
Deriving Process Networks from Weakly Dynamic
Applications in System-Level Design

Todor Stefanov
Leiden Embedded Research Center

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

stefanov@liacs.nl

Ed Deprettere
Leiden Embedded Research Center

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

edd@liacs.nl

ABSTRACT
We present an approach to the automatic derivation of executable
Process Network specifications from Weakly Dynamic Applica-
tions. We introduce the notions of Dynamic Single Assignment
Code, Approximated Dependence Graph, and Linearly Bounded
Sets to model and capture weakly dynamic (data-dependent) be-
havior of applications at the task-level of abstraction. Process Net-
works are simple parallel processing models that match the emerg-
ing multi-processor architectures in the sense that the mapping of
Process Network specifications of applications onto multi-processor
architectures can be done in a systematic and transparent way.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications; J.6 [Computer-
aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design

Keywords
System-Level Design, Heterogeneous Embedded Systems, Kahn
Process Networks, Weakly Dynamic Applications

1. INTRODUCTION
Single-chip embedded systems are increasingly becoming het-

erogeneous systems, i.e., systems composed of fully programmable
components (microprocessors), reconfigurable components (FPGAs),
and dedicated hardware blocks. Typically, these components are
linked via some kind of communication structure (high-speed bus,
multiple buses or programmable network) forming a multi-processor
architecture. Mapping applications onto a multi-processor architec-
ture is a key issue in the emerging system-level and platform-based
design methodologies. Today, system designers experience signifi-
cant difficulties because the way an application is specified by the
application developer does not match the way multi-processor ar-
chitectures operate. The applications are typically specified using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

an imperative model of computation, i.e., programming languages
like C/C++. Although the imperative model of computation is a
natural model for application specification it does not reveal par-
allelism due to its inherent sequential nature. This fact makes the
mapping of an application onto a parallel multi-processor architec-
ture very difficult. On the other hand, if the application is specified
using a parallel model of computation (MoC) then the mapping will
be done in a systematic and transparent way using a disciplined ap-
proach [12], but specifying an application using a parallel MoC is
difficult, not well understood by application developers, and a time
consuming process. That is why application developers still prefer
to specify an application using the imperative model of computa-
tion, which is well understood, regardless the fact that this model
is not suitable for mapping an application onto a parallel multi-
processor architecture.

The facts, given above, suggest that there is a gap between the
way applications are currently specified (as sequential programs
in C/C++ or Matlab) and the way they should be specified (us-
ing a parallel model of computation) [12] in order to allow a sys-
tematic and transparent mapping onto parallel multi-processor ar-
chitectures. Although, many parallel models of computation ex-
ist [9][10], in this paper we focus on the Process Network model
of computation [7] because its operational semantics are simple,
yet general enough, to specify conveniently stream-oriented data
processing that fits nicely with the application domain we are inter-
ested in - multimedia and signal processing applications. Moreover,
for this application domain a prior work described in [2][16][11] re-
ports that indeed the Process Network (PN) model is very suitable
for specifying and mapping systematically and efficiently applica-
tions onto multi-processor architectures. The PN model expresses
an application in terms of distributed control (no global scheduler is
present) and distributed memory that are key requirements to take
advantage of the parallel resources available in multi-processor ar-
chitectures.

Our previous work presented in [8] provides some techniques to
bridge the gap mentioned above but these techniques are limited to
automatic derivation of Process Networks only from applications
described as static affine nested loop programs. Such programs
are important in Scientific, Matrix Computation and Adaptive Sig-
nal Processing applications. In this paper, however, we focus on
techniques that support automatic derivation of Process Networks
from Weakly Dynamic Applications (WDA). We define a WDA as
a task-level sequential program where:
A) the control structures in the program are: for-loops with up-
per and lower bounds as affine functions of iterators of other loops
and parameters; if-then-else constructs with no restrictions on the

condition - the condition of the if may be an arbitrary function of
loop iterators and/or data variables.
B) The indexing of data variables (arrays) must be an affine func-
tion of for-loop iterators and possible parameters.

Notice that if we constrain the condition of if-then-else con-
structs to be an affine function of loop iterators and parameters then
our WDA reduces to a static affine nested loop application. There-
fore, the techniques we present in this paper extend significantly
the class of applications that can be handled by [8]. For example,
our techniques can handle not only Scientific, Matrix Computation
and Adaptive Signal Processing applications but also media appli-
cations with dynamic (data dependent) behavior such as the JPEG
codecs, the MPEG codecs, etc.

As a simple example, consider the WDA shown in Figure 1. This

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [x(i), t(i)] = F1(...);
5 end
6

7 for i = 1:1:N,
8 if t(i) <= 0,
9 [x(i)] = F2(x(i));
10 end
11 [...] = F3(x(i));
12 end

Figure 1: Pseudo code of simple Weakly Dynamic Application.

application consists of three function calls1 ��� ,
���

and
���

. These
function calls execute tasks that communicate data via the array
�	��
� . Every element of the array can be anything from a scalar
value to very complicated data structures. The execution of

���
de-

pends on the condition at line 8. This condition is data dependent
because of the variable � ��
�� . The values of this variable are not
known at compile time, i.e., they are not known before the actual
execution of the program. This fact makes the program to have
dynamic behavior, unpredictable at compile time. A challenging
problem is how to analyze and transform this kind of dynamic pro-
grams at compile time in order to derive automatically executable
Process Network specifications. In this paper we address this prob-
lem and present a systematic solution approach.

