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Chapter 1
Introduction

The complexity of modern embedded multimedia systems, which are increasingly
based on heterogeneous MultiProcessor System on Chip (MP-SoC), has led to the
emergence of system level design. The use of MP-SoC allows the e�ciency of multi-
processor even using parallelism between tasks and the exibility of using software
applications instead of hardware. System level design for MP-SoC based embedded
systems however still involves a substantial number of challenging task. For exam-
ple, applications need to be discomposed into paralell speci�cations so that they can
be mapped onto a MP-SoC architecture. Subsequently, applications need to be par-
titioned into HW and SW parts since MP-SoC architectures often are heterogeneous
(hardware and software) in nature.

To cop with this design complexity, system-level design aims at raising the ab-
straction level of the design process, for example, with theuse of architectural plat-
forms to facilitate re-use of IP components and the notion ofhigh-level modeling
and simulation. The latter allows for capturing the behavior of platform compo-
nents and their interactions at a high level of abstraction.As such, these high-level
models minimize the modeling e�ort and are optimized for execution speed, and can
therefore be applied during the very early design stages.

Several Dutch universities work in this System Level Designdirection inside the
Artemisia project creating the Daedalus framework to address these system-level
design challenges.[1]

The main challenges of this MP-SoC design tool are:

1. The partition of the application into concurrent processes.

2. The simulation of this processes in a high level of abstraction.

3. The Multi-Processor platform generation.

4. The mapping of the application processes onto the multiprocessor platform.

5. The fast modi�cation of the application on response to user requirements or
bugs.

1



1.1. MOTIVATION AND GOALS CHAPTER 1. INTRODUCTION

The Leiden Institute of Advanced Computer Science (LIACS) in the Netherlands
deals with the �rst and the third points, using Kahn Process Networks to schedule
parallel tasks and developping an own solution to synthesize custom platforms to
run those processes. In the same way, Amsterdam University focuses on simulators
which enable to test the application from the beginning and could give the best
platform mapping solution after a design space explorationof the application. All
these e�orts end up in the Daedalus open-source tool-ow that nowadays is being
tested in the Delft University of Technology (TU Delft).

The current version of the Daedalus framework make it suitable preferably for
multimedia streamings as image or video compression. Multimedia applications pro-
vide a pipeline structure where each stage of the algorithm is identi�ed as a task and
parallelism of these tasks could be used to achieve time-computation requirements.
JPEG and M-JPEG compression examples have been generated during the previous
stages of the Daedalus developing process.

1.1 Motivation and Goals

Until the beginning of this project, the Daedalus toolchainhas only been used into
university frame and there was a big interest from the developers to validate it from a
commercial point of view. The potential of the tool resides in the fast prototyping of
the MP-SoC. The fact of evaluating multiple con�gurations in terms of hours make
Daedadus attractive for companies which work with multimedia systems and want
to evaluate, for example, di�erent performance-cost solutions for a given application.

This is the case of the Dutch SME Chess B.V. in Harlem, companythat become
part of the Artemisia project and collaborate with the abovementioned universi-
ties and which involves the design of an image compression system for very high
resolution (in the order of Gigapixels) cameras targeting medical appliances. They
propose to take JPEG2000 image compression standard as validation example to
satisfy their customers in the medical sector.

Therefore the main goals of the project are:

� Evaluate the commercial potential of the Daedalus ow. Thisevaluation covers
the robustness of the present tools as well as the learning time and prototyping
delay for a fresh new user.

� Generate a MP-SoC JPEG2000 application using Daedalus. In addition to
developping a new example for Daedalus this JPEG2000 MP-SoCwill be com-
pared to present commercial implementations and con�rm itsvalidity.

1.2 Contributions

In this thesis we present the JPEG2000 MP-SoC and its developing process using
Daedalus as system level design tool. The main contributions are:

� Generation of a exible JPEG2000 MP-SoC application obtained from free
open-source tools.

2



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

� Implementation of an optimized MP-SoC, using software optimization and
hardware parallelism.

� Comparison of commercial hardware IPs and the generated optimazed solu-
tion.

1.3 Related Work

Systematic and automated application-to-architecture mapping has been widely
studied in the research community. The closest to our work isthe Kosku MP-
SoC design ow and the SystemC-based design methodology presented in Friedrich
Alexander University (Germany). Koski provides a single infrastructure for model-
ing of applications, automatic architectural design spaceexploration and automatic
system-level synthesis, programming and prototyping of selected MP-SoCs [6]. The
second methodology supports automated design space exploration performance eval-
uation and automatic parallelization of applications, notdesign space exploration
level at application level [10]. Both tools require applications to be speci�ed by hand
in UML and SystemC, respectively. Companies such as Xilinx and Altera provide
design tool chains attempting to generate e�cient implementations starting from
descriptions higher than (but still related to) the register transfer level of abstrac-
tion. The required input speci�cations are still so detailed that designing a single
processor system is still error-prone and time consuming.

In the side of the JPEG2000 hardware commercial tools three companies have
been found with IPs that fully covers the image compression algorithm: Analog
Devices ADV212 [3], Barco Silex [12] and Cast [2]. All of them o�er high data
compressing speed as well as con�guration options that are limited to standard
image features.

1.4 Thesis Organisation

The remaining parts of this thesis are organised as follows:
Chapter 2 gives an overview of the Delft University of Technology, room where

the project has took place.
In Chapter 3 the main points of the project are shown: a detailed explanation

of the Daedalus tool-ow and the bases of the JPEG2000 image compression.
Chapter 4 and Chapter 5 present the requirements and tools to challenge the

work and the way the project has been developed.
Chapter 6 as Chapter7 presents the results of the experiments realised during

the project in order to achieve the technical requirements and the best implemented
solution is presented is compared with other related work.

In the �nal Chapter 8 the objectives above are overviewed to give the conclusions
of the current work and the bases of the future works in this thesis line.

3



Chapter 2
TU Delft

Founded in 1842, Delft University of Technology is the oldest, largest, and most
comprehensive technical university in the Netherlands. With over 13,000 students
and 2,100 scientists (including 200 professors), it is an establishment of both national
importance and signi�cant international standing.

Renowned for its high standard of education and research, TUDelft collabo-
rates with other educational establishments and research institutes, both within
and outside of the Netherlands. It also enjoys partnershipswith governments, trade
organizations, numerous consultancies, industry and small and medium sized enter-
prises.

2.1 Activities

The TU is divided in 8 faculties:

� 3mE : Mechanical, Maritime and Materials Engineering

� BK : Architecture

� CiTG : Civil Engineering and Geosciences

� EWI : Electrical Engineering, Mathematics and Computer Science (EEMCS)

� IO : Industrial Design Engineering

� LR : Aerospace Engineering

� TBM : Technology, Policy and Management

� TNW : Applied Sciences

4



2.2. ORGANISATION CHAPTER 2. TU DELFT

Figure 2.1: EWI faculty building

The faculty where the project has been developped is the EEMCS (EWI in Dutch),
more precisely the Computer Engineering department. The TUDelft Computer
Engineering deals with the architecture, design, development, testing, and evaluation
of hardware and software for computers and networks.

2.2 Organisation

Figure 2.2 below shows the TU Delft way of organisation:

Figure 2.2: An overview of the organizational structure of TU Delft

5



2.3. RESEARCH (COMPUTER ENGINEERING) CHAPTER 2. TU DELFT

2.3 Research (Computer Engineering)

The general research topics of the TU Delft computer engineering include computer
hardware, software, and networks. More speci�cally the computer engineering re-
search focuses in the following areas:

� Hardware: computer architecture, microarchitectures, digital design, par-
allel vector and media processors, embedded processors, SoCs, VLSI design,
computer arithmetic, low power designs, recon�gurable processors, feed for-
ward neural networks (threshold logic), memory and logic testing, design for
testability.

