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ABSTRACT
In this paper, we study the problem of exploiting parallelism in
a hard real-time streaming application modeled as a Synchronous
Data Flow (SDF) graph and scheduled on a cluster heterogeneous
Multi-Processor System-on-Chip (MPSoC) platform such that en-
ergy consumption is minimized and a throughput requirement is
satisfied. We propose a polynomial-time solution approach which:
1) determines a processor type for each task in an SDF graph such
that the throughput constraint is met and energy consumption is
minimized; 2) determines a replication factor for each task in an SDF
graph such that the distribution of the workload on the same type of
processors is balanced, which enables processors to run at a lower
frequency, hence reducing the energy consumption. Experiments
on a set of real-life streaming applications demonstrate that our
approach reduces energy consumption by 66% on average while
meeting the same throughput requirement when compared to related
energy minimization approaches.

1. INTRODUCTION
Nowadays, embedded systems are built around a component

which integrates multiple processors, memories, interconnects and
other modules in a chip – so called Multi-Processor System-on-
Chip (MPSoC). The growth of MPSoCs enables embedded sys-
tems to run very complex streaming applications which have high
computational requirements and hard real-time constraints. Given
that the embedded systems are very often battery-powered, another
very important requirement in the design of embedded streaming
MPSoCs is the energy-efficiency. Heterogeneous MPSoCs were
identified as a promising solution in terms of energy-efficiency [19].
Especially, the asymmetric multi-core architecture, also known as
single-ISA heterogeneous architecture, was recognized as a good
trade-off in terms of energy-efficiency and programming effort [19].
A single-ISA heterogeneous MPSoC consists of cores with different
power-performance characteristics but with the same instruction-
set architecture (ISA). Apart from containing cores with different
power-performance characteristics, such heterogeneous MPSoCs
cover large set of power-performance design points through voltage-
frequency scaling (VFS) of the cores [19]. However, with the advent
of manycore systems, per-core VFS becomes impractical due to
the high hardware cost and area requirement [11]. Therefore, to
balance the energy saving and the hardware cost, cores are grouped
into clusters and cores in each cluster run at the same voltage
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and frequency level. Some examples of commercial asymmetric
cluster MPSoCs are Samsung Exynos 5 Octa SoC [24], nVidia
Tegra X1 [21], which include ARM big.LITTLE [10] integrating
high-performance cores into ’big’ clusters and low-power cores into
’little’ clusters.

In order to efficiently utilize such clustered heterogeneous plat-
forms to achieve all the desired requirements, the underlying hard-
ware platform and the running streaming application have to be
closely related. This requires the embedded designer to expose the
right amount of parallelism available in the application and to decide
how to allocate and schedule the tasks of the application on the avail-
able processing elements such that the platform is utilized efficiently
and the timing constraints are met. Several parallel Models-of-
Computation (MoCs), e.g. Synchronous Data Flow (SDF) [14] and
Cyclo-Static Dataflow (CSDF) [4], have been adopted as the parallel
application specification. Within a parallel MoC, an application
is represented as a task graph with concurrently executing and
communicating tasks. Thus, the parallelism is explicitly specified in
the model.

However, the given initial parallel application specification often
is not the most suitable one for the given MPSoC platform. This
is because application developers mainly focus on realizing certain
application behavior while the computational capacity and power
consumption profile of the MPSoC platform is often not fully taken
into account. Hence, it may happen that an application consists
of highly imbalanced tasks in terms of the task workload, i.e.,
task utilization. Especially, in cluster heterogeneous MPSoCs,
when several tasks are mapped onto the same cluster, the one with
the heaviest utilization will determine the required voltage and
frequency of the whole cluster and will significantly increase the
energy consumption of the other tasks mapped on the same cluster.
When task replication is applied to application tasks with heavy
utilization, their utilization can be decreased while still providing the
same application performance. Thus, to better utilize the underlying
MPSoC platform while minimizing the energy consumption, the
initial specification of an application, i.e., the initial task graph,
should be transformed to an alternative one that exposes more
parallelism while preserving the same application behavior and
timing performance. However, having more tasks’ replicas than
necessary introduces more overheads in code and data memory,
scheduling and inter-tasks communication, which in turn will result
in higher energy consumption. Thus, the right amount of parallelism
(tasks’ replicas), i.e., the proper values of replication (unfolding)
factors, depending on the underlying MPSoC platform, should be
determined in a parallel application specification to achieve the
required performance and timing guarantees while minimizing the
energy consumption.

Therefore, in this paper, we propose a novel algorithm to effi-
ciently map real-time streaming applications onto cluster heteroge-
neous MPSoCs, which are subject to throughput constraints, such
that the energy consumption of the cluster heterogeneous MPSoC is
reduced by using task replication and per-cluster VFS. The specific
novel contributions of this paper are the following:



• We propose a novel polynomial-time algorithm, called Data
Parallel Energy Minimization (DPEM), to map and schedule
hard real-time streaming applications onto a cluster heteroge-
neous MPSoC such that the energy consumption is minimized
while the throughput constraints are guaranteed. By using
the hard real-time scheduling of CSDF graphs in [26], we
propose within our DPEM algorithm an efficient way to
determine a suitable processor type for each task in an (C)SDF
graph such that the energy consumption is minimized and the
throughput constraint is met. Then, by using the unfolding
graph transformation in [27], we propose a method in DPEM
to determine a replication factor for each task in an SDF graph
such that the distribution of the workload on the same type of
processors is balanced, which enables processors to run at a
lower frequency, hence reducing the energy consumption.

• We show, on a set of real-life streaming applications, that our
proposed energy minimization approach outperforms related
approaches in terms of energy consumption while meeting
the same throughput constraints.

The remainder of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 gives a motivational
example. Section 4 introduces the background necessary to under-
stand the proposed energy minimization approach. The proposed
approach is described in Section 5. Experimental evaluation of the
approach is given in Section 6, and Section 7 concludes the paper.

2. RELATED WORK
Energy-efficient mapping and scheduling of streaming appli-

cations represented as dataflow graphs which guarantees certain
throughput has been extensively studied. The related works can
be divided into several categories depending on the MPSoC plat-
form they consider: homogeneous [25, 8, 31, 16, 20, 5, 12], or
heterogeneous [13, 23]. Depending on the VFS technique they
apply to minimize the energy consumption, the related works can
be divided into those considering per-core VFS [25, 8, 31, 16, 20,
13, 5], those considering global VFS [13, 12] and the works which
do not consider VFS but they utilize platform heterogeneity to
achieve energy-efficiency [23]. The approaches in [13, 16, 20,
23, 12] convert an initial SDF graph into equivalent Homogeneous
SDF (HSDF) graph to exploit the parallelism of an application and
achieve energy-efficiency. However, the HSDF graph obtained from
the initial SDF graph may grow in size exponentially, making the
analysis performed on the HSDF graph time-consuming. Instead,
the approaches in [25, 31, 8, 5] perform energy minimization directly
on an SDF graph. Works [25] and [31] perform design space explo-
ration at design time to find the energy-efficient mapping solution of
an SDF scheduled in self-timed manner on a homogeneous MPSoC
platform with per-core VFS capability such that certain throughput
is guaranteed. In addition, the approach in [25] has a run-time phase
where slack created at run time is exploited to further minimize
the energy consumption. In [8] the authors propose a heuristic to
find per-core voltage-frequency points for a given task mapping and
the execution order such that the throughput constraint is met. The
authors in [5] propose a technique to transform an SDF graph at
run time into its equivalent SDF graph to adapt to environmental
and demand changes. One possible scenario where the SDF graph
should be transformed to adapt to the new circumstances is when
some processors become available on a homogeneous platform with
per-core VFS capability. In that case the tasks in the SDF graph
are replicated such that all processors are occupied, which enables
processors to run at a lower frequency hence consuming less energy.
However, the authors in [5] focus more on the transformation itself
and not on the energy minimization. In contrast to all related works,
discussed above, our approach: 1) considers heterogeneous MPSoC
platforms with per-cluster VFS capability, which is a good trade-
off in terms of energy-efficiency and the implementation cost; 2)
utilizes an unfolding graph transformation to balance the workload

put on the MPSoC and to reduce energy consumption by finding
how many times each task in a graph should be replicated; 3)
uses preemptive hard real-time scheduling to schedule the tasks
which gives more opportunities to meet the lowest frequency for
schedulability supported by the platform.