1.1 Paper Contributions
We present a novel systematic and step-wise approach that al-

lows automatic derivation of executable Process Network specifi-
cations from Weakly Dynamic Applications. New notions like Dy-
namic Single Assignment Code, Approximated Dependence Graph,
and Linearly Bounded Sets have been introduced in our approach in
order to capture and model weakly dynamic behaviors of an appli-
cation. Most of the steps in our approach have been implemented
in a prototype software framework called COMPAANPRO. The ap-
proach has been applied and validated successfully on a real-life
application - Motion-JPEG encoder.

1.2 Related Work
Previous work on automatic derivation of Process Networks has

been presented in [13][8]. This work focuses on deriving Kahn
Process Network (KPN) specifications from applications described
as static parameterized affine nested loop programs. In contrast,
the work presented in this paper deals with a more general class of
applications, i.e., weakly dynamic applications from which KPN
specifications are derived automatically.

Kahn Process Networks are supported by the Ptolemy II frame-
work [10] and the YAPI environment [3] for concurrent modeling
and design of applications and systems. The designer has to spec-
ify manually the application as a Kahn Process Network and to give

1At some places in this paper we use the word function instead of function call for the
sake of brevity.

this network as an input to the Ptolemy II or YAPI simulation and
verification engines. In many cases specifying manually applica-
tion as a Kahn Process Network is a very time consuming and error
prone process. Our work, presented in this paper, can be used as
a front-end tool by Ptolemy II or YAPI. This will speedup signifi-
cantly the modeling effort when Kahn Process Networks are used
as well as modeling errors will be avoided because our techniques
guarantee correct-by-construction generation of Kahn Process Net-
works.

The work presented in [2][16][11] uses Kahn Process Networks
to model applications and to explore the mapping of these appli-
cations onto multi-processor architectures. This work clearly indi-
cates that the application modeling is done manually starting from
a sequential C code as well as that significant amount of time (a few
weeks) is spent by designers on transforming correctly the sequen-
tial C code into Kahn Process Networks. This fact slows down the
design space exploration process. The work presented in this paper
gives a solution for fast automatic derivation of Kahn Process Net-
works from sequential C code that will contribute for faster design
space exploration.

1.3 Paper Organization
In the next section, we give an overview of our step-wise ap-

proach to derive Process Networks from Weakly Dynamic Appli-
cations. In Section 3, every step in the approach is explained in
detail. Section 4 presents some results we have obtained by ap-
plying our approach on a real-life application, i.e., Motion-JPEG
encoder. Finally, we draw some conclusions in Section 5.

2. SOLUTION APPROACH: OVERVIEW
In this section, we present an overview of our approach to solve

the problem of deriving process networks from weakly dynamic
applications (WDA) as stated in Section 1. Our approach consists
of three main steps shown in Figure 2.

We start with a WDA specified in Matlab or C and transform it in
a dynamic Single Assignment Code (dSAC) representation - STEP
1 in Figure 2. There is a difference between our dSAC and the
classical single assignment code (SAC) used in the compiler com-
munity and systolic array community. The classical SAC is defined
as a program in which every variable is written only once whereas
our dSAC has the property that: 1) every variable in the code is
written at most once because of the dynamics in the application;
2) for some variables, it is not known whether or not they will be
written or read before the actual execution of the code. The dSAC
reveals all possible data-dependencies between the functions in the
WDA. Some of the data dependencies in the dSAC are not exactly
defined, i.e., they depend on variables having values that are not
known at compile time. In Section 3.1, we give more details about
the dSAC and we show a simple example.

The second step in our approach is to convert the dSAC into an-
other representation that is a formal model. This model consists of
two annotated graph structures, namely Approximated Dependence
Graph (ADG) and Schedule Tree (STree). The ADG and the STree
capture all the information that is present in the dSAC in a formal
way. As a consequence, formal operations can be easily defined
and applied on the ADG and the STree instead of the dSAC.

The ADG contains all the information that is related to the data
dependencies between the functions in the dSAC. The data depen-
dencies are approximated, i.e., the exact data dependencies are not
known at compile time. Because of this, our ADG model is more
general than the reduced dependence graph models that are used
to represent static programs. If the data dependencies are known
at compile time then the ADG is actually a polyhedral reduced de-

dynamic SAC

Process Network
Description

P2P1

WDA

WDA−to−dSACSTEP 1

3a

3b

3c

3d
PN

Synthesis
PN

Partitioning
Information

Code Generation

PN−to−ParseTrees
Linearization

dSAC−to−STree

Point−to−Point
OPD refinement

ADG’

Edge Grouping
Node Grouping

Processes

ADG STree

STEP 2

STEP 3

dSAC−to−ADG

Figure 2: An approach to derive Process Networks from
Weakly Dynamic Applications.

pendence graph (PRDG) [13]. In Section 3.2, we define the ADG
model. Also, we briefly describe our procedure to derive the ADG
from a dSAC and we give an example.

The STree contains all the information about the execution order
between the functions in the dSAC. The STree represents one valid
schedule between all these functions that we call global schedule.
From the STree a local schedule between any arbitrary set of the
functions in the dSAC can be obtained by pruning operations on the
STree. In Section 3.3, we define the STree and give an example.

