonyms.

3.2.1 Thread-safeness

Since several threads can share the same resources, fqulexapiece of global mem-
ory, and they can be executed in parallel with time divisiaritiplexing, the design of
an application must avoid data corruption or creation oé raanditions.

For example, let us consider Figure 3.4. Each of the thre@dded by the main appli-
cation calls the same library routine. This routine accg'ssedifies a global memory
location, so it may happen that all of the threads try to motifs memory location at

the same time, leading to data corruption. What this apjpdincaneeds is a way of syn-
chronization/communication between threads, to avoidipialcontemporary access
of the same memory location.

subA

Main program modify memloc XXX\

Thread1 Threadl /yada// modity _memloc xx \l
// _ A modify memloc XXx \l
call subA — [call subA — |call subA \ \

Global memory ‘)A/
memloc XXX /

Figure 3.4: Example of data corruption when dealing witleduls.
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3.2.2 Pthread API

The Pthread Application Programming Interface is a veryldebwn standard for
thread manipulation in UNIX systems and it is also suppolgilkernel OS. An
overview of the subroutine that this API provides is giverole grouped in three
classes.

Thread management.

This class of functions works directly on threads. Users carate a thread and
set/query thread attributes (joinable, scheduling eimportant functions of this class
are:

- pt hr ead_cr eat e creates a new thread and makes it executable. This rou-
tine can be called any number of times from anywhere withendbde. The
arguments passed to this routine are a thread identifiehéonéw thread, thread
attributes, the first function that the new thread will exeance it is created and
a single argument that can be passed to the first functioextiayl the thread. The
maximum number of threads that may be created is applicdgpendent. Once
created, every thread can create new ones.

- pthread_attr _init andpthread_attr _destr oy are usedrespectively
to initialize and destroy the thread attribute object.

- pt hread_exi t is used to explicitly exit a thread, typically when its wokK i
completed.

- pt hread_j oi n is a way of synchronization between threads. This function
blocks the calling thread until the thread specified in thecfion argument ter-
minates.

- pt hread_yi el d forces the calling thread to stop and yield the processor to
another thread. The calling thread waits in the ready thopealie before it is
scheduled again.

Mutexes. This class of functions manages a kind of synchronizatiawéen threads,
called mutex, which is an abbreviation for mutual exclusidnmutex variable acts
like a lock, protecting accesses to a shared memory resolinegbasic concept is that
only one thread can own a mutex variable in a given time. Neratiread can own the
mutex until the owning one unlocks it. So, threads must takestto access protected
data. Mutexes can protect data corruption, like the oneagx@di in 3.4.

Mutex-related functions can create, destroy, lock andakfoutexes and also set and
modify their attributes.

Condition variables. These variables provide another way of thread synchraoizat
implemented by controlling the actual value of a data. Withaondition variables,
users would need to have threads continually polling tha ttacheck if the condition
is met. Of course this is a very time-consuming process.
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3.2.3 Lightweight multi-threading OS in ESPAM

The solution approach to our problem, stated in Sectionmu3t assure performance,
in terms of application execution time. This is because m&scases we want real-
time behavior. Also, since usually MPSoCs do not have a lahefmory, we want
small overhead on system resources, mainly the memory atioapn the FPGA.

Performances, in the context of a KPN application runningonulti-threading OS,
depends mainly on the OS speed in context switch and threadgeaent, and on
synchronization between threads. The concepts regardingve implemented thread
synchronization and scheduling are described in the netiose Since we did not
modify the kernels of the tested operating systems, corm@kth time and thread
management speed are given and depend only on the opengitegisdesign.

The memory footprint of an operating system depends on ggdeand on its scala-
bility, namely how much an OS can be customized to fit useriremqents.

What really helped us in developing multi-threading apgdien for our platforms is
the model of computation on whichsEawm is based. In fact, Kahn Process Networks
are based on concurrent and autonomous processes, wittioo ofa global memory.
This means that in our implementation we did not have to usepticated synchro-
nization strategies like mutexes or condition variabl@s;esno data corruption may
happen. This is because each KPN node writes to separatedriels and uses its
local memory space for data.

Also, since in our platforms different nodes of the same iappbn may be mapped
onto different processors, inter-process synchroniaatannot be implemented with
mutexes or condition variables, because different praresso not share the same
global memory.

3.3 Thread scheduling policies

In our solution approach we have tested three methods addiseheduling, which
are largely dependent on the operating system schedulerer@ly, in an operating
system, thread entries are stored in queues.

If the adopted scheduling mechanism is Round-robin, tisspaly one queue for ready
(not blocked by the OS) threads, as depicted in Figure 3.5erWhe scheduler starts,
the first thread in the queue is executed and takes contrbegirocessor. Then, using
time division multiplexing, the processor is shared with tither threads. At the end
of a certain time slice, the first thread yields the contrahsecond of the queue, and
so on. In the case of a MicroBlaze processor, the end of eaxehdiice is signaled by
an interrupt generated by an external timer.

When the processor control is yield from a thread/procesmtiher one, a context
switch has to be performed. This means that the state of gi@fwcess must be saved
somehow, so that, when the scheduler gets back to the exeaftihe first process,

it can restore its state and continue. The state of the tlpeazess includes all the
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Ready thread queue

D D D e D,

1 |

Figure 3.5: Example of ready queue for Round-robin schadulihe processor con-
trol is shared between threads with time division multipigx

registers that the thread/process may be using, like thgrgmocounter, stack pointer
and others. Often all these data are stored in one datawsteycalledprocess control
block

If the operating system adopts a priority-based schedulimage than one ready queue
is provided, as shown in Figure 3.6. The scheduler decidéeshwhread/process has
to be fired basing on the priority associated to each queueadk in higher-priority
queues are fired first. Threads with the same priority are Beahin scheduled.

Thread A

| Thread B | | Thread C

Thread D

Priority
N w N P O

Figure 3.6: Example of ready queues for priority schedulinhreads in higher-
priority queues are always fired first, and threads with theespriority are Round-
robin scheduled .

In our solution approach we add a lightweight operatingesysto our processors,
then we derive for each node of the KPN a thread that représdmghavior. Finally,
to achieve better performances, we tested three methodiseafd scheduling, which
are based on the kernel scheduler and on the API of the opgatstem. These three
methods are described below.

1. Simple Round-robin. The simple Round-robin scheduling is already imple-
mented by both of the OS we have tested. Switching betweeadbris driven
by an interrupt signal, provided by an external timer. ThikigBon is very sim-
ple, and requires no OS enhanced features. As depictedumeFs37, since the
interrupt is sent at constant intervals, every process daha@rocessor control
for the same amount of time (the time slice is constant).

Though this solution is very easy, the behavior of a KPN da¢sratch perfectly
this kind of scheduling. It may happen that some of the notekimuch earlier
than the end of the time slice. A graphical example is showsigare 3.8. From
the moment in which the thread is blocked, until the end oftiime slice, the
processing resources can be wasted, if the condition of mpoutput channels
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MB 1

Figure 3.7: Example of Round-robin scheduling of threadsr&hread owns the pro-

cessor control for the same amount of time. For MicroBlazegssors, the interrupt
which drives thread switching is provided by an externaktim

nt | ext
TIMER

uP control
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do not change. All this wasted time is represented with shaal@as in the
picture.

blocking

NG RN
| ' : g "

int

uP control

Figure 3.8: Example of Round-robin scheduling of threadd thay possibly block.
Switching between threads is driven only by the interrughal, represented by little
arrows in the bottom of the figure. If one thread blocks mucherahan the end of its
time slice, a lot of time is spent in idling.

2. Round-robin with yielding on blocking. This solution is also based on Round-
robin scheduling, but with a little modification. When therrant thread is
blocked, we force the scheduler to switch directly to thet iesead in the ready
gueue. In this way, if the next thread is not blocked, no pgeoetime is wasted
on waiting for data. Also, we give time to the nodes that comivate with
the current one to unblock it (filling its input FIFOs with dab be processed,
or emptying its output FIFOs). As depicted in the example iguiFe 3.9, this
solution leads to a higher throughput of the KPN.

For this solution two mechanisms force thread switch. TiseiBrthe blocking of
the current thread. The second is the interrupt tick. Thsrfi@echanism may not
be compulsory for our implementation, but it is useful toidvihat one thread
monopolizes the processor time, in case this thread is nokéd for a long time.
Actually we want to provide an infrastructure that allowsltiple applications
to run onto our platforms, and the best performances majyt fesion interleaved
execution of these applications. Interrupt-driven switgrhelps interleaving in
the context of multiple applications.

3. Priority-driven scheduling. In the actual implementation, some overhead is
generated by context switching, when switching from onedtrto another. The
second solution, namely Round-robin switching with yietfon blocking, may
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Figure 3.9: Comparison between simple Round-robin schegl(#) and Round-robin
with yielding on blocking (b). In (a), if one thread blocks afuearlier than the end
of its time slice, a lot of time is spent in idling. In (b), if erthread is blocked, the

processor control is passed to the next thread of the reaglyegso no time is spentin
idling.

lead to additional overhead. This may happen when one thrieads, the pro-
cessor control goes to the next thread in the ready queueoutiknowing if it
is blocked or not. If it is blocked, a complete context switkhiseless, since the
next thread will yield immediately.

This concept is explained in Figure 3.10. What may happeh Rdund-robin
scheduling and yielding is presented in Figure 3.10(a).edtr blocks and
threadB is scheduled. This means that the context of thréasl saved and the
context of thread3 is restored. In this example, thre&ds still blocked, in read-
ing or writing, so it must pass control to threétl another context switch must
occur. So, the previous context switch, between thréaohd B, is completely
useless. The same situation happens in the next trandigbmeen thread’ and

A.
B“ .
= context switch blocked threads
5l
(a) o
(I E C B
t
o .
= context switch
: \
b o
» e e :

Figure 3.10: In Round-robin with yielding on blocking (adnse useless context switch
(shady area) can occur. With priority scheduling (b) thisgloot happen, since each
thread is scheduled only if it is able to run (not blocked).
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Each context switch implies some time to be performed (sapried in the figure
with shady areas), so useless context switches shouldraipéfebe avoided.
This solution is shown in Figure 3.10(b). The same computas completed
in less time, because in this case a thread is scheduledfanlg not blocked.
This leads to better performances, especially if there dot af threads to be
scheduled and most of them are often blocked. This methodeanplemented
with priority scheduling giving higher priority to threads that are not blocked.
The actual implementation and details will be presentest latthis thesis.



Chapter I

Case Studies

This chapter describes the two applications that have bged w test our method of
dynamic scheduling implementation. The first one is the Setige detection algo-
rithm, the second is an M-JPEG encoder. For each of thesepdeame report the ac-
tual implementation on a multiprocessor system generatétsbAM and correspond-
ing results (in terms of duration of the execution). Theseilts will be compared, in
the next chapters, with the ones we got with our dynamic sdireglimplementation.

4.1 Sobel algorithm

The Sobel algorithm is a tool used to detect the edges of thpeshrepresented in a
(digital) picture. An input-output example of this applicen is shown in Figure 4.1.

Figure 4.1: Example of input-output relation of the Sobgbaithm.

The KPN specification of the Sobel application is shown inuFég4.2. This specifi-
cation was derived using theNBEN [11] tool. The top nodeReadPixél reads the
input image and sends each pixel to the @i@dientprocesses. These processes cal-
culate the gradient along the horizontal and vertical disimm and send the result to
the AbsValuenode. This one gives as result the sum of the absolute valtledivo
gradients, calculated for each pixel of the image. If thimssihigh, the pixel is likely

to be part of the edge of a shape. So,\#tétePixelnode just writes the data produced
by AbsValugo the output image.
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ND_0
ReadPixel
ND_1 ND_2
Gradient-x Gradient- y
ND_3
AbsValue

ND_4
WritePixel

Figure 4.2: KPN specification of the Sobel application. Eaglow represents one or
more FIFO channels.

4.1.1 Implementation on a five-processor system

Exploiting the ESPAM design flow, this application was mapped on a five-processor
system. Using th&latform Specificatiotiile, five processors (MBA, MB_2, MB_3,
MB_4, MB_5) are instantiated and connected to the corresponding Z&Tary con-
trollers, used as interface with the outside world. On eddhe&se processors, using
theMapping Specificatiofile listed in Figure 4.3, one node of the KPN application is
mapped.

<mappi ng nanme="nyMappi ng" >

<processor name="MB_1">
<process nane="ND 0" />
</ processor >

<processor name="MB_2">
<process nane="ND_1" />
</ processor >

<processor name="MB_3">
<process nane="ND 2" />
</ processor >

<processor name="NMB_4">
<process nane="ND_3" />
</ processor >

<processor name="MB_5">
<process nane="ND 4" />
</ processor >

</ mappi ng>

Figure 4.3: TheMapping Specificatiofiile for Sobel application on five processors.
The mapping type isne-to-one

The actual system, generated bgAaAM and run on the target FPGA platform, is de-
picted symbolically in Figure 4.4. An external process@ds the input image to the
ZBT memory connected to MB, so that it can read the pixels and send them to the
other nodes. The “source” node of this KPN is mapped onMBTlhe “sink” node

is WritePixel which is mapped on ME5. This node writes the final image to its ex-
ternal memory bank. At the end of the execution, an exterr@gssor can read the
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final result to verify the correctness. However, each premescan write to an exter-
nal ZBT memory, for debugging purposes and also to commtenitee duration of
the execution on each processing unit. For this applicati@nused an option of the
PNGEN tool to reduce the number of FIFO channd&®NfOPTIONS=—no-reuggesince
these components occupy a lot of memory. Memory occupasiort critical in this
example, but in the case of multiple applications runningh@same platform it is,
and this RGEN option is compulsory. So, to make a fair comparison with tbetn
examples, we used this option also in this case.

The total execution, for an image of 450x275 pixels, requ@.850 million clock
cycles

Figure 4.4: Symbolic representation of the five-procesgstiesn generated bydpAm,
according to the input specification files.

4.1.2 Implementation on a one-processor system

The same application was mapped on a one-processor systaiy.oe processor
(MB_1) is instantiated, using thelatform Specificatioffile, and connected to a ZBT
memory controller. All of the nodes which comprise the KPNlagation are mapped
onto MB_1. The ESpaM tool generates an appropriate control code which implesnent
the static scheduling of these nodes.

In this case, the total execution, for an image of 450x27®Ipixrequiresl09.116
million clock cycles
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4.2 M-JPEG encoder

The Motion JPEG is a multimedia format where each video frafreevideo sequence
is separately compressed as a JPEG image. The main C codis apgiication is
listed in Figure 4.5. This M-JPEG encoder processes videowlaich format is 4:2:2
YUV, so with chroma subsampling.