Energy-efficient mapping and scheduling of periodic hard real-
time tasks has been widely researched in the past. [2] gives a
comprehensive review of works dealing with energy-aware schedul-
ing for real-time systems. As stated in [2], most of the existing
work considers homogeneous MPSoCs and in recent years people
started considering heterogeneous platforms and platforms with volt-
age/frequency levels shared among multiple processors as energy-
efficient design solutions. Regarding the considered heterogeneous
MPSoC platforms, the closest to our work are the works in [7] and
[18]. The approach in [7] proposes and evaluates several partitioned
Earliest Deadline First (EDF) scheduling strategies for real-time
tasks mapped on cluster heterogeneous platforms in terms of energy-
efficiency. However, because of the bin-packing issue in partitioned
scheduling, the approach in [7] may not fully utilize the energy-
efficient cores in a cluster heterogeneous MPSoC, hence the energy
minimization is limited. In contrast, by replicating the tasks with
heavy utilization, we can reduce their utilization and hence fully
utilize the energy-efficient cores. The approach in [18] considers
cluster scheduling for cluster heterogeneous MPSoCs where tasks
are allowed to migrate at run-time among processors within the
same cluster in order to achieve better resource utilization. However,
cluster scheduling suffers from high scheduling overhead caused
by task migration and increased context switching. Moreover, the
frequency of some clusters in [18] is still determined by the tasks
with the heaviest utilization. In contrast, in our approach, we use
partitioned scheduling which has low scheduling overhead and we
avoid the capacity loss and we lower the operating frequency by
replicating the tasks with heavy utilizations.

The works in [30], [29] and [15] consider parallel execution of
task replicas to achieve energy efficiency, as we do. The authors
in [30] consider frame-based tasks with an implicit deadline and
a homogeneous platform with per-core VFS capability where the
frequency of a core may be changed for each task. In contrast, in
our work, we consider more general periodic task model and more
realistic heterogeneous platform with per-cluster VFS capability,
hence our approach is more applicable in practice than the approach
in [30]. The approach in [29] exploits the data parallelism in
an application by replicating the tasks of the application over all
processors available in an MPSoC. This means that, in distributed
memory architectures, the code of the whole application has to
be replicated on all the processors in an MPSoC. By contrast,
in our approach, only certain tasks of the application have to be
replicated, which reduces significantly the memory overhead of our
approach compared to the one in [29]. Moreover, the work in [29]
assumes homogeneous systems with per-core VFS and continuous
frequencies, while we consider heterogeneous systems with per-
cluster VFS capability, which is more practical in modern embedded
systems. The approach presented in [15] replicates computation-
intensive tasks which yields to a more balanced load on processors,
and in turn allows the system to run at a lower frequency. In
addition, the authors in [15] consider systems with discrete set
of operating frequencies and homogeneous platforms with per-
core VFS capability. As discussed earlier, per-core VFS is not
practical in modern many-core systems. Hence, our work considers
heterogeneous platforms with per-cluster VFS capability. The
approach in [15] is devised and, hence efficient only for platforms
with performance-efficient processors. This means that the approach
in [15] would never replicate the tasks which are going to be mapped
on energy-efficient processors. In addition, if the total number of
tasks with heavy utilization is equal to the number of processors
in a platform, tasks will not be replicated in [15]. In contrast,
our approach will replicate the tasks mapped on energy-efficient
processors and it will replicate the tasks even if the number of heavy



tasks is equal to the number of processors if this leads to more
energy-efficient design.

3. MOTIVATIONAL EXAMPLE
In the first part of this section, we motivate the need for using the

unfolding graph transformation to achieve energy-efficient MPSoC
design under a throughput constraint. We first show the drawback
of the energy minimization approaches for heterogeneous MPSoCs
and hard real-time scheduling, i.e., the approaches in [7] and [18].
We analyze three different designs obtained by mapping the SDF
graph G in Figure 1 to a heterogeneous platform consisting of one
PE cluster with 2 PE processors and one EE cluster with 2 EE
processors, i.e., the platform given in column 1, row 2 in Table 1,
under a throughput constraint of 1 output token per 100µs. The first
design is obtained by using the best mapping approach evaluated
in [7] and we refer to that approach as CKR. The CKR approach
allocates actors τ2 and τ3 to PE processors in one-to-one manner,
and it allocates actors τ1 and τ4 to one EE processor, while the
other EE processor is switched-off. Once the actors are allocated,
the minimum frequency which ensures the schedulability of actors
mapped to a processor in a cluster is selected from the discrete
set of frequencies per cluster. The energy consumption of such
a design is given in Table 1, column 2, row 2. After applying
the approach in [18], we obtain the second design where actors τ2
and τ3 are allocated to the PE cluster, while actors τ1 and τ4 are
allocated to the EE cluster. The corresponding energy consumption
after applying the approach in [18], denoted by FDM, is given in
Table 1, column 3, row 2. If we apply our approach presented in
Section 5 which uses the unfolding transformation in [27] on graph
G in Figure 1, under the same throughput constraint as in the CKR
and FDM approaches, we can lower the utilization of the actors
with high utilization, τ2 and τ3, and achieve better load balancing
on the processors of the same type and hence, the frequency of
the power-hungry processors can be lowered further than in [7],
[18]. For example, by unfolding actors τ2 and τ3 twice, as given in
Figure 2, our approach in Section 5 allocates τ2,1 and τ3,1 one-to-one
to PE processors, and it allocates τ2,2 to an EE processor and τ3,2, τ1
and τ4 to another EE processor. The energy consumption value for
this third design is given in Table 1, column 5, row 2. We can see
that our approach reduces the energy consumption by 71% when
compared to the CKR and FDM approaches.

Now, we would like to analyze an approach which was devised
for homogeneous platforms with per-core VFS capability, i.e., the
approach in [25], denoted by SDK in Table 1. To this end, we
compare the energy consumption of two designs in which the
SDF graph G in Figure 1 is mapped to a homogeneous MPSoC
consisting of four PE clusters with 1 processor per cluster, under
a throughput constraint of 1 output token per 100µs. The SDK
approach will allocate actors to processors in one-to-one manner,
while our approach, proposed in Section 5, will replicate actors τ2
and τ3 twice, as shown in Figure 2, to lower their utilization. We
can see from columns 4 and 5, row 3 in Table 1 that our approach
reduces the energy consumption by 50% when compared to the
SDK approach. The main reason is that we are using the unfolding
graph transformation to reduce the influence of heavy actors and
hence minimize the energy of an MPSoC. Another reason is that the
SDK approach uses self-timed scheduling which is non-preemptive,
hence, less flexible for scheduling and that the SDK only minimizes
dynamic energy consumption. The energy consumption values of
the approaches CKR, FDM and SDK in Table 1 which were not
discussed above are given only for completeness. However, we can
see that these values are always higher than the corresponding energy
consumption of our approach in Section 5. Thus, our approach
outperforms these related approaches.

Above, we motivated the need to use the unfolding transformation
within our new approach in Section 5 to achieve energy-efficiency
for MPSoCs under a throughput constraint. Now, we would like to
motivate the need for our whole approach, presented in Section 5,
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Figure 1: An SDF graph G.
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Figure 2: A CSDF graph G′ obtained by unfolding SDF graph
G in Figure 1 with ~f = [1, 2, 2, 1].