In the final step (STEP 3 in Figure 2) of our approach a Kahn
Process Network (KPN) [7] is synthesized. A KPN consists of
concurrent processes that communicate with each other over un-
bounded FIFO channels. Every process is specified as a sequential
program. The synthesis of this program is based on information
derived from the ADG and the STree. The synchronization be-
tween the processes is accomplished by blocking reads. The com-
putational and communication workloads are distributed over the
processes and the channels in accordance with some partitioning
information. Such information can be given manually or delivered
by the partitioning information box shown in Figure 2. This box
implements some design space exploration procedures and/or some
optimization procedures. If partitioning information is not avail-
able then we use the following partitioning by default: 1) for every
node in the ADG a process is generated; 2) for every edge in the
ADG a channel is generated. In Section 3.4 the process network
synthesis2 is described in details.

3. SOLUTION APPROACH: DETAILS
In this section, we explain in more details some of the models

and techniques used in the approach presented in Section 2. Also,
some examples are given for the sake of clarity.

3.1 Dynamic Single Assignment Code
The Dynamic Single Assignment Code (dSAC) derived from a

weakly dynamic application (WDA) is a program in which every
variable is written at most once. This property implies that some

2The process network synthesis is not limited to the generation of Kahn Process Net-
works only. With small modifications other process networks that have different inter-
process communication and synchronization mechanisms can be generated.

of the variables may be not written at all. This is because of the
dynamic control structures in the application where the conditions
are data-dependent, i.e., the outcome of the conditions is not known
at compile time.

In order to derive a dSAC from a WDA we have to find all pos-
sible data dependencies between the functions in the WDA. Be-
cause of the dynamic control structures in the WDA an exact ar-
ray dataflow analysis [5] can not be performed to find the data de-
pendencies. The approach we follow to find the data dependen-
cies in case of WDA is based on parametric integer programming
(PIP) [4]. We use the same technique as in the exact array dataflow
analysis for building a PIP system but we add to this system con-
straints with parameters for the dynamic control structures in the
WDA. By introducing additional constraints with parameters in a
PIP system we ”mask” the information that is not known at compile
time. Because of this, we find approximated data dependencies.
Our approach to find the approximated data dependencies is based
on the approach known in the literature as Fuzzy Array Dataflow
Analysis (FADA) [6].

Using approximated data dependencies we have found a proce-
dure to generate a dSAC that is out of the scope of this paper. As
an example, in Figure 3 we show the output of this procedure for
the simple program shown in Figure 1.

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 ctrl(i) = N+1;
5 end
6 for i = 1:1:N,
7 [out_0, out_1] = F1(...);
8 [x_1(i)] = opd(out_0);
9 [t_1(i)] = opd(out_1);
10 end
11
12 for i = 1:1:N,
13 [t_1(i)] = ipd(t_1(i));
14 if t_1(i) <= 0,
15 [in_0] = ipd(x_1(i));

16 [out_0] = F2(in_0);
17 [x_2(i)] = opd(out_0);
18 [ctrl(i)] = opd(i);
19 end
20
21 C = ipd(ctrl(i));
22 if i = C,
23 [in_0] = ipd(x_2(C));
24 else
25 [in_0] = ipd(x_1(i));
26 end
27
28 [out_0] = F3(in_0);
29 [...] = opd(out_0);
30 end

Figure 3: Example of Dynamic Single Assignment Code.

We call the code in Figure 3 dynamic SAC because if we con-
sider, for example, line 17 we do not know at compile time at which
iteration the elements of the array �

� ��
�� will be written. The only
thing known is that they will be written at most once. Moreover,
for every execution of function

���
in line 28, its input is not known

at compile time. The input has to be determined at run time by the
code lines 22-26. Both cases described above never occur in the
classical SAC cases.

Another new feature of the dSAC is the presence of parame-
ters that originate form the data dependent control constructs in
a weakly dynamic application (WDA). In order to keep the func-
tionality of the dSAC equivalent to the functionality of the original
WDA, the values of these parameters have to be changed dynam-
ically. Our approach to accomplish the dynamic change is to in-
troduce, for every such parameter, a control variable that stores the
correct value of the parameter for every iteration. For example, �
in the dSAC shown in Figure 3 is a parameter emerging form the
if-statement in line 8 of the original program shown in Figure 1.
This if-statement also appears in the dSAC in line 14. The dynamic
change of the value of � is accomplished by the lines 18 and 21
in Figure 3. The control variable � ����� ��
�� in line 18 stores the it-
erations for which the data dependent condition that introduces �
is true. Also, the variable � ����� ��
� is used in line 21 to assign the
correct value to � for the current iteration.

The dSAC we generate contains functions called ipd and opd -

see Figure 3. These functions just propagate the value of its input
to its output and they play a role in the conversion of a dSAC to an
approximated dependence graph presented in the next section.

3.2 Approximated Dependence Graph
In this section we give a formal definition of our Approximated

Dependence Graph (ADG) model followed by a procedure to de-
rive it from a dSAC, and an example.

Definition 3.1 (approximated dependence graph)
An Approximated Dependence Graph (ADG) is given by a tuple������� ���
	���������������� � where: ��	����� ��� ����� �"! ! #%$ is a set
of nodes. �������� �&� �(' �)�"! ! * $ is a set of edges.

Definition 3.2 (node)
A node in the ADG is given by a tuple � � �,+�-.��/0-1� � -.��� � - �
where: +2- �3��465 �)�"! ! 7 $ is a set of input ports. /.- �8�:9:; �)�"! ! < $
is a set of output ports.

� - is a tuple
� - � � � �
�=)��	�> � � , where

�= and 	�> � are sets of variables and
�@?
�=BAC	�> � is a function.� � - is the node domain of � defined by a linearly bounded set

(LBS - Definition 3.6).