After the declaration of some variables, the basic compmrtagtarts at line 17. For
each frame of the videitVideolninitializes the corresponding header information.
Then, the frame is divided into blocks of 8x8 pixefeainVideolnpicks one block
per time and sends it to the Discrete Cosine Transform (DCTihe 22, followed by
guantization (Q) and variable length encoding (VLE). AyainainVideoOutnrites
the result to the output image, adding the header informatithe compressed frame.

1 int nmain(int argc, char **xargv)
int t, j, i;

5 THeader I nfo hi ;
TQrabl es Lum nanceQrabl e;
TQrabl es Chr om nanceQrabl e;

THuf f Tabl esDC Lum nanceHuf f Tabl eDC;
THuf f Tabl esDC Chr om nanceHuf f Tabl eDC;

10 THuf f Tabl esAC Lumi nanceHuf f Tabl eAC;
THuf f Tabl esAC Chr om nanceHuf f Tabl eAC;
TTabl esl nfo Lum nanceTabl esl nf o;
TTabl esl nfo Chr omi nanceTabl esl nf o;
TPacket s st ream

15 TBI ocks bl ock;

for (t = 0; t < NunFranes; t++)
initVideoln (&hi);
for (j = 0; j < VNunBl ocks; j++)
20 for (i = 0; i < HNunBl ocks; i++)
mai nVi deol n( &l ock) ;
mai nDCT( &l ock, &bl ock);
mai nQ( &l ock, &bl ock);
mai nVLE( &l ock, &strean);
25 mai nVi deoQut (&hi, &strean);

return (0);
30

Figure 4.5: Main C code of the M-JPEG encoder application.

4.2.1 Implementation on a five-processor system

In order to implement this application on the desired platfdfirst we use the RGEN
tool to convert this sequential specification to a Kahn Pssdéetwork, that matches
the ESPAM application specification. The resulting KPN is depicteéfigure 4.6. The
diagram shows that the communication between threads ilsiim a pipeline. The
only thread that does not match this type of communicationit¥ideoln but this
process is very simple and it is run only once per frame. Iméikample we used only
PNGEN default options, since FIFO channels are not so many.
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Init
Videoln

Figure 4.6: Kahn Process Network specification of the M-JREGbder, derived via
the INGEN tool.

Then, we generate a platform using theram design flow, taking care of the mem-
ory requirements of this application, because it is muchencomplex than the Sobel
algorithm. Communication with the outside world is doneirethie previous example,
via the external ZBT memories. At startup the input image#lked in the memory
connected to the source node of the KPN. At the end of the ctatipn, the output
image is read, by the external processor, from the memomeztad to the sink node.
A symbolic representation of the actual platform is showRigure 4.7.

With this system implementation, encoding 2 frames of 1284dixels require86.863
million clock cycles

Init
Videoln

Figure 4.7: Symbolic representation of the M-JPEG encadapped on five proces-
sors.
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Chapter 5

Implementation using Xilkernel

This chapter describes our implementation of dynamic sdireglusing the Xilkernel
operating system. Several examples and results are pees@mbrder to compare the
dynamic scheduling approach with the static one.

5.1 Introduction to Xilkernel

Xilkernel [15] is a small, modular operating system, whishhighly integrated with
the Xilinx Platform Studio framework [13]. We decided to usfrstly for these main
features. It allows a high level of customization, so tha& tlesigner can choose a
trade-off between size (memory occupation) and functignalt supports Pthread
API, though not all of the concepts and interfaces that casapt are available. Only
the most useful concepts and interfaces are implementeediace the OS memory
footprint. However, Xilkernel programs can run equivalgioin desktop OS.

Xilkernel memory footprint on MicroBlaze systems rangesnir7.4 kB to 19.3 kB,
numbers obtained with the GCC optimization fl&@R. When the memory occupation
is just 7.4 kB only the basic kernel functionality is provijevith multi-tasking and
multi-threading. The largest memory footprint is requifedthe full kernel function-
ality, with all modules included.

Adding a kernel to a system is useful because, generallyedddad applications are
comprised of various tasks, that need to be performed intecpkar sequence or sched-
ule. As the number of these tasks grows, it gets very hardyanze time-sharing and
scheduling. Breaking down tasks as individual applicatiand implementing them
on an OS is more intuitive. Also, a kernel provides commoerfaces such as file
systems, timers, etc. Xilkernel can provide these servitesur case, we use an op-
erating system because we want to implement a dynamic slhgauethod for KPN
mapped on multiprocessor platforms.
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5.1.1 Xilkernel process model

Xilkernel's units of execution are called process conteatsd scheduling is done at
process context level. There is no concept of thread grompdming to form what is
conventionally called a process. Threads/processes arpuhaed using the POSIX
pthreads API.

Each process can be in different states. It can be runniwgaiting on the ready queue,
or dead; plus other states that manage timeouts and threabdrsyization. The only
states that we use in our implementations are are shown urd-ig1: PROCNEW,
which is the state of new created process8QCRUN, in which a process owns the
control of the processoPROCREADY, when a process is ready to run but waits in the
ready queue; finallPROCDEAD, the state of killed processes. Transitions between
PROCRUN andPROCREADYare determined by the kernel scheduler.

activated

PROC _RUN

scheduled scheduled
out in

killed PROC _READY

PROC _DEAD

Figure 5.1: Process states of Xilkernel used in our implgatems.

5.1.2 Scheduling model

Xilkernel supports either priority scheduling (SCHEEZRIO) or simple Round-robin
scheduling (SCHEDRR). This is a global scheduling policy, configured statycat
kernel generation time.

In SCHED.RR, there is a single ready queue. Each process executesdofigured
time slice, then it yields the execution to the next procadbé ready queue. The end
of the time slice, in MicroBlaze-based systems, is signaledn interrupt generated
by an external timer.

In SCHEDPRIO, queues are as many as priority levels. Priority O ishighest pri-
ority in the system and higher values mean lower prioritye filaximum number of
priority levels is 32. Within the same priority level, theheduling is Round-robin.
When a ready queue level is empty, it is skipped and the neatiechecked for ready
processes.
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5.1.3 Building applications

An application, to run under Xilkernel, must meet these nexpents:

e Source C files must include the file xmk.h as the first file amadhgrs. Defining
this flag makes available definitions and declarations sacgdor Xilkernel
applications.

e The application must provideraain() function, including the kernel invocation
xilkerneLmain().

e The application must be linked with the Xilkernel librdigxilkernel.a

5.2 Dynamic scheduling implementation

In order to implement dynamic scheduling of KPN nodes on datfgrms, we made
some modifications to the Register Transfer Level systerifspation which is gen-
erated by EpPAM, presented in Figure 1.2. These modifications mainly invdhe

program code for processors and the platform topology ge&or.

The actual dynamic scheduling implementation depends achvacheduling policy is
chosen. For further information, see Section 3.3. Thisaedirstly describes the de-
sign steps common to all of the scheduling policy, then itgss on the modifications
needed for each different scheduling type.

5.2.1 Common implementation steps

The implementation steps described in this section are aomimall of the scheduling
policy. They consist of both hardware and software modifcest

Hardware modification

While within PowerPC processors an internal timer can bel dse periodic inter-
rupt signal generation, in our MicroBlaze processors tkisgalic signal must be gen-
erated by an external timer. For this purpose, we use the [@m-Beripheral Bus
timer/counter OPB_TIMER). This timer can be connected to the MicroBlaze OPB bus
using the Xilinx Platform Studio GUI or, manually, modifgnhe MHS and MSS files.

For the MHS file, we add the lines listed in Figure 5.2. Thesediinclude timer

instantiation, hardware version, the address range fomuamications with the pro-

cessor, the connection to the OPB bus and to the interruptopohne processor. Of

course this interrupt port must be included also in the saedeclaration lines of the
MHS file. The timer OPB address range must be compatible tbathddresses of the
other peripherals (no overlapping is allowed).
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BEG N opb_ti nmer
PARAMETER | NSTANCE = opb_tiner_0
PARAMETER HW VER = 1.00.b
PARAMETER C_BASEADDR = 0xF1000000
PARAMETER C_HI GHADDR = OxF100FFFF
BUS_| NTERFACE SOPB = nb_opb_1
PORT Interrupt = MB_1_| NTERRUPT
END

Figure 5.2: Lines added to the MHS file to connect an ORBIER to our processor.

The MSS file requires also some little modifications, as shiowfigure 5.3, in order
to include the OPBTIMER driver to the software libraries.
BEA N DRI VER

PARAMETER DRI VER_NAME = tnrctr

PARAMETER DRI VER VER = 1.00. b

PARAVETER HW | NSTANCE = opb_ti mer_0
END

Figure 5.3: Lines added to the MSS file to include an ORBIER to the software
libraries.

For each processor on which Xilkernel is used we have tontiste and connect an
OPB.TIMER. The frequency of the generated interrupt signal carsét within the
kernel customization.

Software modifications

The software modifications common to every scheduling gpole have tested are
listed below.

Modification of EspAM code. We have modified EPAM source code in order to
force processors to communicate via their communicatiorirobers. This is why
the ESPAM tool uses two kind of inter-processor communication for tdiglaze: Fast
Simplex Link (FSL) and communication controllers. The fkstd is faster, and uses
the communication primitive shown in Figure 5.4. But in oase, this communication
primitive may generate a deadlock. Let us assume that ther timerrupt wants to
force a context switch and the processor is blocked on wgritimthe primitive written
in bold. Before managing the interrupt, the processor waitgshe completion of
this primitive. But, since this one is an assembly instuctiand completes only if
some space is generated in the output FIFO, it will neverdytleé execution to the
next process. So, we force inter-process communication tbrgugh communication
controllers, which primitives do not lead to this situation

#define witeFSL(pos, value, |en)
do {
int i;
for (i =0; i <len; i++)
m crobl aze_bwite_datafsl (((volatile int *) value)[i], pos);
} while(0)

Figure 5.4: Communication primitive for Fast Simplex Links
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Adding the Xilkernel OS. The Xilkernel OS can be added to each processor using
XPS or modifying the MSS file. The kernel can be highly cusedibecause modules
and parameters can be set to suit the user requirements. ddigaation to the MSS
file is listed below, in Figure 5.5. In line 4, the operating®m is associated with
the desired processaviB_1). In lines 5-6 the OPBI'IMER is specified and the timer
interval (which determines the time slice duration) is getnilliseconds. In lines 7-8
is defined the maximum number of pthreads and the staticqudhable, namely the
set of pthreads firstly executed when the scheduler is dtért¢his case¢hread main).
This thread, in our applications, is the one that generditésesothers which comprise
the KPN.
1 BEG N CS

PARAMETER OS_NAME = xi | ker nel

PARAMETER OS_VER = 3.00. a

PARAVETER PROC | NSTANCE = MB_1
5 PARAMETER syst nr_dev = opb_tiner_0

PARAMETER systnr _interval =1

PARAMETER max_pt hreads = 8

PARAMETER static_pthread_table = ( (thread_nain, 1) )
END

Figure 5.5: Lines added to the MSS file to include the Xilkéoperating system.

Derive threads corresponding to each node of the KPNn order to derive threads
that correspond to each node of the KPN specification of teeateapplication, we
use EBSPAM with one-to-onanapping onto a fictitious platform, so that each processor
program code represents only the behavior of the node mappitd

Then, we can copy each of these program codes and creatateeihmeads. We have
just to rename appropriately the input and output chanaetxrding to the definitions
of the MemoryMap.Hile (see 2.5.1). Since the actual platform is different fritma
fictitious one, the channel names are also different. An @tamf thread derived by
processor program code is shown in Figure 5.6. This threagksent theAbsValue
node of the Sobel algorithm. The node input and output cHarare written in bold
font. Their definitions have to be changed, according to #we names of the actual
platform.
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voi d* thread3(void *arg)

{

int c0, cl,;

/1 1nput Argunents
tCH 27 in_OND_3;
tCH 28 in_1ND 3;

/1 Qutput Argunents
t CH_ 29 out _2ND_3;

for( cO = ceil1(3); c0 <= floorl(M); cO +=1) {
for( cl1 = ceil1(3); cl <= floor1i(N); cl +=1) {
read(ND_3_| G 27_CH 27, & n_OND 3, (sizeof(tCH 27)+(sizeof (tCH 27)%)+3)/4);
read(ND_3 |G 28 CH 28, & n_1ND 3, (sizeof(tCH 28)+(sizeof (tCH 28)%t)+3)/4);
_absVal (in_OND_ 3, in_1ND 3, &out_2ND 3) ;
wite(ND 3 _0OG 29 CH 29, &out_2ND 3, (sizeof (tCH 29)+(sizeof (tCH 29)%t)+3)/4);
}y Il for ci

}y /1 for cO
} //thread3

Figure 5.6: Thread derived from tiAdsValuenode of the Sobel application.

Thread creation with Xilkernel API. The Xilkernel API provide a dedicated function
for thread creation:

int pthread create (pthread t* thread, pthread attr t+ attr,
voi d* (*start_funct), void+ param

e Parameters:

threadis the location to store the created thread’s identifier.

attr is the pointer to thread creation attributes structurehid pointer is
NULL, default settings are used.

start functis the start address of the function from which the threadssta
the execution.

- paramis the pointer argument to the thread function.

e Returns:

- Returns 0 and thread identifier of the created thre&thiread, on success.

- Different values if an error occurrethfeadrefers to an invalid location,
attr refers to invalid attributes, or if resources are unavéab create the
thread).

In Figure 5.5 thePARAMETER statipthreadtable defines the first thread that the
kernel will execute, in this casreadmain, with priority 1. This is the only static
thread of our implementations. When this thread runs, ate®all the other threads,
which belong to the KPN application, with default settingige program code of this
thread is shown in Figure 5.7. There are 5 KPN nodes mappduoprbcessor in this
example, so 5 thread identifiers must be declared (line &} the external hardware
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clock cycles counter is resetted (line 5). In lines 7-17 tbiwia thread creations are
performed, using the Pthread API described above. Afteh daead creation, the
code performs a check on the returned valu@tbfeadcreate If it is not equal to
zero, a flag (666) is set in the external memory, so that tlee exisignaled.

