o]
E\SER: TUDelft

ELECTRONIGUE, INFORMATIGUE & RADIOCOMMUNICATIONS Technische Universiteit Delft
BORDEAUX

JPEG2000 image compression in
Multi-Processor System on Chip

Delft University of Technology
11/03/2008 - 31/07/2008

Tutor: BORNAT Yannick ENSEIRB
Supervisor: STEFANOV Todor TU Delft
Author: AZKARATE-ASKASUA Mikel Electronique (SE)

(This page has been left blank on purpose.)

Contents

Introduction

1.1 Motivationand Goals.
1.2 Contributions
1.3 Related Work
1.4 Thesis Organisation

TU Delft

2.1 Activities e
2.2 Organisation. e
2.3 Research (Computer Engineering)

Background

3.1 Daedalus.
3.1.1 KPNGen: Application Parallelization.
3.1.2 YML and PNRunner: High Level Simulation.
3.1.3 ESPAM: Hardware Platform Generation.

3.2 JPEG2000.
3.2.1 Discrete Wavelet Transform.
3.2.2 T1 Arithmetic Enconding

Requirements and Constrainst

4.1 Constrainst
4.2 RequirementS.
4.3 TOOIS.

Development Steps

5.1 Reference Code
5.1.1 JasPer.
51.2 OpendPEG
5.1.3 Comparison.

5.2 Code Partitioning
5.2.1 Program Organization
5.2.2 Removing Global Shared Data

CONTENTS

CONTENTS

5.2.3 Memory Optimization
5.2.4 Con gurable Parameters
5.2.5 KPNGen
5.3 Simulation
5.4 Example Application
5.4.1 Platform
5.4.2 Mapping
5.5 Design Exploration
5.6 MP-SoC
5.6.1 Program FPGA version
5.6.2 Xilinx Platform Studio
5.6.3 Execution

6 Experiments and Results
6.1 Multiprocessing
6.2 Splitting

6.3 Optimizing

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

Tiling

Division into Components

Memory occupation
Wavelet in Lossless Compression
CrossBar Switch

Compiler Options

6.4 Best Result

6.5 3 T1 Encoders

7 Comparison
7.1 Comparison with Related Work
7.2 Projected Architectures
7.3 Worktime of Project Steps

8 Conclusion and Future Work

List

2.1
2.2

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1
6.2
6.3
6.4
6.5

of Figures

EWI faculty building o 5
An overview of the organizational structure of TU Delft 5
The Daedalus Tool-Flow. 7
The JPEG2000 algorithm 11
Wavelet multi-resolution Transform 11
Tier-1 Encoding process. v i i e 12
Work ow description 16
Code Partition Example 19
Partition into Processes Lo oo 20
Partition into Processes Lo oo 20
Tile Structure 20
Codeblocks Structure. L 21
Passes Structure 21
Packets Structure. 21
Char Optimized Tile Structure 21
types.h: Program Con gurable Parameters 22
JPEG2000.c: Input le for KPNGen 23
JPEG2000.pla: Platform Specication 24
MP-SoC Example Platform 25
JPEG2000.map: Mapping Specication 25
Processes Mapped into the Example Platform 26
Original Raw Image Reading Versions. 27
Original Raw Image Writing Versions. 27
Xilinx Platform Studio 28
J2K MP-SoC Execution 29
Clock cycles Vs. Number of processors. 31
Computing time percentage taken by each process 32
Speed-up with parallel Tl-encoders 32
Speed-up against number of T1 independent processes. 33
Tiing eectinsizeandtime 34

LIST OF FIGURES LIST OF FIGURES

6.6 Final JK2 File and Tile Header Overload. 34
6.7 Tile Component Structure o 35
6.8 Improved JPEG2000.c with Components. 35
6.9 Crossbar Switch. oL 37
6.10 Part to be added in the platform specications. 37
6.11 Best MP-SoC platform. 39
6.12 JPEG2000.c File for Best Solution 40
7.1 Memory Occupation Formules. 43
7.2 Computation Time Formules. 43

List of Tables

4.1

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

Virtex Il features 15
JasPer Vs OpenJPEG comparisontable. 18
Executions times with \time" command 18
Code lines ofthesource les 18
Structures nal size for 32x32 pixelstiles. 22
Mapping for the Increasing Processors. 30
Memory Occupation Processes. v .. 36
Crossbar Vs Pointto point. 38
Compiler optimization improvement. 38
Platform, Mapping and Section sizes for Best Result. 41
Implementation information o oL 41
Comparison with Commercial tools. 42
Proposed Architectures. Lo 43
Time periods through the workow 44

Vi

Acknowledgments

Thanks to...

...the TU Delft and Chess B.V. for giving me the chance of danrthis
thesis and specially to Todor Stefanov for his implicatiomithe project
and his unconditional support.