� Software: backend compilers, system software, software for automatic syn-
thesis, performance and software tools, hardware softwareco-design, software
simulators, code instrumentation and performance enhancement tolls, design
space exploration software for computer architectures andmachine organiza-
tions, placement and routing algorithms, physical design,binary translators.

� Networks: computer architecture for Network processors, interconnection
networks, internet and web processing, mixed optical/electronic switches, dis-
tributed processing, ubiquitous (i.e., anywhere and anytime) and unobtrusive
(i.e., without much user intervention) communication environments.

� Speculative research: nano computing, chaotic computational systems,
threshold logic processors, non conventional computer architectures, interact-
ing migrating processes.

6



Chapter 3
Background

In this chapter the main points of the project are presented:on the one hand
the high level MP-SoC design tool Daedalus and on the other hand the JPEG2000
compression application.

3.1 Daedalus

The Daedalus framework is the result of the work between the Leiden Institute of
Advanced Computer Science and the Amsterdam University. Its main objective is
to bridge the implementation gap between the system level description to the RTL
implementation for the design of multimedia MP-SoCs.

Figure 3.1: The Daedalus Tool-Flow

7



3.1. DAEDALUS CHAPTER 3. BACKGROUND

MP-SoC designs need both software and hardware development. The software
must be partitioned in order to enable parallel computationand the hardware must
be able to execute these computations. The Daedalus toolchain starts with the
software partition and follows with the hardware platform design until arriving to
the MP-SoC implementation.

As illustrated in Figure 3.1 above, the Daedalus tool-ow has the application in
C language as �rst input for the Kahn Process Network Generator (KPNGen). This
C application should be written in a speci�c way as will be explained in Section
3.1.1.

Before any other step it is possible to validate the generated processes in a high
level of abstraction running YML and PNRunner (See Section3.1.2).

The validated tasks are mapped into the processors with the Embedded System-
level Platform synthesis and Application Mapping (ESPAM) tool following the plat-
form and mapping speci�cations. Using IP libraries and RTL models ESPAM re-
alises the necessary RTL level �les for commercial synthesis tools as Xilinx Platform
Studio (XPS). This last tool will be treated in Section3.1.3.

3.1.1 KPNGen: Application Parallelization

The applications are typically speci�ed in sequential programs using languages as C
or C++, what is relatively easy for program developers. But this sequential nature
does not reveal parallelism and makes very di�cult the mapping of the program in
a multiprocessor platform.

By contrast, using parallel model of computation (MoC) the mapping becomes a
transparent and systematic process. But parallel MoC is notnatural for developers
and this di�culty is time consuming. KPNGen �lls this gap bet ween the sequential
program application to a parallel application speci�cation using di�erent compiler
techniques.[11]

Process Networks

KPNGen uses the process network model of computation. This is a simple and
streaming oriented model that �ts with the multimedia domain of the whole Daedalus
tool-ow. These process networks consist of a set of processes or nodes which com-
municate each other through channels. The processes are auto-scheduled by the
communication channels, therefore a process will be blocked if it needs data from a
channel that is not available yet. In the same way, it will block if it tries to write in
a full channel.

In the speci�c case of the Kahn Process Networks (KPN) the channels are un-
bounded FIFOs which blocks in read. To implement this \unbounded" FIFOs, the
maximal size of the FIFO must be calculated o�ine in order to avoid deadlocks when
a process wants to write and there is no space. The KPNs are also deterministic,
the output is always the same for a given input, and this behaviour assures the well
operational behaviour of the application in any case of scheduling.

8



3.1. DAEDALUS CHAPTER 3. BACKGROUND

Static A�ne Nested Loop Programs

The KPNGen tool generates the process networks by means of a technically called
static a�ne nested loop programs (SANLP). SANLPs are important in scienti�c or
matrix computation and multimedia or adaptive signal processing applications.

They consist of a set of statements enclosed in loops or/and guarded by condi-
tions, but all lower and upper bounds of the loops as well as all condition expressions
must be known at compilation time and these conditions must be a�ne with means
linear mathematical expressions, not power expressions for example.

3.1.2 YML and PNRunner: High Level Simulation

YML and PNRunner are both part of SESAME, a project of the Amsterdam Uni-
versity. The SESAME environment provides modeling, simulation methods and
tools for the e�cient design space exploration of heterogeneous embedded multime-
dia systems. The SESAME software project currently consists of an architecture
simulator (YMLPearl), an application simulator (PNRunner) and the Y-CHART
modeling language (YML) which glues the simulation model descriptions together.

YML makes a C++ object oriented program from the KPNGen output process
network speci�cation. This program executes every processindependently, as it will
be in the FPGA. FIFOs read and write management is also included in the program.

3.1.3 ESPAM: Hardware Platform Generation

ESPAM is developed to allow system designers to specify a system and its related
applications at a higher level of abstraction (System Level) to save design e�ort and
time. This tool uses these system-level input speci�cations, together with RTL ver-
sions of the components from the IP library, to automatically generate synthesizable
VHDL that implements the candidate MP-SoC platform architecture. In addition,
it also generates the C code for those application processesthat are mapped onto
programmable cores. Using commercial synthesis tools and compilers, this imple-
mentation can be readily mapped onto an FPGA for prototyping. Such prototyping
also allows for calibrating and validating Sesame's system-level models, and as a
consequence, improving the trustworthiness of these models [11].

The ESPAM tool input are three speci�cation �les in XML language:

� Application Speci�cation: the Kahn Process Network speci�cation gener-
ates by the KPNGen. It gives information about the di�erent processes and
the communication between them.

� Platform Speci�cation: de�nes the hardware platform (processors, periph-
eral, etc) of the MP-SoC.

� Mapping Speci�cation: maps the processes into the desired processor.

9



3.2. JPEG2000 CHAPTER 3. BACKGROUND

3.2 JPEG2000

JPEG2000 is a wavelet-based image compression standard created by the Joint
Photographic Expert Group (JPEG) committee in 2000 with theaim of replacing
the original discrete cosine transform-based JPEG.

Only the �rst of the 13 parts of the standard is free of royalties which has
prevented the standard expansion for example in the internet. This part speci�es
the core and minimal functionality and is known as JPEG2000 codec.[5]

The main advantages of JPEG2000 against the classical JPEG are:

� Superior compression performance: specially at low bitrate (e.g. less that 0.25
bits/pixel).

� Multiple resolution representation.

� Progressive transmission: after a smaller part of the whole�le has been re-
ceived, the viewer can see a lower quality version of the �nalpicture.

� Lossless and lossy compression.

� Random codestream access and processing: di�erent grades of compression
could be given to some Regions Of Interest (ROI) of the image.

� Error resilience: small independent block avoid error propagation.

The JPEG2000 algorithm ow shown in Figure3.2 reveals the �rst and simple
stages: The whole raw image in divided in the three Red-Green-Blue (RGB) com-
ponents. Each component is divided in equal smaller pieces called tiles, which are
coded independently. The RGB components are transformed inYUV model that
requires less memory. The last stages: Discrete Wavelet Transform (DWT) and T1
Arithmetic Enconding are explained more carefully in Sections 3.2.1and 3.2.2.
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Figure 3.2: The JPEG2000 algorithm

3.2.1 Discrete Wavelet Transform

The Discrete Wavelet Transform is generally understood as tree-structure subband
transform with the multi-resolution structure. In contrast to the Discrete Cosines
Transform (DCT) used in the classical JPEG and other image compression stan-
dards, the image is processed continuously and not in blocksthat afterwards improve
the compressed image quality for the same level of quantization.