Table 1: Different MPSoC designs for G in Figure 1.
MPSoC CKR [µJ] FDM [µJ] SDK [µJ] our [µJ] WYL [µJ]

(2PE)(2EE) 343.55 343.55 346.30 97.76 343.55
(PE)(PE)(PE)(PE) 357.94 392.18 389.09 192.80 240.32

which efficiently finds task replication factors and task mappings
to achieve further reductions in the energy consumption. Although
the approach in [15] exploits the energy-saving capability of data-
parallel execution for homogeneous MPSoC with per-core VFS
capability, that approach is not efficient in terms of energy reduction,
especially in the case of platforms with EE processors. Below we
show its inefficiency for the homogeneous platform in column 1, row
3, and for the heterogeneous MPSoC platform in column 1, row 2, in
Table 1. The approach in [15], called the WYL approach, considers
platforms which power consumption curve is increasing ’fast’ with
the increase of processor utilization. Such power consumption curve
corresponds to PE processors. Let us consider the mapping of
the SDF graph in Figure 1 on the homogeneous platform under
a throughput constraint of 1 output token per 100µs. The WYL
approach will classify actors τ2 and τ3 as ’heavy’ tasks, i.e., tasks
eligible for replication. However, because the platform contains only
4 processors, the WYL will decide that the number of processors is
not sufficient to replicate both actors and it will only replicate actor
τ2 twice. In contrast, our algorithm will replicate both actors τ2 and
τ3 twice, which will lead to an energy reduction of 20%, see Table 1,
row 3, columns 5 and 6.

Let us now analyze the designs obtained by applying the WYL
and our new approach for mapping graph G in Figure 1 on the
heterogeneous platform in column 1, row 2, in Table 1. Given
that the power consumption curve of EE processors is a ’slowly’
increasing curve with the increase of processor utilization, the WYL
approach will never replicate actors assigned to EE processors.
In contrast, our approach presented in Section 5 will replicate
actors assigned to EE processors as well if their replication leads
to more energy-efficient MPSoC. We can see in row 2, columns
5 and 6, in Table 1, that our approach leads to a design with
71% reduction in energy consumption when compared to the WYL
approach, for the heterogeneous MPSoC with one PE and one EE
cluster each containing 2 processors. This happens because after
the classifications of actors into PE and EE in order to satisfy the
throughput constraint of 1 output token per 100µs, EE actors will not
be considered for replication in the WYL approach, while PE actors
will be considered yet never replicated because of the algorithm in
[15] which does not replicate the actors once the number of ’heavy’
actors is equal to the number of (PE) cores, which happens for this
platform.

From the above examples, we can see the necessity and usefulness
of our approach, presented in Section 5, which uses the graph unfold-
ing transformation to obtain energy-efficient cluster heterogeneous
MPSoC designs.



4. BACKGROUND
Given that the unfolding transformation, we use to replicate the

tasks in an application modeled as an SDF graph, transforms the
graph into a CSDF graph and that the CSDF MoC is a superset of
the SDF MoC, in this section, we first introduce the CSDF MoC,
followed by the unfolding transformation. Then, we review the
scheduling framework proposed in [26], which we use to schedule
tasks in a CSDF graph. After that we present the system model and
energy model considered in this paper.

4.1 Cyclo-Static Dataflow (CSDF)
An application modeled as a CSDF [4] is a directed graph G =

(V, E) that consists of a set of actors V which communicate with each
other through a set of communication channels E. Actors represent
a certain functionality of the application, while communication
channels are FIFOs representing data dependency and transferring
data tokens between the actors. Every actor τi ∈ V has an execu-
tion sequence [ fi(1), fi(2), · · · , fi(Pi)] of length Pi, i.e., it has Pi
phases. The kth time that actor τi is fired, it executes the function
fi(((k − 1) mod Pi) + 1). As a consequence, the execution time of
actor τi is also a sequence [CC

i (1), CC
i (2), · · · , CC

i (Pi)] consisting
of the worst-case computation time values for each phase. Every
output channel eu of an actor τi has a predefined token production
sequence [xu

i (1), xu
i (2), · · · , xu

i (Pi)] of length Pi. Analogously, token
consumption on every input channel eu of an actor τi is a predefined
sequence [yu

i (1), yu
i (2), · · · , yu

i (Pi)], called consumption sequence.
An important property of the CSDF model is the ability to derive

at design-time a schedule for the actors. In order to derive a
valid static schedule for a CSDF graph at design-time, it has to
be consistent and live. A CSDF graph G is said to be consistent
if a positive integer solution ~r = [r1, r2, · · · , rN]T exists for the
balance equation Γ · ~r = ~0 in [4], where Γ represents the topology
matrix containing for each eu = (τi, τ j) in G the number of produced
and consumed tokens during Pi and P j firings of actors τi and τ j,
respectively. If a deadlock-free schedule can be found, G is said
to be live. Each consistent CSDF graph has a non-trivial repetition
vector ~q = [q1, q2, · · · , qN]T ∈ NN . An entry qi ∈ ~q represents
the number of invocations of an actor τi in a graph iteration of G.
Similarly, an entry ri ∈ ~r represents the number of invocations of
a phase of an actor τi in a graph iteration of G. The smallest non-
trivial repetition vector is called basic repetition vector. If every
actor τi in a CSDF graph G has Pi = 1 then the graph G is an SDF
graph, i.e., the SDF MoC is a subset of the CSDF MoC.

Figure 1 shows an example of an SDF graph. For instance, actor
τ2 has worst-case computation time CC

2 = 100 time units and its
token production rate x2

2 on channel e2 is 2. The repetition vector of
G in Figure 1 is ~q = [1, 1, 1, 1]T and it is the basic repetition vector
for G. Figure 2 shows an example of a CSDF graph. For graph G′
shown in Figure 2, the basic repetition vector ~q is [2, 1, 1, 1, 1, 2]T

and its corresponding vector ~r is [1, 1, 1, 1, 1, 1]T . Throughout this
paper, all SDF and CSDF graphs are assumed to be consistent and
live.

4.2 Unfolding Transformation of SDF Graphs
The authors in [27] showed that an SDF graph can be efficiently

transformed into an equivalent CSDF graph by graph unfolding to
expose the right amount of parallelism in the SDF graph needed
to better utilize the underlying MPSoC platform. The motivation
behind the unfolding is to equally distribute the workload of an
actor in the initial graph by running in parallel replicas correspond-
ing to that actor. Given a vector ~f ∈ NN of unfolding factors,
where fi denotes the unfolding factor for actor τi, the unfolding
transformation replaces τi with fi replicas of τi. To ensure the
functional equivalence, the production and consumption sequences
on channels in the resulting CSDF graph are modified accordingly
to the production and consumption rates in the initial SDF graph.
After the unfolding, each replica τi,k ∈ G′, k ∈ [1, fi], of an actor

τi ∈ G will have the repetition qi,k [27]:

qi,k =
qi · lcm( ~f )

fi
, (1)

where lcm( ~f ) is the least common multiple of all unfolding factors
in ~f . For example, after the unfolding of the SDF graph in Figure 1
with the unfolding vector ~f = [1, 2, 2, 1] we obtain the CSDF graph
shown in Figure 2 with the repetition vector ~q′ = [2, 1, 1, 1, 1, 2]T ,
where q2,1 = q2,2 =

1·lcm(1,2,2,1)
2 = 1.