1 voi d* thread_main( void *dunmy)
{

int i, ret;

pthread_t threadl D[ 5];
5 int clk_num

*clk_cntr = 0;

ret = pthread_create(& hreadl D[ 0], NULL, (void*)threadl, NULL);
if (ret) =(ZBT_MEM 2+HALF_MEM) =666;
10 ret = pthread_create(& hreadl D[ 1], NULL, (void*)thread2, NULL);
if (ret) *(ZBT_MEM 2+HALF_NMEM+1) =666;
ret = pthread_create(& hreadl D[ 2], NULL, (void*)thread3, NULL);
if (ret) *(ZBT_MEM 2+HALF_NMEM+2) =666;
ret = pthread_create(& hreadl D[ 3], NULL, (void*)thread4, NULL);
15 if (ret) *(ZBT_MEM 2+HALF_NMEM+3) =666;
ret = pthread_create(& hreadl D[ 4], NULL, (void*)thread5, NULL);
if (ret) *(ZBT_MEM 2+HALF_NEM+4) =666;

return O ;
20 }

Figure 5.7: Threaamnain program code. This is a static thread which aim is toterea
all the KPN threads.

5.2.2 Scheduling policy-dependent implementation steps

The software modifications listed in this section dependshenchosen scheduling
policy. Simple Round-robin, Round-robin with yielding apdority scheduling have
been tested on the Sobel application running on one MicmeBtaocessor. Each node
of the KPN application is represented by a thread, createdsaheduled using the
Xilkernel OS. As depicted in Figure 5.8, all of the inter-pegs communications go
through external FIFOs. There is no notion of shared glokehory. At the end of
these test we choose the best scheduling solution, thabevithe basis for the rest of
the experiments.

MB _1
Read Abs
\—{ FIFOs }4/

Figure 5.8: Test application: Sobel running on one MicraBlanly. All of the inter-
process communications go through external FIFOs.
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5.2.3 Simple Round-robin scheduling

For this kind of scheduling policy (see 3.3) no further maddifions are needed, since
no enhanced features of the OS are used. Threads are sechadtdenatically by the
kernel scheduler. A context switch occur when an interrsigeinerated by the external
timer. The time slice can be set by changing the vVERIRRAMETER systminterval =

1 shown in Figure 5.5.

The clock cycles required to complete execution of the appibns are represented
in Figure 5.9, in function of the time slice duration. As ddsed in Section 3.3, this
kind of scheduling policy does not match the KPN executiceahantics, since many
threads may block much earlier than the end of the time slibés is well proofed in
the graph, because even with the shortest time slice alailalns) the performances
are much worse, compared to the ones obtained with Round-aolal yielding, that
will be presented later. In the best case, with 1 ms of timeeslihe execution time
is 199.914 million of clock cycles. The figure also shows ttiat relation between
execution time and time slice is almost linear. This is beeawhen the time slice is
set to larger values, the wasted time in blocking is alsceased.

Round-robin scheduling
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Figure 5.9: Clock cycles measured on MBat the end of the execution of the Sobel
application, in function of the time slice duration.

5.2.4 Round-robin scheduling with yielding on blocking

We implemented this solution with a modification to the regdand writing primitives
created by EpaM and included in thaux funct.hfile. The modified read primitive is
shown in Figure 5.10. The modification is highlighted in b@ddt. For example, in
this primitive, when blocking occurs (the selected FIFOngpty) the thread makes a
system call with theield() function, forcing a context switch and yielding the proces-
sor control to the next thread. Tlyeeld() function is made available by defining the
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parameterARAMETER enhancdéatures = trueand PARAMETER configield =
truein the Xilkernel definition included in the MSS file (see Fig.5).

#define read(pos, value, |en)
do {
int i;
vol atile int i sEnpty;
volatile int *xinPort = (volatile int *)pos;
i sEnpty = inPort + 1;

for (i =0; i <len; i++) {
while (xisEnpty) { yield(); ¥
((volatile int =) value)[i] = *inPort;
}
} whil e(0)

Figure 5.10: Modified read primitive in order to implementRd-robin with yielding.
The modification is highlighted in bold font.

The execution time results are shown in Figure 5.11. We canhsd, above 2 ms of
time slice, the execution time is constant. This is wisld() dominates on interrupt-
driven context switch with larger time slices. In the bestess above 2 ms of time
slice, the execution time is 92.426 million of clock cycleBhis time is less than a
half of the simple Round-robin result, shown in Figure 5.%isTscheduling policy
leads to a system even faster than the one presented inr5dcli@, obtained with
EspPAM static scheduling. This may happen because the static slahgdenerated
by ESPAM may not be optimal. Also, the control code which implemehts static
scheduling and the nodes communication, in case of maywanapping, generates
a larger overhead, compared to the one generated by thextewiigching.

Round-robin with yield() scheduling
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Figure 5.11: Clock cycles measured on MBat the end of the execution of the Sobel
application, in function of the time slice duration. The ptial scheduling policy is
Round-robin with yielding on blocking.
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5.2.5 Priority scheduling

An additional parameter must be included in the MSS Xilkedeinition: PARAM-
ETER schedype = SCHEDPRIOto set the kernel scheduler to priority-based mode.
The method we use to exploit priority scheduling is basedhencreation of an ad-
ditional thread, calledontrol thread that is fired every time all the threads of the
application are blocked.

Startup. During the startup, as represented in Figure 5.12, thegin threads are
set to the highest priority level (1) while the control thdeéa put in the middle-priority
level (2). Only the application threads are able to run is 8ituation, because they
have higher priority.

NOICIO, "®, ®
e
3 3

(a) (b)

Figure 5.12: Priority assignment at startup (a): applarathreads have the highest
priority. When one thread blocks, its priority is decreadad

Priority
N

Priority
N

Application execution. The next steps apply concepts described in Section 3.3, to
minimize the context switch number. When one applicatioadt blocks, it first stores
the address of the FIFO on which itis blocked. This addre$®eused by the control
thread to check if the thread is able to run or not. Then itsrfiyi is decreased (see
Figure 5.12(b)), and finally it yields to the next thread ie thigh-priority level. All of
these operations are implemented in the read and write tpr@si The modified read
primitive is shown in Figure 5.13.

- The addresssEmptyis stored in the global arraylk fifo, accessible from the
control thread. The position in the array is determined lgthinead.index

- The current thread priority is decreased using the instnpthreadsetschedparam()
provided by the Xilkernel POSIX API.

- The processor control is yielded wigield().

Control thread execution. The control thread is fired only when all the others are in
the low-priority level, as depicted in Figure 5.14(a). Thedtle of this thread is listed
in Figure 5.15. For every alive thread it checks the statubhefFIFO which caused
the blocking of the thread. If the FIFO is no more empty (inecasblocking read) or
no more full (in case of blocking write), it promotes the @sponding thread to the
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#define read(pos, value, |en)
do {

int i;

vol atile int *i sEnpty;

volatile int *xinPort = (volatile int *)pos;

i sEnpty = inPort + 1;

for (i =0; i <len; i++) {

while (*isEnpty) {

bl k_fifo[thread_i ndex] =i sEnpty;
pt hread_set schedparan(threadl D[t hread_i ndex], 0, & o_prio_spar); yield();

((volatile int =) value)[i] = *inPort;

}
} whi | e(0)

Figure 5.13: Modified read primitive in order to implemeniopity decreasing in case
of blocking.

highest level of priority, as depicted in Figure 5.14(b).tNhis solution there is no

more possibility of yielding the processor control to a Htaehat is still blocked, an
issue described in Section 3.3.

1 (@@
[ ©
3| () (7)) () N N ()

(@) (b)

Figure 5.14: Control thread is fired when all of the other déldie are in the lowest
priority level (a). In (b), control thread promotes onlye¢hds that are no more blocked,
checking their FIFO status.

Priority
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Priority
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whi | e(1)

for (i=0; i<5; i++)
if (alive[i]==1)
if (*blk_fifo[i]==0)
pt hread_set schedparam(threadl D[i], O, &hi_prio_spar);
yield();
}

Figure 5.15: Control thread code.

Although this seems to be a more efficient way of schedulingeémenteation, the test
results, on the Sobel application, gave us no improvemeatspared to the solution
of Round-robin with yielding. The total execution time, imetbest case, is 101.388
millions of clock cycles. This result is affected by the insic slowness of priority
increasing and decreasing. We measured it and it takes B8@0<lock cycles. What
may cause this slowness could be that, in order to changetpribe kernel scheduler
must be invoked. This leads to another context switch and toss. However, this
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result is application-dependent. A different applicatiatith a lot of threads, most of
them often blocked, may get performance improvements bygukis method.

5.2.6 Testresult discussion

The test results are summarized in Table 5.1. Fé&gormancecolumn shows the total
execution time, in millions of clock cycles (M c.c.), for dascheduling method. The
Comparison with static schedulimgmade with the corresponding example, described
in Section 4.1.2. The last column shows the OS memory faatdor each scheduling
method.

| Scheduling Method || Performance | Comparison with static scheduling | OS footprint |
Round-robin 199.914 M c.c. +90.798 M c.c. 7.836 kB
Round-robin with yield()|| 92.426 M c.c. -16.69 M c.c. 9.888 kB
Priority 101.388 M c.c. -7.728 M c.c. 14.084 kB

Table 5.1: Test results comparison.

With dynamic scheduling, every time the processor consrplassed from a thread to
another, some time is wasted in context saving and restoweymeasured this con-
text switch time, in the Xilkernel OS example, in 912 clocklgs. Although this con-
text switch overhead occurs, Table 5.1 shows that Rounishreith yield and Priority
scheduling are faster than the static scheduling exameritbed in Section 4.1.2.
This means that the context switch overhead generated byytiemic scheduling is
overridden by the higher efficiency of the threaded progradec This may be due to
the following reasons:

- The static scheduling generated bgHaAM may not be optimal. The dynamic
scheduling may find a better order of execution of the KPN sode

- The control code for KPN node scheduling and communicati®more efficient
when the program code is divided in threads.

With this first test of multi-threading dynamic schedulingtimods we found out that
Round-robin scheduling with yielding on blocking is the mefficient way, and it
is quite easily implemented. So, we choose to use this kinscbéduling for the
rest of our tests. The memory occupation overhead of theatipgrsystem, with this
scheduling method implemented, is 9.888 kB. This value tsiobd by subtracting
the text occupation of the compiled application without OS (6.404 kBm thetext
memory occupation with Xilkernel (16.292 kB). Thext memory occupation is not
dependent on the maximum number of threads supported by $hdlds number is
defined in the MSS file modification shown in Figure 5.5. By cast, for each extra
thread 1.2 kB ofstackmemory are reserved. Thus, the total memory occupation is
dependent on the maximum number of threads.



5.3 Advanced examples 51

5.3 Advanced examples

This section describes some of the several examples we miaolerfdynamic schedul-
ing approach. The first deals with multiple applicationg slecond with multiple in-
stances of the Sobel application, running on the same phatfo

5.3.1 M-JPEG and Sobel mapped on the same platform

The aim of this test is to verify if dynamic scheduling cardéaperformance improve-
ment when multiple applications are mapped on the sameoptatfSystem topology
and mapping of this example is shown in Figure 5.16. This rimgppas chosen in
order to balance the load on each processor and prevenntionten communication
with external memories (each processor is attached to dedamk of ZBT RAM).
Nodes likeVideoln VideoOut ReadPixeland WritePixelare mapped onto different
processors.

Let us focus, for instance, on the MBprocessor. If the M-JPEG application was the
only one mapped onto the system, only @enode would be mapped on it. In this
context, when th& node blocks, all the time is spent in waiting new data to psece
or place to write. The aim of mapping multiple applicatiomstbe same platform is
that this time can be exploited by an additional thread, is1éixampleGradient Y, so
less time is wasted.

As described in Chapter 4, the execution of the M-JPEG aneISxiplications re-
quires respectively 36.863 and 29.850 millions of clocklegcwhen each of these
applications is mapped alone in a five-processor systems fdéw platform, where
Sobel and M-JPEG applications are mapped together, coasple execution of both
tasks in 59.231 millions of clock cycles. If executed in seaee, without interleaving,
these two applications would requif®6.863 + 29.850) = 66.713 M clock cycles. So,
this mapping leads to performance improvements (10%) Isecaterleaving occur.

Figure 5.16: System topology and mapping of the M-JPEG arlSxgiplications run-
ning on the same platform. The thick arrows represent a camuation link with
external memories. The thin lines represent one or more EH&Dnels.
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5.3.2 Multiple instances of Sobel application on the same giform

An example similar to the mapping of multiple applicatiomstbe same platform is
when we consider multiple instances of the same applicalithis section we present
some implementations of this concept.

3 Sobel instances on 3 processors

The mapping considered for this example is shown in Figut&.5lt is inspired by
pipeline concepts, though we cannot define it as a pipelineea@h processor a source
node ReadPixélis mapped, so that, at startup time, at least one of the nufdagery
processor can run. In faBeadPixejust reads data from the external memory, so it
cannot be blocked at startup.

This platform processes 3 images of 450x275 pixels in 82\Mp@4bck cycles (27.531
M per image).

Figure 5.17: Mapping of 3 Sobel instances running on 3 psmras This mapping is
inspired by pipeline concepts.

3 Sobel instances on 5 processors

The same concept is applied to this example, strictly rdladethe previous one. As
shown in Figure 5.18, on each processor 3 nodes are mappedoWnot map 5
Sobel instances on this platform due to lack of memory (ys$esn uses almost 100%
of FPGA total BRAM). The 3 images are computed in 60.514 M klogcles (20.171
M per image).



5.3 Advanced examples 53

MB_1'MB_2 'MB 3

|
MB _4 'MB _5

Figure 5.18: Mapping of 3 Sobel instances running on 5 pemrss

Throughput analysis of interleaving applications

In Figure 5.19 the throughput is represented, obtainedovithiiests and normalized to
the smallest value, of the platforms listed below:

e 1 Sobel running on 1 processor (92.426 M c.c. per image) (alieed through-
put=1)

e 3 Sobel instances running on 3 processors (27.531 M c.cimaayed)(normalized
throughput=3.36)

e 3 Sobelinstances running on 5 processors (20.171 M c.cimaayed)(normalized
throughput=4.59)

It is interesting to compare these results with the oneswviloald be obtained just by

instantiating the same platform (1 Sobel running on 1 premesvith operating sys-

tem) for 1, 3, and 5 times. In this case the applications rdependently on separate
processors, so the throughput gain is linear. Figure 5.2ishhis concept. Those
values are theoretically determined for the platformgdtdielow:

e 1 x (1 Sobel running on 1 processor) (hormalized throughput=
e 3 x (1 Sobel running on 1 processor) (hormalized throughput=

e 5x (1 Sobel running on 1 processor) (hormalized throughput=
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Interleaving applications
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Figure 5.19: Normalized throughput in function of the numdiethe processors.
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Figure 5.20: Normalized throughput in function of the numbiethe processors, just
by instantiating the platform, which maps 1 Sobel applaatn 1 processor, for 1, 3,
and 5 times.