There are two main wavelet types:

� Irreversible : the CDF 9/7 wavelet transform, lossless compression with this
type of wavelet is impossible because the quantization noise introduced by the
precision of the decoder.

� Reversible : a rounded version of the bi-orthogonal CDF 5/3 wavelet trans-
form, the one used for lossless compression where only integer coe�cients are
used and the output does not need rounding (there is not quantization noise).

Figure 3.3: Wavelet multi-resolution Transform

11
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Figure 3.3shows the multi-resolution behaviour of the wavelet transform. Human
eye is much more sensitive to slow luminance changes than to the fast ones. Wavelet
transform nature divide every image in four bands taking thelow frequencies band
(LL) as a new interpolated lower resolution image.

3.2.2 T1 Arithmetic Enconding

After DWT is performed, Tier-1 coding takes place. The arithmetic encoding re-
moves redundant data improving the size of the information.The quantizer indices
for each subband are partitioned into codeblocks and each ofthe codeblocks is in-
dependently coded. The coding is performed using the bit-plane coder.

For each codeblock, an embedded code is produced, comprisedof numerous cod-
ing passes. The output of the Tier-1 encoding process is, therefore, a collection of
coding passes for the various codeblocks. In case of lossy compression only some
of this coding passes are included, in contrast, in losslesscompression every pass is
included in the �nal code stream.

There are 3 types of coding passes:

1. Signi�cance: Is the �rst coding pass for each bit plane. The main information
of the image is obtained in this pass.

2. Re�nement: The second coding pass for each bit plane is the re�nement
pass. This pass signals subsequent bits after the most signi�cant bit for each
sample.

3. Clean Up: The third (and �nal) coding pass for each bit plane is the cleanup
pass. This pass is used to group the rest of bits that containsless signi�cant
information.

Figure 3.4: Tier-1 Encoding process
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Figure 3.4 illustrated the division of each resolution into codeblocks and how
in each cases codeblocks are traversed bit per bit in di�erent directions in order to
compute speci�c passes. After the coding passes the data is arithmetically coded
using MQ-Encoder.
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Chapter 4
Requirements and Constrainst

The technical constrainst are some of them shortly tied to the used Daedalus tools
and some others requirements imposed by Chess B.V. company's clients. These
features as well as the other tools beyond Daedalus are mentioned in the subsections
below.

4.1 Constrainst

The fact of using Daedalus carries the following constrainst:

� The reference code must be written in C and it should be oriented to be
divisible in sub-processes.

� Two versions of the reference code must be writen. As mentioned in the
previous section there is a high level of abstraction where the code is executed
in a PC and an embedded environment (the FPGA) where the way ofobtaining
the image or writing the result is not the same.

Also using a FPGA to synthesize the hardware platform have the speci�cations
below:

� Independent processes of DWT and T1 arithmetic encoding must be developed
for a possible fast implementation of hardware accelerators substituting this
software processes by commercial IPs.

� Images have to be computed in parts due to memory limitationsof the FPGA
card therefore this tiling option must be implemented.

4.2 Requirements

Chess B.V., as commercial partner, has oriented the projectto possible medical
application that have these requirements:

14
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� Lossless compression for medical certi�cation reasons.

� RGB raw image as input.

� Measure of work time for each task through the workow.

4.3 Tools

Several software and hardware tools have been used during this project. On the one
hand programs which facilitate the development of the code:

� Eclipse IDE 3.2 environment.

� CVS 1.12.13 version repository.

� GDB 6.8 debugger.

� IrfanView 4.10, JPEG2000 image viewer.

� Meld 1.1.5.1 di�erence viewer.

� Xilinx Platform Studio 9.1.

On the other hand, the Virtex II (xcv6000) FPGA has been the most signi�cant
hardware resource, a PC-slot version accessible remotely from the internet. Its main
features are:

Gates Slices On-chip BRAM O�-chip RAM
xcv6000 6M 33792 288kB 6 x 256KB

Table 4.1: Virtex II features

Also in the hardware part, the is a list of used Xilinx IPs in the Daedalus library:

� Processor : Microblaze 4.00a.

� Bus : lmb v10 and opbv20 (connection between processors and o�-chip mem-
ory controllers).

� FIFO : fsl v20 (shared memory between processes).

� Memory : bram block 1.00a (code and data memories).

15



Chapter 5
Development Steps

In this chapter the development stages of the project are described. From the
reference program selection, through the code partition and simulation to an example
application that shows the potential of the tool once the program is made and
working.

Figure 5.1: Workow description

In Figure 5.1 the workow is displayed where six development steps have been
de�ned:

1. Reference Code Selection: An open-source JPEG2000 application written
in C language is chosen following Daedalus toolchain constraints.

2. Code Partitioning: The reference code is divided in modules or processes
that allows the automatic generation of process network through KPNGen
tool.

3. Simulation: The generated process networks are tested in a high level of
abstraction, if any modi�cation is necessary at this step, the partitioned code
should be rewritten and KPNs must be regenerated.

4. Example Application: As piece of example, a simple example con�guration
is shown, that means the number of processors, how the processes are mapped
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onto them and the way of data connections. This example application allows
the explanation of the next steps of the workow. Once the application con�g-
uration is chosen, this step illustrates how to write the platform and mapping
speci�cation for Daedalus.

5. Design Space Exploration: This step shows how to obtain the best con-
�gurations for a given application using high level simulation. Mapping and
platform speci�cations could be automatically generated.

6. MP-SoC: Finally, it is explained how the application and speci�cations are
sythetized using ESPAM.

Therefore this chapter could be also understood as a tutorial of how to develop
a project using the Daedalus toolchain.

5.1 Reference Code

The starting point of the toolow is the sequential program. As input of KPNGen
tool, the application must be written in C language. The other requirement is to
be open-source in order to be in line with Daedalus which is also freeware. There
has been found two open source JPEG2000 libraries implemented in C language (as
required) Jasper and OpenJPEG.

5.1.1 JasPer

The JasPer Project is an open-source initiative to provide afree software-based
reference implementation of the codec speci�ed in the JPEG-2000 Part-1 standard
(i.e., ISO/IEC 15444-1).

This project was started as a collaborative e�ort between Image Power, Inc. and
the University of British Columbia. Presently, the ongoingmaintenance and devel-
opment of the JasPer software is being coordinated by its principal author, Michael
Adams, who is a�liated with the Digital Signal Processing Group (DSPG) in the
Department of Electrical and Computer Engineering at the University of Victoria.
The code is ready for download in:http://www.ece.uvic.ca/ ~mdadams/jasper/.

5.1.2 OpenJPEG

The OpenJPEG library is an open-source JPEG2000 codec written in C language.
In addition to the basic codec, various other features are under development, among
them the JP2 and MJ2 (Motion JPEG2000) �le formats, an indexing tool useful for
the JPIP protocol, JPWL-tools for error-resilience and a Java-viewer for j2k-images.

The library is developed by the Communications and Remote Sensing Lab in
the Universit�e Catholique de Louvain (UCL). The JPWL module is developed
and maintained by the Digital Signal Processing Lab (DSPLab) of the Univer-
sity of Perugia, Italy (UNIPG)[ 9]. The application could be downloaded from:
http://www.openjpeg.org/ .
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5.1.3 Comparison

Here the main characteristics of each of selected programs:

JasPer OpenJPEG
Licence Open Source (MIT) Open Source (BSD)
Documentation PDF Files Web and Doxygen
Support Mail-list Forum
Last Version 2007 (1.900) 21/12/2007 (1.3)

Table 5.1: JasPer Vs OpenJPEG comparison table

As listed in the in Table 5.1, there are not many di�erences in terms of licence,
documentation (going just through the API in both cases) andversion support.
That is why more detailed comparisons have been made.

