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Chapter 1
Introduction

This chapter firstly provides a brief description of the background and the premises
that have inspired the work. Then, it presents the description of the arising problems
and the solution approach, with an overview of the related work. Finally, the research
contributions of this thesis are stated.

1.1 Background

A System-on-Chip (SoC) is defined as a single integrated circuit which includes all
the components of a computer or other electronic system. A typical System-on-chip is
comprised by one or more microprocessor or DSP cores, memoryblocks of different
types, peripherals like counter-timers and external interfaces.

Nowadays many embedded systems are implemented with a System-on-Chip solution,
and this trend is likely to continue in the future. This is because putting a whole system
on a single chip gives better performance, in terms of power consumption and area
occupation, two of the most important features of an embedded system. Moreover, the
packaging of a SoC is simpler, leading to smaller productioncosts.

Embedded applications are becoming increasingly complex.However, thanks to tech-
nology improvement - Moore’s law predicts an exponential growth of the number of
transistor per chip over time - the computational resourceswhich a designer can ex-
ploit are increasing too. The main issue that arises is how tofully capitalize on these
resources.

An estimation of this issue was presented in a research made by SEMATECH [3].
The main result is depicted in Figure1.1. The graph shows that the integrated circuit
productivity has traditionally grown 58% per year, while the designers productivity
grows only 21% per year. This difference leads to the so-called Productivity Gap.
Closing this gap would mean the full exploitation of technology development. This
can be achieved only by improved, new design approaches.

For this purpose, increasing the level of abstraction and reusing components play a



2 Introduction

Lo
gi

c 
Tr

an
si

st
or

s 
pe

r c
hi

p 
(


M

)


1


0.1


0.01


0.001


10


100


1,000


10,000


0.01


0.1


1


10


100


1,000


10,000


100,000
 P
roductivity (
k
) Trans./S

taff-
M
o
.


GAP


1985
 1990
 1995
 2000
 2005


Figure 1.1: The different growth of IC productivity and designers productivity leads to
the so-calledProductivity Gap.

key role. Currently, most of the design methodologies and tools require a Register
Transfer Level description of an architecture. This approach is no longer adequate,
since architecture complexity of new systems is huge.

Besides, a single-processor embedded system cannot handlethe requirements of new
applications like high-throughput multimedia and DigitalSignal Processing. So, the
emerging system on chip architecture are becoming Multi-Processor System on Chip
(MPSoC). Designing from scratch a MPSoC with a RTL description is an error-prone
and time-consuming process. We believe that an automated way of designing and
programming such architectures is essential, in order to decrease the design time and
meet the required performance.

The aim of this thesis project is to improve the ESPAM (Embedded System-level Plat-
form Synthesis and Application Mapping) tool, which represents an systematic and
automated way of architecture designing and programming. This tool is based on the
Kahn Process Network (KPN) [9] model of computation. This research work is fo-
cused on the dynamic scheduling of the nodes which comprise the KPN application.
This was mainly done by adding an operating system and manageeach node of the
KPN as a thread.

In the context of automatic application mapping to architecture, several design ap-
proaches have been developed by the research community. Forinstance, Jerraya et
al. propose a design flow approach in [4]. This design flow usesa high-level parallel
programming model to abstract hardware/software interface in heterogeneous Multi-
processor System on Chip. This work is similar to ESPAM, because both tools generate
a multiprocessor system basing on a set of parameterized components as well as com-
munication controllers to connect processors to communication networks. However,
the ESPAM tool implements a whole system in much less time, because itsdesign flow
is fully automated. By contrast, in [4], many steps of the design have to be performed
manually.

Another example of similar design approaches is the Multiflex system, presented in [5].
The target applications of this tool are multimedia and datastreaming application. This
is also the target of our ESPAM tool. Both tools provide a design space exploration
framework, but they are different in the adopted model of computation. While our
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tool uses Kahn Process Networks, Multiflex is based on Symmetrical Multi Processing
(SMP) model, using shared memory, and distributed system object component (DSOC)
object-oriented message passing model. Multiflex does not support at all the automatic
derivation of SMP or DSOC, while in our case KPN can be derivedin an automated
way from a C, C++ code. So, design time includes the manual application partitioning,
and it is longer than the ESPAM one.

The Task Transaction Level (TTL), presented in [6], deals with the programmation of
embedded multi-processors systems. The ESPAM programming approach is similar, in
sense that it works in the context of streaming applicationsand uses communication
primitives. TTL is more flexible because it supports more communication primitives,
but the system programmation using TTL is slower because it needs a lot of manual
work.

From the comparison with the examples listed above, we mightsay that the ESPAM

tool is more systematic and automated, since it requires less manual modifications.
However, developing an automated way of designing and programming a multiproces-
sor system leads to several problems.

The first one is that most of the applications are specified using a sequential model of
computation (e.g. sequential programs written in Matlab orC). This is because, from a
programmer point of view, it is easy to develop an application with a monolithic thread
of control and a single memory. On the other hand, a sequential specification does not
allow to exploit the parallelism available in the application itself.

Currently the porting process, from a sequential complex application to a multiproces-
sor system, is usually done by hand. This is a very error-prone and time-consuming
task, and the final result depends on the designer expertise.To make this porting pro-
cess in a systematic and automatic way it is essential to use atool that converts the
sequential specification to a parallel one, thus showing theexplicit parallelism of the
application. For example, the PNGEN tool [11] can convert a sequential code to sev-
eral concurrent tasks based on the Kahn Process Network model of computation, that
is suitable for stream-oriented applications.

Another problem is then how to map automatically this concurrent model of the appli-
cation in a multiprocessor system. An RTL description can beeasily synthesized, in
an automatic way, using state-of-art synthesis tools. Thisis because it is really close
to the physical implementation itself. But, as we have discussed above, designing a
whole system from scratch with a RTL description is impossible nowadays, because
the emerging application have huge complexity, compared tothe past. Not only the
design of complex systems is error-prone and time-consuming, but also the simulation
of such systems is extremely slow and computationally expensive. We believe that the
level of abstraction has to be increased, reaching a so-calledSystem-Levelspecification.
But this process creates anImplementation Gap, between our level of specification and
the RTL one.
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1.2 Problem description

1.2.1 Closing the implementation gap with ESPAM

ESPAM (Embedded System-Level Platform Synthesis and Application Mapping) is a
tool specifically designed to close theImplementation Gap, thus converting a System-
Level specification to an RTL specification. Capitalizing onthis high level of abstrac-
tion, a designer can specify an architecture in a short amount of time. The context in
which the ESPAM tool is designed is mainly multimedia and stream-oriented applica-
tions.

In Figure 1.2 the basic ESPAM design flow is depicted. The desired application has
to be described as a Kahn Process Network, that is a network composed by concur-
rent processes (or nodes) communicating via FIFO channels.This kind ofApplication
Specificationcan reveal the task-level parallelism, and can be derived automatically by
using, in our case, the PNGEN tool.
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Figure 1.2: ESPAM design flow: starting from a System-level specification of applica-
tion, platform and desired mapping, ESPAM can generate an RTL description, suitable
to be synthesized and compiled with a commercial tool. Finally, the resulting system
is downloaded to the target FPGA.

Then, the designer chooses the desired platform structure (with thePlatform Specifica-
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tionfile) and maps the nodes of theApplication Specificationto the platform, according
to the mapping described in theMapping Specificationfile. ESPAM allowsone-to-one
mapping (one node per processor) as well asmany-to-one(more than one node per
processor). This process will be described in more details in the next chapter.
When theApplication, PlatformandMapping Specificationsare provided, the ESPAM

tool can automatically generate the RTL specification of themultiprocessor system and
the programs that will run on each processor, following these steps:

1. a platform instance is generated, according to thePlatform Specificationfile, and
checked for consistency (to avoid basic design errors). At this step none of the
details of a target physical platform is considered, the platform instance consists
of generic parameterized system components;

2. ESPAM refines the platform instance using a library of IP cores, generating a
RTL description suitable for the implementation on the target physical board;

3. the program code for each processor is generated, according to theApplication
SpecificationandMapping Specification.

The output of ESPAM is a RTL specification of the platform, composed by four parts.
ThePlatform Topology Descriptiongives a detailed view of the multiprocessor system.
TheHardware Description of IP Corescontains predefined and custom IP cores used
in the Platform Description. TheProgram Code for Processors, for each processor
included in the system, in order to execute the application described at System-Level.
Finally, theAuxiliary Information, which provides tight control on the overall specifi-
cations (e.g. precise timing requirements).

This precise RTL description is suitable to be used as input for commercial synthesizer
and compiler. In our case, Xilinx Platform Studio [13] is used to convert this RTL
description into the bitstream needed to program the targetFPGA.

1.2.2 Static scheduling consequences

At this stage of the development, if more than two nodes of theKPN application are
mapped on a single computational resource (many-to-onemapping on a single pro-
cessor), the ESPAM tool generates a processor code in which these nodes are strictly
statically scheduled. For instance, if we consider the scheme depicted in Figure 1.3,
nodes1 and2 are fired in a precise, fixed order. A possible static schedulecan assume
that node1 is fired first (eventually blocking on read/write), then node2 is fired. This
concept can be described with the pseudo-code example shownin Figure 1.4. This
scheduling order cannot be changed at run-time.

This static scheduling policy leads to the following consequences:

• It may happen that the execution of one of the nodes is blockedon reading (if
the requested input FIFO is empty) or on writing (if no space is available in
the desired output FIFO). If another node of the KPN is mappedonto the same
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Figure 1.3: Many-to-one mappig example, onto MB2 and MB3. The lines con-
necting different KPN nodes represent FIFO channels, that may lead to read or write
blocking.

for (n times)
{

read from node_1 input FIFOs;
execute node_1;
write to node_1 output FIFOs;

read from node_2 input FIFOs;
execute node_2;
write to node_2 output FIFOs;

}

Figure 1.4: Pseudo-code that describes the static scheduling onto MB2. Each node is
fired n times, but the scheduling order assumes that node2 must wait the completion
of node1 execution.

processing resource, it could be interesting to find out a method that allows us to
implement a dynamic scheduling of KPN nodes. If one of the nodes is blocked,
the other one can be fired, reducing in this way the processor time spent on idling.
This may also be very useful if we wanted to map more than one application, or
multiple instances of the same application, onto one platform.

• In the case ofmany-to-one mapping, if the application isintrinsically dynamic,
finding a scheduler at compile-time is not possible because the exact order of
execution of the nodes is data dependent.

1.3 Solution Approach

The aim of this work is to improve the ESPAM tool by providing a reliable method to
implement dynamic scheduling onto our multiprocessor systems. Of course, the case
considered is whenmany-to-onemapping is applied (otherwise there is no need of a
“local” scheduling). The method we have developed is based on the following steps:

1. Add operating system to each processor.We tested a couple of operating
systems, in order to make comparisons. The first OS is Xilkernel [15], provided
by Xilinx. The second is FreeRTOS [17], which source code anddocumentation
can be found on the internet. We looked for lightweight, simple, and relatively
fast operating systems. This is because MPSoCs do not have a lot of memory
and sometimes we want real-time behavior.
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2. Divide each processor program code in threads,that can be executed con-
currently. Kahn Process Network semantics is very useful for thread separation
because program code is based on intrinsically concurrent processes.

3. Implement a valid and efficient thread scheduling policy.Three scheduling
policies have been tested: simple interrupt-driven round robin, round robin with
yielding on blocking and priority scheduling. Detailed descriptions, implemen-
tations and results are presented in the following chapters.

Given a reliable method of dynamic scheduling in amany-to-onemapping context,
these are the possible new features that a system designer can exploit:

• Intrinsic (such as data-driven) dynamic applications can be implemented onto
our multiprocessor platforms.

• Multiple instances of the same application can run in parallel (interleaving). De-
pending on the application, a higher throughput can be achieved.

• In case of different applications running onto different processors, if one of the
applications is significantly more complex than the others,parts (in this case
threads) of this application can be transferred onto other processors. In this way
the execution time of the different processors is more balanced, leading to better
throughput.

1.4 Related work

Our work is mainly related to the previous ones related to theESPAM tool. Hardware
synthesis topics like implementation of heterogeneous andhierarchical architecture
and integration of hardware IP cores are presented in [7, 8].Since applications are
getting more and more complex nowadays, some of the tasks of an application have to
be executed by dedicated hardware IP cores, because their execution on programmable
processors like MicroBlaze or PowerPC could slow down the whole system. Our work
is different because it is focused mainly on software improvements.

Furthermore, several works on evaluation of Operating Systems running on MicroB-
laze have been presented. A comparison between different operating systems is pre-
sented in a master thesis from Swiss Federal Institute of Technology of Lausanne [18],
in the context of cryptographic applications running on self-reconfigurable platforms.
An evaluation of real-time operating systems such as Xilkernel, Asterix and uClinux
is provided in [19], based on interrupt latency and task response time tests. However,
none of these works fit to our specific goal, i.e. the evaluation of multi-threading oper-
ating systems in the context of MPSoC based on the KPN model ofcomputation.
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1.5 Research contributions

These are the main research contributions of this thesis:

• The ESPAM tool has been modified in order to be suitable for dynamic applica-
tions and to increase the software design space. We have developed a reliable
method to add an operating system to each microprocessor andrun different
nodes of a KPN application as threads, that can be scheduled dynamically.

• We provide a comparison between two operating systems, namely Xilkernel and
FreeRTOS. Several tests have been done, using different applications and plat-
forms, measuring OS footprint and system throughput.

1.6 Equipment

All the experiments have been conducted on the ADM-XRC-II FPGA prototyping
board placed in the LIACS laboratory (Leiden Institute of Advanced Computer Sci-
ence) in The Netherlands. This prototyping board, developed by Alpha Data Paral-
lel Systems Ltd [20], was used to implement the MPSoCs generated by ESPAM. Its
scheme is depicted in Figure 1.5. The board is connected to the PCI bus of a Pentium
processor. Six Zero Bus Turnaround external memory banks can be accessed from this
external processor, with the infrastructures built by Wei [7], in order to set the input
data of the multiprocessor platform. Then, the system processes these data and puts
the results into the external memory banks. Finally, the external processor reads the
content of the destination memory bank and can save/displayresults to verify correct-
ness.
All memory accesses from/to the external processor use the PCI interface shown in the
left side of Figure 1.5.

These are the specifications of the ADM-XRC-II FPGA prototyping board:

• High performance PCI and DMA controllers

• Local bus speeds of up to 66MHz

• Six banks of 256k/512kx32/36 ZBT SSRAM

• User clock programmable between 0.5MHz and 100MHz

• User front panel adapter with up to 146 free IO signals

• User rear panel PMC connector with 64 free IO signals

• Supports 3.3V and 5V PCI signaling levels (VI/O)

As described earlier, the communication with the outside world is provided by the
six ZBT (Zero Bus Turnaround) SSRAM memories represented inthe right side of
Figure 1.5. Zero Bus Turnaround means that zero clock cyclesare spent for turnaround,
transitions from write to read or viceversa.
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Figure 1.5: Scheme of the ADM-XRC-II FPGA prototyping board.

1.7 Thesis organization

The rest of this thesis is organized as follows:

Chapter 2 describes our system design methodology, focusing on main features and
basis of the ESPAM tool. First, this chapter presents the KPN model of computation
on which our Application Model is based, and the tool that canderive automatically
this specification from a sequential program. Second, it introduces the platform model
and synthesis with the ESPAM design flow, followed by the program code generation
for each processor. Finally, how Xilinx Platform Studio (XPS) can use the output of
our tool, for hardware synthesis and software compilation.The output of XPS is a
bitstream that can be directly downloaded to program the target FPGA.

Chapter 3 presents the basic implementation concepts on which our solution approach
is based. It starts from the usefulness of dynamic scheduling, when dealing with in-
trinsic dynamic application, multiple application or multiple instances of the same
application. Then it provides the definition of thread and the introduction to Pthread
standard for thread management and its Application Programming Interface. Finally, it
describes the thread scheduling policies we have tested, namely Round-robin, Round-
robin with yielding on blocking, and priority scheduling.

Chapter 4 introduces the two application we used to test our dynamic scheduling im-
plementations. The first example is the Sobel edge detectionalgorithm and the second
is an M-JPEG encoder. Both of these applications have been mapped onto a five-
processor system, using the standard ESPAM design flow. The obtained results will
be used to make performances comparison with the platforms presented in Chapter 5,
which are based on dynamic scheduling of the nodes.

The Xilkernel operating system is presented in Chapter 5. This chapter describes also
how the scheduling concepts introduced in Chapter 3 are implemented using this OS.
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First, the modifications common to all different schedulingpolicies are listed. Then,
for each of the different solutions, a more detailed description of required implemen-
tation steps is provided. The chapter finishes with the description of some advanced
examples of dynamic scheduling implementations on multiprocessor systems, like M-
JPEG and Sobel applications or multiple instances of Sobel application mapped on the
same platform.

Chapter 6 deals with the FreeRTOS introduction and implementation details. One of
the system examples in Chapter 5 is reproduced using FreeRTOS, in order to make
comparisons on performances and memory occupation overhead.

A brief “getting started” tutorial on dynamically scheduled system design is provided
in Chapter 6, starting from the C application code to the actual physical implementation
of the system. All the PNGEN and ESPAM tool operations, and manual modifications,
are listed.

Chapter 8 presents the final conclusions, based on test results. Some future works, that
can improve the results obtained in this thesis, are also described.