4.3 Hard Real-Time Scheduling of (C)SDF
In [26], a real-time improved strictly periodic scheduling (ISPS)

framework for acyclic CSDF graphs is proposed. In the framework
in [26], every actor in a CSDF graph is converted to a set of implicit-
deadline periodic (IDP) tasks. The analysis in [26] begins with the
computation of the worst-case execution time (WCET) sequence
Ci = [Ci(1), Ci(2), · · · , Ci(Pi)] of a CSDF actor τi. The WCET
value Ci(ϕ) for a phase ϕ is computed such that both the worst-case
communication and computation times of a phase ϕ of τi is included:

Ci(ϕ) = CR ·
∑

er∈in(τi)

yr
i (ϕ) + CC

i (ϕ) + CW ·
∑

ew∈out(τi)

xw
i (ϕ), (2)

where CR represents the platform-dependent worst-case time needed
to read a single token from an input channel er from the set of input
channels in(τi) of actor τi; analogously, CW is the worst-case time
needed to write a single token to an output channel ew from the set
of output channels out(τi) of τi; yr

i (ϕ) and xw
i (ϕ) is the number of

tokens read from er and written to ew by τi, respectively, during its
execution phase ϕ; and CC

i (ϕ) is the worst-case computation time of
τi in its phase ϕ. To simplify the notations, the following definition
is used:

Definition 1. The workload of an actor τi in a CSDF graph G
is Wi =

∑ϕ=Pi
ϕ=1 Ci(ϕ) · ri and the maximum actor workload of the

graph G is Ŵ = maxτi∈G{Wi}.

Every actor τi in a CSDF graph G is converted to a set of IDP tasks
consisting of Pi tasks τi(ϕ) = (S i(ϕ),Ci(ϕ),Di,Ti), 1 ≤ ϕ ≤ Pi, by
computing the task parameters. Parameter S i(ϕ) is the earliest start
time of a phase ϕ of actor τi, Ci(ϕ) is the WCET value of a phase ϕ
given by Eq. (2), Di is the implicit deadline, and Ti is the period of
tasks, where Ti ≥

∑ϕ=Pi
ϕ=1 Ci(ϕ)).

To execute graph G in strictly periodic fashion, period Ti for each
actor τi is computed in [26] as follows:

Ti =
lcm(~r)

ri
· s,∀τi ∈ V, (3)

s =

⌈
Ŵ

lcm(~r)

⌉
, (4)

where lcm(~r) is the least common multiple of all repetition entries
in ~r and Ŵ is given by Definition 1. These derived actor periods
ensure that each actor τi executes qi times in every graph iteration
period TG, also called hyperperiod. Hyperperiod TG for graph G is
given by:

r1T1 = r2T2 = · · · = rN−1TN−1 = rNTN = TG. (5)

Note that periods computed by Eq. (3) are the minimum periods
for actors scheduled by ISPS and that there exist other larger valid

periods for actors by taking any integer s >
⌈

Ŵ
lcm(~r)

⌉
. Once the actor

periods are computed, the utilization of actor τi, denoted as ui, can
be computed as ui =

∑ϕ=Pi
ϕ=1 Ci(ϕ)/Ti, where ui ∈ (0, 1]. For a graph



G, uG is the total utilization of G given by:

uG =
∑
τi∈V

ui =
∑
τi∈V

∑ϕ=Pi
ϕ=1 Ci(ϕ)

Ti
. (6)

The total utilization uG of a graph G directly determines the mini-
mum number of processors needed to schedule the graph.

The throughput of each actor τi can be computed as Pi/Ti. The
throughput of a graph G when its actors are scheduled as strictly
periodic tasks is determined by the period of the output actor and is
given by:

R =
Pout

Tout
. (7)

The authors in [26] also provide a method for calculating the latency
of a CSDF graph scheduled in a strictly periodic fashion. In addition,
the framework computes the minimum buffer size for each channel
in a graph such that actor phases, i.e., tasks, can be executed in
strictly periodic fashion.

Converting the actors to periodic tasks, as described above, en-
ables the application of the well-developed hard real-time scheduling
theory [9], and hence, allows fast analytical calculation of the
minimum number of processors needed to schedule the tasks in
a CSDF. In real-time systems, tasks can be scheduled on processors
by using global, hybrid, or partitioned scheduling algorithms [9].
However, global and hybrid scheduling algorithms require task
migration, and thus introduce additional run-time overheads and
memory overhead on distributed memory systems. The other class
of scheduling algorithms are partitioned algorithms which do not
require task migration, hence they have low run-time overheads. In
partitioned scheduling, tasks are first allocated to processors and
then scheduled on each processor by an uniprocessor scheduling
algorithm. By performing extensive empirical comparison of global,
clustered (hybrid) and partitioned algorithms for Earliest Deadline
First (EDF) scheduling, the authors in [3] concluded that the parti-
tioned algorithm outperforms all the algorithms when hard real-time
systems are considered. Thus, in this paper, we consider partitioned
scheduling algorithms.

4.4 System Model
We consider a cluster heterogeneous MPSoC containing two types

of clusters – performance-efficient (PE) clusters and energy-efficient
(EE) clusters. Each cluster has a number of identical PE processors,
denoted as NPE

p , or a number of EE processors, denoted as NEE
p .

Thus, in total, a cluster heterogeneous MPSoC contains NPE
c × NPE

p

PE processors and NEE
c × NEE

p EE processors, where NPE
c and NEE

c
represent the total number of PE clusters and the total number of EE
clusters, respectively. All processors on the same cluster operate at
the same voltage and frequency level. The voltage and frequency
level of a cluster can be changed to control the power consumption.
A cluster can be switched-off, thereby consuming no power.

Since actors may run on two different types of processors (PE
and EE), the worst-case execution time value Ci(ϕ) for each phase
ϕ of an actor τi has two values – CPE

i (ϕ) and CEE
i (ϕ). The total

utilizations of the tasks assigned to PE cluster j and EE cluster k
can be calculated by:

uPE
j =

∑
τi∈VPE

j

∑ϕ=Pi
ϕ=1 CPE

i (ϕ)

Ti
, uEE

k =
∑

τi∈VEE
k

∑ϕ=Pi
ϕ=1 CEE

i (ϕ)

Ti
, (8)

where VPE
j and VEE

k represent sets of CSDF tasks assigned to PE
cluster j and EE cluster k, respectively.

4.5 Energy Model
Given that all processors in the same cluster operate at the same

voltage and frequency level, we can reduce the energy consumption
of a cluster heterogeneous MPSoC by using per-cluster VFS and by

switching-off some clusters. The authors in [18] give the power
model for cluster heterogeneous MPSoC systems with discrete
voltage and frequency levels based on real measurements performed
on the ODROID XU-3 [22] board containing an MPSoC with two
clusters – one quad core Cortex A15 ’big’ (PE) cluster and one quad
core Cortex A7 ’little’ (EE) cluster. The power model of a cluster is
given by:

P( f ) = α f b + βNp,ac + Ps( f ), (9)

where the first term is the dynamic power consumption, β is the
static power consumption of one processor and Np,ac is the number
of active processors on the cluster, Ps( f ) is the ’uncore’ power
consumption and f is the frequency level. The ’uncore’ power
consumption is the power consumption from some components not
pertaining to a processor, e.g., a shared cache, an integrated memory
controller, etc. Parameters α, b and β, and Ps( f ) depend on the
platform and cluster type, and they are determined in [18].

We calculate the total energy consumption for a graph G mapped
onto a cluster heterogeneous MPSoC over one hyperperiod TG by:

E = EPE + EEE . (10)

EPE in Eq. (10) contains the total energy consumption of PE clusters
and is given by:

EPE = TG

( NPE
ac∑

j=1

(
uPE

j αPE( f j)bPE
+ βPE NPE

p,ac j
+ PPE

s ( f j)
))
, (11)

where NPE
ac is the number of active PE clusters, NPE

p,ac j
is the number

of active processors on PE cluster j, uPE
j is the total utilization for

tasks successfully scheduled by a partitioned scheduling algorithm
on the corresponding PE cluster j, f j is the operating frequency for
the corresponding PE cluster j, and αPE , bPE and βPE are the power
parameters for PE clusters [18].