Combining the two previous graphs, as shown in Figure 5.Zl¢can see that, in the
case of three processors, the interleaving execution keaiflsoughput improvement
(3.36 instead of 3, 12% of speedup). This is not a generaltressoice speedup, de-
pending on the application, may be higher or lower. For mstain the case of five
processors, interleaving execution is worse than the aggpaxecution. Unfortunately,
the comparison between interleaving applications andragpaxecution is not com-
pletely fair in the 5-processor case. This is because, disckoof memory, we were
not able to synthesize 5 threaded Sobel instances runnibguinroBlaze. Actually,
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in the 5-processor case of Figure 5.21 we compare 5 sepaeateten Sobel instances
with 3 interleaving Sobel instances. This may be the readonthe interleaving exe-
cution is slower than the separate one.

Comparison between interleaving and separate execution
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Figure 5.21: Comparison of normalized throughput in fumctdf the number of the
processors. The blue line represents interleaving exatutie dashed red one separate
execution.
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Chapter 6

Implementation using FreeRTOS

FreeRTOS is an alternative operating system that we testedier to make compar-
isons with the implementation with Xilkernel. In this chapive describe the main
features of this operating system and we present the obitagsalts.

6.1 Introduction to FreeRTOS

FreeRTOS.org [17] is an open-source, real-time kerneg foedownload. It can be
used in commercial applications too. We tested the 4.7 doeof this operating sys-
tem. Several ports are available, for many processor acthites and development
tools. Most important for our examples, it does exist a portifie MicroBlaze archi-
tecture.

FreeRTOS features include:

e Kernel support for preemptive (the scheduler can suspeskd}@r cooperative
(tasks must be programmed to yield when they do not needmsyst&ources).

e The OS is designed to be small, simple and easy to use.

e The code structure is very portable, predominantly writte@; the source code
is contained in only 3 C files.

e Itis very scalable.

Although this OS does not support Pthreads API, its API iatnadly easy to use and
understand. The kernel provides also several kind of iptecess communication,
like queues, binary and counting semaphores, mutexes andsiee mutexes. All

these features are not used in our implementations.
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6.1.1 FreeRTOS fundamentals

FreeRTOS allows a real time application to be structuredsat af autonomous tasks.
Only one task within the application can be executing at amiptpin time and the
real time scheduler is responsible for deciding which tds& $hould be. Each task
is provided with its own stack. When the task is swapped auettecution context is
saved to this stack, so it can be restored safely when the wmkés (later) swapped
back in.

A task can be in one of the following states:

- Running. When a task is actually utilizing the processor, it is saithéan the
Running state.

- Ready. Ready tasks are those that are able to be executed (not Glocleeis-
pended), but are not currently executing because a ditféask of higher or
equal priority is already in the Running state.

- Blocked. A task is blocked when it waits for either a temporal or exaééevent.

- Suspended.In this state tasks are also not available for schedulingk Tan
enter or exit the Suspended state only with explicit API fiores, they cannot
wait for temporal or external events.

All of these states and state transitions are depicted iar&ig.1.

Suspended
vTaskSuspend ()

vTaskSuspend () vTaskResume ()

sched . out
vTaskSuspend ()

Event Blocking API

function
Blocked

Figure 6.1: Task state diagram supported by FreeRTOS, if@ talsks.

In FreeRTOS, the structure of a task should have the steistoown in Figure 6.2.
They are implemented as continuous loops, because theldstexer return. Finally,
task are created usingaskCreate(and deleted usingTaskDelete()

voi d vATaskFunction( void *pvParaneters )
for( ; ;)

- Task application code here. --

Figure 6.2: Basic thread structure when using Xilkernel.
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6.1.2 Source code description

The basic source code of the FreeRTOS kernel is includedlyntbree files:tasks.c
includes the core of the kernel scheduler, task creatiordetetion, task blocking and
suspending, setting thread priority, elist.c defines list implementation used by the
scheduler; finallygueue.amplements queues used by the scheduler.

A couple of additional files are needed for porting purpopest.cdefines architecture-
dependent functions like Timer Interrupt Setup, Stackdh#ation, Interrupt Service
Routine and Timer Interrupt handlingprtasm.sncludes assembly implementations
of some of these functions, to achieve code efficiency. Aroirigmt example of such a
function is presented in Figure 6.3, which shows the prarassntext saving. Firstly,
some space is created in the stack, for the execution corteeh the MSR (Machine
Status Register) and all general registers (r30-rl1) aredsakinally, the top of stack
is stored in the current TCB (Task Control Block), which is structure used by the
kernel for task handling.

.macro port SAVE_CONTEXT

/+ Make room for the context on the stack. =*/
addik r1, r1, -132

/+* Save r31 so it can then be used. =*/
swi r31, rl, 4

/+ Copy the msr into r31 - this is stacked later. =*/
nfs r31, rnsr

/+ Stack general registers. =*/

swi r30, rl, 12

swi r29, ri1, 16

swi r28, ri1, 20

swi o r27, rl, 24

swi r26, ril, 28

swi r25, rl, 32

swi r24, rl1, 36

swi r23, rl, 40

swi r22, ril, 44

swi r2l1, rl, 48

swi r20, rl, 52

swi rl19, ri1, 56

swi rl18, rl, 60

swi rl7, rl1, 64

swi rl6, rl, 68

swi rl15, r1, 72

swi rl13, rl, 80

swi rl2, r1, 84

swi rl1l1, r1, 88

swi rl10, rl, 92

swi r9, rl1, 96

swi r8, rl, 100

swi r7, rl1, 104

swi r6, rl, 108

swi r5, r1, 112

swi r4, rl1, 116

swi r3, rl, 120

swi or2, rl, 124

/+ Stack the critical section nesting value. */
Iwi r3, r0, uxCritical Nesting

swi r3, rl, 128

/+ Save the top of stack value to the TCB. =*/
Iwi r3, r0, pxCurrentTCB

swrl, r0, r3

Figure 6.3: Context saving definedportasm.s
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6.2 Implementation example and results

In order to test and evaluate the performances of this apgraystem in comparison
with Xilkernel, we implemented the example of three Sobstances running on three
MicroBlaze. The corresponding mapping is shown in Figude @he implemented

scheduling method is Round-robin with yielding on blocking

'MB 1, MB2 , MB.3
I
|

Figure 6.4: Mapping of 3 Sobel instances running on 3 prarsss

Some moadifications are needed when using FreeRTOS with Raurid with yield-
ing on blocking, because FreeRTOS is not integrated in th& ¥Bmework. For
instance, the time slice duration must be configured usiad-tbeRTOSconfig.fle.

In Figure 6.5 2 lines are listed, in which the CPU clock fregmyeand interrupt tick
frequency are defined. During kernel startup, the timeritglized so that it generates
an interrupt every: clock cycles, where = CPU_FREQ/TICK _FREQ.

#define confi gCPU_CLOCK HZ ( ( unsigned portLONG ) 100000000 )
#define configTl CK_RATE_HZ ( ( portTickType ) 1000 )

Figure 6.5: Definition of CPU clock frequency and interrupktfrequency inFreeR-
TOSconfig.h

Furthermore, the reading and writing primitives must be patible with FreeRTOS
API. An example of reading primitive is listed in Figure 6.6.

#define read(pos, value, |en)
do {

int i;

volatile int *isEnpty;

volatile int *xinPort = (volatile int *)pos;

i sEmpty = inPort + 1;

for (i =0; i <len; i++) {
while (*isEnpty) { TASKyield(); }
((volatile int =) value)[i] = *inPort;

}
} whil e(0)

Figure 6.6: Modified read primitive in order to implement Rderobin with yielding
with FreeRTOS. The modification is highlighted in bold font.
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With FreeRTOS, the platform described in Figure 6.4 geesrdtoutput images in
80.413 M of clock cycles (26.804 M c.c. per image). This resuiklightly better
than the one obtained with Xilkernel, as shown in Figure e FreeRTOS result is
represented with a circle. The memory occupation overhé#uoperating system
is 10.606 kB.

Comparison between interleaving and separate execution
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Figure 6.7: Mapping of 3 Sobel instances running on 3 pramsss

These results lead to our final conclusions on the FreeRT@&keavhich are listed
below:

+ This operating system is slightly faster (at least, in o@meples) than Xilkernel.

+ The source code is very simple and understandable, it cpodmbly fit to our
aim.

- The memory footprint is almost 10% larger than the Xilkéoree.
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Chapter ;

Tutorial on dynamically scheduled
system design

This chapter describes step-by-step the implementatian dyfnamically scheduled
system, starting from the C source code and ending with tla XRS project. For

the sake of clarity, this tutorial shows the simplest of axaraples, namely the Sobel
application running onto only one MicroBlaze. The opemtgystem used in this
example is Xilkernel. The described methodology can be lsimped also for more

complicated cases, with few modifications.

The first section describes how to generate a multiproceystem using RGEN and
EspaM tool chain. Then, Section 7.2 includes all of the few manuadtifications
required for the correctness of the output system. Secti®nnfroduces the MHS,
MSS and program code modifications needed for the dynamedsiding of the KPN
application which runs onto our system. The last sectioenigss how to export the
modified multiprocessor system in Xilinx Platform Studiodaimow to generate the
final bitstream and get results using a host processor progra

7.1 XPS system generation using WGEN and ESPAM

The starting point of our tool chain is a folder, as shown igufe 7.1, which includes
the items listed below:

- sequential folderincludes the sequential specification of the applicatiod,all
the functions needed for the correct execution of the progra

- Makefile simplifies the running of different tools in thesBAM design flow.

- sobel.plais the Platform Specificatiorused as input for the €°AM tool (see
Figure 1.2).

- sobel.mapis the Mapping Specificatiofile, another EPAM tool input, which
describes the KPN node assignment to each processor ofgtearsy
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<SOBEL_DEMO>
| --- sequential/: sequential application program code

[ sobel _funct.c
R sobel _funct. h
[ sour ces

| --- Makefile

| --- sobel.pla

| --- sobel . nap

Figure 7.1: Starting folder of theN®&EN and ESPAM tool chain, in the Sobel applica-
tion case.

The main C source code of the Sobel application can be fouAgpendix A. Thanks
to the Makefile included in the folder, converting the sediaapplication to the KPN,
parallel specification is a matter of one command:

make par FlI LE NAME=sobel

This command starts the convertion of the sequential agjpdic to a KPN, using the
PNGEN tool. The specifiedrILE_NAME is the main C source file of the application,
in this casesobel(without the file extension). Several operations are paréat on the
sequential program file, such as C parsing in SUIF, deperdemalysis (as described
in [1]), and finally the convertion from the .yaml PN formatttee ESPAM specific
XML format. Actually the output gobel.kphis a XML file which describes thép-
plication Specificationusing the KPN model of computation, fully compatible with
EspAM. This output file is copied in thEOBELDEMO folder.

Once theApplication Specificatiois generated, we must adapt thabel.plaandso-
bel.mapfile to fit the application requirements. Firstly we have taide the number
of processors (in this case, there is only one MicroBlazd)taa system topology. The
final Platform Specificatiofiile is shown in Figure 7.2.

In line 3-5, one MicroBlaze processor is instantiated, veitdata memory of 65 kB
and a program memory of 32 kB. Its OPB port is name®&8 1. In lines 7-13 we
include two ZBT memory controllers in the system, specidyihne size of the attached
memories (in this case, 1 MB). In lines 15-19 these ZBT cdlar® are connected
to the OPB bus of the processor, using a link. If no commuitnanfrastructure is
specified, as in this case, the default choice is a pointtotmetwork.

When the platform topology is specified, we can decide thepimggof the KPN nodes
that comprise the application onto the processors. In @& ©nly one processor is
instantiated, so all of the 5 nodes of the application arepedmwn it. Thesobel.map
file is shown in Figure 7.3.

Now all the input specifications required by the#AM tool are provided, so the next
step is running the tool itself. Using the Makefile, this isaah matter of only one
command:

make espam FI LE_NAME=sobel
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<pl at f orm nane="nyPl at f or ni' >

<processor nane="MB_1" type="MB" data_nenory="65536" program nenory="32768">

<port name="OPB_1" type="OPBPort"/>

<peripheral nanme="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port nanme="10_1" type="OPBPort"/>

<peripheral nanme="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">
<port nanme="10 2" type="OPBPort"/>

<link name="nb_opb_1">
<resource nane="MB_1" port="0PB_1"/>
<resource nanme="ZBT_CTRL_1" port="101"/>
<resource nane="ZBT_CTRL_2" port="102"/>

1
5 </ processor >
</ peri pheral >
10
</ peri pheral >
15
</link>
20

</ platforne

Figure 7.2:sobel.pla final Platform Specificatiofile for the Sobel application running

on only one MicroBlaze.

<mappi ng nane="myMappi ng" >

<processor name="MB_1">

<process
<process
<process
<process
<process
</ processor >

</ mappi ng>

nanme="ND_0"
name="ND_1"
nanme="ND_2"
nane="ND_3"
nanme="ND_4"

/>
/>
/>
/>
/>

Figure 7.3:sobel.map Mapping Specificatiofile for the Sobel application. All the
nodes are mapped on MicroBlaze proced$d8r 1.

This command implies several operations, as listed in thkefila:

e The ESpPAM tool runs, using the options shown in Figure 7.4:

/ espam - -pl atf orm sobel . pl a --adg sobel . kpn --nmappi ng sobel . map

--xps --libxps <ESPAM LI BXPS> - - debugger

Figure 7.4: Default EPAM tool options, set in the Makefile.

- - platform: specifies thé&latform Specificatiofile, in this casesobel.pla

- - adg: indicates theApplication Specificatiofile (sobel.kpih
- - mapping: refers to theMapping Specificatiofile

- - xps: force the tool to generate all the necessary files of a XP2@iroj

- - libxps: specifies the path of the library which stores predefined @amp
nents or files common to all thesBAM projects, such as custom IP cores,

the UCF files and some other optional files required by XPS
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- - debugger: implies the generation of debugging components (for ircstan
the hardware clock cycle counters) by theAam tool

e Finally, the sobel/code/functode folder is generated. All the functions and
headers used by the initial sequential application aredtor here.

After running the EEPAM tool, a new directory is created within the original project
folder, as shown in Figure 7.5. This new directory includétha files which comprise
the XPS project suite described in Section 2.5.1, sudystem.xmsystem.mhand
system.mss

<SOBEL_DEM>>

| --- sobel/: XPS project suite fol der

|--- parallel/: contains the files used for parallel application specification
|--- sequential/: sequential application program code

[---mmmmes car_gray. j pg

[T i mgel O ¢

[T i mgel O h

[---------- Makefile

[T sobel . ¢

== sobel _funct.c
[T sobel _funct. h
== sour ces

| --- Makefile

| --- sobel.pla

| --- sobel . nap

| --- sobel. kpn

Figure 7.5: Final project folder, obtained using thed®&N and ESPAM tool chain, in
the Sobel application case.