Chapter 2
Embedded System-level Platform
synthesis and Application Mapping

This chapter provides a more detailed description of the ESPAM (Embedded System-
level Platform synthesis and Application Mapping) tool. Inaddition to the information
written in the first chapter, we give a simple description of the Kahn Process Network
model of computation and the basic ideas of the PNGEN tool, that translates the initial
sequential application into a KPN application. Then, we present the main concepts of
how the platform and the code for each processor is generatedand how Xilinx Platform
Studio can be used as back-end of our design flow.

2.1 Derivation of Kahn Process Networks

As Figure 1.2 shows, the ESPAM tool needs an application description different from
the sequential one. For the programmer’s point of view, using a sequential description
(e.g. Matlab or C, C++) is much easier, but this kind of description is extremely hard to
map automatically onto a multiprocessor system because thethread-level parallelism
is not explicit. Of course a designer can try to map an application by hand, but this
process is very slow and can lead to errors in the implementation. We believe that a
correct-by-construction process is the way to make platform synthesis and application
mapping easier and faster.

For the ESPAM tool, the Kahn Process Network [9] model of computation was chosen
because it is parallel and allows distributed memory and distributed control. Further-
more, its operational semantics are simple, but general enough for multimedia or signal
processing applications.

2.1.1 Kahn Process Networks description

In Figure 2.1 a simple example of a KPN is depicted. The network has a set of nodes
(P1, P2, P3) that represents different processes. The KPN model of computation
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assumes that processes are concurrent and autonomous. The communication is done
by a point-to-point connection with unbounded FIFO channels.

P1


P2
 P3


read

execute

write

write


read

execute

write


read

read


execute

write


CH1
 CH2


CH3


Figure 2.1: Simple example of a KPN. Next to each node the corresponding compu-
tation and communication primitives (reading, executing and writing) are presented.
These primitives describe the node behavior.

Each node of the network is described by sequential code, executed concurrently to
the other nodes. For example, in Figure 2.1 processP1 first reads a token from its in-
put port, then executes the computation and finally writes data to the other processes,
P2 andP3, throughCH1 andCH2 respectively. In the meanwhile, ifP2 andP3 have
tokens in their input FIFOs, they can continue their execution concurrently. The execu-
tion order of the different nodes is determined only by the channel through which the
processes communicate. If a node has data to read and free space to write, its execution
will continue.

The KPN model of computation offers the following features:

• Regardless to the scheduling order of the different nodes, the final result is the
same, i.e. the KPN model is deterministic. This allows us to exploit different
scheduling policies when mapping processes to hardware or software.

• The inter-process communication is synchronized by a blocking read. This is a
very simple primitive, easily implementable in hardware orsoftware.

• There is no global scheduler, since control is completely distributed to individual
processes. So, dividing a KPN over different reconfigurablecomponents is a
simple task.

• There is no notion of global memory. Each inter-process communication is dis-
tributed over FIFOs, so there is no risk of resource contention.

These features make easy the mapping of a KPN application specification onto a multi-
processor platform and this model of computation matches very well our system design
methodology.
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2.1.2 The PNGEN tool

Typically, applications are specified with a sequential language such as Matlab or C,
C++. This is why this way of application specification is easyfor application designers,
since there is only one thread of control and a single memory.On the other hand,
a sequential specification does not reveal the available parallelism in the application
itself. So, a parallel specification is needed if we want to capitalize the resources of a
multiprocessor system.

Describing an application directly using a parallel model of computation is a very dif-
ficult, time-consuming and error-prone process. The aim of the PNGEN tool [11] is to
close this gap between a sequential specification and a parallel model of computation.

The input given to the PNGEN tool must be a SANL (Static Affine Nested Loop) pro-
gram, made by a set of statements, each possibly enclosed in loops and/or guarded by
conditions. All of these conditions and statements must be affine, linear expressions of
iterators and parameters. For each function call of the sequential program a node the
PNGEN tool generates a KPN node.

The output of the PNGEN tool is a process network specified with XML code, com-
patible with ESPAM Application Specification. So, this tool can be used as a front-end
for ESPAM. In the implementation of the process network, channels must be imple-
mented as bounded FIFOs, thus blocking on write can also occur. To avoid deadlocks,
the PNGEN tool determines also FIFO channel minimum sizes. Edges in the process
network correspond to variables shared between the function calls. Figure 2.2 depicts
an input-output example of the tool.

int
  main(void){

int
  i,
 j
;

static
 int
  image[1000][1000];

static
 int
 Jx
[1000][1000];

static
 int
 Jy
[1000][1000];

static
 int
 av
[1000][1000];


for (
 j
=1;
 j
 <=
 M
;
 j
++) {

   for (i=1; i <=
 N
; i++) {


readPixel
 (&image[
 j
][i]);

   }

}


for (
 j
=2;
 j
 <=
 M
-1;
 j
++) {

   for (i=2; i <=
 N
-1; i++) {

       gradient( &image[
 j
-1][i-1], ...

, ... );

   }

}


for (
 j
=2;
 j
 <=
 M
-1;
 j
++) {

   for (i=2; i <=
 N
-1; i++) {

      gradient( ...


ReadPixel


WritePixel


AbsVal


Gradient
 Gradient


PNGEN


Sequential Code
 Process Network


Figure 2.2: Example of input and output of the PNGEN tool. Starting from a sequential
program, a KPN specification of the application can be automatically generated. The
complete program code of the sequential application is included in Appendix A.
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2.2 Platform model

The platform model of our tool is a library of generic parameterized components. This
set of components has to be flexible enough to allow a good design space variety. The
platform model includes:

1. Processing Components: programmable processors as wellas dedicated pro-
grammable hardware [7,8] can be used as processing resources of our platforms.
In this project the only processing components used are MicroBlaze processors,
since we use Xilinx Virtex-II FPGA as physical platform technology.

2. Memory Components: these components are used to describedata and program
memories connected to each processor as well as buffers thatconnect different
processing components of the system. The communication between program
and data memory and the processor is controlled by a memory controller. The
communication memory components are implemented using dual-port memo-
ries, and they are organized as one or more FIFO buffers.

3. Communication Components: several ways of communication are included in
the ESPAM platform model. The most efficient option for a multiprocessor sys-
tem is a point-to-point network, but also a crossbar switch and a shared bus are
available.

4. Communication Controllers and Links: communication controllers are needed
to synchronize the communication between different processing resources, at
hardware level. Links are used to connect any two componentsof our platform
model.

For each of these components, many parameters can be set: type, I/O ports, speed for
processors; memory sizes and types, etc.

2.3 ESPAM Design flow

The ESPAM design flow, introduced in the first chapter, is depicted in Figure 1.2. The
input given to the tool is a System-level description made bythree entries, written in
XML format:

1. Application Specification. As mentioned in Section 2.1, the application is de-
scribed as a Kahn Process Network, that can be derived automatically by the
PNGEN tool.

2. Platform Specification. This file describes the platform topology at a very high
level of abstraction. The designer does not need to specify memory structures,
interface controllers and communication protocols: the tool itself takes care of
this task. An example of Platform Specification is shown in Figure 2.3. In the
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first part, lines 2-5, four processors are instantiated. Thecrossbar communica-
tion component is included with lines 7-12. Finally, links are specified with lines
14-29. These links are needed to connect each processor to the communication
component.

1 <platform name ="myPlatform">
<processor name = "uP1"> <port name = "IO1"/> </processor>
<processor name = "uP2"> <port name = "IO1"/> </processor>
<processor name = "uP3"> <port name = "IO1"/> </processor>

5 <processor name = "uP4"> <port name = "IO1"/> </processor>

<network name = "CB" type = "Crossbar">
<port name = "IO1"/>
<port name = "IO2"/>

10 <port name = "IO3"/>
<port name = "IO4"/>

</network>

<link name = "BUS1"/>
15 <resource name = "CB" <port name = "IO1"/>

<resource name = "uP1"<port name = "IO1"/>
</link>
<link name = "BUS2"/>
<resource name = "CB" <port name = "IO2"/>

20 <resource name = "uP2"<port name = "IO1"/>
</link>
<link name = "BUS3"/>
<resource name = "CB" <port name = "IO3"/>
<resource name = "uP3"<port name = "IO1"/>

25 </link>
<link name = "BUS4"/>
<resource name = "CB" <port name = "IO4"/>
<resource name = "uP4"<port name = "IO1"/>

</link>
30 </platform>

Figure 2.3: Example of Platform Specification, written in XML format.

Starting from this Platform Specification, the ESPAM tool generates an elaborate
platform as follows. First, the tool puts processing and communication com-
ponents into the design. Second, it attaches program and data memories and
respective memory controllers to each processor. The size of these memories is
determined by the values set within the Platform Specification file. Third, based
on the type of processors considered in the first step, it synthesizes, instanti-
ates and connects all necessary communication controllersand communication
memories for data communication between the processors.

An example of such detailed platform is shown in Figure 2.4. Communica-
tion Controllers (CC) connect a communication memory (CM) to the commu-
nication component - in this example, the crossbar (CB) - andto the processor
(uP) it belongs to. Each CC provides the communication between processor and
CM for write operations, obeying processor’s local bus access protocol. CC are
also needed to access the communication component (CB) for read operations.
The synchronization between different processors is implemented using block-
ing read/write on the FIFO buffers included in Communication Memories.

3. Mapping Specification. This entry defines which node of the KPN applica-
tion will be assigned to each processor. Two types of mappingare supported:
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CC1
MC1


CB


CM1
MEM1


uP1


MC2
CC2


MEM2
CM2


uP2


CC3
MC3


CM3
MEM3


uP3


MC4
CC4


MEM4
CM4


uP4


Legend:

uP
   - Microprocessor

MC
  - Memory Controller

MEM
 - Program and Data Memory

CC  - Communication Controller

CM  - Communication Memory


Figure 2.4: Detailed platform, generated by ESPAM using the Platform Specification
file of Figure 2.3.

many-to-oneor one-to-one. As depicted in Figure 2.5,one-to-oneimplies that
the number of processors is equal to the number of nodes in theKPN, so each
processor will take care of the execution of just one node.Many-to-onemapping
is required when the number of processors is less than the number of nodes in the
KPN. In such a case, the inter-process communication between nodes mapped
onto the same processor is still provided by external FIFOs rather than shared
memory.

P1


P2
 P3


CH1
 CH2


CH3


MB
 _1


P1


Application

Specification


MB
 _2


MB
 _3


P2


P3


CM


CM


CM


CH1


CH3


CH2
 MB
 _1


P1
 P2
 CM
 CM


MB
 _2


P3


CM


CH1
 CH2


CH3


Many-to-one mapping
One-to-one Mapping


Figure 2.5: Basic example ofone-to-oneandmany-to-onemapping (data and program
memories are not represented).
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2.4 Automated programming of multiprocessor platforms

An important step of our ESPAM tool is the automated generation of program code for
each processor. Both C and C++ are supported. In our case, we can use MicroBlaze
GNU tools such asmb-gcccompiler,mb-asassembler andmb-ld loader-linker to gen-
erate ELF executable files from these sources. Each processor must be programmed
following this concept: its behavior must match the one of the node(s) it represents.

The program for each processor includes control code and computation code. The
computation part performs the specific operations of the mapped KPN node on the re-
ceived data. The control code, based onfor-loops andif -statements, decides how many
times data reading and writing, as well as computation, mustbe performed. A simple
example of program code is shown in Figure 2.6. If more than one node is mapped
onto the same processor, the tool determines a valid schedule to avoid deadlocks.

1 #include ‘‘primitives.h’’
#include ‘‘MemoryMap.h’’

struct myType{
5 bool flag;

int data[64];
};
int N=384;

10 void main(){
myType in_0;
myType out_0;

for (int k=0; k<N; k++){
15 read(p2, &in_0, sizeof(myType));

compute(in_0, out_0);
write(p1, &out_0, sizeof(myType));

}
}

Figure 2.6: Simple example of processor program code. In line 15 the program per-
forms a read request:sizeof(myType)bytes are transferred from portp2 to the variable
in 0. In line 17 there is a write primitive, following a similar semantic. Data compu-
tation is executed in line 16. This sequence of read, execution and write is executedN
times (seefor-loop in line 14)

2.4.1 Software communication primitives

The software communication primitives generated by ESPAM basically implement the
blocking read/write synchronization. Blocking on write isnecessary because in the
physical implementation, buffers can not be unbounded. A processor can access a
FIFO as two memory locations in its address space. The first isused to read and
write data; the second is a “status” location, where a flag is set if the FIFO is full (no
more space available for writing) or empty (no data to read).The tool automatically
generates correct-by-construction FIFO addresses.

As shown in Figure 2.7 (lines 8 and 17), blocking is implemented by emptywhile-
loops, in which the condition is set by the FIFO status. The parameters of thefor-loops
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(lines 6 and 15) determine how many bytes are written to or read from the input/output
channels.

1 #ifndef _PRIMITIVES_H_
#define _PRIMITIVES_H_

void read(byte* port, void* data, int lenght){
5 int *isEmpty = port+1;

for(int i=0; i<length;i++){
//reading is blocked if a FIFO is empty
while(*isEmpty){}
(byte* data)[i]=*port; //read from a FIFO

10 }
}

void write(byte* port, void* data, int lenght){
int *isFull = port+1;

15 for(int i=0; i<length;i++){
//writing is blocked if a FIFO is full
while(*isFull){}

*port=(byte* data)[i]; //write to a FIFO
}

20 }
#endif

Figure 2.7: Reading and writing primitives used by ESPAM.

2.5 Xilinx Platform Studio

As depicted in Figure 1.2, the ESPAM tool can generate a very detailed RTL descrip-
tion of a multiprocessor system. This low-level description is suitable to be used as
input for a commercial synthesizer/compiler in order to produce the final bitstream
that programs the FPGA of the prototyping board. In our examples, this back-end tool
is Xilinx Platform Studio (XPS) [13], that will be describedbriefly in the this section.

Xilinx Platform Studio (XPS) is a graphical user interface that integrates all of the
processes from design entry to design debug and verificationin the context of the
Embedded Development Kit (EDK). EDK is a series of software tools for designing
embedded processor systems on programmable logic, and supports the IBM PowerPC
hard processor core and the Xilinx MicroBlaze soft processor core. In this thesis we
have used only the MicroBlaze soft processor [24], that is a reduced instruction set
computer (RISC) optimized for implementation in Xilinx FPGAs. Since MicroBlaze
is a soft processor core, the number of this kind of processors in our systems is only
limited by the resources of the target FPGA. The MicroBlaze core is highly config-
urable, allowing users to choose the features that better fittheir design.

XPS can be used to create hardware systems from the scratch, and provides a complete
library of IP cores. Custom IP cores can be added to a design aswell, and system
designers can also write applications for each processor ofthe platform. However, de-
signing and programming a multiprocessor system using onlyXPS may lead to errors
in the implementation and for sure it is a very time-consuming process. Our ESPAM

tool takes care of this task, generating all necessary files for a XPS project, starting
from the System-level specification shown in Figure 1.2.
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2.5.1 XPS project suite generation

An example of the project suite files, generated by ESPAM according to the input re-
quirements of XPS, is presented in Figure 2.8.

<PROJECT_SUITE>
|--- system.xmp
|--- system.mhs
|--- system.mss
|--- code/: software program code
|---------- aux_func.h
|---------- MemoryMap.h
|---------- P_1/: program code for processor P_1
|---------------- P_1.cpp
|---------- P_2/: program code for processor P_2
|---------------- P_2.cpp
|--- etc/: optional files for implementation tools
|--------- bitgen.ut
|--------- bitgen_spartan3.ut
|--------- fast_runtime.opt
|--------- download.cmd
|--- data/: UCF files
|---------- system.ucf
|---------- system_ADMXRCII.ucf
|---------- system-default.ucf
|---------- system-zbt.ucf
|--- pcores/: customized IP cores for the EDK project
|------------ buffers_v1_00_a/
|------------ cb_wrapper_v1_00_a/
|------------ fifo_if_ctrl_v1_00_a/
|------------ fin_ctrl_v1_00_a/
|------------ host_design_ctrl_v1_00_a/
|------------ LMB_VB_CTRL_v1_00_a/
|------------ mux_v1_00_a/
|------------ myCLKRST_v1_00_a/
|------------ opb_zbt_controller_v1_00_a/
|------------ VB_Wrapper_v1_00_a/
|------------ zbt_main_v1_00_a/

Figure 2.8: XPS project suite automatically generated by our ESPAM tool.

Starting from the top of the project suite of Figure 2.8, these are the description of the
included files and folders:

• system.xmpThe Xilinx Microprocessor Project (XMP) is the top-level project
file for an EDK design. It includes options like the version number, the location
of MHS and MSS files, the FPGA architecture family and software settings for
the project.

• system.mhsThe Microprocessor Hardware Specification (MHS) file describes
which components are used in the project and specifies the connections between
these components. A typical entry of an MHS file is shown in Figure 2.9,
in which a MicroBlaze processor is instantiated, customized (setting the hard-
ware version and some parameters) and connected to its buses(DBUS MB 1 and
PBUSMB 1) and to the system clock (sysclk s). A MHS file defines the config-
uration of our multiprocessor system, and includes bus architecture, peripherals,
processors, connections and address space.
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BEGIN microblaze
PARAMETER INSTANCE = MB_1
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0
PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
PARAMETER C_FSL_LINKS = 0
BUS_INTERFACE DLMB = DBUS_MB_1
BUS_INTERFACE ILMB = PBUS_MB_1
BUS_INTERFACE DOPB = mb_opb_1
PORT CLK = sys_clk_s

END

Figure 2.9: Part of an MHS file, in which a MicroBlaze processor is instantiated,
customized and connected to relevant signals.