During this step, comparisons focus in two main challenges of the work. First, the
compression time taken by the programs. The execution timesfor each program1,
in a Pentium-4 2Ghz for a 22,9MB BMP (4056x1974) picture, areshown in Table
5.2:

JasPer OpenJPEG
Real Time 17s 40s
Encondig Time not provided 21s

Table 5.2: Executions times with \time" command

Second, in order to simplify the code partition that will be treated in Section
5.2.1, the lines of the source code have been counted in Table5.3:

JasPer OpenJPEG
Sources 40k lines 20k lines

Table 5.3: Code lines of the source �les

This last point, which has been followed with a deeper examination of the codes,
has been determinant to choose OpenJPEG as the reference code of the project.
The examination shows that in OpenJPEG the di�erent stages of the JPEG2000
algorithm are more independent and therefore easier to divide. As well, some mem-
ory managements and screen printing could explain the compression time di�erences
against Jasper. From now on this OpenJPEG library will be called \reference code".

1OpenJPEG gives the Encoding Time as output
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5.2 Code Partitioning

The input of the KPNGen tool, as mentioned in Section3.1.1, is a static a�ne
nested loop C language program. This C program, must be organized in independent
processes which communicate through FIFOs and should be as small and optimized
as possible to �t in the embedded platform.

5.2.1 Program Organization

Firstly, data ow has been identi�ed and unnecessary �les have been removed. As
mentioned in the previous section, the di�erent processes are clearly shown in the
reference code, these processes are exactly the ones of the classical JPEG2000 al-
gorithm: MultiComponent Transform (MCT), Discrete Wavelet Transform (DWT),
T1 encoding (T1) and T2 encoding (T2). Moreover, this division allows the future
replacing of this speci�c software processes for hardware IPs.

The �rst partition just previews an independent .C �le for each process and
deletes any �le that is not necessary for the compression program as listed in Figure
5.2.

/* Reference Code */
codec/
|-- Makefile
|-- compat
| |-- getopt.c
| `-- getopt.h
|-- convert.c
|-- convert.h
|-- dirent.h
|-- image_to_j2k.c
|-- j2k_to_image
`-- j2k_to_image.c
libopenjpeg/
|-- CMakeLists.txt
|-- bio.c
|-- bio.h
|-- cio.c
|-- cio.h
|-- ... + 60 �les more!

/* Partitioned Code */

jpeg2000/
|-- DWT.c
|-- DWT.h
|-- MCT.c
|-- MCT.h
|-- Makefile
|-- T1.c
|-- T1.h
|-- T2.c
|-- T2.h
|-- VideoIn.c
|-- VideoIn.h
|-- VideoOut.c
|-- VideoOut.h
|-- jpeg2000.c
|-- jpeg2000_func.h
`-- types.h

Figure 5.2: Code Partition Example

Two new processes, VideoIn and VideoOut have been created inorder to read
the original image and write the compressed �le (Figure5.3):
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Figure 5.3: Partition into Processes

At this state, only the required functionality (mentioned on Chapter 4) has
been left, that means, lossless compression (reversible wavelet), not oating point
operations, only support for RGB format images, etc. In thisway code size is
optimized for the embedded version of the application.

5.2.2 Removing Global Shared Data

When partitioning, every part or process accesses to the same shared data memory.
In the case of the reference code this share data is huge, impossible to store in a
embedded platform and even more, each process only needs a small part of this data
structure.

Therefore, speci�c data structures have been developped inorder to contain only
the minimal data to be share between given processes. These structures will become
the FIFOs that Kahn Process Network de�ne for interprocess communications5.4.

Figure 5.4: Partition into Processes

� Tile : This structure stores the 3 components of the original RGB image in
separate tables. As all the structures below, it has the number of the tile in
computation. In the same way it is the output of the MCT process which
gives as well 3 components (YUV) and the result of the computed DWT that
being reversible (CDF 5/3) is also made by integer coe�cients.

typedef struct tile t f
int comp[NUM COMPS][WIDTHTILE*HEIGHTTILE];
int num;

g tile t;

Figure 5.5: Tile Structure

� Codeblocks : After the T1 encoding the image information is presented as
codeblocks. If the wavelet is computed, the resulting resolutions and bands
are stored independently.
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typedef struct codeblock t f
unsigned char data[NUM RES][NUMBANDS][NUMPRECS][NUMCODEBS][CBLKW*CBLKH];
int num;

g codeblock t;

Figure 5.6: Codeblocks Structure

� Passes: During the T1 arithmetic coding, the information is not only stored in
codeblocks, thepassesstructure stores the number of passes for each codeblock
in order to make possible the reconstruction of the image.

typedef struct passes t f
pass_t passes[NUM RES][NUMBANDS][NUMPRECS][NUMCODEBS][MAXPASSES];
int passnum[NUM RES][NUMBANDS][NUMPRECS][NUMCODEBS];
int numbps[NUM RES][NUMBANDS][NUMPRECS][NUMCODEBS];
double distotile;

g passes t;

Figure 5.7: Passes Structure

� Packets : Finally, the T2 encoding presents the packets that complete the
compressed �le. The length of each packet is also passed.

typedef struct packet t f
unsigned char data[WIDTH_TILE*HEIGHT TILE];
int length;
int num;

g packet t;

Figure 5.8: Packets Structure

In the original data structure of the reference code, there is also stored internal
data that has been reallocated in new internal structures. With these modi�cations,
the Kahn Process Networks are generated automatically and each structure become
a FIFO whose size is �xed which are called static FIFOs.

5.2.3 Memory Optimization

The �rst versions of the partitioned code were too big in terms of the FIFO sizes
between processes when the implementation limit of each FIFO is limited to 8KB.
Changing integer tiles to char tiles has been one of the takensolutions, reducing the
size of the structures 4 times:

typedef struct tile t f
#ifdef INTEGER_TILES

int comp[NUMCOMPS][WIDTHTILE*HEIGHTTILE];
#else

char comp[NUMCOMPS][WIDTHTILE*HEIGHTTILE];
#endif

int num;
g tile t;

Figure 5.9: Char Optimized Tile Structure
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The table below shows the �nal structures size for a 32x32 pixels char tile:

Structure Size
tile t 3076 bytes
codeblocks t 1032 bytes
passes t 456 bytes
packets t 1036 bytes

Table 5.4: Structures �nal size for 32x32 pixels tiles

5.2.4 Con�gurable Parameters

After program modi�cations, the con�guration parameters are given in the types.h
header �le (and not through the command line as in the reference code). In this
header �le, the size of the original image must be given as well as the number of
tiles the image should be partitioned or the number of resolutions (wavelet compu-
tations). Figure 5.10shows the beginning of this �le and the multiple con�gurable
options.

...
1 //Horizontal tiles

#define HTILES 4
//Vertical tiles
#define VTILES 4

5 // Name of the image
#define FILE_NAME "baboon_128x128"
// Size of the image
#define WIDTH_IMAGE 128
#define HEIGHT_IMAGE 128

10 // Size of the tile
#define WIDTH_TILE WIDTH_IMAGE / HTILES
#define HEIGHT_TILE HEIGHT_IMAGE / VTILES
//Tiles with 'int's instead of 'char's
//#define INTEGER_TILES

15 // Number of components
#define NUM_COMPS 3
// Number of resolutions
#define NUM_RES 1

...