The total energy consumption of EE clusters, EEE in Eq. (10), is
given by:

EEE = TG

( NEE
ac∑

k=1

(
uEE

k αEE( fk)bEE
+ βEE NEE

p,ack
+ PEE

s ( fk)
))
, (12)

where NEE
ac is the number of active PE clusters, NEE

p,ack
is the number

of active processors on EE cluster k, uEE
k is the total utilization for

tasks successfully scheduled by a partitioned scheduling algorithm
on EE cluster k, fk is the operating frequency for the corresponding
EE cluster k, and αEE , bEE and βEE are the power parameters for EE
clusters [18].

5. THE PROPOSED ENERGY MINIMIZA-
TION APPROACH

In this section, we present our novel energy minimization ap-
proach called Data-Parallel Energy Minimization (DPEM) which
energy-efficiently exploits a given cluster heterogeneous MPSoC
platform when mapping a hard real-time streaming application under
a throughput constraint. The logic behind our energy minimization
approach is the following: our approach replicates the tasks with
heavy utilization to reduce their utilization and lower the operating
frequency, thereby reducing the energy consumption; it tries to map
as many tasks as possible to EE processors such that the energy
consumption is further reduced, while the throughput constraint is
met. The DPEM approach is given in Algorithm 1 and explained
in Section 5.1 while its constituents are desribed in Section 5.2 and
Section 5.3.

5.1 The Data-Parallel Energy Minimization Al-
gorithm

In this section, we present our integral algorithm for Data-Parallel
Energy Minimization (DPEM). The inputs to DPEM are an SDF



Algorithm 1: Data-Parallel Energy Minimization (DPEM).
Input: An SDF graph G = (V, E), a cluster heterogeneous MPSoC and

a throughput constraint R.
Output: Vector of unfolding factors ~fbest , task mapping to processors

in the clusters Cbest , vector of operating frequencies for
clusters ~Fbest and the minimum energy consumption Ebest .

1 ~f = [1, 1, · · · , 1];
2 Calculate WCETs for each actor τi in G by using Eq. (2);
3 Calculate period Ti for PE type of processors for each actor τi in G by

using Eq. (3) and s =

⌊
Pout ·rout
R·lcm(~r)

⌋
; Tbest = TG = rout · Tout;

4 Find the bottleneck actor τb,k in G;
5 VEE , VPE ← Classify actors in G by Algorithm 2(G, Pout

Tout
);

6 Find Cbest , ~Fbest , Ebest by Algorithm 3(VEE , VPE);
7 if Cbest = ∅ then
8 return Unschedulable;

9 while fb < (NEE
c × NEE

p + NPE
c × NPE

p ) ∧ τb,k not stateful/in/out do
10 fb = fb + 1;
11 Get G′ by unfolding G using method in Section 4.2;
12 Calculate WCETs for each actor τ′i in G′ by using Eq. (2);
13 Calculate period T ′i for each actor τ′i by using Eq. (3) and

s =

⌊
P′out ·r

′
out

R·lcm(~r′)

⌋
; TG′ = r′out · T

′
out;

14 Find the bottleneck actor τb,k in G′;

15 V′EE , V′PE ← Classify actors in G′ by Algorithm 2(G′, P′out
T ′out

);

16 Find Cbest,u, ~Fbest,u, Ebest,u by Algorithm 3(V′EE , V′PE);
17 if Cbest,u = ∅ then
18 go to 9;

19 if lcm(TG′ ,Tbest)
TG′

· Ebest,u <
lcm(TG′ ,Tbest)

Tbest
· Ebest then

20 Ebest = Ebest,u, Tbest = TG′ , ~Fbest = ~Fbest,u, Cbest = Cbest,u,
~fbest = ~f ;

21 return ~fbest , Cbest , ~Fbest , Ebest;

graph G, a cluster heterogeneous MPSoC, and a throughput con-
straint R. The outputs are a vector of unfolding factors ~fbest accord-
ing to which each actor in the initial SDF graph should be replicated,
the task mapping to processors in the clusters Cbest, a vector of
operating frequencies for clusters ~Fbest and the minimum energy
consumption of the system Ebest. The DPEM algorithm is shown
in Algorithm 1. Line 1 in Algorithm 1 initializes each unfolding
factor of an actor in graph G to 1. In Lines 2 and 3, the initial
graph G is converted to periodic tasks by the ISPS approach in
Section 4.3, where periods for each actor in G are set, by using
scaling factor s in Line 3, to be as large as possible while meeting
the throughput constraint R. The corresponding hyperperiod TG of
graph G is calculated as well in Line 3. Line 4 finds the bottleneck
actor in G. The bottleneck actor is the actor with the heaviest
workload among the actor workloads for PE type of processors
during one hyperperiod. If multiple actors have the same maximum
workload, then the one with the smallest code size is selected to be
the bottleneck. Note that stateful actors and input and output actors
are not unfolded. In Line 5, Algorithm 2, explained in Section 5.2,
is applied to classify actors into two groups – EE and PE. Here,
by splitting actors into two groups, the required throughput of G
under ISPS is guaranteed. Line 6 uses Algorithm 3, described in
Section 5.3, to energy-efficiently map graph G on the input MPSoC
platform. It may happen that the input platform is not big enough to
map the input application, i.e., graph G. In that case Algorithm 3
will return an empty mapping, i.e., Cbest = ∅. If this happens,
the algorithm terminates and signals failure in Line 8. Otherwise,
after obtaining the initial energy-efficient solution in Line 6, we
further search to reduce the energy consumption by exploiting task
replication via the unfolding, Lines 9 to 20.

Line 9 checks if the upper bound on the unfolding factor for the
bottleneck actor has been reached and if the bottleneck actor is one of

the actors which cannot be unfolded (input, output actors and stateful
actors). If one of these happens, Algorithm 1 terminates and returns
in Line 21 the most energy-efficient solution found so far. Otherwise,
the initial SDF graph is transformed into an equivalent CSDF graph
by replicating, in Line 10, the bottleneck actor previously found in
Line 4. The graph transformation is performed in Line 11 by using
the unfolding transformation method described in Section 4.2. Given
that the transformed graph contains more actors than the original
one, the WCETs of the actors have to be recomputed because the
worst-case communication time may change. This is done in Line
12. Once the WCETs in the CSDF graph are recalculated, actors
in the CSDF graph are transformed into periodic tasks by using the
ISPS approach in Section 4.3. The unfolding graph transformation
is usually used to increase the throughput of a graph by exposing
more parallelism through task replication. However, here we want
just to meet the same throughput constraint R as the initial graph,
and use the unfolding transformation to change the utilization of
the periodic tasks. To meet throughput constraint R and keep the
throughput as close as possible to the initial throughput in Line 3, we
scale the periods of the periodic tasks obtained after the conversion
by scaling factor s, which is given in Line 13. Then, we find in Line
14 the bottleneck actor in the equivalent CSDF graph G′, which
is replicated in the next pass of the algorithm. The actors in G′
are classified into PE and EE actors and the minimum energy of
mapping the tasks corresponding to actors in G′ onto the MPSoC
is calculated in Lines 15 and 16. If there is no feasible mapping
we continue with the task replication, Lines 17 and 18. On the
other hand, if we could map G′ on the MPSoC, the obtained energy
is compared against the best, i.e., the minimum, energy obtained
so far over the same time interval in Line 19. If we detect that
the energy consumption of the current solution is smaller than the
energy consumption of the best solution found so far, the current
solution becomes the best one in Line 20. Line 9 checks whether the
termination criteria for Algorithm 1 is met. If it is not, the algorithm
will repeat Lines 10 to 20. Otherwise, the best solution is returned
in Line 21.