• system.mssThe Microprocessor Software Specification (MSS) file includes di-
rectives for drivers, libraries and operating systems thatthe project needs. The
MSS file is closely related to the MHS file. For example, every periferal instance
in the MHS implies a correspondent driver instance in the MSS. An example of
an entry defined in an MSS file is presented in Figure 2.10

BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = MB_1

END

BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.01.a
PARAMETER HW_INSTANCE = MB_1
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar

END

Figure 2.10: Part of an MSS file, related to the hardware instance ofMB 1 MicroBlaze
processor of Figure 2.9. The first part defines the OS, which isstandalone(i.e., no OS
is used onto this processor). In the last part driver, compiler and archiver forMB 1 are
specified.

• code folderThis folder includes the program code for each processor andtwo
important header files, namelyaux funct.handMemoryMap.h. These are files
common to all processors. Theaux funct.hfile provides read/write primitives as
well as wrappers for all the function calls of the initial application. TheMem-
oryMap.hfile defines the addresses of some components of the platform like
data and program memories, communication memories and external memory
controllers.

• etc folder Contains optional file related to system physical implementation.

• data folder In this folder several User Constraint Files (UCF) are stored, each
one for a different target FPGA board. UCF specifies constraints related to a
specific FPGA device, such as pin location, timing, and input/output standards.
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• pcores folderThis directory stores the customized IP cores for the EDK project.
These IP cores are included in the library of components shown in Figure 1.2.

The project suite generated by ESPAM and described above is fully compatible with
Xilinx Platform Studio. A few manual modifications are needed, as described in Chap-
ter 7. Xilinx Platform studio provides backward compatibility, thus even the latest ver-
sion of XPS is able to synthesize ESPAM multiprocessor systems. When importing a
project, an automatic XPS wizard performs the necessary IP cores upgrade.
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Chapter 3
Application of Multi-threading concepts
in ESPAM

This chapter describes the solution approach that we have adopted. In case ofmany-
to-onemapping on a processor, the program code is divided in concurrent threads,
that can be scheduled in a dynamic way. The first section discusses about the use-
fulness of dynamic scheduling when dealing with an intrinsic dynamic application,
multiple application or multiple instances of the same application. Then, the second
section introduces the definition of thread and describes the Pthread standard for thread
management and its Application Programming Interface. Finally, the third section
shows which scheduling policies we have tested, namely Round-robin, Round-robin
with yielding on blocking, and Priority scheduling.

3.1 Usefulness of dynamic scheduling

The first consideration that may come in mind is why a dynamic scheduling can be
more useful than the simple static scheduling, automatically generated by the ESPAM

tool. Some of the possible scenarios, in which a dynamic scheduling can be more
useful or even compulsory are listed below.

1. Intrinsic dynamic application. In the context ofmany-to-onemapping onto
a multiprocessor platform, intrinsic dynamic applicationcan be mapped only if
dynamic scheduling is implemented. Let us consider the platform presented in
Figure 3.1. If the scheduling is static, the nodeP2 is firedn2 times, then nodeP3
is firedn3 times, and so on, until the end of the computation. If the application
is data-dependent, processP1 does not send data through channelsCH1 and
CH2 in an order known at compile time. Thus, it may happen that processP2
is blocked on read (there is no data inCH1) and processP1 will not send data
through channelCH1 anymore. In this situation, nodeP3 will also be blocked
forever, since the firing order cannot be changed. This leadsto a deadlock of the
system. In case of intrinsic dynamic application, static schedule cannot be found
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at compile time.

P3
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P1


MB
 _1
 MB
 _2


CH1


CH2


Figure 3.1: Simplemany-to-oneexample on processorMB 2. Each channel is imple-
mented by one or more FIFO(s) in our systems.

2. Multiple applications running on the same platform. With a dynamic schedul-
ing approach, multiple applications can be mapped onto the same platform. In
Figure 3.2 a symbolic example of this concept is depicted. Let us consider the
execution onMB 3. It may happen thatP 3 andP 4 are blocked in reading,
waiting for data from nodeP 2. In this case, processor time is wasted if they are
the only nodes mapped ontoMB 3.

If, on the same processor, another node of a different application is mapped (in
the shown example,P 7), we can exploit the processor time spent in idling by
executing this additional process. However, determine a static scheduling of the
nodes mapped on each processor would beat leasta vary complicated task, since
it would imply a combined dataflow analysis of the two applications. In same
cases it could be impossible, for instance when at least one of the applications is
dynamic.
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Figure 3.2: Symbolic example of multiple applications running onto the same plat-
form. Each arrow represents one or more FIFO channel(s).

A similar scenario arises when multiple instances of the same application is
mapped on the same platform. The aim of this solution is to fully exploit the
processor time, removing the time spent in idling.
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3. Execution time balancing of different applications. Let us consider Fig-
ure 3.3(a), where two applications are mapped onto two separate processor. If
one of the two applications is much more complicated than theother (naively we
can assume that the number of processes is proportional to application complex-
ity), the execution finishes much earlier in the low-loaded processor. Therefore,
we can put some of the complexity (in this case, some of the nodes) of the heavy
application on the other processor (as shown in Figure 3.3(b)). This improves
the throughput of the whole system because both applicationwill finish in less
time than the slowest application of Figure 3.3(a). This is why the execution
time of the two applications is more balanced.
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Figure 3.3: Symbolic example of two applications, very different in complexity, run-
ning onto two separate processors. The complex applicationis executed in less time in
the second case (b).

3.2 Multi-threading

Since multi-threading is the basis on which we have developed our method of dynamic
scheduling for KPN processes, some definitions (taken from [21, 22]) are needed to
describe our solution approach.

Threads are generally part of a process, that is an instance of a program sequentially
executed by a processor.

Technically, a thread is defined as an independent stream of instructions that can be
scheduled to run as such by the operating system. From an application developer
point of view, a thread can be a procedure that can run independently/concurrently
from the main program. Usually a thread is defined within a process, which is created
by the operating system and requires a fair amount of overhead, such as information
about program resources and program execution state. Some of these informations may
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be process ID, user ID, group ID, working directory, programinstructions, registers,
program counter, stack pointer, heap, file descriptors and much more.

Threads use and exist within these process resources, yet they are able to be sched-
uled by the operating system and run as independent entities, largely because they
duplicate only the essential resources that enable them to exist as executable code:
program counter, stack pointer, registers, scheduling properties and few more. This
means that managing threads is faster than managing tasks, because of the different
overhead. Multi-threading generally occurs by time-division multiplexing (“time slic-
ing”) on single-processors systems, while on multi-processors or multi-core systems
threads can be executed literally in parallel. Time division multiplexing implies that
some of the processor time is spent in context switching, namely saving informations
of the running process and restoring the informations of thenext process.

Historically, hardware vendors have implemented their ownversion of threads. To
allow portability of threaded applications, a standard programming interface was re-
quired. For UNIX systems, this standard is referred to as POSIX threads, or Pthreads.
This is the standard used in Xilkernel, the first OS we have tested on our platforms. In
this operating system, as in many other lightweight OS, there is no concept of thread
groups combining to form a process and scheduling is done at the process context level.
So, in this thesis we will use the concept of a thread and of a process as synonyms.

3.2.1 Thread-safeness

Since several threads can share the same resources, for example a piece of global mem-
ory, and they can be executed in parallel with time division multiplexing, the design of
an application must avoid data corruption or creation of race conditions.

For example, let us consider Figure 3.4. Each of the threads created by the main appli-
cation calls the same library routine. This routine accesses/modifies a global memory
location, so it may happen that all of the threads try to modify this memory location at
the same time, leading to data corruption. What this application needs is a way of syn-
chronization/communication between threads, to avoid multiple contemporary access
of the same memory location.

Main program
 sub A


modify
 memloc
 XXX


sub A


modify
 memloc
 XXX


subA


modify
 memloc
 XXX
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....

memloc
 XXX

....


Thread1

...
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call
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...


Thread1

...

call
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Figure 3.4: Example of data corruption when dealing with threads.
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3.2.2 Pthread API

The Pthread Application Programming Interface is a very well-known standard for
thread manipulation in UNIX systems and it is also supportedby Xilkernel OS. An
overview of the subroutine that this API provides is given below, grouped in three
classes.

Thread management.
This class of functions works directly on threads. Users cancreate a thread and
set/query thread attributes (joinable, scheduling etc.).Important functions of this class
are:

- pthread_create creates a new thread and makes it executable. This rou-
tine can be called any number of times from anywhere within the code. The
arguments passed to this routine are a thread identifier for the new thread, thread
attributes, the first function that the new thread will execute once it is created and
a single argument that can be passed to the first function called by the thread. The
maximum number of threads that may be created is applicationdependent. Once
created, every thread can create new ones.

- pthread_attr_initandpthread_attr_destroyare used respectively
to initialize and destroy the thread attribute object.

- pthread_exit is used to explicitly exit a thread, typically when its work is
completed.

- pthread_join is a way of synchronization between threads. This function
blocks the calling thread until the thread specified in the function argument ter-
minates.

- pthread_yield forces the calling thread to stop and yield the processor to
another thread. The calling thread waits in the ready threadqueue before it is
scheduled again.

Mutexes.This class of functions manages a kind of synchronization between threads,
called mutex, which is an abbreviation for mutual exclusion. A mutex variable acts
like a lock, protecting accesses to a shared memory resource. The basic concept is that
only one thread can own a mutex variable in a given time. No other thread can own the
mutex until the owning one unlocks it. So, threads must take turns to access protected
data. Mutexes can protect data corruption, like the one explained in 3.4.

Mutex-related functions can create, destroy, lock and unlock mutexes and also set and
modify their attributes.

Condition variables. These variables provide another way of thread synchronization,
implemented by controlling the actual value of a data. Without condition variables,
users would need to have threads continually polling the data to check if the condition
is met. Of course this is a very time-consuming process.
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3.2.3 Lightweight multi-threading OS in ESPAM

The solution approach to our problem, stated in Section 1.3,must assure performance,
in terms of application execution time. This is because in some cases we want real-
time behavior. Also, since usually MPSoCs do not have a lot ofmemory, we want
small overhead on system resources, mainly the memory occupation on the FPGA.

Performances, in the context of a KPN application running ona multi-threading OS,
depends mainly on the OS speed in context switch and thread management, and on
synchronization between threads. The concepts regarding how we implemented thread
synchronization and scheduling are described in the next section. Since we did not
modify the kernels of the tested operating systems, contextswitch time and thread
management speed are given and depend only on the operating system design.

The memory footprint of an operating system depends on its design and on its scala-
bility, namely how much an OS can be customized to fit user requirements.

What really helped us in developing multi-threading application for our platforms is
the model of computation on which ESPAM is based. In fact, Kahn Process Networks
are based on concurrent and autonomous processes, with no notion of a global memory.
This means that in our implementation we did not have to use complicated synchro-
nization strategies like mutexes or condition variables, since no data corruption may
happen. This is because each KPN node writes to separate FIFOchannels and uses its
local memory space for data.

Also, since in our platforms different nodes of the same application may be mapped
onto different processors, inter-process synchronization cannot be implemented with
mutexes or condition variables, because different processors do not share the same
global memory.

3.3 Thread scheduling policies

In our solution approach we have tested three methods of thread scheduling, which
are largely dependent on the operating system scheduler. Generally, in an operating
system, thread entries are stored in queues.

If the adopted scheduling mechanism is Round-robin, there is only one queue for ready
(not blocked by the OS) threads, as depicted in Figure 3.5. When the scheduler starts,
the first thread in the queue is executed and takes control of the processor. Then, using
time division multiplexing, the processor is shared with the other threads. At the end
of a certain time slice, the first thread yields the control tothe second of the queue, and
so on. In the case of a MicroBlaze processor, the end of each time slice is signaled by
an interrupt generated by an external timer.

When the processor control is yield from a thread/process toanother one, a context
switch has to be performed. This means that the state of the first process must be saved
somehow, so that, when the scheduler gets back to the execution of the first process,
it can restore its state and continue. The state of the thread/process includes all the
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Figure 3.5: Example of ready queue for Round-robin scheduling. The processor con-
trol is shared between threads with time division multiplexing.

registers that the thread/process may be using, like the program counter, stack pointer
and others. Often all these data are stored in one data structure, calledprocess control
block.

If the operating system adopts a priority-based scheduling, more than one ready queue
is provided, as shown in Figure 3.6. The scheduler decides which thread/process has
to be fired basing on the priority associated to each queue. Threads in higher-priority
queues are fired first. Threads with the same priority are Round-robin scheduled.
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Figure 3.6: Example of ready queues for priority scheduling. Threads in higher-
priority queues are always fired first, and threads with the same priority are Round-
robin scheduled .

In our solution approach we add a lightweight operating system to our processors,
then we derive for each node of the KPN a thread that representits behavior. Finally,
to achieve better performances, we tested three methods of thread scheduling, which
are based on the kernel scheduler and on the API of the operating system. These three
methods are described below.

1. Simple Round-robin. The simple Round-robin scheduling is already imple-
mented by both of the OS we have tested. Switching between threads is driven
by an interrupt signal, provided by an external timer. This solution is very sim-
ple, and requires no OS enhanced features. As depicted in Figure 3.7, since the
interrupt is sent at constant intervals, every process ownsthe processor control
for the same amount of time (the time slice is constant).

Though this solution is very easy, the behavior of a KPN does not match perfectly
this kind of scheduling. It may happen that some of the nodes block much earlier
than the end of the time slice. A graphical example is shown inFigure 3.8. From
the moment in which the thread is blocked, until the end of thetime slice, the
processing resources can be wasted, if the condition of input or output channels
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Figure 3.7: Example of Round-robin scheduling of threads. Each thread owns the pro-
cessor control for the same amount of time. For MicroBlaze processors, the interrupt
which drives thread switching is provided by an external timer.

do not change. All this wasted time is represented with shadow areas in the
picture.
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Figure 3.8: Example of Round-robin scheduling of threads that may possibly block.
Switching between threads is driven only by the interrupt signal, represented by little
arrows in the bottom of the figure. If one thread blocks much earlier than the end of its
time slice, a lot of time is spent in idling.

2. Round-robin with yielding on blocking. This solution is also based on Round-
robin scheduling, but with a little modification. When the current thread is
blocked, we force the scheduler to switch directly to the next thread in the ready
queue. In this way, if the next thread is not blocked, no processor time is wasted
on waiting for data. Also, we give time to the nodes that communicate with
the current one to unblock it (filling its input FIFOs with data to be processed,
or emptying its output FIFOs). As depicted in the example of Figure 3.9, this
solution leads to a higher throughput of the KPN.

For this solution two mechanisms force thread switch. The first is the blocking of
the current thread. The second is the interrupt tick. This last mechanism may not
be compulsory for our implementation, but it is useful to avoid that one thread
monopolizes the processor time, in case this thread is not blocked for a long time.
Actually we want to provide an infrastructure that allows multiple applications
to run onto our platforms, and the best performances may result from interleaved
execution of these applications. Interrupt-driven switching helps interleaving in
the context of multiple applications.

3. Priority-driven scheduling. In the actual implementation, some overhead is
generated by context switching, when switching from one thread to another. The
second solution, namely Round-robin switching with yielding on blocking, may
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Figure 3.9: Comparison between simple Round-robin scheduling (a) and Round-robin
with yielding on blocking (b). In (a), if one thread blocks much earlier than the end
of its time slice, a lot of time is spent in idling. In (b), if one thread is blocked, the
processor control is passed to the next thread of the ready queue, so no time is spent in
idling.

lead to additional overhead. This may happen when one threadblocks, the pro-
cessor control goes to the next thread in the ready queue, without knowing if it
is blocked or not. If it is blocked, a complete context switchis useless, since the
next thread will yield immediately.

This concept is explained in Figure 3.10. What may happen with Round-robin
scheduling and yielding is presented in Figure 3.10(a). ThreadA blocks and
threadB is scheduled. This means that the context of threadA is saved and the
context of threadB is restored. In this example, threadB is still blocked, in read-
ing or writing, so it must pass control to threadC; another context switch must
occur. So, the previous context switch, between threadA andB, is completely
useless. The same situation happens in the next transition,between threadC and
A.
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Figure 3.10: In Round-robin with yielding on blocking (a), some useless context switch
(shady area) can occur. With priority scheduling (b) this does not happen, since each
thread is scheduled only if it is able to run (not blocked).
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Each context switch implies some time to be performed (represented in the figure
with shady areas), so useless context switches should preferably be avoided.
This solution is shown in Figure 3.10(b). The same computation is completed
in less time, because in this case a thread is scheduled only if it is not blocked.
This leads to better performances, especially if there are alot of threads to be
scheduled and most of them are often blocked. This method canbe implemented
with priority scheduling, giving higher priority to threads that are not blocked.
The actual implementation and details will be presented later in this thesis.



Chapter 4
Case Studies

This chapter describes the two applications that have been used to test our method of
dynamic scheduling implementation. The first one is the Sobel edge detection algo-
rithm, the second is an M-JPEG encoder. For each of these examples we report the ac-
tual implementation on a multiprocessor system generated by ESPAM and correspond-
ing results (in terms of duration of the execution). These results will be compared, in
the next chapters, with the ones we got with our dynamic scheduling implementation.

4.1 Sobel algorithm

The Sobel algorithm is a tool used to detect the edges of the shapes represented in a
(digital) picture. An input-output example of this application is shown in Figure 4.1.

Figure 4.1: Example of input-output relation of the Sobel algorithm.