Figure 5.10: types.h: Program Con�gurable Parameters

5.2.5 KPNGen

Once the code is partitioned and optimized, it is possible topass it through the
Kahn Process Network generator. Figure5.11 is the main program of the static
a�ne nested program and the input to the KPNGen.
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1 #include "jpeg2000 func.h"

int main (int argc, char **argv)
f

5 int i;
tile t tile;
codeblock t codeblocks;
passes t passes;
packet t packets;

10
for (i = 0; i < NUMTILES; i++)
f

mainVideoIn(&tile);
mainMCT(&tile,&tilec);

15 mainDWT(&tilec,&tilec);
mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

g
20

return 0;
g

Figure 5.11: JPEG2000.c: Input �le for KPNGen

In the main function there is shown the previously mentioned(Section 3.1.1)
static a�ne nested loop program. As can be seen, there is a loop of an a�ne scalar
function (the number of tiles is linear, line 11) and the bounds of the loop as well
as the structure sizes are static (do not change during the execution) and they are
known at compilation time.

The output of the KPNGen tool is a \.kpn" �le where all the necessary data to
make the process networks run as process function calls or associated communication
structures are stored.

5.3 Simulation

Taking the generated Kahn Process Network �le, it is possible to simulate the parallel
execution conditions. As explained in Section3.1.2 the SESAME project previews
a simulator, PNRunner, for this purpose.

PNRunner runs each process independently and it is possibleto detect errors
that otherwise will be found after the synthesis of the MP-SoC. At this stage, the
simulator executes the network process model in the same waythan embedded
processor will do in MP-SoC, therefore, it is possible to predict possible deadlocks
or simply bugs that work in the sequential model but do not respect the parallel
model of computation. The only di�erence between this simulation and the real
FPGA execution is that the hardware constraints as memory size limitations or
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memory accesses are not veri�ed.
This early simulation accelerates the prototyping delay, for any modi�cation only

the partitioned code must be modi�ed and the new Kahn ProcessNetwork �le is
regenerated in one step.

5.4 Example Application

For a �rst approach, a simple example is proposed: 3 MicroBlaze processors with
two processes mapped in each. The platform (.pla) and the mapping (.map) speci�-
cations are given using XML �les with speci�c tags that are explained in the sections
below.

5.4.1 Platform

The platform �le describes the number of processors, their type, their program/data
memory sizes and their connections as well as other peripherals and links. Each XML
tag is linked with the Daedalus IP library which implements the desired module.

1 <platform name="j2kPlatform">

<processor name="MB_1" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB_1" type="OPBPort"/>

5 </processor>
<processor name="MB_2" type="MB" data_memory="8192" program_memory="65536">

<port name="OPB_2" type="OPBPort"/>
</processor>
<processor name="MB_3" type="MB" data_memory="16384" program_memory="65536">

10 <port name="OPB_3" type="OPBPort"/>
</processor>

<peripheral name="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port name="IO_1" type="OPBPort"/>

15 </peripheral>
<peripheral name="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">

<port name="IO_2" type="OPBPort"/>
</peripheral>
<peripheral name="ZBT_CTRL_3" type="ZBTCTRL" size="1000000">

20 <port name="IO_3" type="OPBPort"/>
</peripheral>

<link name="mb_opb_1">
<resource name="MB_1" port="OPB_1"/>

25 <resource name="ZBT_CTRL_1" port="IO_1"/>
</link>
<link name="mb_opb_2">

<resource name="MB_2" port="OPB_2"/>
<resource name="ZBT_CTRL_2" port="IO_2"/>

30 </link>
<link name="mb_opb_3">

<resource name="MB_3" port="OPB_3"/>
<resource name="ZBT_CTRL_3" port="IO_3"/>

</link>
35 </platform>

Figure 5.12: JPEG2000.pla: Platform Speci�cation

Figure 5.12shows the platform �le of the example con�guration where into the
\platform" tag the desired number of processor or peripherals could be de�ned.
The ports of these modules are connected via links. The external memory used to
store the raw and compressed images for the FPGA is a Zero-BusTurnaround ram
memory (ZBT) and it can be connected through link with the desired processors.
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The size of the data and program memories are calculated using some meth-
ods explained in Section5.6.2. The Figure 5.13 below gives a visual idea of the
implemented platform:

Figure 5.13: MP-SoC Example Platform

5.4.2 Mapping

For a given platform, the mapping �le puts each process in thedesired processor.
For example in Figure5.14 from line 3 to 6 processes ND0 and ND 1 are mapped
onto processor MB1.

1 <mapping name="j2kMapping">

<processor name="MB_1">
<process name="ND_0" />

5 <process name="ND_1" />
</processor>

<processor name="MB_2">
<process name="ND_2" />

10 <process name="ND_3" />
</processor>

<processor name="MB_3">
<process name="ND_4" />

15 <process name="ND_5" />
</processor>

</mapping>

Figure 5.14: JPEG2000.map: Mapping Speci�cation

As can be seen in Figure5.15 the mapping speci�cation �lls the platform with
the processes and makes possible di�erent implementationsfor a single platform.
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Figure 5.15: Processes Mapped into the Example Platform

5.5 Design Exploration

As mentioned in Chapter3, with the SESAME tool of the Amsterdam University
it is possible through high level simulation to obtain the best con�guration of the
system. This computation, which takes some hours, gives thebest disposition of
processes even splitting them for best timing results. Onlythe results that �t the
hardware constraints of the FPGA can be implemented. [8]

Due to the limited time of the project this Desgin Space Exploration step has
been done empirically. Through speci�c experiments that are shown in next chapter,
the JPEG2000 application has been characterized. The fact of doing it manually
allows to realize step by step of the di�erent peculiaritiesof the application and
apply speci�c solution to each problem.

5.6 MP-SoC

With the Kahn Process Network, Mapping and Platform speci�cations the ESPAM
tool generates the necessary �les to open a new Xilinx Platform Studio. But before
�nal synthesis and test, there are some modi�cations that should be done in the
partitioned program and in the ESPAM generated �les. These issues will be treated
in the following sections.

5.6.1 Program FPGA version

Now that the program needs to be executed in a FPGA, some functionalities di�er
from the high level partitioned version. The changes are related to the read and
write of the raw and compressed images.

For reading, the high level version previews three �les (\.R", \.G" and \.B")
which are read once in a static table for the rest of the execution. But in the
FPGA there is not �le management, therefore, the original raw image must be
stored somehow in the FPGA memory and read from there as a table. How to store
the image is explained in Section5.6.3 and in Figure 5.16 the switch between the
two readings ways is shown. This switch is made using the de�ne \PC" (line 1).
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/* VideoIn.h */
...
1 #ifdef PC

static int Rtable[WIDTH IMAGE * HEIGHTIMAGE / 4];
static int Gtable[WIDTH IMAGE * HEIGHTIMAGE / 4];
static int Btable[WIDTH IMAGE * HEIGHTIMAGE / 4];

5 #else
static volatile int *Rtable = ZBT MEM;
static volatile int *Gtable = (volatile int *) (ZBT MEM + (WIDTHIMAGE * HEIGHTIMAGE / 4));
static volatile int *Btable = (volatile int *) (ZBT MEM + (2 * (WIDTHIMAGE * HEIGHTIMAGE / 4)));
#endif

...
/* VideoIn.c */
...
1 #ifdef PC // Read the image once

if (num == 0)
f

char name[MAX_NAME];
5 strcpy(name,FILE NAME);

FILE *f;
strcpy(name,FILE NAME);
strcat(name,".R");
f = fopen(name,"rb");

10 fread(Rtable, 4, WIDTH IMAGE * HEIGHTIMAGE / 4, f);
fclose(f);
/* Made twice more for B and G components */
...

g
#endif

...

Figure 5.16: Original Raw Image Reading Versions

For the writing of the compressed �le, a similar solution is taken (Figure 5.17).
The high level version used to write a new �le with the compressed image, for that,
a table is �lled until the last tile when the �le is generated. In the FPGA version,
this table is addressed to the FPGA memory, and the �le is generated with external
tools as will be explained in Section5.6.3. The o�set variable store the size of the
compressed data to enable the �le generation.