Finally, we can analyze the time complexity of our DPEM al-
gorithm in the worst case. The complexity of Algorithm 1 is
determined by the while loop in Lines 9 to 20. In the worst case,
the while loop will be executed until all the actors in the initial
graph are replicated in the equivalent graph maximum number of
times, which is equal to the number of processors N in the platform.
So, the while loop will be executed |V |N times in the worst case.
The complexity of the graph unfolding algorithm in [27], which is
called in Line 11, is O(|E|N2P), where P is the maximum number of
execution phases per actor in the equivalent CSDF graph obtained
after unfolding, i.e., P = maxτi∈V′ {Pi}. The complexity of the
other parts of the while loop is determined by Algorithm 3, see
Section 5.3. Thus, the worst-case complexity of Algorithm 1 is
O(N|V | · (N2P|E| + (N |V |)2 log(N |V |))), which is polynomial.

5.2 Task Classification for Energy Minimiza-
tion

In Algorithm 1, we used Algorithm 2 in Lines 5 and 15 to classify
tasks of a graph into two groups, depending on the processor type
they should be executed. Selecting the processor type to execute
a task in an application is very important because different type of
processors in a heterogeneous MPSoC have significantly different
power and timing profiles. Algorithm 2 gives our task classification
method. It takes a CSDF graph G and a throughput requirement Pout

Tout
as inputs and it produces PE and EE subsets of tasks in G.

First, we sort the tasks in order of increasing workload assuming
all of them are assigned to EE processors – see Line 1 in Algorithm 2.
Then, with the sorted tasks, we use the hyperperiod rout · Tout as the
classification threshold such that throughput requirement Pout

Tout
is

met and the energy consumption is minimized, and deploy a binary
search algorithm in Line 2 to find the pivotal point by which we can
split the sorted tasks into two sets, one for the EE type of processor



Algorithm 2: Procedure to classify tasks according to processor
type.

Input: A CSDF graph G = (V, E) and a throughput constraint Pout
Tout

.
Output: Subsets VPE and VEE ⊂ V .

1 V ← Sort actors τi in V in increasing order of WEE
i ;

2 b← Binary search to find the position in V with the biggest index
where actor τi can meet WEE

i ≤ routTout;
3 VEE ← V[0 : b];
4 VPE ← V − VEE ;
5 return VEE , VPE ;

Algorithm 3: Procedure to find the minimum energy when the
given tasks are mapped onto a cluster heterogeneous MPSoC.

Input: Sets of actors VEE and VPE and a cluster heterogeneous
MPSoC.

Output: Task mapping to processor in the clusters C, vector of
operating frequencies for clusters ~F and the minimum energy
consumption E.

1 if VEE cannot be scheduled on NEE
c × NEE

p processors by WFD
algorithm and max frequency f EE

max then
2 Move some actors τi ∈ VEE to PE set VPE in order of

non-increasing ui such that VEE is schedulable on NEE
c × NEE

p
processors;

3 if VPE cannot be scheduled on NPE
c × NPE

p processors by WFD
algorithm and max frequency f PE

max then
4 return C ← ∅, ~F ← ∅, E = ∞;

5 if |VEE | = 0 then
6 CEE ← ∅, ~FEE ← ∅, EEE = 0;
7 else
8 nEE

lb =

⌈
duEE e

NEE
p

⌉
, nEE

ub = min{
⌈
|VEE |

NEE
p

⌉
,NEE

c };

9 Find CEE , ~FEE , EEE by Algorithm 4(nEE
lb , nEE

ub ,V
EE , Eq. (12));

10 if |VPE | = 0 then
11 CPE ← ∅, ~FPE ← ∅, EPE = 0;
12 else
13 nPE

lb =

⌈
duPE e

NPE
p

⌉
, nPE

ub = min{
⌈
|VPE |

NPE
p

⌉
,NPE

c };

14 Find CPE , ~FPE , EPE by Algorithm 4(nPE
lb , nPE

ub ,V
PE , Eq. (11));

15 C = {CEE ,CPE }, ~F = { ~FEE , ~FPE }, E = EEE + EPE ;
16 return C, ~F, E;

and another for the PE type of processor. The goal is to put as many
tasks as possible to EE processors to reduce the energy consumption
while satisfying the throughput requirement. All the tasks, which
do not violate the throughput, i.e., the hyperperiod rout · Tout, when
assigned to EE processors are classified as EE tasks, Line 3, and
all the rest as PE tasks, Line 4. In this way we guarantee that the
throughput requirement will be met while minimizing the energy
consumption.

Since the sorting algorithm in Line 1 has the worst-case com-
plexity of O(|V | log |V |) and the worst-case complexity of the binary
search in Line 2 is O(log |V |), the worst-case complexity of Algo-
rithm 2 is O(|V | log |V |).

5.3 Task Mapping for Energy Minimization
In Algorithm 1, once the actors in a graph are classified by

Algorithm 2 in Lines 5 and 15 into two sets of EE and PE actors,
each set is mapped by Algorithm 3 in Lines 6 and 16 onto the
corresponding type of clusters, EE and PE clusters, such that the
energy consumption of the whole cluster heterogeneous MPSoC
is minimized. Our algorithm of energy-efficient tasks mapping is
given in Algorithm 3.

Algorithm 3 takes sets VEE and VPE of actors and a cluster het-
erogeneous MPSoC, and it returns the task mapping on processors
in the clusters C, a vector of operating frequencies for clusters
~F and the minimum energy consumption E. The authors in [1]
showed that the most balanced workload distribution leads to the
least energy consumption, and that the the most balanced distribution
is obtained when the Worst-Fit Decreasing (WFD) heuristic [6] is
used to allocate tasks to processors. Thus, in this work, we use
the WFD heuristic for task allocation. First, Algorithm 3 checks
in Lines 1 to 4 whether the input MPSoC has enough resource to
map (allocate) and schedule the tasks by using the WFD allocation
heuristic [6], applied among the processors of the same type, and
a given per-processor schedulability test [17] when processors are
running at the maximum available frequency for each processor type.
If there is no enough EE type of processors, we select some actors
from set VEE and assign them to set VPE . The actors are selected
in order of decreasing utilization and the selection is terminated as
soon as the tasks corresponding to actors in set VEE are schedulable
on the EE processors. However, if there is no enough PE type of
processors, that means the application is not schedulable on the
input MPSoC. The algorithm terminates and signals the failure by
returning an empty set for tasks-to-processors mapping C in Line 4.
Line 5 checks if there are tasks that should be mapped on processors
in EE clusters. If no task should be mapped to EE clusters, then EE
clusters will not be used within the input MPSoC, hence they will
not contribute to the total energy consumption, Line 6. Otherwise,
the bounds on the number of active EE clusters are calculated in
Line 8 and the energy consumption of mapping task set VEE to EE
clusters is calculated in Line 9. The lower bound nEE

lb corresponds to
the minimum possible number of active clusters to schedule the tasks
because it is determined according to the ceiling of the utilization
uEE of EE tasks. The upper bound nEE

ub is selected to be the minimum
value among the case when tasks are mapped onto processors in
one-to-one manner, and the case when all clusters available on the
platform are active. We find the minimum energy for mapping the
tasks on EE clusters by using Algorithm 4 (described later) in Line
9. Similarly, Line 10 checks whether there are tasks that should be
mapped onto processors in PE clusters. If there are such tasks, lower
and upper bounds of active PE clusters are calculated in Line 13 and
the minimum energy for mapping the tasks on PE clusters by using
Algorithm 4 is obtained in Line 14. Finally, the EE solution and
the PE solution mappings are grouped together in Line 15 and the
integral solution mapping of the given tasks onto the given MPSoC
which results in minimum energy consumption is returned in Line
16 of Algorithm 3.