The KPN specification of the Sobel application is shown in Figure 4.2. This specifi-
cation was derived using the PNGEN [11] tool. The top node (ReadPixel) reads the
input image and sends each pixel to the twoGradientprocesses. These processes cal-
culate the gradient along the horizontal and vertical dimension, and send the result to
theAbsValuenode. This one gives as result the sum of the absolute value ofthe two
gradients, calculated for each pixel of the image. If this sum is high, the pixel is likely
to be part of the edge of a shape. So, theWritePixelnode just writes the data produced
by AbsValueto the output image.
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Figure 4.2: KPN specification of the Sobel application. Eacharrow represents one or
more FIFO channels.

4.1.1 Implementation on a five-processor system

Exploiting the ESPAM design flow, this application was mapped on a five-processor
system. Using thePlatform Specificationfile, five processors (MB1, MB 2, MB 3,
MB 4, MB 5) are instantiated and connected to the corresponding ZBT memory con-
trollers, used as interface with the outside world. On each of these processors, using
theMapping Specificationfile listed in Figure 4.3, one node of the KPN application is
mapped.

<mapping name="myMapping">

<processor name="MB_1">
<process name="ND_0" />

</processor>

<processor name="MB_2">
<process name="ND_1" />

</processor>

<processor name="MB_3">
<process name="ND_2" />

</processor>

<processor name="MB_4">
<process name="ND_3" />

</processor>

<processor name="MB_5">
<process name="ND_4" />

</processor>

</mapping>

Figure 4.3: TheMapping Specificationfile for Sobel application on five processors.
The mapping type isone-to-one.

The actual system, generated by ESPAM and run on the target FPGA platform, is de-
picted symbolically in Figure 4.4. An external processor loads the input image to the
ZBT memory connected to MB1, so that it can read the pixels and send them to the
other nodes. The “source” node of this KPN is mapped on MB1. The “sink” node
is WritePixel, which is mapped on MB5. This node writes the final image to its ex-
ternal memory bank. At the end of the execution, an external processor can read the
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final result to verify the correctness. However, each processors can write to an exter-
nal ZBT memory, for debugging purposes and also to communicate the duration of
the execution on each processing unit. For this application, we used an option of the
PNGEN tool to reduce the number of FIFO channels (PN-OPTIONS=–no-reuse), since
these components occupy a lot of memory. Memory occupation is not critical in this
example, but in the case of multiple applications running onthe same platform it is,
and this PNGEN option is compulsory. So, to make a fair comparison with the next
examples, we used this option also in this case.

The total execution, for an image of 450x275 pixels, requires 29.850 million clock
cycles.

Figure 4.4: Symbolic representation of the five-processor system generated by ESPAM,
according to the input specification files.

4.1.2 Implementation on a one-processor system

The same application was mapped on a one-processor system. Only one processor
(MB 1) is instantiated, using thePlatform Specificationfile, and connected to a ZBT
memory controller. All of the nodes which comprise the KPN application are mapped
onto MB 1. The ESPAM tool generates an appropriate control code which implements
the static scheduling of these nodes.

In this case, the total execution, for an image of 450x275 pixels, requires109.116
million clock cycles.
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4.2 M-JPEG encoder

The Motion JPEG is a multimedia format where each video frameof a video sequence
is separately compressed as a JPEG image. The main C code of this application is
listed in Figure 4.5. This M-JPEG encoder processes video data which format is 4:2:2
YUV, so with chroma subsampling.
After the declaration of some variables, the basic computation starts at line 17. For
each frame of the video,initVideoIn initializes the corresponding header information.
Then, the frame is divided into blocks of 8x8 pixels,mainVideoInpicks one block
per time and sends it to the Discrete Cosine Transform (DCT) of line 22, followed by
quantization (Q) and variable length encoding (VLE). Finally, mainVideoOutwrites
the result to the output image, adding the header information to the compressed frame.

1 int main(int argc, char **argv)

int t, j, i;

5 THeaderInfo hi;
TQTables LuminanceQTable;
TQTables ChrominanceQTable;
THuffTablesDC LuminanceHuffTableDC;
THuffTablesDC ChrominanceHuffTableDC;

10 THuffTablesAC LuminanceHuffTableAC;
THuffTablesAC ChrominanceHuffTableAC;
TTablesInfo LuminanceTablesInfo;
TTablesInfo ChrominanceTablesInfo;
TPackets stream;

15 TBlocks block;

for (t = 0; t < NumFrames; t++)
initVideoIn (&hi);
for (j = 0; j < VNumBlocks; j++)

20 for (i = 0; i < HNumBlocks; i++)
mainVideoIn(&block);
mainDCT(&block, &block);
mainQ(&block, &block);
mainVLE(&block, &stream);

25 mainVideoOut(&hi, &stream);

return (0);
30

Figure 4.5: Main C code of the M-JPEG encoder application.

4.2.1 Implementation on a five-processor system

In order to implement this application on the desired platform, first we use the PNGEN

tool to convert this sequential specification to a Kahn Process Network, that matches
the ESPAM application specification. The resulting KPN is depicted inFigure 4.6. The
diagram shows that the communication between threads is similar to a pipeline. The
only thread that does not match this type of communication isinitVideoIn, but this
process is very simple and it is run only once per frame. In this example we used only
PNGEN default options, since FIFO channels are not so many.
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Figure 4.6: Kahn Process Network specification of the M-JPEGencoder, derived via
the PNGEN tool.

Then, we generate a platform using the ESPAM design flow, taking care of the mem-
ory requirements of this application, because it is much more complex than the Sobel
algorithm. Communication with the outside world is done, asin the previous example,
via the external ZBT memories. At startup the input image is loaded in the memory
connected to the source node of the KPN. At the end of the computation, the output
image is read, by the external processor, from the memory connected to the sink node.
A symbolic representation of the actual platform is shown inFigure 4.7.

With this system implementation, encoding 2 frames of 128x128 pixels requires36.863
million clock cycles.
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Figure 4.7: Symbolic representation of the M-JPEG encoder,mapped on five proces-
sors.
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Chapter 5
Implementation using Xilkernel

This chapter describes our implementation of dynamic scheduling using the Xilkernel
operating system. Several examples and results are presented, in order to compare the
dynamic scheduling approach with the static one.

5.1 Introduction to Xilkernel

Xilkernel [15] is a small, modular operating system, which is highly integrated with
the Xilinx Platform Studio framework [13]. We decided to useit firstly for these main
features. It allows a high level of customization, so that the designer can choose a
trade-off between size (memory occupation) and functionality. It supports Pthread
API, though not all of the concepts and interfaces that comprise it are available. Only
the most useful concepts and interfaces are implemented to reduce the OS memory
footprint. However, Xilkernel programs can run equivalently on desktop OS.

Xilkernel memory footprint on MicroBlaze systems ranges from 7.4 kB to 19.3 kB,
numbers obtained with the GCC optimization flag-O2. When the memory occupation
is just 7.4 kB only the basic kernel functionality is provided, with multi-tasking and
multi-threading. The largest memory footprint is requiredfor the full kernel function-
ality, with all modules included.

Adding a kernel to a system is useful because, generally, embedded applications are
comprised of various tasks, that need to be performed in a particular sequence or sched-
ule. As the number of these tasks grows, it gets very hard to organize time-sharing and
scheduling. Breaking down tasks as individual applications and implementing them
on an OS is more intuitive. Also, a kernel provides common interfaces such as file
systems, timers, etc. Xilkernel can provide these services. In our case, we use an op-
erating system because we want to implement a dynamic scheduling method for KPN
mapped on multiprocessor platforms.
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5.1.1 Xilkernel process model

Xilkernel’s units of execution are called process contexts, and scheduling is done at
process context level. There is no concept of thread groups combining to form what is
conventionally called a process. Threads/processes are manipulated using the POSIX
pthreads API.

Each process can be in different states. It can be running, orwaiting on the ready queue,
or dead; plus other states that manage timeouts and thread synchronization. The only
states that we use in our implementations are are shown in Figure 5.1:PROCNEW,
which is the state of new created processes;PROCRUN, in which a process owns the
control of the processor;PROCREADY, when a process is ready to run but waits in the
ready queue; finally,PROCDEAD, the state of killed processes. Transitions between
PROCRUN andPROCREADYare determined by the kernel scheduler.
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Figure 5.1: Process states of Xilkernel used in our implementations.

5.1.2 Scheduling model

Xilkernel supports either priority scheduling (SCHEDPRIO) or simple Round-robin
scheduling (SCHEDRR). This is a global scheduling policy, configured statically at
kernel generation time.

In SCHED RR, there is a single ready queue. Each process executes for aconfigured
time slice, then it yields the execution to the next process in the ready queue. The end
of the time slice, in MicroBlaze-based systems, is signaledby an interrupt generated
by an external timer.

In SCHEDPRIO, queues are as many as priority levels. Priority 0 is thehighest pri-
ority in the system and higher values mean lower priority. The maximum number of
priority levels is 32. Within the same priority level, the scheduling is Round-robin.
When a ready queue level is empty, it is skipped and the next level is checked for ready
processes.
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5.1.3 Building applications

An application, to run under Xilkernel, must meet these requirements:

• Source C files must include the file xmk.h as the first file among others. Defining
this flag makes available definitions and declarations necessary for Xilkernel
applications.

• The application must provide amain() function, including the kernel invocation
xilkernel main().

• The application must be linked with the Xilkernel librarylibxilkernel.a

5.2 Dynamic scheduling implementation

In order to implement dynamic scheduling of KPN nodes on our platforms, we made
some modifications to the Register Transfer Level system specification which is gen-
erated by ESPAM, presented in Figure 1.2. These modifications mainly involve the
program code for processors and the platform topology description.

The actual dynamic scheduling implementation depends on which scheduling policy is
chosen. For further information, see Section 3.3. This section firstly describes the de-
sign steps common to all of the scheduling policy, then it focuses on the modifications
needed for each different scheduling type.

5.2.1 Common implementation steps

The implementation steps described in this section are common to all of the scheduling
policy. They consist of both hardware and software modifications.

Hardware modification

While within PowerPC processors an internal timer can be used for periodic inter-
rupt signal generation, in our MicroBlaze processors this periodic signal must be gen-
erated by an external timer. For this purpose, we use the On-Chip Peripheral Bus
timer/counter (OPB TIMER). This timer can be connected to the MicroBlaze OPB bus
using the Xilinx Platform Studio GUI or, manually, modifying the MHS and MSS files.

For the MHS file, we add the lines listed in Figure 5.2. These lines include timer
instantiation, hardware version, the address range for communications with the pro-
cessor, the connection to the OPB bus and to the interrupt port of the processor. Of
course this interrupt port must be included also in the processor declaration lines of the
MHS file. The timer OPB address range must be compatible to allthe addresses of the
other peripherals (no overlapping is allowed).
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BEGIN opb_timer
PARAMETER INSTANCE = opb_timer_0
PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0xF1000000
PARAMETER C_HIGHADDR = 0xF100FFFF
BUS_INTERFACE SOPB = mb_opb_1
PORT Interrupt = MB_1_INTERRUPT

END

Figure 5.2: Lines added to the MHS file to connect an OPBTIMER to our processor.

The MSS file requires also some little modifications, as shownin Figure 5.3, in order
to include the OPBTIMER driver to the software libraries.

BEGIN DRIVER
PARAMETER DRIVER_NAME = tmrctr
PARAMETER DRIVER_VER = 1.00.b
PARAMETER HW_INSTANCE = opb_timer_0

END

Figure 5.3: Lines added to the MSS file to include an OPBTIMER to the software
libraries.

For each processor on which Xilkernel is used we have to instantiate and connect an
OPB TIMER. The frequency of the generated interrupt signal can be set within the
kernel customization.

Software modifications

The software modifications common to every scheduling policy we have tested are
listed below.

Modification of E SPAM code. We have modified ESPAM source code in order to
force processors to communicate via their communication controllers. This is why
the ESPAM tool uses two kind of inter-processor communication for MicroBlaze: Fast
Simplex Link (FSL) and communication controllers. The firstkind is faster, and uses
the communication primitive shown in Figure 5.4. But in our case, this communication
primitive may generate a deadlock. Let us assume that the timer interrupt wants to
force a context switch and the processor is blocked on writing, in the primitive written
in bold. Before managing the interrupt, the processor waitsfor the completion of
this primitive. But, since this one is an assembly instruction, and completes only if
some space is generated in the output FIFO, it will never yield the execution to the
next process. So, we force inter-process communication to go through communication
controllers, which primitives do not lead to this situation.

#define writeFSL(pos, value, len)
do {

int i;
for (i = 0; i < len; i++)

microblaze_bwrite_datafsl(((volatile int *) value)[i], pos);
} while(0)

Figure 5.4: Communication primitive for Fast Simplex Links.
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Adding the Xilkernel OS. The Xilkernel OS can be added to each processor using
XPS or modifying the MSS file. The kernel can be highly customized because modules
and parameters can be set to suit the user requirements. The modification to the MSS
file is listed below, in Figure 5.5. In line 4, the operating system is associated with
the desired processor (MB 1). In lines 5-6 the OPBTIMER is specified and the timer
interval (which determines the time slice duration) is set,in milliseconds. In lines 7-8
is defined the maximum number of pthreads and the static pthread table, namely the
set of pthreads firstly executed when the scheduler is started (in this casethreadmain).
This thread, in our applications, is the one that generates all the others which comprise
the KPN.

1 BEGIN OS
PARAMETER OS_NAME = xilkernel
PARAMETER OS_VER = 3.00.a
PARAMETER PROC_INSTANCE = MB_1

5 PARAMETER systmr_dev = opb_timer_0
PARAMETER systmr_interval = 1
PARAMETER max_pthreads = 8
PARAMETER static_pthread_table = ( (thread_main,1) )

END

Figure 5.5: Lines added to the MSS file to include the Xilkernel operating system.

Derive threads corresponding to each node of the KPN.In order to derive threads
that correspond to each node of the KPN specification of the desired application, we
use ESPAM with one-to-onemapping onto a fictitious platform, so that each processor
program code represents only the behavior of the node mappedon it.

Then, we can copy each of these program codes and create separate threads. We have
just to rename appropriately the input and output channels,according to the definitions
of the MemoryMap.hfile (see 2.5.1). Since the actual platform is different fromthe
fictitious one, the channel names are also different. An example of thread derived by
processor program code is shown in Figure 5.6. This thread represent theAbsValue
node of the Sobel algorithm. The node input and output channels are written in bold
font. Their definitions have to be changed, according to the new names of the actual
platform.
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void* thread3(void *arg)
{

int c0, c1;

// Input Arguments
tCH_27 in_0ND_3;
tCH_28 in_1ND_3;

// Output Arguments
tCH_29 out_2ND_3;

for( c0 = ceil1(3); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(3); c1 <= floor1(N ); c1 += 1 ) {

read(ND_3_IG_27_CH_27, &in_0ND_3, (sizeof(tCH_27)+(sizeof(tCH_27)%4)+3)/4);
read(ND_3_IG_28_CH_28, &in_1ND_3, (sizeof(tCH_28)+(sizeof(tCH_28)%4)+3)/4);

_absVal(in_0ND_3, in_1ND_3, &out_2ND_3) ;

write(ND_3_OG_29_CH_29, &out_2ND_3, (sizeof(tCH_29)+(sizeof(tCH_29)%4)+3)/4);
} // for c1

} // for c0
} //thread3

Figure 5.6: Thread derived from theAbsValuenode of the Sobel application.

Thread creation with Xilkernel API. The Xilkernel API provide a dedicated function
for thread creation:

int pthread_create (pthread_t* thread, pthread_attr_t* attr,
void* (*start_funct), void* param)

• Parameters:

- threadis the location to store the created thread’s identifier.

- attr is the pointer to thread creation attributes structure. If this pointer is
NULL, default settings are used.

- start funct is the start address of the function from which the thread starts
the execution.

- paramis the pointer argument to the thread function.

• Returns:

- Returns 0 and thread identifier of the created thread in*thread, on success.

- Different values if an error occurred (thread refers to an invalid location,
attr refers to invalid attributes, or if resources are unavailable to create the
thread).

In Figure 5.5 thePARAMETER staticpthreadtable defines the first thread that the
kernel will execute, in this casethreadmain, with priority 1. This is the only static
thread of our implementations. When this thread runs, it creates all the other threads,
which belong to the KPN application, with default settings.The program code of this
thread is shown in Figure 5.7. There are 5 KPN nodes mapped on this processor in this
example, so 5 thread identifiers must be declared (line 4), then the external hardware
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clock cycles counter is resetted (line 5). In lines 7-17 the actual thread creations are
performed, using the Pthread API described above. After each thread creation, the
code performs a check on the returned value ofpthreadcreate. If it is not equal to
zero, a flag (666) is set in the external memory, so that the error is signaled.

1 void* thread_main( void *dummy)
{
int i, ret;
pthread_t threadID[5];

5 int clk_num;

*clk_cntr = 0;

ret = pthread_create(&threadID[0], NULL, (void*)thread1, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM)=666;

10 ret = pthread_create(&threadID[1], NULL, (void*)thread2, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+1)=666;
ret = pthread_create(&threadID[2], NULL, (void*)thread3, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+2)=666;
ret = pthread_create(&threadID[3], NULL, (void*)thread4, NULL);

15 if (ret) *(ZBT_MEM_2+HALF_MEM+3)=666;
ret = pthread_create(&threadID[4], NULL, (void*)thread5, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+4)=666;

return 0 ;
20 }

Figure 5.7: Threadmain program code. This is a static thread which aim is to create
all the KPN threads.