7.2 Manual modifications

A few manual modifications are compulsory for the correcirifour multiprocessor
system execution. They include both hardware and softwarfioations, but they do
not require more than few minutes. The changes on hardwarsaftware parts are
listed in the following sections.

7.2.1 Hardware modification

The only required hardware modification is the change of FBE®s. The size must be
increased to the next upper power of two. This can be achiey@thanging the FIFO
size parameter in the MHS file, for all of the FIFO channelssta®swvn in Figure 7.6.
The FIFO sizes can also be set to higher values if we wantrigtéormances, since
larger FIFOs lead to less read/write blocking.

7.2.2 Software modifications

Some software modifications are also required, and theynevoainly the input and
output functions. In this aspect the behavior of sequeapgplication compared to our
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BEG N fsl _v20
PARAMETER HW VER = 2. 00. a
PARAMETER | NSTANCE = FI FO_MB_
PARAMETER C_EXT_RESET_HI GH =
PARAMETER C_ASYNC CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTRCOL = 0
PARAVETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst net _desi gn_r st
END

1 Qut 1
0

Figure 7.6: How to increase FIFO sizes to the next upper poivevo.

multiprocessor systems is very different. A sequentialiagpon, for instance, can
read the input data from a file. In our embedded systems them@ motion of files and
the input data is read directly from the external ZBT menwrie

In the case of the Sobel application, tReadPixefunction is modified as shown in
Figure 7.7. The commented instructions, in lines 2-12,@spnt the reading from a
file, used by the sequential application. In lines 14 and idghlighted in bold font,
the reading is implemented via a pointer that access to ttesret memory, where
the starting image has been initialized. The modificatidnhe WritePixelfunction

is very similar. This methodology is general, and all theuingnd output functions
must be implemented using pointers that access data put iexternal memories. In
our case, these functions are implemented irstiteelfunct.cfile. Therefore, this file
must includeMemoryMap.hin which the definition of ZBT memory address and all
the other addressable components of the system are provided

1 voi d readPi xel ( int *output ) {
| x

int pp;
static FILE *fh = NULL;

if (fh == NULL) {
fh = nrOpen("car_gray.B");
}

10 pp = nCetc(fh);
*out put = pp;
*/

static int addr = O;
15 *out put = *(ZBT_MEM 1+( addr ++));

Figure 7.7: Modifications of the readPixel function.

After these few modifications, the system is ready to be ssiled and the program
is ready to be compiled. At this step of the design, the sdireglof KPN nodes is
set at compile time by the$PAM tool. In the following section we will describe the
further modifications which are required to implement dyi@asaheduling.
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7.3 Madifications for dynamic scheduling implementa-
tion

In order to implement the dynamic scheduling of the KPN noslegh comprise the
application, some further modifications are needed. Thelude MHS, MSS and
program code modifications, as listed below:

e MHS modifications. For the sake of clarity, the final MHS file of this example
is provided in Appendix B. As described in Section 5.2.1,ie$ 704-711 an
OPB timer is instantiated. This timer is required for theipdic interrupt tick
generation. Its bus interface is connected to MicroBlaz€l& (1) OPB bus and
its output signalMB_1_ INTERRUPT s linked to thd N TERRUPTport of MB_1
(see line 91).

e MSS modifications. The final MSS file is included in Appendix C.

In lines 4-14, the Xilkernel operating system is instastiitand its parameters
are set:

- The processor which uses the O3/4B_1.
- The system timer device @ph.timer.0.
- EnhancedeaturesandConfigyield are required to use thygeld() function.

- The system timer interval is set to 500 ms, a huge value,adltle switch-
ing between threads is done only by tield() function. This is the best
solution for this application.

- The static thread table is defined. The only static thregehted at kernel
startup, ighread main

Lines 284-288 are added to the MSS file to generate the dilwaries corre-
sponding to the OPB timer.

e Program code modifications.We need to modify the main program code gen-
erated by EpaM and the communication primitives, which are included in the
aux funct.hfile.

The final main program code is reported in Appendix D. Thisifilstructured
as follows:

- Some header files are compulsory included, sucknak.h os.config.h
pthread.h These headers are related to the kernel library generation

- The code of threads which represent the KPN nodes of ourcapioin is
listed. For further information on how we derive the code atle KPN
node, see Section 5.2.1. We must must be sure that the inguiwdput
FIFOs have the correct name, corresponding to the actuargie plat-
form.
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- Thethreadmainis declared. This thread is the only static one, and it is
created at kernel startup. The aimtbfeadmainis to create all of the
other threads which comprise the KPN application.

- Themainprogram only starts the kernel scheduler, usingtternel main()
instruction.

The communication primitives, included aux funct.h are modified using the
concepts explained in Section 5.2.4. For instance, wheretiing primitive is

used and blocking occur, the code must invokeyiedd() function, in order to

pass immediately the processor control to the next thre#tteineady queue.

7.4 Generate the bitstream and collect results

7.4.1 Bitstream generation

The system stored in th&obeldirectory of Figure 7.5 is ready to be imported into
XPS. We just have to double-click on tegstem.xmfile. Since ESPAM was designed
basing on XPS version 6.3, a simple upgrading wizard will n@matically started if
the XPS used version is higher (as in our case, since we us8d/&iBion 9.1). All of
the default options within this upgrading wizard are sepprdy.

Since the Xilkernel OS is used in our project, the user mudt Xilkernel libraries
with the application during the compilation. This is donedgimple modification

of the compiler options. Go to the “Project Information Arem the top-left corner

of the screen, select “Applications”. Then double-click“@ompiler Options”. The
corresponding window will pop up. Click on “Paths and Op#Qrthen in “Libraries

to link against (-1)” writexilkernel Now the project is ready to be synthesized and
compiled.

The synthesis process includes the steps listed below:

e Generate netlist. The netlist is generated using the comma&taddware - Gen-
erate Netlist This forces the XPS Platform Generat®idtger) to read the de-
sign platform information included in the MHS file along withe the IP at-
tribute settings available from the respective Micropesce Peripheral Defini-
tion (MPD) files. Platgen produces as output a Hardware Dgguan Language
(HDL) file and a system netlist file in NGC format.

e Generate Bitstream.The FPGA-programming bitstream is generated using the
NGC netlist file as input by th&Xflowtool. The bitstream is stored in tts®-
bel/implementatiofolder.

All these commands can be found in the menu opkiandware or in the tool bar.

The compilation process is done using these commands,doladiie menu option
Software or in the tool bar:
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e Generate Libraries. This command uses the library building tool (Libgen), that
reads the corresponding MSS file and generates device slrlilaaries, input-
output configuration, and interrupt handlers.

e Build All User Applications. Using the cross-compilenb-gc¢ this command
generates one ELF file for each processor in the system. BaeHilE is the
result of the program code compilation.

Finally, the hardware and software flow must be merged. Bhitohe using the com-
mandUpdate Bitstreamwhich can be found in the menu opti@evice Configura-
tion. However, if the above commands have not been executedgcdmsnand will
invoke them one by one.

The final bitstream is stored sobel/implementation/download.bit

7.4.2 Using a host processor program to get results

In order to download the final bitstream and check the outptiteoFPGA system, we
use a software program that runs on an outside host procdgssrsoftware program
is a Microsoft Visual C++ 6.0 project. It uses the ADM-XRCApplication Pro-
gramming Interface to initialize the device and control ithigut-output of the system.
Before running the program, the actsalbel/implementation/download.fiie has to
be copied in the C++ program folder. For the Sobel applicatioe result correctness
may be simply verified by viewing the jpeg output image.

The main host processor program is shown in Figure 7.8. Tis&dam downloading
step is omitted.

In lines 15-25 the buffer (which will be loaded in the exi@rmemory space)
is initialized with 0 and the input image is put in the locaticorresponding to
the first memory bank. This is because the “source” node oKfPH of this
example is linked to this memory bank.

- Inlines 27-40 the buffer is actually loaded in the exte#AT memories, so that
the input data is made available to the FPGA. This step cdeglhe system
initialization.

- In lines 50-60 the program checks if the FPGA system hadiaishe process-
ing phase. When this condition is true, it reads the clockecgounter value.

- In lines 65-75 the content of ZBMEM 2, which represents the FPGA system
output, is saved in the buffer.

- Inlines 77-89 the execution time, measured by the clocleayaunter connected
to MB_1, is displayed. Then, the output image is stored ircdresobel.rawfile,
and converted to a jpeg image using an external tool.
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1 void FPGA : MY_FUNCTI ON()

{
U NT bank_6 = 5xbankSi ze;
U NT bank_5 = 4xbankSi ze;
5 U NT bank_4 = 3*bankSi ze;
U NT bank_3 = 2+xbankSi ze;
U NT bank_2 = 1xbankSi ze;
U NT bank_1 = 0;
10 R R L

/1 Initialization
system("convert car_gray.jpg -interlace partition RGB:car");

fhl = nropen(“car.B");

15
/1 Al unused nenory banks will be initialized with 0
for (int n=0; n<6xbankSize; n++)
ranbuf[n] = 0x00;
20
/1 The input data to be processed
for (n=0; n<450%275; n++)
ranmbuf [ bank_1+n] = ( DWORD) bgetc(fh1l);
}
25
ntl ose(fhl);

/!l wite data into to the menory Banks of the FPGA board
f pgaSpace[ COMMAND_REG = cnd_Initialize; // initialise nenory node + banks access from host (Pentium
30 f pgaSpace[ COWAND_REQ ;

[ R src dest size nmode
status = writ eSSRAM r anbuf , bank_1, bankSize, dma);
status = witeSSRAM r anbuf +bankSi ze , bank_2, bankSize, dnm);
35 status = witeSSRAM r anbuf +2xbankSi ze , bank_3, bankSize, dnm);
status = witeSSRAM r anbuf +3xbankSi ze , bank_4, bankSize, dnm);
status = witeSSRAM r anbuf +4xbankSi ze , bank_5, bankSize, dnm);
status = witeSSRAM r anbuf +5«bankSi ze , bank_6, bankSize, dnm);

if (status !'= ADMXRC2_SUCCESS) {
40 printf("exiting n");
exit(0);

}
/1 Initialization DONE

45 11
/'l Execution Steps

WORD t enp;

50 /1 Check whether the system has finished processing and
/1l read the counter register (execution tine)
whi le(1) {
tenp = fpgaSpace[ STATUS REQ ;
if (temp == stat_Finished) { /1 read status
55 DWORD cl ock_num = f pgaSpace[ COUNTER REG ; // read the counter
printf("C k cycles nmeasured in ZBT_MAIN = % n", clock_nunm;
br eak;

}
}
60 /'l Execution Steps Done

11
/1l read data fromthe FPGA board

65 f pgaSpace[ COWAND_REG = cnd_Read; // read nenory node + banks access fromthe host (Pentium
f pgaSpace[ COWAND_REQ ;

/1 menory bank 2 is noved to rambuf array
[ dest src si ze node
70 status = readSSRAM r anbuf +bankSi ze, bank_2, bankSi ze, dma);

if (status != ADMXRC2_SUCCESS) {
printf("Error: failed to read SSRAM n");
exit(1);
75 }
/'l Menory read DONE
11
printf("CC measured in MBL = % n", ranbuf[bank_2 + HALF_MEM);

80 /'l Store the raw i mage
fh4 = mwopen("car_sobel .raw');

for (int k = 0; k < 448+273; k++) {
bput c(ranbuf [ bank_2+k] , f h4);
85

ntl ose(fh4);
system("convert -depth 8 -size 448x273 gray: car_sobel .raw car_sobel . jpg");
return;

90 }

Figure 7.8: Host processor main program code.



72

Tutorial on dynamically scheduled system design




Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis project was focused on the development of a dynscheduling method
for Kahn Process Networks nodes onto multiprocessor systgmerated by &AM,

in the context oimany-to-onemapping. Such a method can be useful when we want
to map intrinsic dynamic applications, multiple applicais or several instances of the
same application in the design.

Firstly we introduced the &AM tool design methodology, and how it can close the
Implementation Gappetween System-level specification and RTL specificatidn-au
matically. Our tool allows efficient and systematic mappangtreaming and multime-
dia applications on a multiprocessor system. The aim offtugect was to improve the
EspAM tool, allowing system designers to exploit advanced safvgalutions, based
on dynamic scheduling of the KPN nodes which comprise théagin(s).

The project goal was achieved following the basic stepedisilow:

e Adding an operating system to each processor, if more thamode is mapped
on it (many-to-onenapping).

e Extract program threads that represent all of the KPN nodeéshacomprise the
application(s).

e Create, run and schedule these threads, using operattegsf®| (three schedul-
ing strategies have been tested).

Performing several tests, we found out that the Round-retiireduling with yielding
on blocking is the one that matches more efficiently the KPNal®r. Altough it is
very simple to implement, it is effective for dynamic KPN msdscheduling.

The second aim of this project was the performances congrebistween two different
operating systems, namely Xilkernel and FreeRTOS. Fronmtpéementation results,
we can summarize the different OS features as follows.
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e Xilkernel

+ With the kernel configuration we adopted, the memory fdotgs only
9.9 kB. Actually, the Round-robin with yielding schedulipglicy requires
only one advanced feature (the yield function). All the rast default
settings, that lead to this small memory footprint size.

+ This operating system is very easy to implement on our Bysteecause
it is highly integrated with the Xilinx Platform Studio fraework. Adding
and setting this OS is a matter of few lines in the MSS projéet fi

- Custom kernel modifications are less easy than with Fre€&RTO
- The actual test performances are slightly worse than tkeFOS ones.

e FreeRTOS

+ Three source code files contain all the basic kernel funatites. They are
predominantly written in C and are well understandable,ustam kernel
modifications are easy to make.

+ This operating system performance is slightly better thanXilkernel.
- The memory footprint is almost 10% larger than the Xilkéoee.

- Adding this operating system in our projects is more tribkgause FreeR-
TOS is not integrated in Xilinx Platform Studio framework.

These Operating Systems features are summarized in tbeviiod table:

| Operating System || Performance | Complexity | Kernel customization [ Memory footprint |

Xilkernel slightly slower lower harder 9.888 kB
FreeRTOS slightly faster higher easier 10.606 kB

Table 8.1: Operating Systems features comparison.

So, when coosing an operating system to add to a processadeadff decision has to
be made. Xilkernel is easy to implement and gives a slighmtigiter overhead in terms
of memory occupation, while FreeRTOS is more customizatdesdightly faster.