Within Algorithm 3, described above, Algorithm 4 is used to
map the tasks which are in the same group, EE or PE, such that the
energy consumption is minimized. Algorithm 4 takes the bounds
on the number of active clusters of certain type (PE or EE), nlb
and nub, tasks V that are going to be mapped onto PE/EE clusters,
the corresponding equation, Eq. (11) or (12) – see Section 4.5,
for the calculation of the energy consumption and returns the task
partitions among the processors in the clusters Cbest and a vector
of operating frequencies for clusters ~Fbest which lead to minimal
energy consumption Ebest. In Lines 2 to 15 in Algorithm 4, the
best task mapping and the frequency assignment is determined
among different number of active clusters in the range from nlb
to nub. For each number of active clusters n, n ∈ [nlb, nub], the
algorithm in Line 4 performs the WFD allocation heuristic [6] and
uses a given per-processor schedulability test [17] to check the
schedulability of the tasks. In this way, we want to achieve load
balancing among the processors of the same type. If all tasks are
allocated on processors, Line 5, we group processors into clusters
according to their workload such that all processors in one cluster
run at the frequency which matches their workload as much as
possible. This is done in Lines 6 and 7, where processors π j ∈ Π
are first sorted in non-increasing order of their workload, i.e., their
utilization u j, and then starting from the processor with the highest



Algorithm 4: Procedure to find the minimum energy when the
given tasks are mapped onto the same type of clusters.

Input: Lower nlb and upper nub bound on the number of clusters, set V
of tasks that should be mapped onto clusters, equation Eq. for
calculating the energy consumption.

Output: Task mapping to processor in the clusters Cbest , vector of
operating frequencies for clusters ~Fbest and the minimum
energy consumption Ebest .

1 Ebest = ∞, ~Fbest ← ∅, Cbest ← ∅;
2 for n = nlb to nub do
3 Create a set Π of n × Np empty processors, ∀π j ∈ Π : u j = 0;
4 Perform WFD allocation heuristic and a corresponding

schedulability test for all tasks in V;
5 if all τi ∈ V can be scheduled on Π then
6 Π← Sort Π in non-increasing order of u j;
7 C ← group every Np processors in Π to a cluster Ck , k ∈ [1, n];
8 E = 0, Fk = 0, k ∈ [1, n];
9 for cluster Ck ∈ C do

10 Find processor π j ∈ Ck with the highest utilization u j,
umax = u j;

11 Compute frequency of Ck as Fk ≥ umax · fmax ∧ Fk ∈ F ;
12 Calculate energy Ek for cluster Ck by using Eq.;
13 E = E + Ek;
14 if E < Ebest then
15 Ebest = E, ~Fbest ← ~F, Cbest ← C;

16 return Ebest , ~Fbest , Cbest;

utilization, every Np processors are grouped into a cluster. For
each cluster, we select the smallest frequency which guarantees the
schedulability and is supported by the cluster type, i.e., it is in the set
F of available frequencies, Lines 9 to 11. The energy consumption
of the mapping is calculated in Lines 12 and 13 of Algorithm 4. In
Lines 14 and 15, we check whether the energy consumption obtained
by mapping the tasks on the current number of active clusters n is
the smallest one obtained so far. If that is the case, the mapping
on the current number of active clusters becomes the best mapping
solution. Finally, in Line 16, Algorithm 4 returns the minimum
energy Ebest obtained after mapping the tasks on clusters of the same
type, the frequency assignment ~Fbest for clusters and the cluster
partitions Cbest.

Let us now analyze the time complexity of Algorithm 4 and
Algorithm 3 in the worst case. The complexity of Algorithm 4 is
determined by the for loop in Lines 2 to 15. Due to the sorting
algorithms used within the WFD heuristic, in Lines 4, and in Line 6,
the complexity of Algorithm 4 is O(Nc|V | log |V |), where Nc is the
number of active clusters. The worst-case complexity of Algorithm 3
is then determined by Line 2, which is executed in the worst case
|V | times, and every time the WFD allocation heuristic is applied,
thus the complexity of Algorithm 3 is O(|V |2 log |V |).

6. EVALUATION
We performed three experiments to evaluate the efficiency of our

DPEM approach in comparison to the related energy minimization
approaches in [7], [18], [25] and [15]. We selected the approaches
in [7] and [18] for comparison because they consider the same task
and system models as we do. We selected to compare with the
approach in [25] because it is a very good representative among
the approaches for energy-efficient mapping and scheduling of
streaming applications modeled as SDF graphs. Finally, we compare
our approach with the approach in [15] which is the only approach
among the related approaches which consider task replication for
energy minimization for classical periodic real-time tasks. In the first
two experiments, we compare the approaches when the streaming
applications are executed on a cluster heterogeneous platform. We
apply our task classification method, given in Algorithm 2, for
the approaches in [25] and [15] which were originally devised for
homogeneous platforms and then we apply these approaches on the

Table 2: Benchmarks used for evaluation.
Application |V | |E| R[1/time unit]
Discrete cosine transform (DCT) 8 7 1/47616
Fast Fourier transform (FFT) 17 16 1/12032
Filterbank 85 99 1/11312
Time delay equalization (TDE) 29 28 1/36960
Data encryption standard (DES) 53 60 1/1024
Serpent 120 128 1/3336
Bitonic Sorting 40 46 1/95
MPEG2 23 26 1/7680
Vocoder 114 147 1/9105
FMRadio 43 53 1/1434
Channel Vocoder 55 70 1/35500

two sets of tasks, PE and EE, obtained by the classification. Since
two of the related approaches, [25] and [15], originally consider
homogeneous platforms with per-core VFS capability, in the third
experiment, we compare our approach with these related approaches
on this type of platform.

The experiments were performed on the real-life applications
from the StreamIt benchmarks suit [28], given in Table 2. |V | denotes
the number of actors in an SDF graph, while |E| denotes the number
of communication channels. R is the maximum achievable through-
put, computed by using Eq. (3), (4) and (7), when the applications
are scheduled by the ISPS approach described in Section 4.3. We
consider these throughput values as the throughput constraints in
our experiments.

In the experiments on heterogeneous MPSoC platforms, we
consider the same MPSoC platforms considered in [18]. Those
platforms have the same number of PE processors and EE processors
but they have different cluster granularities, i.e., different number
of processors per cluster, and hence, different number of clusters.
We use the same MPSoC notation MPSoC_x_pe_ee as in [18]. For
example, MPSoC_2_20_28 corresponds to an MPSoC platform
with 2 processors per cluster, 20 PE clusters and 28 EE clusters.
The approaches in [7], [18] and [15] use hard real-time scheduling
algorithms to schedule the tasks on an MPSoC while the approach
in [25] uses self-timed scheduling. The application tasks are perma-
nently assigned to processors in [7], [15] and [25], while in [18],
the tasks are permanently assigned to clusters, but within a cluster
tasks are scheduled by a global scheduling algorithm, hence, they
can migrate. In the experiments, we use the EDF [17] scheduling
algorithm within our DPEM approach which is also used in [7]
and [15]. In all experiments, we use the power parameters in [18]
obtained from real measurements performed on the ODROID XU-3
[22] board. The results of the evaluations are shown in Figure 3,
Figure 4 and Figure 5. In all these figures, we show the energy
reduction obtained by our DPEM approach in comparison with the
related approaches. The energy reduction r is computed by:

r =
Erel − EDPEM

Erel
, (13)

where Erel is the energy consumption of an application to MPSoC
mapping configuration obtained by a related approach and EDPEM
denotes the energy consumption achieved by our DPEM approach.

6.1 Comparison with [7], [18], [25] on Hetero-
geneous MPSoCs

In this section, we compare the energy consumption on cluster
heterogeneous MPSoCs obtained by our proposed DPEM approach
with the energy consumption delivered by the related approaches
which do not consider task replication [7] – CKR, [18] – FDM, [25]
– SDK.