5.2.2 Scheduling policy-dependent implementation steps

The software modifications listed in this section depends onthe chosen scheduling
policy. Simple Round-robin, Round-robin with yielding andpriority scheduling have
been tested on the Sobel application running on one MicroBlaze processor. Each node
of the KPN application is represented by a thread, created and scheduled using the
Xilkernel OS. As depicted in Figure 5.8, all of the inter-process communications go
through external FIFOs. There is no notion of shared global memory. At the end of
these test we choose the best scheduling solution, that willbe the basis for the rest of
the experiments.
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Figure 5.8: Test application: Sobel running on one MicroBlaze only. All of the inter-
process communications go through external FIFOs.
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5.2.3 Simple Round-robin scheduling

For this kind of scheduling policy (see 3.3) no further modifications are needed, since
no enhanced features of the OS are used. Threads are scheduled automatically by the
kernel scheduler. A context switch occur when an interrupt is generated by the external
timer. The time slice can be set by changing the valuePARAMETER systmrinterval =
1 shown in Figure 5.5.

The clock cycles required to complete execution of the applications are represented
in Figure 5.9, in function of the time slice duration. As described in Section 3.3, this
kind of scheduling policy does not match the KPN executionalsemantics, since many
threads may block much earlier than the end of the time slice.This is well proofed in
the graph, because even with the shortest time slice available (1 ms) the performances
are much worse, compared to the ones obtained with Round-robin and yielding, that
will be presented later. In the best case, with 1 ms of time slice, the execution time
is 199.914 million of clock cycles. The figure also shows thatthe relation between
execution time and time slice is almost linear. This is because, when the time slice is
set to larger values, the wasted time in blocking is also increased.
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Figure 5.9: Clock cycles measured on MB1 at the end of the execution of the Sobel
application, in function of the time slice duration.

5.2.4 Round-robin scheduling with yielding on blocking

We implemented this solution with a modification to the reading and writing primitives
created by ESPAM and included in theaux funct.hfile. The modified read primitive is
shown in Figure 5.10. The modification is highlighted in boldfont. For example, in
this primitive, when blocking occurs (the selected FIFO is empty) the thread makes a
system call with theyield() function, forcing a context switch and yielding the proces-
sor control to the next thread. Theyield() function is made available by defining the
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parametersPARAMETER enhancedfeatures = trueandPARAMETER configyield =
true in the Xilkernel definition included in the MSS file (see Figure 5.5).

#define read(pos, value, len)
do {

int i;
volatile int *isEmpty;
volatile int *inPort = (volatile int *)pos;
isEmpty = inPort + 1;
for (i = 0; i < len; i++) {

while (*isEmpty) { yield(); };
((volatile int *) value)[i] = *inPort;

}
} while(0)

Figure 5.10: Modified read primitive in order to implement Round-robin with yielding.
The modification is highlighted in bold font.

The execution time results are shown in Figure 5.11. We can see that, above 2 ms of
time slice, the execution time is constant. This is whyyield() dominates on interrupt-
driven context switch with larger time slices. In the best cases, above 2 ms of time
slice, the execution time is 92.426 million of clock cycles.This time is less than a
half of the simple Round-robin result, shown in Figure 5.9. This scheduling policy
leads to a system even faster than the one presented in Section 4.1.2, obtained with
ESPAM static scheduling. This may happen because the static scheduling generated
by ESPAM may not be optimal. Also, the control code which implements the static
scheduling and the nodes communication, in case of many-to-one mapping, generates
a larger overhead, compared to the one generated by the context switching.
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Figure 5.11: Clock cycles measured on MB1 at the end of the execution of the Sobel
application, in function of the time slice duration. The adopted scheduling policy is
Round-robin with yielding on blocking.
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5.2.5 Priority scheduling

An additional parameter must be included in the MSS Xilkernel definition: PARAM-
ETER schedtype = SCHEDPRIO to set the kernel scheduler to priority-based mode.
The method we use to exploit priority scheduling is based on the creation of an ad-
ditional thread, calledcontrol thread, that is fired every time all the threads of the
application are blocked.

Startup. During the startup, as represented in Figure 5.12, the application threads are
set to the highest priority level (1) while the control thread is put in the middle-priority
level (2). Only the application threads are able to run in this situation, because they
have higher priority.
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Figure 5.12: Priority assignment at startup (a): application threads have the highest
priority. When one thread blocks, its priority is decreased(b).

Application execution. The next steps apply concepts described in Section 3.3, to
minimize the context switch number. When one application thread blocks, it first stores
the address of the FIFO on which it is blocked. This address will be used by the control
thread to check if the thread is able to run or not. Then its priority is decreased (see
Figure 5.12(b)), and finally it yields to the next thread in the high-priority level. All of
these operations are implemented in the read and write primitives. The modified read
primitive is shown in Figure 5.13.

- The addressisEmptyis stored in the global arrayblk fifo, accessible from the
control thread. The position in the array is determined by the thread index.

- The current thread priority is decreased using the instructionpthreadsetschedparam()
provided by the Xilkernel POSIX API.

- The processor control is yielded withyield().

Control thread execution. The control thread is fired only when all the others are in
the low-priority level, as depicted in Figure 5.14(a). The Ccode of this thread is listed
in Figure 5.15. For every alive thread it checks the status ofthe FIFO which caused
the blocking of the thread. If the FIFO is no more empty (in case of blocking read) or
no more full (in case of blocking write), it promotes the corresponding thread to the
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#define read(pos, value, len)
do {

int i;
volatile int *isEmpty;
volatile int *inPort = (volatile int *)pos;
isEmpty = inPort + 1;
for (i = 0; i < len; i++) {

while (*isEmpty) {
blk_fifo[thread_index]=isEmpty;
pthread_setschedparam(threadID[thread_index],0,&lo_prio_spar); yield();

}
((volatile int *) value)[i] = *inPort;

}
} while(0)

Figure 5.13: Modified read primitive in order to implement priority decreasing in case
of blocking.

highest level of priority, as depicted in Figure 5.14(b). With this solution there is no
more possibility of yielding the processor control to a thread that is still blocked, an
issue described in Section 3.3.
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Figure 5.14: Control thread is fired when all of the other threads are in the lowest
priority level (a). In (b), control thread promotes only threads that are no more blocked,
checking their FIFO status.

while(1)
{

for (i=0; i<5; i++)
if (alive[i]==1)

if (*blk_fifo[i]==0)
pthread_setschedparam(threadID[i], 0, &hi_prio_spar);

yield();
}

Figure 5.15: Control thread code.

Although this seems to be a more efficient way of scheduling implementeation, the test
results, on the Sobel application, gave us no improvements,compared to the solution
of Round-robin with yielding. The total execution time, in the best case, is 101.388
millions of clock cycles. This result is affected by the intrinsic slowness of priority
increasing and decreasing. We measured it and it takes almost 800 clock cycles. What
may cause this slowness could be that, in order to change priority, the kernel scheduler
must be invoked. This leads to another context switch and time loss. However, this



50 Implementation using Xilkernel

result is application-dependent. A different application, with a lot of threads, most of
them often blocked, may get performance improvements by using this method.

5.2.6 Test result discussion

The test results are summarized in Table 5.1. ThePerformancecolumn shows the total
execution time, in millions of clock cycles (M c.c.), for each scheduling method. The
Comparison with static schedulingis made with the corresponding example, described
in Section 4.1.2. The last column shows the OS memory footprint, for each scheduling
method.

Scheduling Method Performance Comparison with static scheduling OS footprint

Round-robin 199.914 M c.c. +90.798 M c.c. 7.836 kB
Round-robin with yield() 92.426 M c.c. -16.69 M c.c. 9.888 kB

Priority 101.388 M c.c. -7.728 M c.c. 14.084 kB

Table 5.1: Test results comparison.

With dynamic scheduling, every time the processor control is passed from a thread to
another, some time is wasted in context saving and restoring. We measured this con-
text switch time, in the Xilkernel OS example, in 912 clock cycles. Although this con-
text switch overhead occurs, Table 5.1 shows that Round-robin with yield and Priority
scheduling are faster than the static scheduling example described in Section 4.1.2.
This means that the context switch overhead generated by thedynamic scheduling is
overridden by the higher efficiency of the threaded program code. This may be due to
the following reasons:

- The static scheduling generated by ESPAM may not be optimal. The dynamic
scheduling may find a better order of execution of the KPN nodes.

- The control code for KPN node scheduling and communications is more efficient
when the program code is divided in threads.

With this first test of multi-threading dynamic scheduling methods we found out that
Round-robin scheduling with yielding on blocking is the most efficient way, and it
is quite easily implemented. So, we choose to use this kind ofscheduling for the
rest of our tests. The memory occupation overhead of the operating system, with this
scheduling method implemented, is 9.888 kB. This value is obtained by subtracting
the text occupation of the compiled application without OS (6.404 kB) from the text
memory occupation with Xilkernel (16.292 kB). Thetext memory occupation is not
dependent on the maximum number of threads supported by the OS. This number is
defined in the MSS file modification shown in Figure 5.5. By contrast, for each extra
thread 1.2 kB ofstackmemory are reserved. Thus, the total memory occupation is
dependent on the maximum number of threads.
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5.3 Advanced examples

This section describes some of the several examples we made for our dynamic schedul-
ing approach. The first deals with multiple applications, the second with multiple in-
stances of the Sobel application, running on the same platform.

5.3.1 M-JPEG and Sobel mapped on the same platform

The aim of this test is to verify if dynamic scheduling can lead to performance improve-
ment when multiple applications are mapped on the same platform. System topology
and mapping of this example is shown in Figure 5.16. This mapping was chosen in
order to balance the load on each processor and prevent contention on communication
with external memories (each processor is attached to a single bank of ZBT RAM).
Nodes likeVideoIn, VideoOut, ReadPixelandWritePixelare mapped onto different
processors.

Let us focus, for instance, on the MB3 processor. If the M-JPEG application was the
only one mapped onto the system, only theQ node would be mapped on it. In this
context, when theQ node blocks, all the time is spent in waiting new data to process
or place to write. The aim of mapping multiple applications on the same platform is
that this time can be exploited by an additional thread, in this exampleGradient Y, so
less time is wasted.

As described in Chapter 4, the execution of the M-JPEG and Sobel applications re-
quires respectively 36.863 and 29.850 millions of clock cycles, when each of these
applications is mapped alone in a five-processor system. This new platform, where
Sobel and M-JPEG applications are mapped together, completes the execution of both
tasks in 59.231 millions of clock cycles. If executed in sequence, without interleaving,
these two applications would require(36.863 + 29.850) = 66.713 M clock cycles. So,
this mapping leads to performance improvements (10%) because interleaving occur.
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Figure 5.16: System topology and mapping of the M-JPEG an Sobel applications run-
ning on the same platform. The thick arrows represent a communication link with
external memories. The thin lines represent one or more FIFOchannels.
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5.3.2 Multiple instances of Sobel application on the same platform

An example similar to the mapping of multiple applications on the same platform is
when we consider multiple instances of the same application. In this section we present
some implementations of this concept.

3 Sobel instances on 3 processors

The mapping considered for this example is shown in Figure 5.17. It is inspired by
pipeline concepts, though we cannot define it as a pipeline. On each processor a source
node (ReadPixel) is mapped, so that, at startup time, at least one of the nodesof every
processor can run. In factReadPixeljust reads data from the external memory, so it
cannot be blocked at startup.

This platform processes 3 images of 450x275 pixels in 82.594M clock cycles (27.531
M per image).
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Figure 5.17: Mapping of 3 Sobel instances running on 3 processors. This mapping is
inspired by pipeline concepts.

3 Sobel instances on 5 processors

The same concept is applied to this example, strictly related to the previous one. As
shown in Figure 5.18, on each processor 3 nodes are mapped. Wecould not map 5
Sobel instances on this platform due to lack of memory (this system uses almost 100%
of FPGA total BRAM). The 3 images are computed in 60.514 M clock cycles (20.171
M per image).
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Figure 5.18: Mapping of 3 Sobel instances running on 5 processors.

Throughput analysis of interleaving applications

In Figure 5.19 the throughput is represented, obtained withour tests and normalized to
the smallest value, of the platforms listed below:

• 1 Sobel running on 1 processor (92.426 M c.c. per image) (normalized through-
put=1)

• 3 Sobel instances running on 3 processors (27.531 M c.c. per image)(normalized
throughput=3.36)

• 3 Sobel instances running on 5 processors (20.171 M c.c. per image)(normalized
throughput=4.59)

It is interesting to compare these results with the ones thatwould be obtained just by
instantiating the same platform (1 Sobel running on 1 processor, with operating sys-
tem) for 1, 3, and 5 times. In this case the applications run independently on separate
processors, so the throughput gain is linear. Figure 5.20 shows this concept. Those
values are theoretically determined for the platforms listed below:

• 1 x (1 Sobel running on 1 processor) (normalized throughput=1)

• 3 x (1 Sobel running on 1 processor) (normalized throughput=3)

• 5 x (1 Sobel running on 1 processor) (normalized throughput=5)
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Figure 5.19: Normalized throughput in function of the number of the processors.
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Figure 5.20: Normalized throughput in function of the number of the processors, just
by instantiating the platform, which maps 1 Sobel application on 1 processor, for 1, 3,
and 5 times.

Combining the two previous graphs, as shown in Figure 5.21, we can see that, in the
case of three processors, the interleaving execution leadsto throughput improvement
(3.36 instead of 3, 12% of speedup). This is not a general result, since speedup, de-
pending on the application, may be higher or lower. For instance, in the case of five
processors, interleaving execution is worse than the separate execution. Unfortunately,
the comparison between interleaving applications and separate execution is not com-
pletely fair in the 5-processor case. This is because, due tolack of memory, we were
not able to synthesize 5 threaded Sobel instances running on5 MicroBlaze. Actually,



5.3 Advanced examples 55

in the 5-processor case of Figure 5.21 we compare 5 separate execution Sobel instances
with 3 interleaving Sobel instances. This may be the reason why the interleaving exe-
cution is slower than the separate one.
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Figure 5.21: Comparison of normalized throughput in function of the number of the
processors. The blue line represents interleaving execution, the dashed red one separate
execution.
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Chapter 6
Implementation using FreeRTOS

FreeRTOS is an alternative operating system that we tested in order to make compar-
isons with the implementation with Xilkernel. In this chapter we describe the main
features of this operating system and we present the obtained results.

6.1 Introduction to FreeRTOS

FreeRTOS.org [17] is an open-source, real-time kernel, free to download. It can be
used in commercial applications too. We tested the 4.7.2 version of this operating sys-
tem. Several ports are available, for many processor architectures and development
tools. Most important for our examples, it does exist a port for the MicroBlaze archi-
tecture.

FreeRTOS features include:

• Kernel support for preemptive (the scheduler can suspend tasks) or cooperative
(tasks must be programmed to yield when they do not need system resources).

• The OS is designed to be small, simple and easy to use.

• The code structure is very portable, predominantly writtenin C; the source code
is contained in only 3 C files.

• It is very scalable.

Although this OS does not support Pthreads API, its API is relatively easy to use and
understand. The kernel provides also several kind of inter-process communication,
like queues, binary and counting semaphores, mutexes and recursive mutexes. All
these features are not used in our implementations.
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6.1.1 FreeRTOS fundamentals

FreeRTOS allows a real time application to be structured as aset of autonomous tasks.
Only one task within the application can be executing at any point in time and the
real time scheduler is responsible for deciding which task this should be. Each task
is provided with its own stack. When the task is swapped out the execution context is
saved to this stack, so it can be restored safely when the sametask is (later) swapped
back in.

A task can be in one of the following states:

- Running. When a task is actually utilizing the processor, it is said tobe in the
Running state.

- Ready. Ready tasks are those that are able to be executed (not blocked or sus-
pended), but are not currently executing because a different task of higher or
equal priority is already in the Running state.

- Blocked. A task is blocked when it waits for either a temporal or external event.

- Suspended.In this state tasks are also not available for scheduling. Task can
enter or exit the Suspended state only with explicit API functions, they cannot
wait for temporal or external events.

All of these states and state transitions are depicted in Figure 6.1.
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Figure 6.1: Task state diagram supported by FreeRTOS, for alive tasks.

In FreeRTOS, the structure of a task should have the structure shown in Figure 6.2.
They are implemented as continuous loops, because they should never return. Finally,
task are created usingvTaskCreate()and deleted usingvTaskDelete().

void vATaskFunction( void *pvParameters )
{

for( ; ; )
{

-- Task application code here. --
}

}

Figure 6.2: Basic thread structure when using Xilkernel.
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6.1.2 Source code description

The basic source code of the FreeRTOS kernel is included in only three files:tasks.c
includes the core of the kernel scheduler, task creation anddeletion, task blocking and
suspending, setting thread priority, etc;list.c defines list implementation used by the
scheduler; finally,queue.cimplements queues used by the scheduler.

A couple of additional files are needed for porting purposes:port.cdefines architecture-
dependent functions like Timer Interrupt Setup, Stack Initialization, Interrupt Service
Routine and Timer Interrupt handling;portasm.sincludes assembly implementations
of some of these functions, to achieve code efficiency. An important example of such a
function is presented in Figure 6.3, which shows the processor context saving. Firstly,
some space is created in the stack, for the execution context. Then the MSR (Machine
Status Register) and all general registers (r30-r1) are saved. Finally, the top of stack
is stored in the current TCB (Task Control Block), which is the structure used by the
kernel for task handling.