8.2 Future work
This work on dynamic scheduling implementation can be ometi in several aspects.

The first one can be a custom kernel modification in order tasffitgmal. The solution
we presented in Section 5.2.5 to avoid useless contextsegts based on priority
scheduling and an additional control thread, but the peréorces are not optimal, be-
cause of the slowness in priority increasing and decreasnstead of using a control
thread that checks if threads are able to run, the globakksaheduler can include a
similar function. Before scheduling a thread, it can scahig thread is still blocked
on a FIFO.
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This kernel modification is not based on priorities, thus \&a assume that it could
be faster than our implementation. On the other hand, thetoauization surely adds
some complexity to the global kernel scheduler, thus thedalng operation could be
slower. Performance improvement can occur if the time savédever” scheduling
dominates the scheduling complexity overhead.

Another aspect that can improve this work is the completeraation in processor
code and MHS, MSS files generation. All of the modificationthefEspam-generated
systems, described in this thesis, were made by hand. Ceamgfgee MHS and MSS
files are needed to add an operating system to a processdneedternal timer that
generates a periodic interrupt. Furthermore, program cooeifications have to be
made in order to start the global scheduler, create thraadisn@dify the scheduling
order.

All this work can be fully automated, in order to make dynastbeduling solutions
on our multiprocessor systems easier to use. This can leaddster design space
exploration, a fundamental concept in contemporary syskesign.
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Appendix

Main program code of the Sobel
application

#incl ude "sobel _func. h"

int N = 450;
#pragma paranmeter N 450 1000
int M= 275;

#pragme paranmeter M 275 1000
int main(void)
int i, j;

static int inage[1000][1000];
static int Jx[1000][1000];
static int Jy[1000][1000];
static int av[1000][1000];

for (j=1; j <= M j++) {
for (i=1; i <= N i++)
readPi xel (& mage[j][i]);

}

for (j=2; j <= M1, j++) {
for (i=2; i <= N1; i++) {
gradient( & mage[j-1][i-1], & mage[j][i-1], & mage[j+1][i-1], ...
& mage[j-1][i+1], & mage[j][i+1], & mage[j+1][i+1], &x[j][i] );
}
}

for (j=2; j <= M1 j++) {
for (i=2; i <= N1; i++) {
gradient( & mage[j-1][i-1], & mage[j-1][i], & mmge[j-1][i+1], ...
) & mage[j +1][i-1], & mage[j+1][i], & mage[j+1][i+1], &Iy[j][i] );
}

for (j=2; j <= M1, j++) {

for (i=2; i <= N1; i++) {

) absval (- &Ix[j1[i], &y[j][i], &v[j][i] );
}
for (j=2; j <= M1; j++) {

for (i=2; i <= N1; i++) {

witePixel ( &v[j][i] );
¥

}

return (0);
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Appendix

MHS File for Sobel application mapped
onto a one-processor system

1 PARAMETER VERSI ON = 2.

[

0 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS _Rst = net_design_rst

PORT lclk =1lclk, DR =1 50 PORT LMB_C k = sys_clk_s

PORT ntlk = nelk, DIR | END

5 PORT rantl ki = ranclki, VEC = [1:0], DIR =1
PORT rantl ko = rantl ko, VEC = [1:0], DOR= 0O BEG N opb_v20
PORT Ireseto_| = lreseto_|, DR =1 PARAMETER | NSTANCE = nb_opb_1
PORT Iwite = lwite, DR =1 55 PARAMETER HW VER = 1.10.c
PORT lads_| = lads_|, DIR = | PARAVETER C _EXT_RESET _HIGH = 0

10 PORT I blast_| =Iblast_|I, DIR =1 PORT SYS_Rst = net_design_rst
PORT I bterm| = Ibterml, DDR=10 PORT OPB_C k = sys_clk_s
PORT Id = Id, VEC = [31:0], DDR=10 END
PORT la = la, VEC = [23:2], DIR = | 60
PORT Ireadyi _| = lreadyi_|I, DDR= 0O BEG N fin_ctrl

15 PORT Ibe_| =1Ibe_|, VEC= [3:0], DIR =1 PARAMETER | NSTANCE = fin_ctrl_P1
PORT fholda = fholda, DIR = | PARAMETER HW VER = 1.00. a
PORT ra0 = ra0, VEC = [19:0], DIR= O PARAMETER C_BASEADDR = 0xf 9000000
PORT rd0 = rd0, VEC = [31:0], DR =10 65 PARAMETER C_HI GHADDR = 0xf 900000f
PORT rcO0 = rc0O, VEC =[8:0], DDR=0O PARAMETER C AB = 8

20 PORT ral = ral, VEC = [19:0], DIR= O BUS_| NTERFACE SLMB = DBUS_MB_1
PORT rdl = rdl, VEC = [31:0], DOR=10 PORT S| _FinQut = net_fin_signal _P1
PORT rcl = rcl, VEC =[8:0], DDR= 0O END
PORT ra2 = ra2, VEC = [19:0], DIR = O 70
PORT rd2 = rd2, VEC = [31:0], DOR=10 BEG N cl ock_cycl e_counter

25 PORT rc2 =rc2, VEC =[8:0], DDR= 0O PARAMETER | NSTANCE = cl ock_cycl e_counter _P1
PORT ra3 = ra3, VEC = [19:0], DIR = O PARAMETER HW VER = 1.00. a
PORT rd3 = rd3, VEC = [31:0], DOR=10 PARAMETER C_BASEADDR = 0xf 8000000
PORT rc3 = rc3, VEC =[8:0], DDR= 0O 75 PARAMETER C_HI GHADDR = 0xf 8000003
PORT ra4 = ra4, VEC = [19:0], DIR= O BUS_| NTERFACE SLMB = DBUS_MB_1

30 PORT rd4 = rd4, VEC = [31:0], DDR=10 PORT LMB_Cl k = sys_clk_s
PORT rc4 = rc4, VEC=[8:0], DDR=0O END
PORT ra5 = ra5, VEC =[19:0], DIR= 0O
PORT rd5 = rd5, VEC = [31:0], DDR=10 80 BEG N nicrobl aze
PORT rc5 = rc5, VEC=[8:0], DODR=0O PARAMETER | NSTANCE = MB_1

35 PARAMETER HW VER = 4.00. a

PARAMETER C_NUMBER OF_PC BRK = 1

BEG N | nb_v10 PARAMETER C_NUMBER_OF_RD_ADDR BRK = 0
PARAVETER | NSTANCE = PBUS_MB_1 85 PARAMETER C_NUMBER OF WR_ADDR BRK = 0
PARAMETER HW VER = 1.00. a PARAMETER C_FSL_LINKS = 0

40 PARAVETER C _EXT_RESET _HIGH = 0 BUS_| NTERFACE DLMB = DBUS_MB_1
PORT SYS Rst = net_desi gn_rst BUS_| NTERFACE | LMB = PBUS_MB_1
PORT LMB_C k = sys_clk_s BUS_| NTERFACE DOPB = nb_opb_1
END 90 PORT CLK = sys_clk_s

PORT | NTERRUPT = MB_1_| NTERRUPT
45 BEG N | nb_v10 END

PARAMETER | NSTANCE = DBUS_MB_1
PARAMETER HW VER = 1.00. a
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BEG N zbt _main BUS_| NTERFACE DESI GN_BUFF_PORT = buff _rd_0
95 PARAMETER | NSTANCE = host _zbt _main BUS_| NTERFACE DESI GN_MUX_PORT = nux_desi gn_0
PARAMETER HW VER = 1.00. a 190 END
BUS_| NTERFACE HOST_BUFF_0_PORT = buff _rd_0
BUS_| NTERFACE HOST_BUFF_1_PORT = buff _rd_1 BEG N opb_zbt _control |l er
BUS_| NTERFACE HOST_BUFF_2_PORT = buff _rd_2 PARAMETER | NSTANCE = ZBT_CTRL_2
100  BUS_I NTERFACE HOST_BUFF_3_PORT = buff_rd_3 PARAMETER HW VER = 1.00. a
BUS_| NTERFACE HOST_BUFF_4_PORT = buff _rd_4 195 PARAMETER C_BASEADDR = 0xf 0100000
BUS_| NTERFACE HOST_BUFF_5_PORT = buff _rd_5 PARAVETER C_HI GHADDR = OxfO1fffff
BUS_| NTERFACE HOST_MUX_PORT = nux_t o_host PARAVETER C EXTERNAL _DLL = 1
PORT lclk = lclk PARAMETER C_ZBT_ADDR_SI ZE = 20
105 PORT ntlk = ntlk BUS_| NTERFACE SOPB = nb_opb_1
PORT rantl ko = rantl ko 200 BUS_| NTERFACE DESI GN_BUFF_PORT = buff _rd_1
PORT rantl ki = rantl ki BUS_| NTERFACE DESI GN_MJUX_PORT = nux_design_1
PORT Ireseto_| = lreseto_l END
PORT lwite = lwite
110 PORT lads_| = lads_| BEG N fsl _v20
PORT |blast_| = Iblast_| 205  PARAMETER HWVER = 2.10.a
PORT Ibterm!| = Ibterml PARAMETER | NSTANCE = FIFO MB_1_Qut_1
PORT Id = Id PARAMETER C EXT_RESET_HI GH = 0
PORT la = la PARAMETER C_ASYNC CLKS = 0
115 PORT Ireadyi_| = Ireadyi_| PARAMETER C | MPL_STYLE = 1
PORT | be_| = Ibe_| 210  PARAMETER C _USE_CONTROL = 0
PORT fhol da = fhol da PARAMETER C FSL_DW DTH = 32
PORT CLK out = sys_clk_s PARAMETER C_FSL_DEPTH = 1024
PORT RST_out = sys_rst_s PORT FSL_O k = sys_clk_s
120 PORT COMVAND_REG = net _conmand PORT SYS_Rst = net_design_rst
PORT DESI GN_STAT_REG = net _desi gn_st at us 215 END
PORT PARAMETER_REG = net _par anet er
END BEG N fsl_v20
PARAMETER HW VER = 2.10.a
125 BEG N host _design_ctrl PARAMVETER | NSTANCE = FIFO MB_1_Qut _2
PARAMETER | NSTANCE = host _desi gn_control | er 220 PARAMETER C EXT_RESET_HIGH = 0
PARAMETER HW VER = 1.00. a PARAMETER C_ASYNC_CLKS = 0
PARAMETER N _FIN = 1 PARAMETER C | MPL_STYLE = 1
PARAMETER PAR_ W DTH = 16 PARAMETER C_USE_CONTROL = 0
130 PORT RST = sys_rst_s PARAMETER C FSL_DW DTH = 32
PORT COWAND_REG = net _command 225  PARAMETER C FSL_DEPTH = 1024
PORT STATUS_REG = net _desi gn_status PORT FSL_O k = sys_clk_s
PORT PARAVETER_REG = net _par anmet er PORT SYS _Rst = net_design_rst
PORT RST_QUT = net_desi gn_rst END
135 PORT FIN_REG 0 = net_fin_signal _P1
END 230 BEG N fsl_v20
PARAMETER HW VER = 2.10.a
BEG N nux PARAMETER | NSTANCE = FIFO MB_1_Qut_3
PARAMETER | NSTANCE = nul ti pl exer PARAMETER C_EXT_RESET_H GH = 0
140 PARAMETER HW VER = 1.00. a PARAMETER C_ASYNC_CLKS = 0
PARAMETER N_MJX = 2 235 PARAMETER C_| MPL_STYLE = 1
BUS_| NTERFACE MUX_BUFF_PORT = buff _to_nux PARAMETER C_USE_CONTROL = 0
BUS_| NTERFACE MUX_DESI GN_0_PORT = nux_desi gn_0 PARAVETER C FSL_DW DTH = 32
BUS_| NTERFACE MUX_DESI GN_1_PORT = nux_desi gn_1 PARAVETER C FSL_DEPTH = 1024
145  BUS_I NTERFACE MJUX_HOST_PORT = nux_t o_host PORT FSL_O k = sys_clk_s
PORT ra0 = ra0 240 PORT SYS Rst = net_design_rst
PORT ral = ral END
PORT ra2 = ra2
PORT ra3 = ra3 BEG N fsl _v20
150 PORT ra4 = ra4 PARAMETER HW VER = 2.10.a
PORT ra5 = rab 245  PARAMETER | NSTANCE = FIFO MB_1_Qut_4
PORT rc0 = rc0 PARAMETER C EXT_RESET_HI GH = 0
PORT rcl = rcl PARAMETER C_ASYNC_CLKS = 0
PORT rc2 = rc2 PARAMETER C_| MPL_STYLE = 1
155 PORT rc3 = rc3 PARAMETER C_USE_CONTROL = 0
PORT rc4 = rc4 250 PARAMETER C_FSL_DW DTH = 32
PORT rc5 = rc5 PARAMETER C_FSL_DEPTH = 1024
PORT RST = sys_rst_s PORT FSL_O k = sys_clk_s
PORT CNTRL = net_conmand PORT SYS_Rst = net_design_rst
160 END END
255
BEG N buffers BEG N fsl_v20
PARAMETER | NSTANCE = buf f PARAMETER HW VER = 2.10.a
PARAMETER HW VER = 1.00. a PARAMETER | NSTANCE = FIFO MB_1_Qut _5
165  BUS_I NTERFACE BUFF_MJUX_PORT = buff _to_nux PARAMETER C EXT_RESET_HI GH = 0
BUS_| NTERFACE BUFF_RD 0_PORT = buff _rd_0 260  PARAMETER C ASYNC CLKS = 0
BUS_| NTERFACE BUFF_RD 1 _PORT = buff _rd_1 PARAMETER C | MPL_STYLE = 1
BUS_| NTERFACE BUFF_RD 2_PORT = buff _rd_2 PARAMETER C_USE_CONTROL = 0
BUS_| NTERFACE BUFF_RD 3_PORT = buff _rd_3 PARAMETER C FSL_DW DTH = 32
170  BUS_I NTERFACE BUFF_RD 4_PORT = buff_rd_4 PARAMETER C_FSL_DEPTH = 1024
BUS_| NTERFACE BUFF_RD 5 PORT = buff_rd_5 265 PORT FSL_Ck = sys_clk_s
PORT rd0 = rd0 PORT SYS_Rst = net_design_rst
PORT rdl = rdl END
PORT rd2 = rd2
175 PORT rd3 = rd3 BEG N fsl_v20
PORT rd4 = rd4 270 PARAMETER HW VER = 2.10.a
PORT rd5 = rd5 PARAMETER | NSTANCE = FIFO MB_1_Qut_6
END PARAVETER C _EXT_RESET HIGH = 0
PARAMETER C_ASYNC CLKS = 0
180 BEG N opb_zbt_control |l er PARAMETER C | MPL_STYLE = 1
PARAMETER | NSTANCE = ZBT_CTRL_1 275  PARAMETER C _USE_CONTROL = 0
PARAMETER HW VER = 1.00. a PARAMETER C FSL_DW DTH = 32
PARAMETER C_BASEADDR = 0xf 0000000 PARAMETER C_FSL_DEPTH = 1024
PARAMETER C_HI GHADDR = Oxf OO0f ffff PORT FSL_CO k = sys_clk_s
185  PARAMETER C EXTERNAL_DLL = 1 PORT SYS_Rst = net_design_rst
PARAMETER C _ZBT_ADDR Sl ZE = 20 280 END