Definition 3.3 (input port)
An input port is given by a tuple

4D� �FE�G�� � G��"+�H � G � where: E�G
is an n-dimensional variable associated with the port.

� G is a vari-
able binding the port to the function in the node to which the port
belongs if

� G�I
�=�J � GLK� E�G . If
� G � E�G then

� G is a variable
binding the port to the node domain.

� G is a variable binding the
port to +�H � s of other ports if

� GNMI
�=OJ � GNK� E�G . +�H � G is the
input port domain of

4
defined by a LBS (Definition 3.6).

Definition 3.4 (output port)
An output port is given by a tuple

9.� �FEQP�� � P���/�H � P � where: EQP
is an m-dimensional variable associated with the port.

� P IR	�> � is
a variable binding the port to the function in the node to which the
port belongs. /�H � P is the output port domain of

9
defined by a

LBS (Definition 3.6).
Definition 3.5 (edge)
An edge in the ADG is a triple � � � 9 � 4 �TS � where:9�� �FE P � � P �"/�H � P � is an output port.

4O� �FE�G�� � G��"+�H � G � is an
input port. E G � EQP , i.e., variables E G and EQP have the same names
and equal dimensions. S ?
,G%A
 P is an affine mapping where

UGVIR+�H � G and
 P I%/�H � P .
Definition 3.6 (linearly bounded set)
Let be given four sets of functionsW � �X��Y �Z ��
��[� � ��\]\ [W � [�
^I`_ba6$, W � �c��Y6dZ ��
���[� �
��\]\ [W � [�	
�I3_ a $, W � �e��YgfZ ��
��)[� � ��\]\ [W � [�
OI3_ a $, W h ���YgiZ ��
��[� � ��\]\ [W h [�
jIC_ a $, an integral kml = matrix

�
and an integral = -vector n . A linearly bounded set (LBS) is a set of
points oqp W �e�
LI8_raO[� \
%s n �

 Y W � Ktvuxwzy Z � �"! !|{ }Q��{ � Y �Z ��
��(sB~ ,

 Y W � Ktvuxwzy Z � �"! !|{ } d { � Y dZ ��
��(�B~ ,

 Y W � Ktvuxwzy Z � �"! !|{ } f { � YgfZ ��
��(�B~ ,

 Y W h Ktvuxwzy Z � �"! !|{ } i { � Y iZ ��
��(�B~�$.

The set of points p �^�
jI�_ a [� \
js n $ is called linear
bound of the LBS and the set

W � W �O� W �
� W �%� W h
is called

filtering set. Every
Y 'Z ��
�NI W

can be an arbitrary function of
 .

Our procedure to convert a dSAC into the ADG model defined
above consists of two steps: 1) the dSAC is converted to a syn-
tax tree [1]; 2) the syntax tree is parsed and all the elements of
the ADG are created and specified in accordance with the relations
given below:
1) for every function ��� � ��� �����q� ��� � � � in the dSAC there ex-
ists a corresponding input port

4N� �FE G � � G �"+�H � G � in the AGD,

where E�G � � � � ,
� G � � � � and +�H � G is the set of iterations in

which the function ipd is executed.
2) for every function � � � � � ���g�q� � � � � � in the dSAC there ex-
ists a corresponding output port

9�� �FEQP�� � P���+�H � P � in the AGD,
where E P � � � � ,

� P � � � � and +�H � P is the set of iterations in
which the function opd is executed.
3) for every pair �T� � ����� �����q� ��� � � � � and � � � �:� � �x�g�q� � � � � � �
in the dSAC there exists an edge � � � 9 � 4 ��S � in the ADG if � � � �
and � � �:� have the same name and dimension.

9
is the output port in

the ADG corresponding to opd and
4

is the input port in the ADG
corresponding to ipd. S is an affine mapping that gives for every
iteration in which the ipd consumes a value, the corresponding it-
eration in which this value is produced by opd;
4) for every function � 	 � � ��� �X�����g�N��� �
 � � � � in the dSAC
with

�����g�N���
neither ipd nor opd there exists a corresponding

node � � �,+ - ��/ - � � - �"� � - � in the ADG. For every function
��� � ��� �����q� ��� � � � in the dSAC: if � � �RI
 � � � then the corre-
sponding input port

4
in the ADG belongs to + - . For every function

� � � � � ���Q��� � � � � � in the dSAC: if � � ��IR	 � � � then the corre-
sponding output port

9
in the ADG belongs to / - . The elements of� - are related to the dSAC as

� - \ � �j�����6�N���
,
� - \
�= t
 � � �

and
� - \ 	�> � t 	 � � � ; � � - is the set of iterations in which the

function
�����6�N���

is executed.
As an example, consider the dSAC shown in Figure 3. Ap-

plying the procedure described above on this dSAC we obtain the
ADG shown in Figure 4-a). The ADG consists of three nodes and
five edges. Nodes � �

, � �
, and � �

correspond to functions
���

,���
, and

���
of the dSAC, respectively. Edges � � �

, � � � , � � � ,� � h , and � ��� correspond to possible data dependencies between���
,
���

, and
���

through the variables � � ��
�� , ��� ��
�� , � d ��
�� , and
� ����� ��
� of the dSAC. According to Definition 3.2 node � �

is the
tuple � � � �,+ - d ��/ - d � � - d ��� � - d � where: + - d � �"4 � � 4 � $,/.- d �¡�:9 � � 9 � $, � - d � � ��� � �
�= ~�$¢� � 	�> � ~�$ � , with