.macro portSAVE_CONTEXT
/* Make room for the context on the stack. */
addik r1, r1, -132
/* Save r31 so it can then be used. */
swi r31, r1, 4
/* Copy the msr into r31 - this is stacked later. */
mfs r31, rmsr
/* Stack general registers. */
swi r30, r1, 12
swi r29, r1, 16
swi r28, r1, 20
swi r27, r1, 24
swi r26, r1, 28
swi r25, r1, 32
swi r24, r1, 36
swi r23, r1, 40
swi r22, r1, 44
swi r21, r1, 48
swi r20, r1, 52
swi r19, r1, 56
swi r18, r1, 60
swi r17, r1, 64
swi r16, r1, 68
swi r15, r1, 72
swi r13, r1, 80
swi r12, r1, 84
swi r11, r1, 88
swi r10, r1, 92
swi r9, r1, 96
swi r8, r1, 100
swi r7, r1, 104
swi r6, r1, 108
swi r5, r1, 112
swi r4, r1, 116
swi r3, r1, 120
swi r2, r1, 124
/* Stack the critical section nesting value. */
lwi r3, r0, uxCriticalNesting
swi r3, r1, 128
/* Save the top of stack value to the TCB. */
lwi r3, r0, pxCurrentTCB
sw r1, r0, r3

Figure 6.3: Context saving defined inportasm.s.
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6.2 Implementation example and results

In order to test and evaluate the performances of this operating system in comparison
with Xilkernel, we implemented the example of three Sobel instances running on three
MicroBlaze. The corresponding mapping is shown in Figure 6.4. The implemented
scheduling method is Round-robin with yielding on blocking.
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Figure 6.4: Mapping of 3 Sobel instances running on 3 processors.

Some modifications are needed when using FreeRTOS with Round-robin with yield-
ing on blocking, because FreeRTOS is not integrated in the XPS framework. For
instance, the time slice duration must be configured using the FreeRTOSconfig.hfile.
In Figure 6.5 2 lines are listed, in which the CPU clock frequency and interrupt tick
frequency are defined. During kernel startup, the timer is initialized so that it generates
an interrupt everyn clock cycles, wheren = CPU FREQ/TICK FREQ.

#define configCPU_CLOCK_HZ ( ( unsigned portLONG ) 100000000 )
#define configTICK_RATE_HZ ( ( portTickType ) 1000 )

Figure 6.5: Definition of CPU clock frequency and interrupt tick frequency inFreeR-
TOSconfig.h.

Furthermore, the reading and writing primitives must be compatible with FreeRTOS
API. An example of reading primitive is listed in Figure 6.6.

#define read(pos, value, len)
do {

int i;
volatile int *isEmpty;
volatile int *inPort = (volatile int *)pos;
isEmpty = inPort + 1;
for (i = 0; i < len; i++) {

while (*isEmpty) { TASKyield(); }
((volatile int *) value)[i] = *inPort;

}
} while(0)

Figure 6.6: Modified read primitive in order to implement Round-robin with yielding
with FreeRTOS. The modification is highlighted in bold font.
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With FreeRTOS, the platform described in Figure 6.4 generates 3 output images in
80.413 M of clock cycles (26.804 M c.c. per image). This result is slightly better
than the one obtained with Xilkernel, as shown in Figure 6.7.The FreeRTOS result is
represented with a circle. The memory occupation overhead of this operating system
is 10.606 kB.
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Figure 6.7: Mapping of 3 Sobel instances running on 3 processors.

These results lead to our final conclusions on the FreeRTOS kernel, which are listed
below:

+ This operating system is slightly faster (at least, in our examples) than Xilkernel.

+ The source code is very simple and understandable, it can bepossibly fit to our
aim.

- The memory footprint is almost 10% larger than the Xilkernel one.
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Chapter 7
Tutorial on dynamically scheduled
system design

This chapter describes step-by-step the implementation ofa dynamically scheduled
system, starting from the C source code and ending with the final XPS project. For
the sake of clarity, this tutorial shows the simplest of our examples, namely the Sobel
application running onto only one MicroBlaze. The operating system used in this
example is Xilkernel. The described methodology can be simply used also for more
complicated cases, with few modifications.

The first section describes how to generate a multiprocessorsystem using PNGEN and
ESPAM tool chain. Then, Section 7.2 includes all of the few manual modifications
required for the correctness of the output system. Section 7.3 introduces the MHS,
MSS and program code modifications needed for the dynamic scheduling of the KPN
application which runs onto our system. The last section describes how to export the
modified multiprocessor system in Xilinx Platform Studio and how to generate the
final bitstream and get results using a host processor program.

7.1 XPS system generation using PNGEN and ESPAM

The starting point of our tool chain is a folder, as shown in Figure 7.1, which includes
the items listed below:

- sequential folderincludes the sequential specification of the application, and all
the functions needed for the correct execution of the program.

- Makefile simplifies the running of different tools in the ESPAM design flow.

- sobel.pla is thePlatform Specificationused as input for the ESPAM tool (see
Figure 1.2).

- sobel.mapis theMapping Specificationfile, another ESPAM tool input, which
describes the KPN node assignment to each processor of the system.
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<SOBEL_DEMO>
|--- sequential/: sequential application program code
|---------- car_gray.jpg
|---------- imageIO.c
|---------- imageIO.h
|---------- Makefile
|---------- sobel.c
|---------- sobel_funct.c
|---------- sobel_funct.h
|---------- sources
|--- Makefile
|--- sobel.pla
|--- sobel.map

Figure 7.1: Starting folder of the PNGEN and ESPAM tool chain, in the Sobel applica-
tion case.

The main C source code of the Sobel application can be found inAppendix A. Thanks
to the Makefile included in the folder, converting the sequential application to the KPN,
parallel specification is a matter of one command:

make par FILE_NAME=sobel

This command starts the convertion of the sequential application to a KPN, using the
PNGEN tool. The specifiedFILE NAME is the main C source file of the application,
in this casesobel(without the file extension). Several operations are performed on the
sequential program file, such as C parsing in SUIF, dependence analysis (as described
in [1]), and finally the convertion from the .yaml PN format tothe ESPAM specific
XML format. Actually the output (sobel.kpn) is a XML file which describes theAp-
plication Specification, using the KPN model of computation, fully compatible with
ESPAM. This output file is copied in theSOBELDEMO folder.

Once theApplication Specificationis generated, we must adapt thesobel.plaandso-
bel.mapfile to fit the application requirements. Firstly we have to decide the number
of processors (in this case, there is only one MicroBlaze) and the system topology. The
final Platform Specificationfile is shown in Figure 7.2.

In line 3-5, one MicroBlaze processor is instantiated, witha data memory of 65 kB
and a program memory of 32 kB. Its OPB port is named asOPB 1. In lines 7-13 we
include two ZBT memory controllers in the system, specifying the size of the attached
memories (in this case, 1 MB). In lines 15-19 these ZBT controllers are connected
to the OPB bus of the processor, using a link. If no communication infrastructure is
specified, as in this case, the default choice is a point-to-point network.

When the platform topology is specified, we can decide the mapping of the KPN nodes
that comprise the application onto the processors. In this case only one processor is
instantiated, so all of the 5 nodes of the application are mapped on it. Thesobel.map
file is shown in Figure 7.3.

Now all the input specifications required by the ESPAM tool are provided, so the next
step is running the tool itself. Using the Makefile, this is also a matter of only one
command:

make espam FILE_NAME=sobel
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1 <platform name="myPlatform">

<processor name="MB_1" type="MB" data_memory="65536" program_memory="32768">
<port name="OPB_1" type="OPBPort"/>

5 </processor>

<peripheral name="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port name="IO_1" type="OPBPort"/>

</peripheral>
10

<peripheral name="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">
<port name="IO_2" type="OPBPort"/>

</peripheral>

15 <link name="mb_opb_1">
<resource name="MB_1" port="OPB_1"/>
<resource name="ZBT_CTRL_1" port="IO_1"/>
<resource name="ZBT_CTRL_2" port="IO_2"/>

</link>
20

</platform>

Figure 7.2:sobel.pla: finalPlatform Specificationfile for the Sobel application running
on only one MicroBlaze.

<mapping name="myMapping">

<processor name="MB_1">
<process name="ND_0" />
<process name="ND_1" />
<process name="ND_2" />
<process name="ND_3" />
<process name="ND_4" />

</processor>

</mapping>

Figure 7.3:sobel.map: Mapping Specificationfile for the Sobel application. All the
nodes are mapped on MicroBlaze processorMB 1.

This command implies several operations, as listed in the Makefile:

• The ESPAM tool runs, using the options shown in Figure 7.4:

/espam --platform sobel.pla --adg sobel.kpn --mapping sobel.map
--xps --libxps <ESPAM_LIBXPS> --debugger

Figure 7.4: Default ESPAM tool options, set in the Makefile.

- - platform: specifies thePlatform Specificationfile, in this casesobel.pla

- - adg: indicates theApplication Specificationfile (sobel.kpn)

- - mapping: refers to theMapping Specificationfile

- - xps: force the tool to generate all the necessary files of a XPS project

- - libxps: specifies the path of the library which stores predefined compo-
nents or files common to all the ESPAM projects, such as custom IP cores,
the UCF files and some other optional files required by XPS
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- - debugger: implies the generation of debugging components (for instance,
the hardware clock cycle counters) by the ESPAM tool

• Finally, thesobel/code/functcode folder is generated. All the functions and
headers used by the initial sequential application are stored in here.

After running the ESPAM tool, a new directory is created within the original project
folder, as shown in Figure 7.5. This new directory includes all the files which comprise
the XPS project suite described in Section 2.5.1, such assystem.xmp, system.mhsand
system.mss.

<SOBEL_DEMO>
|--- sobel/: XPS project suite folder
|--- parallel/: contains the files used for parallel application specification
|--- sequential/: sequential application program code
|---------- car_gray.jpg
|---------- imageIO.c
|---------- imageIO.h
|---------- Makefile
|---------- sobel.c
|---------- sobel_funct.c
|---------- sobel_funct.h
|---------- sources
|--- Makefile
|--- sobel.pla
|--- sobel.map
|--- sobel.kpn

Figure 7.5: Final project folder, obtained using the PNGEN and ESPAM tool chain, in
the Sobel application case.

7.2 Manual modifications

A few manual modifications are compulsory for the correctness of our multiprocessor
system execution. They include both hardware and software modifications, but they do
not require more than few minutes. The changes on hardware and software parts are
listed in the following sections.

7.2.1 Hardware modification

The only required hardware modification is the change of FIFOsizes. The size must be
increased to the next upper power of two. This can be achievedby changing the FIFO
size parameter in the MHS file, for all of the FIFO channels, asshown in Figure 7.6.
The FIFO sizes can also be set to higher values if we want better performances, since
larger FIFOs lead to less read/write blocking.

7.2.2 Software modifications

Some software modifications are also required, and they involve mainly the input and
output functions. In this aspect the behavior of sequentialapplication compared to our
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BEGIN fsl_v20
PARAMETER HW_VER = 2.00.a
PARAMETER INSTANCE = FIFO_MB_1_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

Figure 7.6: How to increase FIFO sizes to the next upper powerof two.

multiprocessor systems is very different. A sequential application, for instance, can
read the input data from a file. In our embedded systems there is no notion of files and
the input data is read directly from the external ZBT memories.

In the case of the Sobel application, theReadPixelfunction is modified as shown in
Figure 7.7. The commented instructions, in lines 2-12, represent the reading from a
file, used by the sequential application. In lines 14 and 15, highlighted in bold font,
the reading is implemented via a pointer that access to the external memory, where
the starting image has been initialized. The modifications of the WritePixelfunction
is very similar. This methodology is general, and all the input and output functions
must be implemented using pointers that access data put in the external memories. In
our case, these functions are implemented in thesobelfunct.cfile. Therefore, this file
must includeMemoryMap.h, in which the definition of ZBT memory address and all
the other addressable components of the system are provided.

1 void readPixel( int *output ) {
/*
int pp;
static FILE *fh = NULL;

5
if (fh == NULL) {

fh = mrOpen("car_gray.B");
}

10 pp = mGetc(fh);

*output = pp;

*/

static int addr = 0;
15 *output = *(ZBT_MEM_1+(addr++));

}

Figure 7.7: Modifications of the readPixel function.

After these few modifications, the system is ready to be synthesized and the program
is ready to be compiled. At this step of the design, the scheduling of KPN nodes is
set at compile time by the ESPAM tool. In the following section we will describe the
further modifications which are required to implement dynamic scheduling.
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7.3 Modifications for dynamic scheduling implementa-
tion

In order to implement the dynamic scheduling of the KPN nodeswhich comprise the
application, some further modifications are needed. They include MHS, MSS and
program code modifications, as listed below:

• MHS modifications. For the sake of clarity, the final MHS file of this example
is provided in Appendix B. As described in Section 5.2.1, in lines 704-711 an
OPB timer is instantiated. This timer is required for the periodic interrupt tick
generation. Its bus interface is connected to MicroBlaze 1 (MB 1) OPB bus and
its output signal,MB 1 INTERRUPT, is linked to theINTERRUPTport of MB 1
(see line 91).

• MSS modifications.The final MSS file is included in Appendix C.

In lines 4-14, the Xilkernel operating system is instantiated, and its parameters
are set:

- The processor which uses the OS isMB 1.

- The system timer device isopb timer 0.

- EnhancedfeaturesandConfigyieldare required to use theyield()function.

- The system timer interval is set to 500 ms, a huge value, so that the switch-
ing between threads is done only by theyield() function. This is the best
solution for this application.

- The static thread table is defined. The only static thread, created at kernel
startup, isthreadmain.

Lines 284-288 are added to the MSS file to generate the driver libraries corre-
sponding to the OPB timer.

• Program code modifications.We need to modify the main program code gen-
erated by ESPAM and the communication primitives, which are included in the
aux funct.hfile.

The final main program code is reported in Appendix D. This fileis structured
as follows:

- Some header files are compulsory included, such asxmk.h, os config.h,
pthread.h. These headers are related to the kernel library generation.

- The code of threads which represent the KPN nodes of our application is
listed. For further information on how we derive the code of each KPN
node, see Section 5.2.1. We must must be sure that the input and output
FIFOs have the correct name, corresponding to the actual generated plat-
form.



7.4 Generate the bitstream and collect results 69

- The threadmain is declared. This thread is the only static one, and it is
created at kernel startup. The aim ofthreadmain is to create all of the
other threads which comprise the KPN application.

- Themainprogram only starts the kernel scheduler, using thexilkernel main()
instruction.

The communication primitives, included inaux funct.h, are modified using the
concepts explained in Section 5.2.4. For instance, when thereading primitive is
used and blocking occur, the code must invoke theyield() function, in order to
pass immediately the processor control to the next thread inthe ready queue.

7.4 Generate the bitstream and collect results

7.4.1 Bitstream generation

The system stored in thesobeldirectory of Figure 7.5 is ready to be imported into
XPS. We just have to double-click on thesystem.xmpfile. Since ESPAM was designed
basing on XPS version 6.3, a simple upgrading wizard will be automatically started if
the XPS used version is higher (as in our case, since we used XPS version 9.1). All of
the default options within this upgrading wizard are set properly.

Since the Xilkernel OS is used in our project, the user must link Xilkernel libraries
with the application during the compilation. This is done bya simple modification
of the compiler options. Go to the “Project Information Area” on the top-left corner
of the screen, select “Applications”. Then double-click on“Compiler Options”. The
corresponding window will pop up. Click on “Paths and Options”, then in “Libraries
to link against (-l)” writexilkernel. Now the project is ready to be synthesized and
compiled.

The synthesis process includes the steps listed below:

• Generate netlist.The netlist is generated using the commandHardware - Gen-
erate Netlist. This forces the XPS Platform Generator (Platgen) to read the de-
sign platform information included in the MHS file along withthe the IP at-
tribute settings available from the respective Microprocessor Peripheral Defini-
tion (MPD) files. Platgen produces as output a Hardware Description Language
(HDL) file and a system netlist file in NGC format.

• Generate Bitstream.The FPGA-programming bitstream is generated using the
NGC netlist file as input by theXflow tool. The bitstream is stored in theso-
bel/implementationfolder.

All these commands can be found in the menu optionHardware or in the tool bar.

The compilation process is done using these commands, placed in the menu option
Software or in the tool bar:
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• Generate Libraries. This command uses the library building tool (Libgen), that
reads the corresponding MSS file and generates device drivers, libraries, input-
output configuration, and interrupt handlers.

• Build All User Applications. Using the cross-compilermb-gcc, this command
generates one ELF file for each processor in the system. Each ELF file is the
result of the program code compilation.

Finally, the hardware and software flow must be merged. This is done using the com-
mandUpdate Bitstream, which can be found in the menu optionDevice Configura-
tion. However, if the above commands have not been executed, thiscommand will
invoke them one by one.
The final bitstream is stored insobel/implementation/download.bit.

7.4.2 Using a host processor program to get results

In order to download the final bitstream and check the output of the FPGA system, we
use a software program that runs on an outside host processor. This software program
is a Microsoft Visual C++ 6.0 project. It uses the ADM-XRC-IIApplication Pro-
gramming Interface to initialize the device and control theinput-output of the system.
Before running the program, the actualsobel/implementation/download.bitfile has to
be copied in the C++ program folder. For the Sobel application, the result correctness
may be simply verified by viewing the jpeg output image.

The main host processor program is shown in Figure 7.8. The bitstream downloading
step is omitted.