/* VideoOut.h */
...
1 #ifdef PC

static FILE *f;
static int outMemory[IMAGE SIZE];
#else

5 static volatile int *outMemory=(volatile int *)(ZBT MEM +1);
#endif

...
/* VideoOut.c */
...
1 if ((tileno == NUMTILES -1) && (compno == 2))

f
#ifdef PC

f = fopen("test.j2k","wb");

5 for(k = 0; k < offset; k++)
f

putc(outMemory[k],f);
g
fclose(f);

10
#else

*ZBT_MEM = offset;
#endif

g
...

Figure 5.17: Original Raw Image Writing Versions

Finally, before opening the Xilinx Platform Studio projectthe \.MHS" (�le where
the hardware modules are described) must be changed to include the FIFO sizes for
the example application.[13]
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5.6.2 Xilinx Platform Studio

The Xilinx Platform Studio is the last tool from where the bitstream to con�gure
the FPGA will be obtained. The project is opened through the \.XMP" �le and
some updates are demanded for the last XPS version.

Figure 5.18: Xilinx Platform Studio

The XPS tool is shown in the Figure5.18 above. On the right side the auto-
matically generated MP-SoC hardware could be modi�ed if necessary, for example,
changing a software processor for a hardware IP. On the left side the sources must
be attached and after that, the compiler options and the stack size must be set.

Stack, Code and Data Memory

The platform �le must preview the necessary code and data memory for each pro-
cessor. Cross compiling the code with the microblaze compiler \.text" (code) and
\.data" section size could be obtained. But this information is not enough to set
the processor memory because it is impossible to get the maximal stack size without
executing the program.

Therefore, the processor minimal memory will be set adding the empirically
obtained maximal stack plus the code and data memory of the program. Another
solution could be to allocate the stack into the 1,5Mb o�-chip memory, but this
memory is connected though a ZBT bus that does not �ll the timeconstraints of
the stack instructions.
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5.6.3 Execution

For the MP-SoC execution a PC connected Virtex II FPGA has been used. The
main challenges to make the MP-SoC work are: the initialisation of the FPGA, the
load of the raw original image into the o�-chip ZBT memory, the execution of the
hardware and the recuperation of the compressed image from the same memory.
These problems are solved with a C++ program using Visual Studio and the FPGA
DLLs for the PC use of the Virtex II board. The main function ofthis program is
summarized in Figure5.19:

Figure 5.19: J2K MP-SoC Execution

� Read the raw image: the three RGB raw image �les are read.

� Load the image in the ZBT memory: the image is copied to the o�-chip
memory of the FPGA board.

� Load the BitStream: the FPGA is con�gured with the synthesized hardware
and compiled software.

� Run the MP-SoC: the execution is started as well as the counters to measure
the execution time.

� Measure and display timings: once the execution is �nished, the measure
are read from the FPGA registers and from the ZBT memory if implemented.

� Read the stream and generate the �le: the JPEG2000 compressed image
is read from the ZBT memory and is copied into a �le.
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Chapter 6
Experiments and Results

In this chapter the experiments that have been done during the project are presented
as well as their results. The variations between the experiments are the number and
size of processors, the di�erent mappings for a given platform and the number of tiles
in which the image is divided. The main limitation for the experiments has been the
144 BRAM blocks memory (288KB) of the Virtex II FPGA. All the con�gurations
have been tested using the same methodology explained in theprevious chapter.

All the mentioned experiments are ready to be tested in the CVS repository
(restricted server) of the Leiden Institute of Advanced Computer Science (LIACS)
in : ~/docs/students/MikelAzkarate/Experiments/ .

6.1 Multiprocessing

The �rst experience illustrates the computational time improvement depending on
the number of Microblaze processors in the MP-SoC.

For that, 4 platforms have been developped which have from 1 to 4 embedded
processors, 64 tiles (16x16 pixels) and the mappings described in Table 6.1.

1xMB 2xMB 3xMB 4xMB
VideoIn MB 1 MB 1 MB 1 MB 1
MCT MB 1 MB 1 MB 1 MB 1
DWT MB 1 MB 1 MB 2 MB 1
T1 MB 1 MB 1 MB 2 MB 2
T2 MB 1 MB 2 MB 3 MB 3
VideoOut MB 1 MB 2 MB 3 MB 4

Table 6.1: Mapping for the Increasing Processors

As can be seen in Figure6.1 once at least two processors are de�ned in the
platform there is not signi�cant improvement in computational time and additional
measures should be taken to improve the compression time. Itis clear that processes
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have enough processor resources after the second MicroBlaze. At this point, the are
two new ways to accelerate the application, one of them is to increase the processor
clock frequency but this one is limited by the FPGA technology. And the other one
is to pro�t the fact of using Kahn Process Networks and exploit parallelism. Using
KPNs means that each process is independent from others and auto scheduled. As
a result most time consuming processes can be divided in multiple processes that
execute tiles in parallel. This principle is applied in the next section.
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Figure 6.1: Clock cycles Vs. Number of processors

6.2 Splitting

In order to identify the most time consuming processes, the computing times of each
process has been measured using a hardware counter in the FPGA. This is the same
principle applied in a manufacturing company: to improve the developing time of
a product, the critical path of the production tasks are measured and additional
resources are given to the longest stages.

For 3 MicroBlaze con�guration with 16x16 pixels tile the result has been the
following (Figure 6.2):
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Video Out

Clk.Cyc. %
VideoIn 11.944 0,27
MCT 7.940 0,18
DWT 8730 0,20
T1 3.457.941 80,14
T2 781.268 18,10
VideoOut 47.260 1,09

Figure 6.2: Computing time percentage taken by each process

Therefore, the experiment clearly points the main computational charge in the
Tier-1 encoder process. This fact has been also identi�ed inbibliography [7]. The
solution for this problem is to split this process and parallelize it mapping it twice.

Two examples have been done using this philosophy, the �rst one with a 2
processor platform and the other one with 4 processors wherethe T1 process has
been mapped twice. In the �rst case the T1 processes are mapped sharing space with
other processes, in the second case, T1 processes have an independent MicroBlaze
(Figure 6.3).
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Figure 6.3: Speed-up with parallel T1-encoders
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The Figure 6.3 above shows how the improvement is almost double faster in the
case where T1 processes are mapped independently and not so signi�cant if they
are sharing processors with the rest of functions.

Knowing that, a 5 Microblaze platform with 3 independently mapped T1 pro-
cesses has been developped. As the Figure6.4 denote, this technique accelerates
the processing time almost as many times as number of independently mapped T1
processes in the system.
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Figure 6.4: Speed-up against number of T1 independent processes

6.3 Optimizing

Once the two main techniques (multiprocessing and T1 encoder splitting) have been
analysed, other optimizations are explored in this section. First, the e�ect of image
partitioning in tiles and in components is compared. Then, memory occupation of
each process is calculated and the validity of the wavelet transform process is eval-
uated. And �nally, the processors connection type and the compiler optimizations
are took into consideration.

6.3.1 Tiling

During the project, experience and bibliography show that for a di�erent number
of tiles the execution time varies. In the same 3 MicroBlaze platform, three tile
options have been tested: 16 tiles (32x32 pixels), 64 tiles(16x16 pixels) and 128 tiles
(8x8 pixels) for a 128x128 pixels 48KB original raw image.
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Figure 6.5: Tiling e�ect in size and time

On the right part of Figure 6.5, it can be seen that the computing time grows
proportionally with the number of computed tiles. On the left part another obser-
vation shows that the compressed image size also increases with the number of tiles,
that is because for each tile a new header is included in the compressed image �le
overloading it (Figure 6.6).