���8?�
�= ~�$£A � 	�> � ~�$. � � - d represents the iterations
 at which
function

���
is executed in the dSAC. The exact iterations
 are not

known at compile time because of the dynamic condition at line
14 in the dSAC (Figure 3). That is why we introduce the notion
of linearly bounded set (LBS-Definition 3.6) by which we approx-
imate the unknown iterations
 . So, � � - d is the following LBS:� � - d �&�
qID_�[� �
q�x�3J
¤V�B� � �¦¥ � � � ��
�§�B~¢$. The
linear bound of this LBS is the polytope p ��� � �
§���¨JR¤���C� �¦¥ $ that captures the information that we know at compile
time about the bounds of the iterations
 . The variable � ��
� is inter-
preted as an unknown function of
 called filtering function whose
output is determined at run time. Introducing the LBS notion in our
ADG model to capture the dynamic behavior of the dSAC is to the
best of our knowledge a novel approach.

Because of the semantics of the LBS, described above, we call
the graph in Figure 4-a) approximated dependence graph (ADG).
Another reason to call it that way is because the probability that
some data dependencies exist can not be decided 100% at compile
time. For example, the edge � � � suggests that there might be a
data dependency between

���
and

���
through the variable � � ��
�

but this depends on the dynamic condition at line 14 of the dSAC
in Figure 3. If this condition is always true at run time the data
dependency between

���
and

���
does not exist.

3.3 Schedule Tree

Definition 3.7 (schedule tree)
Let be given a syntax tree [1] © � 2 � ���
��� � derived from a
dSAC. A Schedule Tree (STree) is a syntax tree

W © � 2 � ���ª}«���0} � ,
where node set � }�¬ � and edge set � }j¬ � . The topology of
the

W © � � represents control structure of a program that executes

b) Transformed ADG (ADG’)

c) Schedule Tree (STree)

a) Approximated Dependence Graph (ADG)

d) Process Network (PN) model

N1
(F1)

q2

q1

p1

q1

q2

p1

p2

p2
p2

(F2)

N3
(F3)

q2

p1

q1

q2

p1

p2

p2

N2
(F2)

N3
(F3)

q11
N1
(F1)

p3q12

N2
ED5(ctrl)

ED4(x_2)

ED
2(

x_
1)

ED3(x_1)

ED5(ctrl)

ED3(x_1)

ED
2(

x_
1)

ED4(x_2)

STree Marking

OG2

OG2

OG1

IG1

IG1 OG1

IG3

IG2
(N2)
P1

C1(ED5)

C2(ED4)

C3(ED1&ED2)

C4(ED3)P2

F1 F2

STree Pruning

F1 F2

F1

root

root

root
for i = 1:1:Nfor i = 1:1:N

for i = 1:1:Nfor i = 1:1:N

for i = 1:1:N for i = 1:1:N
ED1(t_1)

ED1(t_1)

F3

F3

F3

(N1&N3)

if t_1(i) <= 0

if t_1(i) <= 0

Figure 4: Examples of a) Approximated Dependence Graph
(ADG) model; b) Transformed ADG; c) Schedule Tree and
Transformations; d) Process Network model.

the functions � � � ���«�6�N��� � � of the dSAC in a correct order.���«�6�N���
is different from ipd and opd.

Consider the dSAC shown in Figure 3. The corresponding sched-
ule tree (STree) is depicted at the top part of Figure 4-c). If we parse
this tree top-down from left to right a program can be generated that
gives a valid execution order (global schedule) among the functions���

,
���

and
���

which is the original order given by the dSAC. The
procedure to obtain the STree from the dSAC is done in two steps:
1) the dSAC is converted to a syntax tree using a standard syntax
parser [1]; 2) the STree is extracted from the syntax tree by remov-
ing all the nodes and edges that are not related to nodes

���
,
���

and
���

.

3.4 Process Network Synthesis
In this section, we present the final step of our approach in which

we synthesize a process network - see STEP 3 in Figure 2. Our
synthesis approach is mainly a translation of the ADG model and
STree model into a process network (PN) model. The structure of
our PN model is defined in Section 3.4.1. Figure 2 shows that STEP
3 consists of four sub-steps. In sub-step 3a we apply two transfor-
mations on the ADG, namely Point-to-Point and OPD refinement.
This transformations have to be done because of two reasons:
1) On the one hand, our synthesis approach translates an ADG
model into a PN model, where there is one-to-one correspondence
between the input ports of the ADG and the input ports of the PN.
The same is true for the output ports. The ADG may have sev-
eral input ports connected to a single output port. On the other
hand, we focus on the synthesis of a special class of process net-
works - Kahn Process Networks where every input port has to be
connected to only one unique output port. This fact requires that
we have to change the topology of the ADG such that every input
port gets connected to only one unique output port - Point-to-Point
connection. The change of the topology is always possible without
changing the semantics of the ADG model. As an example, con-
sider the ADG depicted in Figure 4-a). Two edges start from port9 �

of node � �
. By applying the point-to-point transformation we

get the ADG shown in Figure 4-b). Now, in the transformed ADG
(ADG’), node � �

has output ports
9 � �

and
9 � �

instead of port
9 �

.
Ports

9 � �
and

9 � �
are copies of port

9 �
. This means that all the el-

ements (Definition 3.4) of the ports
9 � �

and
9 � �

are identical with
the elements of port

9 �
.