- In lines 15-25 the buffer (which will be loaded in the external memory space)
is initialized with 0 and the input image is put in the location corresponding to
the first memory bank. This is because the “source” node of theKPN of this
example is linked to this memory bank.

- In lines 27-40 the buffer is actually loaded in the externalZBT memories, so that
the input data is made available to the FPGA. This step completes the system
initialization.

- In lines 50-60 the program checks if the FPGA system has finished the process-
ing phase. When this condition is true, it reads the clock cycle counter value.

- In lines 65-75 the content of ZBTMEM 2, which represents the FPGA system
output, is saved in the buffer.

- In lines 77-89 the execution time, measured by the clock cycle counter connected
to MB 1, is displayed. Then, the output image is stored in thecar sobel.rawfile,
and converted to a jpeg image using an external tool.
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1 void FPGA::MY_FUNCTION()
{

UINT bank_6 = 5*bankSize;
UINT bank_5 = 4*bankSize;

5 UINT bank_4 = 3*bankSize;
UINT bank_3 = 2*bankSize;
UINT bank_2 = 1*bankSize;
UINT bank_1 = 0;

10 //-----------------------------------------------------------------------------------------
// Initialization
system("convert car_gray.jpg -interlace partition RGB:car");

fh1 = mropen("car.B");
15

// All unused memory banks will be initialized with 0
for (int n=0; n<6*bankSize; n++) {

rambuf[n] = 0x00;
}

20
// The input data to be processed
for (n=0; n<450*275; n++) {

rambuf[bank_1+n] = (DWORD)bgetc(fh1);
}

25
mclose(fh1);

// write data into to the memory Banks of the FPGA board
fpgaSpace[COMMAND_REG] = cmd_Initialize; // initialise memory mode + banks access from host (Pentium)

30 fpgaSpace[COMMAND_REG];

//------------------ src dest size mode
status = writeSSRAM(rambuf , bank_1, bankSize, dma);
status = writeSSRAM(rambuf+bankSize , bank_2, bankSize, dma);

35 status = writeSSRAM(rambuf+2*bankSize , bank_3, bankSize, dma);
status = writeSSRAM(rambuf+3*bankSize , bank_4, bankSize, dma);
status = writeSSRAM(rambuf+4*bankSize , bank_5, bankSize, dma);
status = writeSSRAM(rambuf+5*bankSize , bank_6, bankSize, dma);
if (status != ADMXRC2_SUCCESS) {

40 printf("exiting n");
exit(0);

}
// Initialization DONE

45 //================================================================================
// Execution Steps

WORD temp;

50 // Check whether the system has finished processing and
// read the counter register (execution time)
while(1){

temp = fpgaSpace[STATUS_REG];
if (temp == stat_Finished) { // read status

55 DWORD clock_num = fpgaSpace[COUNTER_REG]; // read the counter
printf("Clk cycles measured in ZBT_MAIN = %d n", clock_num);
break;

}
}

60 // Execution Steps Done

//================================================================================
// read data from the FPGA board

65 fpgaSpace[COMMAND_REG] = cmd_Read; // read memory mode + banks access from the host (Pentium)
fpgaSpace[COMMAND_REG];

// memory bank 2 is moved to rambuf array
//---------------- dest src size mode

70 status = readSSRAM(rambuf+bankSize, bank_2, bankSize, dma);

if (status != ADMXRC2_SUCCESS) {
printf("Error: failed to read SSRAM n");
exit(1);

75 }
// Memory read DONE
//==============================================================================
printf("CC measured in MB1 = %d n", rambuf[bank_2 + HALF_MEM]);

80 // Store the raw image
fh4 = mwopen("car_sobel.raw");

for (int k = 0; k < 448*273; k++) {
bputc(rambuf[bank_2+k],fh4);

85 }

mclose(fh4);
system("convert -depth 8 -size 448x273 gray:car_sobel.raw car_sobel.jpg");
return;

90 }

Figure 7.8: Host processor main program code.
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Chapter 8
Conclusions and future work

8.1 Conclusions

This thesis project was focused on the development of a dynamic scheduling method
for Kahn Process Networks nodes onto multiprocessor systems generated by ESPAM,
in the context ofmany-to-onemapping. Such a method can be useful when we want
to map intrinsic dynamic applications, multiple applications or several instances of the
same application in the design.

Firstly we introduced the ESPAM tool design methodology, and how it can close the
Implementation Gapbetween System-level specification and RTL specification auto-
matically. Our tool allows efficient and systematic mappingof streaming and multime-
dia applications on a multiprocessor system. The aim of thisproject was to improve the
ESPAM tool, allowing system designers to exploit advanced software solutions, based
on dynamic scheduling of the KPN nodes which comprise the application(s).

The project goal was achieved following the basic steps listed below:

• Adding an operating system to each processor, if more than one node is mapped
on it (many-to-onemapping).

• Extract program threads that represent all of the KPN nodes which comprise the
application(s).

• Create, run and schedule these threads, using operating system API (three schedul-
ing strategies have been tested).

Performing several tests, we found out that the Round-robinscheduling with yielding
on blocking is the one that matches more efficiently the KPN behavior. Altough it is
very simple to implement, it is effective for dynamic KPN nodes scheduling.

The second aim of this project was the performances comparison between two different
operating systems, namely Xilkernel and FreeRTOS. From theimplementation results,
we can summarize the different OS features as follows.
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• Xilkernel

+ With the kernel configuration we adopted, the memory footprint is only
9.9 kB. Actually, the Round-robin with yielding schedulingpolicy requires
only one advanced feature (the yield function). All the restare default
settings, that lead to this small memory footprint size.

+ This operating system is very easy to implement on our systems because
it is highly integrated with the Xilinx Platform Studio framework. Adding
and setting this OS is a matter of few lines in the MSS project file.

- Custom kernel modifications are less easy than with FreeRTOS.

- The actual test performances are slightly worse than the FreeRTOS ones.

• FreeRTOS

+ Three source code files contain all the basic kernel functionalities. They are
predominantly written in C and are well understandable, so custom kernel
modifications are easy to make.

+ This operating system performance is slightly better thanthe Xilkernel.

- The memory footprint is almost 10% larger than the Xilkernel one.

- Adding this operating system in our projects is more trickybecause FreeR-
TOS is not integrated in Xilinx Platform Studio framework.

These Operating Systems features are summarized in the following table:

Operating System Performance Complexity Kernel customization Memory footprint

Xilkernel slightly slower lower harder 9.888 kB
FreeRTOS slightly faster higher easier 10.606 kB

Table 8.1: Operating Systems features comparison.

So, when coosing an operating system to add to a processor, a trade-off decision has to
be made. Xilkernel is easy to implement and gives a slightly smaller overhead in terms
of memory occupation, while FreeRTOS is more customizable and slightly faster.

8.2 Future work

This work on dynamic scheduling implementation can be continued in several aspects.

The first one can be a custom kernel modification in order to fit our goal. The solution
we presented in Section 5.2.5 to avoid useless context switches is based on priority
scheduling and an additional control thread, but the performances are not optimal, be-
cause of the slowness in priority increasing and decreasing. Instead of using a control
thread that checks if threads are able to run, the global kernel scheduler can include a
similar function. Before scheduling a thread, it can scan ifthis thread is still blocked
on a FIFO.
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This kernel modification is not based on priorities, thus we can assume that it could
be faster than our implementation. On the other hand, this customization surely adds
some complexity to the global kernel scheduler, thus the scheduling operation could be
slower. Performance improvement can occur if the time savedin “clever” scheduling
dominates the scheduling complexity overhead.

Another aspect that can improve this work is the complete automation in processor
code and MHS, MSS files generation. All of the modifications ofthe ESPAM-generated
systems, described in this thesis, were made by hand. Changes in the MHS and MSS
files are needed to add an operating system to a processor and the external timer that
generates a periodic interrupt. Furthermore, program codemodifications have to be
made in order to start the global scheduler, create threads and modify the scheduling
order.

All this work can be fully automated, in order to make dynamicscheduling solutions
on our multiprocessor systems easier to use. This can lead toa faster design space
exploration, a fundamental concept in contemporary systemdesign.
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Appendix A
Main program code of the Sobel
application

#include "sobel_func.h"

int N = 450;
#pragma parameter N 450 1000
int M = 275;
#pragma parameter M 275 1000

int main(void)
{

int i, j;

static int image[1000][1000];
static int Jx[1000][1000];
static int Jy[1000][1000];
static int av[1000][1000];

for (j=1; j <= M; j++) {
for (i=1; i <= N; i++) {

readPixel(&image[j][i]);
}

}

for (j=2; j <= M-1; j++) {
for (i=2; i <= N-1; i++) {

gradient( &image[j-1][i-1], &image[j][i-1], &image[j+1][i-1], ...
&image[j-1][i+1], &image[j][i+1], &image[j+1][i+1], &Jx[j][i] );

}
}

for (j=2; j <= M-1; j++) {
for (i=2; i <= N-1; i++) {

gradient( &image[j-1][i-1], &image[j-1][i], &image[j-1][i+1], ...
&image[j+1][i-1], &image[j+1][i], &image[j+1][i+1], &Jy[j][i] );

}
}

for (j=2; j <= M-1; j++) {
for (i=2; i <= N-1; i++) {

absVal( &Jx[j][i], &Jy[j][i], &av[j][i] );
}

}

for (j=2; j <= M-1; j++) {
for (i=2; i <= N-1; i++) {

writePixel( &av[j][i] );
}

}

return (0);
}
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Appendix B
MHS File for Sobel application mapped
onto a one-processor system

1 PARAMETER VERSION = 2.1.0

PORT lclk = lclk, DIR = I
PORT mclk = mclk, DIR = I

5 PORT ramclki = ramclki, VEC = [1:0], DIR = I
PORT ramclko = ramclko, VEC = [1:0], DIR = O
PORT lreseto_l = lreseto_l, DIR = I
PORT lwrite = lwrite, DIR = I
PORT lads_l = lads_l, DIR = I

10 PORT lblast_l = lblast_l, DIR = I
PORT lbterm_l = lbterm_l, DIR = IO
PORT ld = ld, VEC = [31:0], DIR = IO
PORT la = la, VEC = [23:2], DIR = I
PORT lreadyi_l = lreadyi_l, DIR = O

15 PORT lbe_l = lbe_l, VEC = [3:0], DIR = I
PORT fholda = fholda, DIR = I
PORT ra0 = ra0, VEC = [19:0], DIR = O
PORT rd0 = rd0, VEC = [31:0], DIR = IO
PORT rc0 = rc0, VEC = [8:0], DIR = O

20 PORT ra1 = ra1, VEC = [19:0], DIR = O
PORT rd1 = rd1, VEC = [31:0], DIR = IO
PORT rc1 = rc1, VEC = [8:0], DIR = O
PORT ra2 = ra2, VEC = [19:0], DIR = O
PORT rd2 = rd2, VEC = [31:0], DIR = IO

25 PORT rc2 = rc2, VEC = [8:0], DIR = O
PORT ra3 = ra3, VEC = [19:0], DIR = O
PORT rd3 = rd3, VEC = [31:0], DIR = IO
PORT rc3 = rc3, VEC = [8:0], DIR = O
PORT ra4 = ra4, VEC = [19:0], DIR = O

30 PORT rd4 = rd4, VEC = [31:0], DIR = IO
PORT rc4 = rc4, VEC = [8:0], DIR = O
PORT ra5 = ra5, VEC = [19:0], DIR = O
PORT rd5 = rd5, VEC = [31:0], DIR = IO
PORT rc5 = rc5, VEC = [8:0], DIR = O

35

BEGIN lmb_v10
PARAMETER INSTANCE = PBUS_MB_1
PARAMETER HW_VER = 1.00.a

40 PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT LMB_Clk = sys_clk_s

END

45 BEGIN lmb_v10
PARAMETER INSTANCE = DBUS_MB_1
PARAMETER HW_VER = 1.00.a

PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst

50 PORT LMB_Clk = sys_clk_s
END

BEGIN opb_v20
PARAMETER INSTANCE = mb_opb_1

55 PARAMETER HW_VER = 1.10.c
PARAMETER C_EXT_RESET_HIGH = 0
PORT SYS_Rst = net_design_rst
PORT OPB_Clk = sys_clk_s

END
60

BEGIN fin_ctrl
PARAMETER INSTANCE = fin_ctrl_P1
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf9000000

65 PARAMETER C_HIGHADDR = 0xf900000f
PARAMETER C_AB = 8
BUS_INTERFACE SLMB = DBUS_MB_1
PORT Sl_FinOut = net_fin_signal_P1

END
70

BEGIN clock_cycle_counter
PARAMETER INSTANCE = clock_cycle_counter_P1
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf8000000

75 PARAMETER C_HIGHADDR = 0xf8000003
BUS_INTERFACE SLMB = DBUS_MB_1
PORT LMB_Clk = sys_clk_s

END

80 BEGIN microblaze
PARAMETER INSTANCE = MB_1
PARAMETER HW_VER = 4.00.a
PARAMETER C_NUMBER_OF_PC_BRK = 1
PARAMETER C_NUMBER_OF_RD_ADDR_BRK = 0

85 PARAMETER C_NUMBER_OF_WR_ADDR_BRK = 0
PARAMETER C_FSL_LINKS = 0
BUS_INTERFACE DLMB = DBUS_MB_1
BUS_INTERFACE ILMB = PBUS_MB_1
BUS_INTERFACE DOPB = mb_opb_1

90 PORT CLK = sys_clk_s
PORT INTERRUPT = MB_1_INTERRUPT

END
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BEGIN zbt_main
95 PARAMETER INSTANCE = host_zbt_main

PARAMETER HW_VER = 1.00.a
BUS_INTERFACE HOST_BUFF_0_PORT = buff_rd_0
BUS_INTERFACE HOST_BUFF_1_PORT = buff_rd_1
BUS_INTERFACE HOST_BUFF_2_PORT = buff_rd_2

100 BUS_INTERFACE HOST_BUFF_3_PORT = buff_rd_3
BUS_INTERFACE HOST_BUFF_4_PORT = buff_rd_4
BUS_INTERFACE HOST_BUFF_5_PORT = buff_rd_5
BUS_INTERFACE HOST_MUX_PORT = mux_to_host
PORT lclk = lclk

105 PORT mclk = mclk
PORT ramclko = ramclko
PORT ramclki = ramclki
PORT lreseto_l = lreseto_l
PORT lwrite = lwrite

110 PORT lads_l = lads_l
PORT lblast_l = lblast_l
PORT lbterm_l = lbterm_l
PORT ld = ld
PORT la = la

115 PORT lreadyi_l = lreadyi_l
PORT lbe_l = lbe_l
PORT fholda = fholda
PORT CLK_out = sys_clk_s
PORT RST_out = sys_rst_s

120 PORT COMMAND_REG = net_command
PORT DESIGN_STAT_REG = net_design_status
PORT PARAMETER_REG = net_parameter

END

125 BEGIN host_design_ctrl
PARAMETER INSTANCE = host_design_controller
PARAMETER HW_VER = 1.00.a
PARAMETER N_FIN = 1
PARAMETER PAR_WIDTH = 16

130 PORT RST = sys_rst_s
PORT COMMAND_REG = net_command
PORT STATUS_REG = net_design_status
PORT PARAMETER_REG = net_parameter
PORT RST_OUT = net_design_rst

135 PORT FIN_REG_0 = net_fin_signal_P1
END

BEGIN mux
PARAMETER INSTANCE = multiplexer

140 PARAMETER HW_VER = 1.00.a
PARAMETER N_MUX = 2
BUS_INTERFACE MUX_BUFF_PORT = buff_to_mux
BUS_INTERFACE MUX_DESIGN_0_PORT = mux_design_0
BUS_INTERFACE MUX_DESIGN_1_PORT = mux_design_1

145 BUS_INTERFACE MUX_HOST_PORT = mux_to_host
PORT ra0 = ra0
PORT ra1 = ra1
PORT ra2 = ra2
PORT ra3 = ra3

150 PORT ra4 = ra4
PORT ra5 = ra5
PORT rc0 = rc0
PORT rc1 = rc1
PORT rc2 = rc2

155 PORT rc3 = rc3
PORT rc4 = rc4
PORT rc5 = rc5
PORT RST = sys_rst_s
PORT CNTRL = net_command

160 END

BEGIN buffers
PARAMETER INSTANCE = buff
PARAMETER HW_VER = 1.00.a

165 BUS_INTERFACE BUFF_MUX_PORT = buff_to_mux
BUS_INTERFACE BUFF_RD_0_PORT = buff_rd_0
BUS_INTERFACE BUFF_RD_1_PORT = buff_rd_1
BUS_INTERFACE BUFF_RD_2_PORT = buff_rd_2
BUS_INTERFACE BUFF_RD_3_PORT = buff_rd_3

170 BUS_INTERFACE BUFF_RD_4_PORT = buff_rd_4
BUS_INTERFACE BUFF_RD_5_PORT = buff_rd_5
PORT rd0 = rd0
PORT rd1 = rd1
PORT rd2 = rd2

175 PORT rd3 = rd3
PORT rd4 = rd4
PORT rd5 = rd5

END

180 BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_1
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xf0000000
PARAMETER C_HIGHADDR = 0xf00fffff

185 PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_1

BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_0
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_0

190 END

BEGIN opb_zbt_controller
PARAMETER INSTANCE = ZBT_CTRL_2
PARAMETER HW_VER = 1.00.a

195 PARAMETER C_BASEADDR = 0xf0100000
PARAMETER C_HIGHADDR = 0xf01fffff
PARAMETER C_EXTERNAL_DLL = 1
PARAMETER C_ZBT_ADDR_SIZE = 20
BUS_INTERFACE SOPB = mb_opb_1