BUS_| NTERFACE SOPB = nb_opb_1
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285

290
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340
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350
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360
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375

BEG N fsl _v20
PARAMETER HW VER = 2. 10.
PARANETER | NSTANCE = FI F

a
o ut_7
PARAMETER C_EXT_RESET_HI GH =
0
1

_ 1
0
PARAMETER C_ASYNC CLKS =
PARAMETER C_| MPL_STYLE =
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEG N sl _v20
PARAMETER HW VER = 2.10.a
PARAVETER | NSTANCE = FI FO MB_1_
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_I MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS Rst = net_design_rst

END

Qut_8

BEG N sl _v20
PARAMETER HW VER = 2.10.a
PARAMVETER | NSTANCE = FIFO MB_1_Qut _9
PARAVETER C _EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS _Rst = net_design_rst

END

BEG N fsl_v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO_|
PARAVETER C_EXT_RESET _HI GH =
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst
END

 1_Qut_10
0

BEG N fsl _v20
PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FIFO MB_1_Qut _11
PARAMETER C EXT_RESET_HI GH = 0
PARAMETER C_ASYNC CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst
END

BEG N sl _v20
PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO_
PARAMETER C_EXT_RESET_HI GH =
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_I MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS_Rst = net_design_rst

END

1 Qut_12
0

BEG N sl _v20
PARAMETER HW VER = 2.10.a
PARAMVETER | NSTANCE = FI FO MB_1_Qut _13
PARAVETER C _EXT_RESET _HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMVETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS _Rst = net_design_rst

END

BEG N fsl _v20
PARAMETER HW VER = 2. 10. a
PARAMETER | NSTANCE = FI FO_MB_1_Qut _14
PARANETER C_EXT_RESET_HI GH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

380

385
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460
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475

PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024

PORT FSL_Cl k = sys_clk_s
PORT SYS_Rst = net_design_rst
END

BEG N fsl _v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO |
PARAVETER C _EXT_RESET_HI GH =
PARAMETER C_ASYNC_CLK 0
PARAMETER C_| MPL_STYLE 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEG N fsl _v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO_
PARAMETER C_EXT_RESET_HI GH =
PARAMETER C_ASYNC CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEG N fsl _v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO_
PARAMETER C_EXT_RESET_HI GH =
PARAMETER C_ASYNC CLKS = 0
PARAMETER C_| MPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEG N fsl _v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO
PARAVETER C_EXT_RESET_HI
PARAMETER C_ASYNC_CLKS
PARAMETER C_| MPL_STYLE
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS Rst = net_design_rst

I—'09|

END

BEG N fsl _v20

PARAMETER HW VER = 2.10.a
PARAMETER | NSTANCE = FI FO |
PARAVETER C _EXT_RESET_HI GH =
PARAMETER C_ASYNC_CLKS 0
PARAMETER C_| MPL_STYLE 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst = net_design_rst
END

BEG N fsl _v20
PARAMETER HW VER = 2.1
PARAMETER | NSTANCE = FI

PARAMETER C_ASYNC CLK:
PARAMETER C_| MPL_STYLE
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_C k = sys_clk_s
PORT SYS_Rst net _desi gn_r st
END

a

o MB_1
PARAMETER C_EXT_RESET_HI GH = 0

0

1

BEG N fsl _v20
PARAMVETER HW VER = 2.1
PARAMETER | NSTANCE = F

PARAMETER C_ASYNC CLK:
PARAMETER C_| MPL_STYLE
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Cl k = sys_clk_s
PORT SYS_Rst = net_design_rst
END

a

oM 1
PARAMETER C_EXT_RESET_HI GH = 0

0

1

1
0

1
0

_out_18

Qut _19
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BEG N fsl _v20 PORT FSL_O k = sys_clk_s
PARAMETER HW VER = 2.10.a 565 PORT SYS_Rst = net_design_rst
PARAMVETER | NSTANCE = FI FO MB_1_Qut _22 END
480 PARAMETER C_EXT_RESET_H GH = 0
PARAMETER C_ASYNC_CLKS = 0 BEG N fsl_v20
PARAMETER C_| MPL_STYLE = 1 PARAMETER HW VER = 2.10.a
PARAMETER C_USE_CONTROL = 0 570 PARAMETER | NSTANCE = FI FO_MB_1_Qut_29
PARAMETER C_FSL_DW DTH = 32 PARAMETER C_EXT_RESET_H GH = 0
485 PARAMETER C_FSL_DEPTH = 1024 PARAMETER C_ASYNC_CLKS = 0
PORT FSL_C k = sys_clk_s PARAMVETER C | MPL_STYLE = 1
PORT SYS_Rst = net_design_rst PARAMETER C_USE_CONTROL = 0
END 575  PARAMETER C _FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
490 BEG N fsl_v20 PORT FSL_O k = sys_cl k_s
PARAMETER HW VER = 2. 10. a PORT SYS_Rst = net_design_rst
PARAMETER | NSTANCE = FI FO_MB_1_Qut _23 END
PARAMETER C EXT_RESET_HI GH = 0 580
PARAMETER C_ASYNC CLKS = 0 BEG N fifo_if_ctrl
495  PARAMETER C | MPL_STYLE = 1 PARAMETER | NSTANCE = CTRL_MB_1_FI FOs
PARAMETER C_USE_CONTROL = 0 PARAMETER HW VER = 1. 00. a
PARAMETER C_FSL_DW DTH = 32 PARAMETER C_BASEADDR = 0xc0000000
PARAMETER C_FSL_DEPTH = 1024 585 PARAMETER C_HI GHADDR = OxcOf fffff
PORT FSL_C k = sys_clk_s PARAMVETER C AB = 8
500 PORT SYS Rst = net_design_rst PARAMVETER C _FI FO WRI TE = 29
END PARAMETER C_FI FO_READ = 29
BUS_| NTERFACE FI FO READ 1 = FIFO MB_1_Qut _1
BEG N fsl_v20 590 BUS_ I NTERFACE FI FO READ 2 = FIFO MB_1_Qut_2
PARAMETER HW VER = 2.10.a BUS_| NTERFACE FI FO READ 3 = FIFO MB_1_Qut _3
505  PARAMETER | NSTANCE = FI FO_MB_1_Qut_24 BUS_| NTERFACE FI FO_ READ 4 = FIFO MB_1_Qut _4
PARAMETER C EXT_RESET_HI GH = 0 BUS_| NTERFACE FI FO READ 5 = FIFO MB_1_Qut _5
PARAMETER C_ASYNC CLKS = 0 BUS_| NTERFACE FI FO READ 6 = FIFO MB_1_Qut _6
PARAMETER C_| MPL_STYLE = 1 595  BUS_I NTERFACE FI FO_ READ 7 = FIFO_ MB_1_Qut_7
PARAMETER C_USE_CONTROL = 0 BUS_| NTERFACE FI FO READ 8 = FIFO MB_1_Qut _8
510 PARAMETER C FSL_DW DTH = 32 BUS_| NTERFACE FI FO READ 9 = FIFO MB_1_Qut _9
PARAMETER C_FSL_DEPTH = 1024 BUS_| NTERFACE FI FO_READ 10 = FIFO_MB_1_Qut_10
PORT FSL_CO k = sys_clk_s BUS_| NTERFACE FI FO READ 11 = FIFO_ MB_1_CQut_11
PORT SYS_Rst = net_design_rst 600 BUS_I NTERFACE FI FO READ_12 = FIFO MB_1_OQut _12
END BUS_| NTERFACE FI FO READ 13 = FIFO MB_1_Qut _13
515 BUS_| NTERFACE FI FO READ 14 = FIFO MB_1_Qut _14
BEG N fsl_v20 BUS_| NTERFACE FI FO READ 15 = FIFO MB_1_Qut _15
PARAMETER HW VER = 2.10.a BUS_| NTERFACE FI FO READ 16 = FIFO MB_1_Qut _16
PARAMVETER | NSTANCE = FI FO MB_1_Qut _25 605 BUS_ I NTERFACE FI FO READ 17 = FIFO MB_1_Qut _17
PARAVETER C _EXT_RESET _HIGH = 0 BUS_| NTERFACE FI FO READ 18 = FIFO MB_1_Qut _18
520 PARAMETER C_ASYNC CLKS = 0 BUS_| NTERFACE FI FO READ 19 = FIFO MB_1_Qut _19
PARAMVETER C | MPL_STYLE = 1 BUS_| NTERFACE FI FO READ 20 = FIFO MB_1_Qut _20
PARAMETER C_USE_CONTROL = 0 BUS_| NTERFACE FI FO READ 21 = FIFO_ MB_1_Qut_21
PARAMETER C_FSL_DW DTH = 32 610  BUS_I NTERFACE FI FO_READ_22 = FIFO MB_1_CQut_22
PARAMETER C_FSL_DEPTH = 1024 BUS_| NTERFACE FI FO_READ 23 = FIFO_MB_1_CQut_23
525 PORT FSL_Ok = sys_clk_s BUS_| NTERFACE FI FO READ 24 = FIFO_MB_1_CQut_24
PORT SYS_Rst = net_design_rst BUS_| NTERFACE FI FO READ 25 = FIFO_MB_1_Qut_25
END BUS_| NTERFACE FI FO READ 26 = FIFO_MB_1_CQut_26
615  BUS_|I NTERFACE FI FO_READ_27 = FIFO MB_1_CQut_27
BEG N fsl _v20 BUS_| NTERFACE FI FO_READ 28 = FIFO_MB_1_CQut_28
530 PARAMETER HWVER = 2.10.a BUS_| NTERFACE FI FO READ_29 = FI FO MB_1_OQut _29
PARAMVETER | NSTANCE = FI FO MB_1_Qut _26 BUS_| NTERFACE FIFO WRITE 1 = FIFO MB_1_Qut _1
PARAVETER C _EXT_RESET HIGH = 0 BUS_| NTERFACE FIFO WRITE 2 = FIFO MB_1_Qut _2
PARAMETER C_ASYNC CLKS = 0 620 BUS_I NTERFACE FIFO WRITE 3 = FIFO MB_1_Qut_3
PARAMVETER C | MPL_STYLE = 1 BUS_| NTERFACE FI FO WRITE 4 = FIFO MB_1_Qut _4
535 PARAMETER C _USE CONTROL = 0 BUS_| NTERFACE FIFO WRITE 5 = FIFO MB_1_Qut 5
PARAVETER C FSL_DW DTH = 32 BUS_| NTERFACE FI FO WRITE 6 = FIFO MB_1_Qut _6
PARAVETER C FSL_DEPTH = 1024 BUS_| NTERFACE FIFO WRITE 7 = FIFO MB_1_Qut _7
PORT FSL_C k = sys_clk_s 625 BUS_I NTERFACE FIFO WRITE 8 = FIFO MB_1_Qut_8
PORT SYS Rst = net_desi gn_rst BUS_| NTERFACE FIFO WRITE 9 = FIFO MB_1_Qut _9
540 END BUS_| NTERFACE FI FO WRI TE_10 = FIFO_MB_1_Qut _10
BUS_| NTERFACE FI FO WRI TE_11 = FIFO MB_1_Qut _11
BEG N fsl _v20 BUS_| NTERFACE FI FO WRI TE_12 = FIFO MB_1_Qut _12
PARAMETER HW VER = 2.10.a 630  BUS_I NTERFACE FI FO WRI TE_13 = FIFO_MB_1_Qut_13
PARAMETER | NSTANCE = FI FO_MB_1_Qut _27 BUS_| NTERFACE FI FO WRI TE_14 = FIFO MB_1_Qut _14
545  PARAMETER C EXT_RESET_HIGH = 0 BUS_| NTERFACE FI FO WRI TE_15 = FIFO_ MB_1_Qut _15
PARAMETER C_ASYNC CLKS = 0 BUS_| NTERFACE FI FO WRI TE_16 = FIFO_MB_1_Qut _16
PARAMETER C_| MPL_STYLE = 1 BUS_| NTERFACE FI FO WRI TE_17 = FIFO MB_1_Qut _17
PARAMETER C_USE_CONTROL = 0 635 BUS_| NTERFACE FI FO WRI TE_18 = FIFO MB_1_Out_18
PARAMVETER C FSL_DW DTH = 32 BUS_| NTERFACE FI FO WRITE 19 = FIFO MB_1_Qut _19
550 PARAMETER C FSL_DEPTH = 1024 BUS_| NTERFACE FI FO WRI TE 20 = FIFO MB_1_Qut _20
PORT FSL_C k = sys_clk_s BUS_| NTERFACE FI FO WRITE 21 = FIFO MB_1_Qut _21
PORT SYS Rst = net_desi gn_rst BUS_| NTERFACE FI FO WRITE 22 = FIFO MB_1_Qut _22
END 640 BUS_I NTERFACE FI FO WRITE 23 = FIFO MB_1_Qut _23
BUS_| NTERFACE FI FO WRITE 24 = FIFO MB_1_Qut _24
555 BEG N fsl_v20 BUS_| NTERFACE FI FO WRI TE 25 = FIFO MB_1_Qut _25
PARAMETER HW VER = 2.10.a BUS_I NTERFACE FI FO WRI TE_26 = FIFO_MB_1_Cut _26
PARAMETER | NSTANCE = FI FO_MB_1_CQut _28 BUS_| NTERFACE FI FO WRI TE_27 = FIFO_MB_1_Qut _27
PARAMETER C EXT_RESET_HI GH = 0 645  BUS_| NTERFACE FI FO WRI TE_28 = FIFO_MB_1_Qut_28
PARAMETER C_ASYNC CLKS = 0 BUS_| NTERFACE FI FO WRI TE_29 = FIFO MB_1_Qut _29
560 PARAMETER C | MPL_STYLE = 1 BUS_| NTERFACE SLMB = DBUS_MB_1

PARAMETER C_USE_CONTROL = 0 END
PARAMETER C_FSL_DW DTH = 32
PARAMETER C_FSL_DEPTH = 1024
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650