2) Every output port in the PN has to send a token via the corre-
sponding channel if the probability that the token will be needed in
the process that reads this channel is not zero. This is accomplished
by the transformation OPD refinement. This transformation is ap-
plied on every OPD that is associated with an output port in the
ADG before the ADG model is translated to the PN model. The
transformations Point-to-Point and OPD refinement are presented
in Section 3.4.2;

In sub-steps 3b and 3c (Figure 2), the process network model
(PN) is created gradually by creating the topology of the PN - sub-
step 3b, followed by creating the behavior of the PN - sub-step 3c.
The topology of the PN is created by grouping nodes and edges
of the ADG into processes and channels in the PN. The grouping
is based on the partitioning information delivered by the dashed
box in Figure 2. In general, there is no limitation of grouping
ADG nodes into PN processes. Any arbitrary grouping is possi-
ble. Grouping ADG edges into PN channels has to be performed
after the PN processes are defined by the node grouping. Also, the
edge grouping has to obey the following rule: All the edges that we
want to group in a channel have to start form the same process, sayH � , and have to end at the same process, say H ' . An example of
creating a topology of a PN by node grouping and edge grouping is
given in Figure 4-d). The PN is created by grouping nodes � �

and� �
of the ADG in Figure 4-b) into process H � , as well as node� �
into process H � . The group of nodes of H � consists of only

one node � �
. After that, edge grouping is performed where � � �

and � � � form the channel � � . The channels � � , � � , and � h are
assigned one edge each, i.e., � ��� , � � h , and � � � , respectively.

In sub-step 3c in Figure 2 the behavior of the PN is created. A
procedure called Linearization deals with the communication be-
havior of every process in the PN. This procedure is built depending
on the target class of process networks under synthesis - in our case
Kahn Process Networks (KPN) where the processes communicate
with each other over 1-dimensional unbounded FIFO channels. In
Section 3.4.3 we give more details about the linearization.

Internally, a process in a KPN has, by definition [7], a sequential
behavior meaning that the functions that have to be executed inside
the process are executed in sequential order. The procedure PN-to-
ParseTree (Figure 2), derives this order such that the PN execution
is deadlock free and expresses it as a parse tree for every process
in the PN. This procedure operates on the PN model and uses the
information encoded in the STree defined in Section 3.3. We illus-
trate part of the PN-to-ParseTree procedure by a simple example.

Consider process H � of the PN shown in Figure 4-d). This pro-
cess is constructed by grouping nodes � �

and � �
of the ADG

shown in Figure 4-b). This means that process H � has to execute
in sequential order functions

���
and

���
associated with nodes � �

and � �
, respectively. To find the order we use the schedule tree

(STree) shown at the top in Figure 4-c). First, an operation called
STree Marking finds the

���
and

���
leafs in the STree and parses

the tree from these leafs to the tree root, marking all the nodes in
the path - see Figure 4-c). Second, an operation called STree Prun-
ing prunes the marked STree by removing all the unmarked nodes
of this tree. The resultant tree shown at the bottom in Figure 4-
c) can be converted to a program by traversing it top-down from
left to right. This program gives a valid sequential order (schedule)
between

���
and

���
for process H � that guarantees deadlock free

execution of the process network to which H � belongs. Finally, the
procedure PN-to-ParseTree adds to the tree shown at the bottom in
Figure 4-c) other nodes that correspond to control structures in the
program mentioned above. These control structures specify from

which ports the functions
���

and
���

associated with nodes � �

and � �
get input data and to which ports they put the output data

for every iteration
 . For lack of space the complete tree generated
by PN-to-ParseTree is not depicted in Figure 4-c).

The last sub-step of the PN synthesis (Figure 2-3d) is called
Code Generation. In this sub-step an executable code of a Kahn
process network is generated from the PN model. We use a soft-
ware engineering technique called Visitor to visit the PN model
structure and to generate the executable code. This code can be ex-
pressed in any programming language on top of which an environ-
ment to execute Kahn process networks is built. For example, the
YAPI environment [3] in C++, SystemC, or the Ptolemy II frame-
work [10] in Java.

3.4.1 Process Network Model

Definition 3.8 (process network)
A process network (PN) is given by a tuple H�� � ��H � � � where:H �e� H ��� �"! !|{ *){ $ is a set of processes. � �e� � ' � �"! !|{ � { $ is a set of
channels.
Definition 3.9 (process)
A process in the PN is given by a tuple H � ���RH§��+�H§�"/�H§� W © �
where: �RH ��� ��� � �"! ! # $ is a set of nodes, with ��� as given in
Definition 3.2. +�H �¨� + ��5 � �"! ! 7 $ is a set of input gates. /�H �
� / �.; �)�"! ! < $ is a set of output gates.

W © is a schedule tree that
gives a valid execution order between the functions

�
associated

with every ��� .
Definition 3.10 (input gate)
An input gate is given by a tuple + �e� �,+����§� +	�
��� � where: +���� ��"4 5 � �"! !|{ ���� { $ is a set of ports, with

4 5
as given in Definition 3.3.+	�
��� �&� +¢=��%��2G�������� ��� � ��� �,$ is a set of functions, where for every465 I%+���� a function +¢=��%��2G � I%+	�
��� is associated, +¢=��%���G � ?+�H � G � A _ � is a one-to-one mapping.