200 BUS_INTERFACE DESIGN_BUFF_PORT = buff_rd_1
BUS_INTERFACE DESIGN_MUX_PORT = mux_design_1
END

BEGIN fsl_v20
205 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_1
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

210 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

215 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_2

220 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

225 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

230 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_3
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

235 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s

240 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

245 PARAMETER INSTANCE = FIFO_MB_1_Out_4
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

250 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

255
BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_5
PARAMETER C_EXT_RESET_HIGH = 0

260 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

265 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
270 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_6
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

275 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

280 END
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BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_7

285 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

290 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

295 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_8
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

300 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s

305 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

310 PARAMETER INSTANCE = FIFO_MB_1_Out_9
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

315 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
320

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_10
PARAMETER C_EXT_RESET_HIGH = 0

325 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

330 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
335 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_11
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

340 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

345 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_12

350 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

355 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

360 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_13
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

365 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s

370 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

375 PARAMETER INSTANCE = FIFO_MB_1_Out_14
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

380 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
385

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_15
PARAMETER C_EXT_RESET_HIGH = 0

390 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

395 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
400 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_16
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

405 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

410 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_17

415 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

420 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

425 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_18
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

430 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s

435 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

440 PARAMETER INSTANCE = FIFO_MB_1_Out_19
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

445 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
450

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_20
PARAMETER C_EXT_RESET_HIGH = 0

455 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

460 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
465 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_21
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

470 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

475 END
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BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_22

480 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

485 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

490 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_23
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

495 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s

500 PORT SYS_Rst = net_design_rst
END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

505 PARAMETER INSTANCE = FIFO_MB_1_Out_24
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

510 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END
515

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_25
PARAMETER C_EXT_RESET_HIGH = 0

520 PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

525 PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
530 PARAMETER HW_VER = 2.10.a

PARAMETER INSTANCE = FIFO_MB_1_Out_26
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1

535 PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

540 END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_27

545 PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32

550 PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst

END

555 BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a
PARAMETER INSTANCE = FIFO_MB_1_Out_28
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0

560 PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024

PORT FSL_Clk = sys_clk_s
565 PORT SYS_Rst = net_design_rst

END

BEGIN fsl_v20
PARAMETER HW_VER = 2.10.a

570 PARAMETER INSTANCE = FIFO_MB_1_Out_29
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_ASYNC_CLKS = 0
PARAMETER C_IMPL_STYLE = 1
PARAMETER C_USE_CONTROL = 0

575 PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1024
PORT FSL_Clk = sys_clk_s
PORT SYS_Rst = net_design_rst
END

580
BEGIN fifo_if_ctrl
PARAMETER INSTANCE = CTRL_MB_1_FIFOs
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xc0000000

585 PARAMETER C_HIGHADDR = 0xc0ffffff
PARAMETER C_AB = 8
PARAMETER C_FIFO_WRITE = 29
PARAMETER C_FIFO_READ = 29
BUS_INTERFACE FIFO_READ_1 = FIFO_MB_1_Out_1

590 BUS_INTERFACE FIFO_READ_2 = FIFO_MB_1_Out_2
BUS_INTERFACE FIFO_READ_3 = FIFO_MB_1_Out_3
BUS_INTERFACE FIFO_READ_4 = FIFO_MB_1_Out_4
BUS_INTERFACE FIFO_READ_5 = FIFO_MB_1_Out_5
BUS_INTERFACE FIFO_READ_6 = FIFO_MB_1_Out_6

595 BUS_INTERFACE FIFO_READ_7 = FIFO_MB_1_Out_7
BUS_INTERFACE FIFO_READ_8 = FIFO_MB_1_Out_8
BUS_INTERFACE FIFO_READ_9 = FIFO_MB_1_Out_9
BUS_INTERFACE FIFO_READ_10 = FIFO_MB_1_Out_10
BUS_INTERFACE FIFO_READ_11 = FIFO_MB_1_Out_11

600 BUS_INTERFACE FIFO_READ_12 = FIFO_MB_1_Out_12
BUS_INTERFACE FIFO_READ_13 = FIFO_MB_1_Out_13
BUS_INTERFACE FIFO_READ_14 = FIFO_MB_1_Out_14
BUS_INTERFACE FIFO_READ_15 = FIFO_MB_1_Out_15
BUS_INTERFACE FIFO_READ_16 = FIFO_MB_1_Out_16

605 BUS_INTERFACE FIFO_READ_17 = FIFO_MB_1_Out_17
BUS_INTERFACE FIFO_READ_18 = FIFO_MB_1_Out_18
BUS_INTERFACE FIFO_READ_19 = FIFO_MB_1_Out_19
BUS_INTERFACE FIFO_READ_20 = FIFO_MB_1_Out_20
BUS_INTERFACE FIFO_READ_21 = FIFO_MB_1_Out_21

610 BUS_INTERFACE FIFO_READ_22 = FIFO_MB_1_Out_22
BUS_INTERFACE FIFO_READ_23 = FIFO_MB_1_Out_23
BUS_INTERFACE FIFO_READ_24 = FIFO_MB_1_Out_24
BUS_INTERFACE FIFO_READ_25 = FIFO_MB_1_Out_25
BUS_INTERFACE FIFO_READ_26 = FIFO_MB_1_Out_26

615 BUS_INTERFACE FIFO_READ_27 = FIFO_MB_1_Out_27
BUS_INTERFACE FIFO_READ_28 = FIFO_MB_1_Out_28
BUS_INTERFACE FIFO_READ_29 = FIFO_MB_1_Out_29
BUS_INTERFACE FIFO_WRITE_1 = FIFO_MB_1_Out_1
BUS_INTERFACE FIFO_WRITE_2 = FIFO_MB_1_Out_2

620 BUS_INTERFACE FIFO_WRITE_3 = FIFO_MB_1_Out_3
BUS_INTERFACE FIFO_WRITE_4 = FIFO_MB_1_Out_4
BUS_INTERFACE FIFO_WRITE_5 = FIFO_MB_1_Out_5
BUS_INTERFACE FIFO_WRITE_6 = FIFO_MB_1_Out_6
BUS_INTERFACE FIFO_WRITE_7 = FIFO_MB_1_Out_7

625 BUS_INTERFACE FIFO_WRITE_8 = FIFO_MB_1_Out_8
BUS_INTERFACE FIFO_WRITE_9 = FIFO_MB_1_Out_9
BUS_INTERFACE FIFO_WRITE_10 = FIFO_MB_1_Out_10
BUS_INTERFACE FIFO_WRITE_11 = FIFO_MB_1_Out_11
BUS_INTERFACE FIFO_WRITE_12 = FIFO_MB_1_Out_12

630 BUS_INTERFACE FIFO_WRITE_13 = FIFO_MB_1_Out_13
BUS_INTERFACE FIFO_WRITE_14 = FIFO_MB_1_Out_14
BUS_INTERFACE FIFO_WRITE_15 = FIFO_MB_1_Out_15
BUS_INTERFACE FIFO_WRITE_16 = FIFO_MB_1_Out_16
BUS_INTERFACE FIFO_WRITE_17 = FIFO_MB_1_Out_17

635 BUS_INTERFACE FIFO_WRITE_18 = FIFO_MB_1_Out_18
BUS_INTERFACE FIFO_WRITE_19 = FIFO_MB_1_Out_19
BUS_INTERFACE FIFO_WRITE_20 = FIFO_MB_1_Out_20
BUS_INTERFACE FIFO_WRITE_21 = FIFO_MB_1_Out_21
BUS_INTERFACE FIFO_WRITE_22 = FIFO_MB_1_Out_22

640 BUS_INTERFACE FIFO_WRITE_23 = FIFO_MB_1_Out_23
BUS_INTERFACE FIFO_WRITE_24 = FIFO_MB_1_Out_24
BUS_INTERFACE FIFO_WRITE_25 = FIFO_MB_1_Out_25
BUS_INTERFACE FIFO_WRITE_26 = FIFO_MB_1_Out_26
BUS_INTERFACE FIFO_WRITE_27 = FIFO_MB_1_Out_27

645 BUS_INTERFACE FIFO_WRITE_28 = FIFO_MB_1_Out_28
BUS_INTERFACE FIFO_WRITE_29 = FIFO_MB_1_Out_29
BUS_INTERFACE SLMB = DBUS_MB_1
END
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650 BEGIN bram_block
PARAMETER INSTANCE = BRAM1_MB_1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = BUS_DCTRL_BRAM1_MB_1
BUS_INTERFACE PORTB = BUS_PCTRL_BRAM1_MB_1

655 END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = DCTRL_BRAM1_MB_1
PARAMETER HW_VER = 1.00.b

660 PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0000ffff
BUS_INTERFACE SLMB = DBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM1_MB_1

665 END

BEGIN lmb_bram_if_cntlr
PARAMETER INSTANCE = PCTRL_BRAM1_MB_1
PARAMETER HW_VER = 1.00.b

670 PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0000ffff
BUS_INTERFACE SLMB = PBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM1_MB_1

675 END

BEGIN bram_block
PARAMETER INSTANCE = BRAM2_MB_1
PARAMETER HW_VER = 1.00.a

680 BUS_INTERFACE PORTA = BUS_DCTRL_BRAM2_MB_1

BUS_INTERFACE PORTB = BUS_PCTRL_BRAM2_MB_1
END

BEGIN lmb_bram_if_cntlr
685 PARAMETER INSTANCE = DCTRL_BRAM2_MB_1

PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00010000
PARAMETER C_HIGHADDR = 0x00017fff

690 BUS_INTERFACE SLMB = DBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_DCTRL_BRAM2_MB_1

END

BEGIN lmb_bram_if_cntlr
695 PARAMETER INSTANCE = PCTRL_BRAM2_MB_1

PARAMETER HW_VER = 1.00.b
PARAMETER C_MASK = 0xff000000
PARAMETER C_BASEADDR = 0x00010000
PARAMETER C_HIGHADDR = 0x00017fff

700 BUS_INTERFACE SLMB = PBUS_MB_1
BUS_INTERFACE BRAM_PORT = BUS_PCTRL_BRAM2_MB_1

END

BEGIN opb_timer
705 PARAMETER INSTANCE = opb_timer_0

PARAMETER HW_VER = 1.00.b
PARAMETER C_BASEADDR = 0xF1000000
PARAMETER C_HIGHADDR = 0xF100FFFF
BUS_INTERFACE SOPB = mb_opb_1

710 PORT Interrupt = MB_1_INTERRUPT
END
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Appendix C
MSS File for Sobel application mapped
onto a one-processor system

1 PARAMETER VERSION = 2.2.0

BEGIN OS
5 PARAMETER OS_NAME = xilkernel

PARAMETER OS_VER = 3.00.a
PARAMETER PROC_INSTANCE = MB_1
PARAMETER enhanced_features = true
PARAMETER systmr_dev = opb_timer_0

10 PARAMETER config_yield = true
PARAMETER max_pthreads = 8
PARAMETER systmr_interval = 500
PARAMETER static_pthread_table = ((thread_main,1))

END
15

BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu
PARAMETER DRIVER_VER = 1.01.a

20 PARAMETER HW_INSTANCE = MB_1
PARAMETER COMPILER = mb-gcc
PARAMETER ARCHIVER = mb-ar

END

25
BEGIN DRIVER
PARAMETER DRIVER_NAME = opbarb
PARAMETER DRIVER_VER = 1.02.a
PARAMETER HW_INSTANCE = mb_opb_1

30 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

35 PARAMETER HW_INSTANCE = fin_ctrl_P1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

40 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock_cycle_counter_P1

END

BEGIN DRIVER
45 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = host_zbt_main

END

50 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = host_design_controller

END
55

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = multiplexer

60 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

65 PARAMETER HW_INSTANCE = buff
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

70 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_1

END

BEGIN DRIVER
75 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ZBT_CTRL_2

END

80 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_1

END
85

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_2

90 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

95 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_3
END
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BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

100 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_4
END

BEGIN DRIVER
105 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_5
END

110 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_6
END

115
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_7

120 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

125 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_8
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

130 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_9
END

BEGIN DRIVER
135 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_10
END

140 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_11
END

145
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_12

150 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

155 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_13
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

160 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_14
END

BEGIN DRIVER
165 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_15
END

170 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_16
END

175
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_17

180 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

185 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_18
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

190 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_19
END

BEGIN DRIVER
195 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_20

END

200 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_21

END
205

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_22

210 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

215 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_23
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

220 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_24

END

BEGIN DRIVER
225 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_25

END

230 BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_26

END
235

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_27

240 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a

245 PARAMETER HW_INSTANCE = FIFO_MB_1_Out_28
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = generic

250 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = FIFO_MB_1_Out_29

END

BEGIN DRIVER
255 PARAMETER DRIVER_NAME = generic

PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = CTRL_MB_1_FIFOs

END

260 BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = DCTRL_BRAM1_MB_1

END
265

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM1_MB_1

270 END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a

275 PARAMETER HW_INSTANCE = DCTRL_BRAM2_MB_1
END

BEGIN DRIVER
PARAMETER DRIVER_NAME = bram

280 PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = PCTRL_BRAM2_MB_1

END

BEGIN DRIVER
285 PARAMETER DRIVER_NAME = tmrctr

PARAMETER DRIVER_VER = 1.00.b
PARAMETER HW_INSTANCE = opb_timer_0

END
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MicroBlaze program code for the
multi-threaded Sobel application

#include "xmk.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <os_config.h>
#include <sys/process.h>
#include <sys/timer.h>
#include <pthread.h>
#include "MemoryMap.h"
#include "aux_func.h"

#define HALF_MEM 125000

void* thread1(void *arg)
{

int c0, c1;
// Input Arguments
// Output Arguments
tCH_24 out_0ND_0;

for( c0 = ceil1(1); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(1); c1 <= floor1(N ); c1 += 1 ) {

_readPixel(&out_0ND_0) ;

...writing to output FIFOs is omitted...

} // for c1
} // for c0

} // thread 1

void* thread2(void *arg)
{

int c0, c1;
// Input Arguments
tCH_18 in_0ND_2;
tCH_20 in_1ND_2;
tCH_23 in_2ND_2;
tCH_25 in_3ND_2;
tCH_26 in_4ND_2;
tCH_26 in_5ND_2;
// Output Arguments
tCH_28 out_6ND_2;

for( c0 = ceil1(3); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(3); c1 <= floor1(N ); c1 += 1 ) {

...reading from input FIFOs is omitted...

_gradient(in_0ND_2, in_1ND_2, in_2ND_2, in_3ND_2, in_4ND_2, in_5ND_2, &out_6ND_2) ;

...writing to output FIFOs is omitted...

} // for c1
} // for c0

} // thread2
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void* thread3(void *arg)
{

int c0, c1;
// Input Arguments
tCH_27 in_0ND_3;
tCH_28 in_1ND_3;
// Output Arguments
tCH_29 out_2ND_3;

for( c0 = ceil1(3); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(3); c1 <= floor1(N ); c1 += 1 ) {

...reading from input FIFOs is omitted...

_gradient(in_0ND_1, in_1ND_1, in_2ND_1, in_3ND_1, in_4ND_1, in_5ND_1, &out_6ND_1) ;

...writing to output FIFOs is omitted...

} // for c1
} // for c0

} // thread3

void* thread4(void *arg)
{

int c0, c1;
// Input Arguments
tCH_27 in_0ND_3;
tCH_28 in_1ND_3;
// Output Arguments
tCH_29 out_2ND_3;

for( c0 = ceil1(3); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(3); c1 <= floor1(N ); c1 += 1 ) {

read(ND_3_IG_27_CH_27, &in_0ND_3, (sizeof(tCH_27)+(sizeof(tCH_27)%4)+3)/4);
read(ND_3_IG_28_CH_28, &in_1ND_3, (sizeof(tCH_28)+(sizeof(tCH_28)%4)+3)/4);

_absVal(in_0ND_3, in_1ND_3, &out_2ND_3) ;

write(ND_3_OG_29_CH_29, &out_2ND_3, (sizeof(tCH_29)+(sizeof(tCH_29)%4)+3)/4);

} // for c1
} // for c0

} //thread4

void* thread5(void *arg)
{

int c0, c1;
// Input Arguments
tCH_29 in_0ND_4;

for( c0 = ceil1(3); c0 <= floor1(M ); c0 += 1 ) {
for( c1 = ceil1(3); c1 <= floor1(N ); c1 += 1 ) {

read(ND_4_IG_29_CH_29, &in_0ND_4, (sizeof(tCH_29)+(sizeof(tCH_29)%4)+3)/4);

_writePixel(in_0ND_4) ;

} // for c1
} // for c0

*(ZBT_MEM_2+HALF_MEM) = *clk_cntr;

*FIN_SIGNAL = (volatile long)0x00000001;
} // thread5

void* thread_main( void *dummy)
{

int i, ret;
pthread_t threadID[5];
int clk_num;

*clk_cntr = 0;

ret = pthread_create(&threadID[0], NULL, (void*)thread1, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM)=666;
ret = pthread_create(&threadID[1], NULL, (void*)thread2, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+1)=666;
ret = pthread_create(&threadID[2], NULL, (void*)thread3, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+2)=666;
ret = pthread_create(&threadID[3], NULL, (void*)thread4, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+3)=666;
ret = pthread_create(&threadID[4], NULL, (void*)thread5, NULL);
if (ret) *(ZBT_MEM_2+HALF_MEM+4)=666;

return 0 ;
}

int main ()
{

xilkernel_main();
}
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