655

660

665

670

675

680

BEG N bram bl ock

PARAMETER | NSTANCE = BRAML_MB_1

PARAMETER HW VER = 1.00. a

BUS_| NTERFACE PORTA = BUS_DCTRL_BRAML_MB_1
BUS_| NTERFACE PORTB = BUS_PCTRL_BRAML_MB_1
END

BEG N I nb_bram.if_cntlr

PARAMETER | NSTANCE = DCTRL_BRAML_MB_1
PARAMETER HW VER = 1.00. b

PARAMETER C_MASK = 0xff 000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HI GHADDR = 0x0000f f f f

BUS_| NTERFACE SLMB = DBUS_MB_1

BUS_| NTERFACE BRAM PORT = BUS_DCTRL_BRAML_MB_1
END

BEG N I nb_bram.if_cntlr

PARAMETER | NSTANCE = PCTRL_BRAML_MB_1

PARAMETER HW VER = 1.00. b

PARAMETER C_MASK = 0xff 000000

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HI GHADDR = 0x0000f f f f

BUS_| NTERFACE SLMB = PBUS_MB_1

BUS_| NTERFACE BRAM PORT = BUS_PCTRL_BRAML_MB_1
END

BEG N bram bl ock

PARAMETER | NSTANCE = BRAMR_MB_1

PARAMETER HW VER = 1.00. a

BUS_| NTERFACE PORTA = BUS_DCTRL_BRAM2_MB_1

685

690

695

700

705

710

BUS_I NTERFACE PORTB = BUS_PCTRL_BRAMZ_MB_1
END

BEG N I nb_bram.if_cntlr

PARAMETER | NSTANCE = DCTRL_BRAMZ2_MB_ 1

PARAMETER HW VER = 1.00. b

PARAMETER C_MASK = 0xff 000000

PARAMETER C_BASEADDR = 0x00010000

PARAMETER C_HI GHADDR = 0x00017f f f

BUS_| NTERFACE SLMB = DBUS_MB_1

BUS_| NTERFACE BRAM PORT = BUS_DCTRL_BRAM2_MB_1
END

BEG N | mb_bram.if_cntlr

PARAMETER | NSTANCE = PCTRL_BRAM2_MB_1

PARAMETER HW VER = 1.00. b

PARAMETER C_MASK = 0xf f 000000

PARAMVETER C_BASEADDR = 0x00010000

PARAMETER C_HI GHADDR = 0x00017f f f

BUS_| NTERFACE SLMB = PBUS_MB_1

BUS_| NTERFACE BRAM PORT = BUS_PCTRL_BRAMZ_MB_1
END

BEG N opb_ti ner
PARAVETER | NSTANCE = opb_ti ner_0
PARAMETER HW VER = 1.00. b
PARAMETER C_BASEADDR = 0xF1000000
PARAMETER C_HI GHADDR = OxF100FFFF
BUS_| NTERFACE SOPB = nb_opb_1
PORT Interrupt = MB_1_| NTERRUPT

END
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Appendix

MSS File for Sobel application mapped
onto a one-processor system

1 PARAMETER VERSION = 2. 2.0 50 BEG N DRI VER
PARAMETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a

BEG N OS PARAMETER HW | NSTANCE = host _desi gn_control | er
5 PARAMETER OS_NAME = xi | ker nel END
PARAMETER OS_VER = 3.00.a 55
PARAMETER PROC_|I NSTANCE = MB_1 BEG N DRI VER
PARAMETER enhanced_features = true PARAMETER DRI VER_NAME = generic
PARAMETER systnr_dev = opb_tinmer_0 PARAMETER DRI VER_VER = 1.00. a
10 PARAMETER config_yield = true PARAMETER HW | NSTANCE = mul ti pl exer
PARAMETER nex_pt hreads = 8 60 END
PARAMETER systnr _interval = 500
PARAMETER static_pthread_table = ((thread_main, 1)) BEG N DRI VER
END PARAMETER DRI VER_NAME = generic
15 PARAMETER DRI VER_VER = 1.00. a
65 PARAMETER HW | NSTANCE = buf f
BEG N PROCESSOR END
PARAMETER DRI VER_NAME = cpu
PARAMETER DRI VER VER = 1.01.a BEG N DRI VER
20 PARAMETER HW. I NSTANCE = MB_1 PARAMETER DRI VER_NAME = generic
PARAMETER COWPI LER = nb- gcc 70  PARAMETER DRI VER VER = 1.00. a
PARAMETER ARCHI VER = nb-ar PARAMETER HW | NSTANCE = ZBT_CTRL_1
END END
25 BEG N DRI VER
BEG N DRI VER 75  PARAMETER DRI VER _NAME = generic
PARAMETER DRI VER_NAME = opbarb PARAMETER DRI VER_VER = 1.00. a
PARAMETER DRI VER_VER = 1.02.a PARAMETER HW | NSTANCE = ZBT_CTRL_2
PARAVETER HW | NSTANCE = nb_opb_1 END
30 END
80 BEG N DRI VER
BEG N DRI VER PARAMETER DRI VER_NAME = generic
PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_VER = 1.00. a
PARAMETER DRI VER_VER = 1.00. a PARAMETER HW. I NSTANCE = FIFO MB_1_CQut _1
35 PARAMETER HW. I NSTANCE = fin_ctrl_P1 END
END 85
BEG N DRI VER
BEG N DRI VER PARAMETER DRI VER_NAME = generic
PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_VER = 1.00.a
40  PARAMETER DRI VER VER = 1.00. a PARAMETER HW | NSTANCE = FIFO MB_1_Qut _2
PARAMETER HW | NSTANCE = cl ock_cycl e_counter _P1 90 END
END
BEG N DRI VER
BEG N DRI VER PARAMETER DRI VER_NAME = generic
45  PARAMETER DRI VER NAME = generic PARAMETER DRI VER_VER = 1.00.a
PARAMETER DRI VER_VER = 1.00.a 95  PARAMETER HW I NSTANCE = FIFO_MB_1_CQut_3
PARAVETER HW | NSTANCE = host _zbt _nain END

END
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BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic 195 PARAMETER DRI VER_NAME = generic
100 PARAMETER DRI VER_VER = 1.00.a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO_ MB_1_CQut _4 PARAMETER HW I NSTANCE = FI FO_MB_1_Qut _20
END END
BEG N DRI VER 200 BEG N DRI VER
105 PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAVETER HW | NSTANCE = FIFO MB_1_Qut _5 PARAVETER HW I NSTANCE = FI FO MB_1_Qut _21
END END
205
110 BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAVETER HW | NSTANCE = FI FO MB_1_Qut _6 PARAVETER HW I NSTANCE = FI FO MB_1_Qut _22
END 210 END
115
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAMVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FIFO MB_1_CQut _7 215 PARAMETER HW I NSTANCE = FI FO MB_1_Qut_23
120 END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a 220 PARAMETER DRI VER VER = 1.00. a
125 PARAMETER HW I NSTANCE = FIFO MB_1_Qut _8 PARAVETER HW I NSTANCE = FI FO MB_1_Qut _24
END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic 225 PARAMETER DRI VER_NAME = generic
130 PARAMETER DRI VER VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAVETER HW | NSTANCE = FI FO MB_1_Qut _9 PARAVETER HW I NSTANCE = FI FO MB_1_Qut _25
END END
BEG N DRI VER 230 BEG N DRI VER
135 PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO_MB_1_CQut _10 PARAMETER HW I NSTANCE = FI FO MB_1_Qut _26
END END
235
140 BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAVETER HW | NSTANCE = FIFO MB_1_Qut _11 PARAVETER HW I NSTANCE = FI FO MB_1_Qut _27
END 240 END
145
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO_ MB_1_CQut _12 245 PARAMETER HW I NSTANCE = FI FO MB_1_Qut_28
150 END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAMVETER DRI VER_NAME = generic
PARAMETER DRI VER_VER = 1.00. a 250 PARAMETER DRI VER VER = 1.00. a
155 PARAMETER HW I NSTANCE = FIFO_MB_1_Cut _13 PARAMETER HW I NSTANCE = FI FO MB_1_Qut _29
END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic 255 PARAMETER DRI VER_NAME = generic
160 PARAMETER DRI VER VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO MB_1_Qut _14 PARAVETER HW | NSTANCE = CTRL_MB_1_FI FGs
END END
BEG N DRI VER 260 BEG N DRI VER
165 PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = bram
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO_MB_1_CQut _15 PARAMETER HW | NSTANCE = DCTRL_BRAML_MB_1
END END
265
170 BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_NAME = bram
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAMETER HW | NSTANCE = FI FO_MB_1_CQut _16 PARAMETER HW | NSTANCE = PCTRL_BRAML_MB_1
END 270 END
175
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAVETER DRI VER_NAME = bram
PARAMETER DRI VER_VER = 1.00. a PARAMETER DRI VER VER = 1.00. a
PARAVETER HW | NSTANCE = FIFO MB_1_Qut _17 275 PARANVETER HW | NSTANCE = DCTRL_BRAMZ_MB_1
180 END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic PARAMETER DRI VER_NAME = bram
PARAMETER DRI VER_VER = 1.00. a 280 PARAMETER DRI VER VER = 1.00. a
185 PARAMETER HW I NSTANCE = FIFO_MB_1_Cut _18 PARAMETER HW. | NSTANCE = PCTRL_BRAMZ_MB_1
END END
BEG N DRI VER BEG N DRI VER
PARAMETER DRI VER_NAME = generic 285 PARAMETER DRI VER NAME = tnrctr
190 PARAMETER DRI VER_VER = 1.00.a PARAMETER DRI VER VER = 1.00.b
PARAMETER HW | NSTANCE = FI FO_MB_1_CQut _19 PARAMETER HW. I NSTANCE = opb_tiner_0
END END
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Appendix

MicroBlaze program code for the
multi-threaded Sobel application

#i ncl ude "xnk. h"

#i ncl ude <stdio. h>
#include <string. h>

#i nclude <stdlib.h>
#incl ude <os_config. h>
#incl ude <sys/process. h>
#include <sys/tinmer.h>
#i ncl ude <pthread. h>

#i ncl ude "MenoryMap. h"

#i ncl ude "aux_func. h"

#defi ne HALF_MEM 125000
voi d* threadl(void *arg)

int c0, ci;

/1 Input Argunents
/1 Qutput Argunents
t CH 24 out _OND O;

for( cO = ceil1(1l); c0 <= floori(M); cO +=1) {
for( ¢l = ceill(1l); cl <= floorl(N); cl +=1) {

_readPi xel (&ut _OND_0) ;
...witing to output FIFCs is omtted...

y /1 for cl
y 11 for cO
} /1 thread 1

voi d* thread2(void *arg)
{
int c0, cil;
/1 Input Argunments
tCH 18 in_OND_2;
tCH 20 in_1IND_2;
tCH 23 in_2ND_2;
tCH 25 in_3ND_2;
tCH 26 in_4ND_2;
tCH 26 in_5ND_2;
/1 Qutput Argunents
t CH 28 out _6ND_2;

for( c0O = ceil1(3); c0 <= floorl(M); cO +=1) {
for( ¢l = ceill(3); cl <= floorl(N); cl +=1) {

...reading frominput FIFGs is onmtted...
_gradient(in_OND 2, in_IND 2, in_2ND_2, in_3ND_2, in_4ND 2, in_5ND 2, &out_6ND_2) ;
...witing to output FIFCs is onmitted...

} 11 for cl

} 11 for cO
} /1 thread2
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voi d* thread3(void *arg)
o
int cO, cil;
/'l Input Argunents
tCH 27 in_OND_3;
tCH 28 in_1IND_3;
/1 Qutput Argunents
t CH 29 out _2ND_3;

for( cO = ceil1(3); c0 <= floori(M); cO +=1) {
for( c1 = ceil1l(3); c1l <= floorl(N); cl +=1) {

...reading frominput FIFGs is onmitted...
_gradient(in_OND 1, in_IND 1, in_2ND 1, in_3ND 1, in_4ND 1, in_5ND 1, &out_6ND_1) ;
...witing to output FIFCs is omtted...

} 11 for cl
} 11 for cO
} I/ thread3

voi d* thread4(void *arg)

int c0, ci;

/1 Input Argunents
tCH 27 in_OND_3;
tCH 28 in_1ND_3;

// Qutput Argunents
t CH_29 out _2ND_3;

for( cO = ceil1(3); c0 <= floori(M); cO +=1) {
for( ¢l = ceil1(3); c1l <= floorl(N); cl +=1) {

read(ND_3_I G 27_CH 27, & n_OND_3, (sizeof (tCH 27)+(sizeof (tCH 27) %) +3)/4);
read(ND_3_I G 28_CH 28, & n_1ND_3, (sizeof (tCH 28)+(sizeof (tCH 28) %) +3)/4);

_absVal (in_OND_3, in_1ND 3, &out_2ND 3) ;
write(ND_3_0OG 29_CH 29, &out_2ND_3, (sizeof (tCH_29)+(sizeof (tCH 29)%)+3)/4);

} 11 for cl
} 11 for cO
} //thread4

voi d* thread5(void *arg)

int cO, ci;
/1 Input Argunents
tCH_29 in_OND_4;

for( cO = ceil1(3); c0 <= floorl(M); cO +=1) {
for( c1 = ceil1(3); c1 <= floor(N); cl1 +=1) {

read(ND_4_I G 29_CH 29, & n_OND_4, (sizeof (tCH 29)+(sizeof (tCH 29)%)+3)/4);
_writePixel (in_OND 4) ;

} 11 for cl
} 11 for cO

*(ZBT_MEM 2+HALF_MEM) = =cl k_cntr;
*FIN_SIGNAL = (vol atile | ong)0x00000001;
} 11 thread5

voi d* thread_mai n( void *dummy)

int i, ret;

pthread_t threadl D 5];
int clk_num

xclk_cntr = 0;

ret = pthread_create(& hreadl Df 0], NULL, (voidx)threadl, NULL);
if (ret) *(ZBT_MEM 2+HALF_NEM =666;

ret = pthread_create(& hreadl Df 1], NULL, (voidx)thread2, NULL);
if (ret) *(ZBT_MEM 2+HALF_NEM+1) =666;

ret = pthread_create(& hreadl Df 2], NULL, (voidx)thread3, NULL);
if (ret) *(ZBT_MEM 2+HALF_MEMt2) =666;

ret = pthread_create(& hreadl D[ 3], NULL, (void*)thread4, NULL);
if (ret) *(ZBT_MEM 2+HALF_MEMt3) =666;

ret = pthread_create(& hreadl D[ 4], NULL, (void*)thread5, NULL);
if (ret) *(ZBT_MEM 2+HALF_MEMt4) =666;

return 0 ;

¥
int min ()

xi | kernel _main();
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