Definition 3.11 (output gate)
An output gate is given by a tuple / �^� ��/����(��/��
��� � where:/ ��� �¨�29 5 �)�"! ! { � �!� { $ is a set of ports, with

9�5
as given in Defi-

nition 3.4. /��"��� ��� /.> � �%�� P�������� ��� � ��� � $ is a set of functions,
where for every

9�5 I�/#��� a function /.> � �%�� P � I�/��"��� is
associated, /.> � �%���P � ? /�H � P � A _ � is a one-to-one mapping.

Definition 3.12 (channel)
A channel is given by a tuple � � ��/ � ��+ � � � � � S � where:/ � � ��/ ��� ��/�� ��� � is an output gate. + � � �,+ ��� ��+	� ��� � is
an input gate. � �^� � � �)�"! ! { $q{ $ is a set of edges, where �%� is
given by Definition 3.5. � S`I � � � � � � � h $ is the communication
mode of the channel. � S � �

is out-of-order communication with
coloring of tokens. � S � �

is out-of-order communication with-
out coloring of tokens. � S � �

is in-order communication with
coloring of tokens. � S � h

is in-order communication without
coloring of tokens.

3.4.2 ADG transformations
Point-to-Point transformation: Let an

�0����� ���
	���������������� �
be given. For every edge ��� � � 9 ; � 4 5 � S � I �������� create a
new port

9:; � � 9:;
, add this port to the node that contains

92;
and

modify � � such that � � � � 9:; � � 465 �TS � . Finally, for every node�zI¨�
	����� remove the original output ports
92;

from / - .
OPD refinement transformation: Let an

�0����� ���
	���������������� �
be given. According to Definition 3.5 every edge �CI ��������
is given by � � � �FE P � � P ��/�H � P � � �FE�G�� � G��"+�H � G � �TS � , where/�H � P and /�H � G are linearly bounded sets with linear bounds
p P �&�
 P IN_ba�[� P \
 P s n P $ and p G ���
UG�ID_ � [� G \
UG�s n G¢$,
respectively. The transformation OPD refinement derives for ev-
ery � IB�������� a new linearly bounded set /�H �"&P � /�H � P%'

S � p G � , where S � p G � is the image of p G in _ a defined by the
affine mapping S .

3.4.3 Creating the PN behavior
Formally, in a Kahn Process Network (KPN) the functions ex-

ecuted inside a process communicate data with functions inside
other processes over channels that are 1-dimensional arrays with
FIFO access. However, our approach has to derive KPNs from
weakly dynamic applications (WDA) in which all these functions
communicate data between each other via variables that are N -
dimensional arrays with random access. In order to keep the func-
tionality of the KPN the same as the functionality of the WDA, we
apply a procedure called Linearization that adds to the PN model
information that is necessary to realize models of communication
with 1-dimensional FIFO access arrays equivalent to the commu-
nication with N-dimensional random access arrays. This procedure
extends the work presented in [14]. Our PN model supports four
models of communication with 1-dimensional FIFO access arrays:
1) out-of-order communication with coloring of tokens - this model
is used when the order of the tokens (data) written in the FIFO
channel is different than the order the tokens have to be read. Also,
the number of tokens that will be written or read to/from the chan-
nel is not known at compile time. In order to keep the correct
behavior of the KPN, every token is tagged by a unique number
(color) that is used to reorder the tokens while reading them form
the channel;
2) out-of-order communication without coloring of tokens - this
model is used when the order of the tokens (data) written in the
FIFO channel is different than the order the tokens have to be read.
The number of tokens that will be written or read to/from the chan-
nel is known at compile time. Coloring of tokens is not necessary
to do reordering;
3) in-order communication with coloring of tokens - this model is
used when the order of the tokens (data) written in the FIFO chan-
nel is the same as the order the tokens have to be read. Also, the
number of tokens that will be written or read to/from the channel
is not known at compile time. Because of this more tokens can
be written in the channel than needed at run time. Every token is
tagged by a unique number (color) that is used to remove the tokens
that are not needed while reading them form the channel;
4) in-order communication without coloring of tokens - this model
is used when the order of the tokens (data) written in the FIFO
channel is the same as the order the tokens have to be read. The
number of tokens that will be written or read to/from the channel is
known at compile time.

The reordering of tokens in models 1) and 2) is done by a spe-
cial controller and a reordering memory located in the process that
reads the tokens form the channel. The coloring of tokens in mod-
els 1) and 3) is based on the functions +¢=��%���G � and /.> � �%�� P � -
see Definition 3.10 and Definition 3.11. The four communication
models, described above, have a different cost of implementation in
terms of required reordering memory and complexity of the control.
The out-of-order communication with coloring of tokens model is
the most expensive model but it is the most general model. This
model can be used for every channel and the correct behavior of
the H�� is guaranteed. However, depending on the edges that be-
long to a particular channel, in some cases another less expensive
communication model can be selected that still guarantees the cor-
rect behavior of the H�� . We extended the work presented in [15]
to find a procedure that detects at compile time the most optimal
communication model for a given channel. In case the coloring of
tokens is needed we derive the coloring functions +¢=��%���G � and/.> � �%���P � at compile time as well.

4. RESULTS
Most of the steps in our approach, presented in Section 2 and

Section 3, have been implemented in a prototype software frame-
work called COMPAANPRO. The approach has been applied and
validated successfully on a real-life application - MotionJPEG en-
coder (MJPEG). We started with publicly available sequential C
code of the MJPEG. The code was structured by hand such that it
meets the definition of a WDA given in Section 1. This took four
days. After this preparation work which is a one-time effort only,
our COMPAANPRO tool derived automatically an executable Kahn
Process Network (KPN) specification from the structured MJPEG
code in 30 seconds. For comparison, a KPN specification of an
MJPEG encoder was derived by hand in [11] that took four weeks.
The facts above show that the automated approach presented in this
paper reduces significantly the time required to derive a KPN from
real-life application.