Figure 6.6: Final JK2 File and Tile Header Overload

Therefore, the reasons to use tiles are that dividing the image the shared mem-
ory between the processes is smaller and makes the platform �t in the FPGA's
limitations and also the fact of using parallelism is only possible if the image is
partitioned.

6.3.2 Division into Components

As seen in the previous section tiling is necessary but ine�cient. That could be
solved by partitioning the computation in another more e�cient way. Analysing
the reference code there is denoted that each component of the image is computed
separately even if they are send together from process to process. Dividing the shared
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memory into components the FIFO size will be decreased in as many component as
the image have, in this case 3. The structure remains as shownin Figure 6.7.

typedef struct tile c t f
int comp[WIDTHTILE*HEIGHTTILE];
int num;

g tile c t;

Figure 6.7: Tile Component Structure

However, this change needs also the rewriting the code of theKPNGen input �le
where another loop (Figure6.8), this time for components, is attached (line 16).

1 #include "jpeg2000 func.h"

int main (int argc, char **argv)
f

5 int i,j;
tile t tile;
tile c tile;
codeblock t codeblocks;
passes t passes;

10 packet t packets;

for (i = 0; i < NUMTILES; i++)
f

mainVideoIn(&tile);
15

for(j = 0; j< NUM_COMPS; j++)

mainMCT(&tile,&tilec);
mainDWT(&tilec,&tilec);

20 mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

g
25

return 0;
g

Figure 6.8: Improved JPEG2000.c with Components

6.3.3 Memory occupation

As commented in previous sections, the memory size of the platform processor must
be calculated cross compiling the FPGA version code with theMicroBlaze compiler

35



6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

and adding the needed stack obtained empirically.
In Table 6.2 the code and data sizes in bytes for the processes in the �rst column

as well as the minimal stack for a 16x16 pixels tiles version are listed. The code
and data includes also the necessary code to read, write and manage FIFOs, which
is �xed for processor. That is why putting two processes together the amount of
memory is less that the theoretical addition. Medium optimization level has been
used as compiler requirements.

Code Data Stack
VideoIn + MCT 2.268 60 3.000
VideoIn + MCT + DWT 3.548 92 5.000
T1 34.934 8.960 3.250
T2 36.002 872 5.000
VideoOut 9.440 52 3.000
T2 + VideoOut 39.122 876 5.000

Table 6.2: Memory Occupation Processes

Focussing in the T1 process, it can be conclude that a new processor of around
48KB of memory is needed for each additional parallel T1 encoder.

6.3.4 Wavelet in Lossless Compression

When the JPEG2000 compression is lossless, wavelet is not usefull because it does
not use quantization. The only use of wavelet in this case, isgiving several resolu-
tions of the image. For optimization wavelet could be removed from the JPEG2000
lossless algorithm, removing the size of the code that is notlonger use and the
memory occupation of the additional FIFO for the DWT stage.

6.3.5 CrossBar Switch

In the previous experiments, no connection type for communications between pro-
cessors was speci�ed. That is because by default point to point connection is applied.
Point to point is the best connection type in terms of time e�ciency but when im-
plemented is not optimal from the memory occupation point ofview. For every new
communication channel a new FIFO is implemented and this FIFOs has a �xed size
that must be power of 2. When the real size of the channel is farfrom the power of
2 size of the implemented FIFO memory is wasted.
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Figure 6.9: Crossbar Switch

The crossbar switch connects every processor to each other through multiplexers
that schedule the di�erent accesses. In this case all the channels of a single pro-
cessor share the memory module which optimize the memory occupation. On the
other hand, the scheduling for memory accesses makes this option slower but not
signi�cantly.

/* jpeg2000.pla */
...
1 <network name="CS" type="CrossbarSwitch">

<port name="IO 1" />
<port name="IO 2" />

</network>
5

<link name="BUS1">
<resource name="MB1" port="IO 1" />
<resource name="CS" port="IO 1" />

</link>
10

<link name="BUS2">
<resource name="MB2" port="IO 1" />
<resource name="CS" port="IO 2" />

</link>
...

Figure 6.10: Part to be added in the platform speci�cations

To include the crossbar into the MP-SoC the platfrom speci�cations must be
changed including the crossbar and the connections to each processor (Figure6.10).
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Table 6.3 below shows the small di�erence in executing time (clock cycles) for a 3
T1 encoders and 16x16 tile, with crossbar and point to point connections:

Clock Cycles
Crossbar 61.720.707
Point to point 61.613.191

Table 6.3: Crossbar Vs Point to point

At the end, the previously mentioned memory organisation (Figure 6.9) has been
found as not optimal for the studied case. As explained, single memory boxes are
used by several FIFOs and this will improve the memory utilisation only in the cases
where big memory boxes are used to store single small FIFOs. But in this case, the
addition of FIFOs forces to uses bigger memory boxes and carries similar memory
amount to the ones using in point to point connections.

6.3.6 Compiler Options

Microblaze GGC compiler options have been left in medium in order to have a
compromise between program code size and execution time. Inthis experience, op-
timization level have been grown to high, increasing the code size but improving the
timing of the execution. This table show the improvements, for the same implemen-
tation conditions than for the crossbar in the previous section (16x16 pixels tiles, 3
T1 encoders):

Clock Cycles
Medium optimization 61.613.191
High optimization 55.998.573

Table 6.4: Compiler optimization improvement

As listed in Table 6.4 the number of necessary clock cycles for the 48KB image
compression decrease almost a 10%. But this optimization increases the code size
of the T1 encoder process from 34KB to 44KB while the data and the necessary
minimal stack does not change but adding their 8KB and 3KB makes in total 55KB
which does not allow more T1 encoders in the actual FPGA memory.

6.4 Best Result

The best result is the 3 T1 encoders implementation with 16x16 pixels tiles with high
code optimization (Figure6.11). A better implementation with 4 T1 encoders was
also possible with medium optimization if 48KB were enough for each T1 process
holding processor. But when two memories are used (32KB and 16KB to obtain
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48KB) instead of a single one of 64KB, there is a \one memory limitation" in the
Xilinx \data2mem" loader where the second contiguous memory is not �lled with
the executable code.

As will be demonstrated in the following chapter, better implementation are
possible beyond the technological limitations.

6.5 3 T1 Encoders

Figure 6.11below is the architecture that with the mentioned limitations, better �ts
the FPGA:

Figure 6.11: Best MP-SoC platform

For every process that want to be splitted the main �le, that is the input of the
KPNGen tool, must be changed in order to provide to the systemthe necessary
connections and computation loops. For this best solution the �le is shown in
Figure 6.12. In lines 20-22, the T1 process splitting is shown in a explicit way: three
processes are processing each YUV component of the tile.
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1 #include "jpeg2000 func.h"

int main (int argc, char **argv)
f

5 int i,j;
tile t tile;
tile c tile;
codeblock t codeblocks;
passes t passes;

10 packet t packets;

for (i = 0; i < NUMTILES; i++)
f

mainVideoIn(&tile);
15

for(j = 0; j< NUM_COMPS; j++)

mainMCT(&tile,&tilec);
mainDWT(&tilec,&tilec);

20 if (j%3 == 0) mainT1(&tilec,&codeblocks,&passes);
if (j%3 == 1) mainT1(&tilec,&codeblocks,&passes);
if (j%3 == 2) mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

25
g

return 0;
g

Figure 6.12: JPEG2000.c File for Best Solution

In this case the FPGA is not completely used, because 5 processor of 64KB
are used instead of the enhanced 48KB, but the extra memory isused to increase
the compiler optimization. The Table 6.5 shows the platform size, mapping and
executable size of each processor. In the last column the unused memory size is
listed. As mentioned before, it will be possible to used thismemory for additional
T1 coder processes if the Xilinx \one memory limitation" is solved.
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Mapping Size Executable Lost
MB 1 VideoIn + MCT 8KB 5KB 3K
MB 2 T1 64KB 58KB 6KB
MB 3 T1 64KB 58KB 6K
MB 4 T1 64KB 58KB 6K
MB 5 T2 + VideoOut 64KB 50KB 14KB

Table 6.5: Platform, Mapping and Section sizes for Best Result

Table 6.6 list the features of the Virtex II FPGA use. As can be seen the BRAM
utilisation is the critical one in order to improve possiblecon�gurations.