The comparison results with the CKR, FDM and SDK approaches
on the three considered heterogeneous MPSoCs are given in Fig-
ure 3(a)-3(c). In each of these figures, the x-axis shows the ap-
plication benchmarks and the y-axis shows the energy reduction.
Both approaches CKR and FDM are devised for cluster heteroge-
neous MPSoCs and both of them use preemptive hard real-time
scheduling algorithms, which is also the case in our DPEM algo-
rithm. We can see in Figure 3 that our DPEM approach reduces
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(a) MPSoC_2_20_28 (higher is better)
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(b) MPSoC_4_10_14 (higher is better)
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(c) MPSoC_8_5_7 (higher is better)

Figure 3: Comparison of our proposed DPEM approach with related approaches on heterogeneous MPSoCs.

the energy consumption when compared to CKR and FDM for all
but two considered benchmarks. The two benchmarks for which
our approach results in the same energy consumption as CKR and
FDM are Filterbank and Channel Vocoder. The workload which
these two benchmarks put on the considered MPSoCs is balanced
among processors, hence our approach will not replicate tasks of
these benchmarks which leads to the same energy consumption as
obtained by the CKR and FDM approaches. The average energy
reduction of our approach when compared to the CKR approach
is 62%, 62% and 63.1% for the three MPSoCs with 2, 4 and 8
processors per cluster, respectively. When compared to the FDM
approach the corresponding average energy reductions are 61.6%,
61.4% and 61.6%. When compared to the SDK approach, our
approach achieves energy reduction for all benchmarks because
we use both task replication and preemptive scheduling. Note that
we only use the design-time phase in the SDK approach for the
comparison because our approach is a design-time approach. Our
approach obtains on average the energy reduction of 65%, 65.1%
and 66% for the three MPSoCs with 2, 4 and 8 processors per
cluster, respectively, when compared to the SDK approach. We can
conclude from these results that our approach achieves big energy
reduction by utilizing task replication.

6.2 Comparison with [15] on Heterogeneous
MPSoCs

In this section, we compare the energy consumption on cluster
heterogeneous MPSoCs of our DPEM approach with the related
approach in [15], denoted by WYL, which considers task replication
as well. The results are given in Figure 4. Here again, both
approaches will not replicate tasks in Filterbank and Channel
Vocoder and hence both approaches will lead to the same energy
consumption in these two cases. Given that the task classification in
the WYL approach is based on the power consumption curve of a
processor, the WYL approach will never replicate tasks assigned to
EE processors. In addition, the WYL approach will never replicate
the tasks of an application once the total number of heavy tasks is
equal to the number of processors on an MPSoC platform. All these
limitations of WYL explain the energy reduction achieved when our
approach is used to map the benchmarks in Table 2 onto the three
considered MPSoCs. The average energy reduction obtained by our
DPEM approach is 51.3%, 57.2% and 60.7% for the MPSoCs with
2, 4 and 8 processors per cluster, respectively.

6.3 Comparison on Homogeneous MPSoC
Given that both the SDK and WYL approaches were originally

proposed for homogeneous platforms with per-core VFS capability,
in this section, we compare the energy consumption on such systems
when our DPEM approach is used with the energy consumption
values when the SDK and WYL approaches are used. The results of
the energy reduction on a homogeneous MPSoC platform consisting
of 96 PE processors with per-core VFS capability are given in
Figure 5. Here, we also give the results of energy reduction when our
DPEM approach is compared with the CKR and FDM approaches
for completeness.
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Figure 4: Comparison between DPEM and WYL on heteroge-
neous MPSoCs.

The benchmarks Filterbank and Channel Vocoder were the
only two benchmarks for which our approach could not obtain any
reduction in energy consumption on heterogeneous MPSoCs when
compared to the approaches which use hard real-time scheduling
algorithms – CKR, FDM and WYL. In the case of a homogeneous
platform, we can see in Figure 5 that there is still no difference in
energy consumption between our DPEM and the CKR, FDM and
WYL for the Filterbank benchmark. This happens because when
mapped onto a homogeneous MPSoC, Filterbank has balanced
workload among the processors, hence both our DPEM and the
WYL approaches will not replicate tasks. However, in the case
of the Channel Vocoder benchmark, we see in Figure 5 that the
situation changes, i.e., now there is a reduction in energy when our
approach is compared to the CKR and FDM, because our approach
will replicate tasks to balance the workload of Channel Vocoder on
a homogeneous platform. The WYL approach will replicate tasks
as well, leading to the same energy consumption as obtained by
our DPEM approach. Although the WYL approach was devised for
homogeneous platforms with types of processors which match the
PE type and with per-core VFS capability, still our DPEM approach
outperforms the WYL approach by reducing energy on average
by 10.4%, and in the best case up to 22%. The reason is that our
task replication procedure is more flexible than the procedure in the
WYL approach.

When compared to the another approach devised for homoge-
neous MPSoCs with per-core VFS capability, i.e., the SDK approach,
our DPEM approach leads to an energy reduction of 36% on average
and up to 90% in the best case. The reason is that our approach
replicates tasks to lower the utilization per-processor, and hence,
lower operating frequencies can be achieved. In addition, the SDK
approach minimizes only the dynamic energy consumption and uses
non-preemptive scheduling which both lead to higher total energy
consumption.

Finally, when compared to the CKR and FDM approaches on
a homogeneous platform, our DPEM approach delivers systems
with energy reduction of 21.2% and 25.6% on average, respectively.
The main reason is the task replication which our approach uses
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Figure 5: Comparison on homogeneous MPSoC.
to lower the utilization per processor while keeping the application
throughput.

We performed an additional experiment to evaluate the influence
of the number of processors in an MPSoC on the energy reduction
of our DPEM approach in comparison with the related approaches.
In this experiment, beside the MPSoC platform with 96 PE pro-
cessors, we considered two additional platforms with 48 and 192
PE processors with per-core VFS capability. On the 48-processor
platform, our DPEM approach resulted in the energy reduction of
6%, 18.5%, 20.5% and 30.3% when compared with the WYL, CKR,
FDM and SDK approaches, respectively. In comparison with the
same related approaches, our DPEM approach obtains on the 192-
processor platform the following energy reductions – 10.7%, 24.9%,
29.4% and 39.8%. We can conclude that the energy reduction of
our approach with regard to the related approaches slowly increases
with the increase of the number of processors in the platform.

6.4 Overhead and time complexity analysis
In this section, we briefly discuss the code and data memory

overhead of our approach when compared to the related approaches
and the time complexity of our and the related approaches. The
code and data memory overhead of our approach on heterogeneous
platforms when compared to the WYL approach is 2 times higher
on average, and 2.3 times higher on average than the approaches
which do not consider task replication, i.e., approaches CKR, FDM
and SDK. The memory overhead of our DPEM approach on the
homogeneous platform is 16% higher on average when compared to
the WYL approach, and 85% higher on average when compared to
the CKR, FDM and SDK approaches. Given that the actual memory
increase in the worst case is 213 KB and given the size of memory
available in modern embedded systems, we can conclude that the
memory overhead introduced by our approach is acceptable.

The time complexity in the worst-case of our DPEM approach
and the approaches CKR, FDM and WYL is polynomial, while the
worst-case time complexity of the SDK approach is exponential. In
the worst-case, our approach needs 62 minutes, the WYL approach
needs 5 minutes, the CKR approach takes 11 minutes, the FDM less
than 1 second and the SDK approach needs 6 days to find an energy-
efficient solution. Given that our DPEM approach is a design-time
approach and that it delivers solutions of better quality, we can
conclude that our approach outperforms the related approaches.

7. CONCLUSIONS
In this paper, we presented a novel polynomial-time energy

minimization mapping approach for SDF graphs which uses task
replication to achieve load-balancing on processors of the same type,
which enables processors to run at a lower frequency, consuming less
energy. The experiments on a set of real-life streaming applications
showed that our approach reduces energy consumption by 66%
on average while meeting the same throughput requirement when
compared to related energy minimization mapping approaches.
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