COMPAANPRO generated the MJPEG network as C++ code in
YAPI [3] format which allowed us to run the network and to ver-
ify its functional correctness. Without providing any partitioning
information to the COMPAANPRO tool, the tool applies the parti-
tioning strategy described at the end of Section 2. Using this strat-
egy for the MJPEG, the computational workload was partitioned
into 10 concurrent processes and the communication workload was
distributed over 56 FIFO channels. We analyzed the network and
concluded that the computational workload was very well balanced
over the 10 concurrent processes. However, the distribution of the
communication workload was not optimal. We found that the num-
ber of communication FIFO channels can be reduced from 56 to 30
FIFOs by merging some FIFOs without obstructing the exploited
parallelism. The techniques presented in this paper support FIFO
merging by grouping edges as discussed in Section 3.4. However,
the selection of channels to be merged is currently still the design-
ers choice.

5. CONCLUSIONS
In this paper, we presented a novel systematic approach that

allows automatic derivation of executable Kahn Process Network
(KPN) specifications from Weakly Dynamic Applications (WDA).
By introducing new notions like Dynamic Single Assignment Code,
Approximated Dependence Graph, and Linearly Bounded Sets in
our approach, we extend the range of applications where KPNs can
be derived automatically.

Our experiments with the MJPEG application show that the pro-
posed approach, implemented in the COMPAANPRO tool, produces
an important reduction of the time required to generate executable
KPN specifications from real-life applications.

The presented approach includes only basic techniques that have
to be used in order to derive automatically KPNs from WDAs. The
results, we have obtained for the MJPEG application, indicated that
some optimization techniques have to be added to the approach
that will help with improving the quality of the generated KPNs in
terms of optimal partitioning of the computation and communica-
tion workloads.

6. ACKNOWLEDGMENTS
This research is supported by PROGRESS, the embedded sys-

tems and software research program of the Dutch organization of
Scientific Research NWO, the Dutch Ministry of Economic Affairs
and the Dutch Technology Foundation STW.

7. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Publishing
Company, 1986.

[2] E. de Kock. Multiprocessor Mapping of Process Networks:
A JPEG Decoding Case Study. In Proc. 15th Int. Symposium
on System Synthesis (ISSS’2002), pages 68–73, Kyoto,
Japan, Oct. 2-4 2002.

[3] E. de Kock et al. YAPI: Application modeling for signal
processing systems. In Proc. 37th Design Automation
Conference (DAC’2000), pages 402–405, Los Angeles, CA,
June 5-9 2000.

[4] P. Feautrier. Parametric Integer Programming. Operations
Research, 22(3):243-268, 1988.

[5] P. Feautrier. Dataflow Analysis of Scalar and Array
References. Int. Journal of Parallel Programming,
20(1):23–53, 1991.

[6] P. Feautrier and J.-F. Collard. Fuzzy Array Dataflow
Analysis. Technical report, Ecole Normale Superieure de
Lyon, 1994. ENS-Lyon/LIP � � 94-21.

[7] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74.
North-Holland Publishing Co., 1974.

[8] B. Kienhuis, E. Rijpkema, and E. F. Deprettere. Compaan:
Deriving Process Networks from Matlab for Embedded
Signal Processing Architectures. In Proc. 8th International
Workshop on Hardware/Software Codesign (CODES’2000),
San Diego, CA, USA, May 3-5 2000.

[9] E. Lee and A. Sangiovanni-Vincentelli. A Framework for
Comparing Models of Computation. IEEE Transactions on
CAD of Integrated Circuits and Systems, 17(12):1217–1229,
1998.

[10] E. Lee et al. PtolemyII: Heterogeneous Concurrent Modeling
and Design in Java. Technical report, University of
California at Berkeley, 1999. UCB/ERL M99/40.

[11] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere.
System Level Design with SPADE: an M-JPEG Case Study.
In Proc. Int. Conference on Computer Aided Design
(ICCAD’01), pages 31–38, San Jose CA, USA, Nov. 4-8
2001.

[12] A. Mihal and K. Keutzer. Mapping Concurrent Applications
onto Architectural Platforms. in Networks on Chip (Chapter
3), Editors Axel Jantsch and Hannu Tenhunen, Kluwer
Academic Publishers, 2003.

[13] E. Rijpkema. Modeling Task Level Parallelism in Piece-wise
Regular Programs, 2002. PhD thesis, Leiden University, The
Netherlands.

[14] A. Turjan, B. Kienhuis, and E. Deprettere. Realizations of
the Extended Linearization Model. in Domain-Specific
Embedded Multiprocessors (Chapter 9), Marcel Dekker, Inc.,
2003.

[15] A. Turjan, B. Kienhuis, and E. Deprettere. A Technique to
Determine Inter-process Communication in the Polyhedral
Model. In Proc. Int. Workshop on Compilers for Parallel
Computers (CPC’03), Amsterdam, The Netherlands,
Jan. 8-10 2003.

[16] P. van der Wolf, P. Lieverse, M. Goel, D. La Hei, and
K. Vissers. An MPEG-2 Decoder Case Study as a Driver for
a System Level Design Methodology. In Proc. 7th Int.
Workshop on Hardware/Software Codesign (CODES’99),
Rome, Italy, May 3-5 1999.