Implementation
Slices 3895 out of 33792 (11%)
LUTs 7789 out of 67584 (11%)
BRAMs 143 out of 144(99%)
Clock Cycles 55.998.573 (128x128 pixels)
Clock Frequency 74.683MHz

Table 6.6: Implementation information

.
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Chapter 7
Comparison

This chapter makes a comparison between hardware IPs mentioned in Section1.3
with the obtained best result also with hypothetical con�gurations that could be
implementable in the future with more available memory. Project stage worktimes
are also displayed as �gure of the fast prototyping capabilities of the Daedalus
framework.

7.1 Comparison with Related Work

In Table 7.1 below, some features of commercial hardware IP are comparedto the
Daedalus proposed architecture, speed is measured pixels per second.[4]

Analog Dev. Barco Silex Cast Daedalus
Technology XC2V3000-6 XC2V6000-6 Altera/Xilinx XCV6000
T1 Coders 3 8 con�gurable unlimited
Max Tile 2048x4096 32x32 4096x4096 unlimited
Max Cbkl 64x64 32x32 64x64 same as tile's
Memory not provided 167 KB not provided 288 KB
Speed 250-500Mbps 98-200Mbps 60Mbps 28,5Kbps

Table 7.1: Comparison with Commercial tools

As can be seen, the obtained best Daedalus architecture can not achieve the
timing and memory levels of commercial IPs. However, the twomain advantages of
Daedalus architecture are:

� The price : These hardware IPs are very expensive and the Daedalus toolchain
is obtained through open-source tools free of costs. For instance the JPEG2000
IP for Xilinx or Altera of Cast company costs 100.000 euros per design.

� The con�gurability : With no memory limitation, tile size and the number
of T1 entropy coder could be increase arriving to very acceptable compression
times.
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7.2 Projected Architectures

As previously seen, the limitation of the architectures is the on-chip RAM memory of
the FPGA. But with the informantion obtained into the experiences it is possible to
estimate the theoretical performance of more sized implementations. In this section
the tile number and the number of T1 branches will be variables of the equation in
order to get high performace timing solutions.

From Figure 6.5 can be obtained that for every new tile in which the image is
divided the number of clock cycles increases in 775.000. On the other hand, we know
that for every double independent encoder the speed up is of x1,95. In this case we
must specify that the T2 process should be also splitted for every 3 T1 encoders
because the time consummation of this process begins to be critical. For any T1
or T2 processor 48KB or memory will be reserved and the original image will have
48KB (that will be taken into consideration for memory constraints). The other
memory resources which are not processes or FIFOs will not betaken into account.

The memory approximate occupation formule will be:

Mem = �P 1 + �P Additional � (T1 + T2) + Img:Size
T ileNb � (1 + ( F IF ONb � 1

3 )

Mem = 8KB + 48KB � (T1 + T2) + 48KB
T ileNb � ( 2� T 1+ T 2

3 )

Figure 7.1: Memory Occupation Formules

The formule reveal that only critical memory amounts are computed, hardware
memory requirements as controller's registers or softwarecontrainst as stack are not
included. For computational calculation here the formule:

Cycles= 3xT 1 1T ile Cycles=(1; 95� ( T 1
3 � 1)) + T ileNb � Cycles T ile

Cycles= 50M=(1; 95� ( T 1
3 � 1)) + T ileNb � 775:000

Figure 7.2: Computation Time Formules

T1 Enc. T2 Enc. Tiles Memory Cycles
Best Result x3 x1 64 264KB 56M
5 Processors x3 x1 1 528KB 50M
9 Processors x6 x2 2 438KB 27M
17 Processors x12 x4 4 888KB 16M

Table 7.2: Proposed Architectures

For a piece of example, this 17 processors implementation (Table 7.2) for a
128x128 pixels image encoded in 16M clock cycles in a standard speed of 100MHz
clock, means 96Kbps processing speed.
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7.3 Worktime of Project Steps

Finally, the time of each task has been measured in working days in order to illustrate
the time e�ort of each task. Table 7.3 makes clear that the main e�ort resides in
developing the partitioned code and once this is made and thetools are known, it
is possible to develop MP-SoC prototypes in less than one hour.

Time
Library Selection 2 days
Code Partition 33 days
Simulation 7 days
First Demo Example and Synthesis 5 days
Next Speci�cations and Synthesis 1 hour

Table 7.3: Time periods through the workow

This fast prototyping is very interesting for companies that once they have the
partitioned program could present di�erent implementations to their clients in terms
of days in order to �t their performance/cost requirements.
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Chapter 8
Conclusion and Future Work

The main conclusion of the work is that the Daedalus toolow is ready for com-
mercial use in terms of worktime improvement and satisfactory results. Commercial
requirements have been achieved and an optimized version ofthe solution have been
obtained within 5 months of work. Daedalus potential resides in the easy and fast
prototyping capability once the partitioned program version is ready.

Using Daedalus, a fully functional lossless JPEG2000 application has been de-
velopped written in a static way. This application is divided into modules and
connected via �xed sized structures. The main �le of the program is the input for
the Daedalus system, the Kahn Process Network Generator in �rst term.

The obtained Kahn Process Networks have been mapped into di�erent test plat-
form through automatized procedures in order to modelate the behaviour of the
system. Two conclusions have been obtained from this modelation: 1) Image tiling
is ine�cient in compression size and time but necessary for computation memory
and 2) The T1 encoding takes around the 80% of the whole encoding time.

In the last part of this thesis several improvement have beenapplied to the
system in order to improve the compression timing features.A �nal best result
have been obtained with the Virtex II FPGA memory limitations and some new
architectures have been proposed with no memory restrictions.

The results are far from commercial IP hardwares in computational time. That is
because this commercial tools use hardware implementations of T1 encoders which
is determinant to improve speed signi�cantly, therefore, some hardware accelerators
for this T1 coder should be integrated to be closer of this results. But the Daedalus
open-source obtained solutions are more con�gurable and cheaper than commercial
products that cost around hundreds thousands of euros.

For future work, 4 main points should be taken into consideration:

1. Program optimizations: to the mentioned T1 hardware accelerators many
other optimization could be added, as putting the stack in the o�-chip memory
or sharing single coding tables for the multiple T1 processes, improving the
use of memory.

2. Design Space Exploration: Amsterdam University's SESAME tool can give
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the best con�guration of processes in order to achieve the best memory/timing
performances. This results could be interesting for futureimplementations.

3. New JPEG2000 features: for medical sector requirement only lossless com-
pression have been left from the reference OpenJPEG library. In the future,
lossy compression as well as the whole decoder could be implemented to have
a complete JPEG2000 application.

4. Automization: Daedalus is already a highly automatized tool, but still some
improvement could be done. Between them, FIFOs size could beautomatically
obtained as well as program size. Code �les �les could be alsoautomatically
attached to the project. The main di�culty for the whole auto matization
is the stack calculation, maybe some tools must be explored to obtain this
parameter o�-line.
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