Mercia...

...'ENSEIRB ainsi comme au programme ERASMUS pour me donne
la opportunie de vivre cette extraordinaire exgerienceEuropeenne. Je
voudrais aussi remerciera Yannick Bornat son travail comra tuteur
pendant le projet.

Gracias a...

...mis amigos Holandeses que si bien nacieron mas al suraemi
mejor recuerdo de este periodo, especialmente a mi compande
despacho por aguantarme todos los das con una sonrisa.

Eta azkenik, eskerrik asko...

...guraso, arreba eta betiko lagunei momentu txar zein oaet alboan
izan direlako nahiz eta ehundaka kilometrotara egon.

Vil

Chapter 1

Introduction

The complexity of modern embedded multimedia systems, whicare increasingly
based on heterogeneous MultiProcessor System on Chip (MPEJ, has led to the
emergence of system level design. The use of MP-SoC allowes ¢tciency of multi-
processor even using parallelism between tasks and the leity of using software
applications instead of hardware. System level design forAMSoC based embedded
systems however still involves a substantial number of chahging task. For exam-
ple, applications need to be discomposed into paralell speations so that they can
be mapped onto a MP-SoC architecture. Subsequently, apitons need to be par-
titioned into HW and SW parts since MP-SoC architectures oftn are heterogeneous
(hardware and software) in nature.

To cop with this design complexity, system-level design asnat raising the ab-
straction level of the design process, for example, with these of architectural plat-
forms to facilitate re-use of IP components and the notion diigh-level modeling
and simulation. The latter allows for capturing the behavio of platform compo-
nents and their interactions at a high level of abstractionAs such, these high-level
models minimize the modeling e ort and are optimized for exaition speed, and can
therefore be applied during the very early design stages.

Several Dutch universities work in this System Level Desigtirection inside the
Artemisia project creating the Daedalus framework to addss these system-level
design challengesl]

The main challenges of this MP-SoC design tool are:

1. The partition of the application into concurrent processs.

2. The simulation of this processes in a high level of abstitam.

3. The Multi-Processor platform generation.

4. The mapping of the application processes onto the multipcessor platform.
5

. The fast modi cation of the application on response to userequirements or
bugs.

1.1. MOTIVATION AND GOALS CHAPTER 1. INTRODUCTION

The Leiden Institute of Advanced Computer Science (LIACS)n the Netherlands
deals with the rst and the third points, using Kahn Process Ntworks to schedule
parallel tasks and developping an own solution to synthesizcustom platforms to
run those processes. In the same way, Amsterdam Universitycises on simulators
which enable to test the application from the beginning andauld give the best
platform mapping solution after a design space exploratioaf the application. All
these e orts end up in the Daedalus open-source tool- ow thanowadays is being
tested in the Delft University of Technology (TU Delft).

The current version of the Daedalus framework make it suitdé preferably for
multimedia streamings as image or video compression. Multedia applications pro-
vide a pipeline structure where each stage of the algorithra identi ed as a task and
parallelism of these tasks could be used to achieve time-qmutation requirements.
JPEG and M-JPEG compression examples have been generatedidg the previous
stages of the Daedalus developing process.

1.1 Motivation and Goals

Until the beginning of this project, the Daedalus toolchairhas only been used into
university frame and there was a big interest from the deveabers to validate it from a
commercial point of view. The potential of the tool residesiithe fast prototyping of
the MP-SoC. The fact of evaluating multiple con gurations n terms of hours make
Daedadus attractive for companies which work with multimei systems and want
to evaluate, for example, di erent performance-cost soludns for a given application.

This is the case of the Dutch SME Chess B.V. in Harlem, compatrtiiat become
part of the Artemisia project and collaborate with the abovementioned universi-
ties and which involves the design of an image compressiorstgm for very high
resolution (in the order of Gigapixels) cameras targeting edical appliances. They
propose to take JPEG2000 image compression standard as dation example to
satisfy their customers in the medical sector.

Therefore the main goals of the project are:

Evaluate the commercial potential of the Daedalus ow. Thigvaluation covers
the robustness of the present tools as well as the learning& and prototyping
delay for a fresh new user.

Generate a MP-SoC JPEG2000 application using Daedalus. Imdition to
developping a new example for Daedalus this JPEG2000 MP-Sa@l be com-
pared to present commercial implementations and con rm itvalidity.

1.2 Contributions

In this thesis we present the JPEG2000 MP-SoC and its develog process using
Daedalus as system level design tool. The main contributisrare:

Generation of a exible JPEG2000 MP-SoC application obtaied from free
open-source tools.

1.3. RELATED WORK CHAPTER 1. INTRODUCTION

Implementation of an optimized MP-SoC, using software optization and
hardware parallelism.

Comparison of commercial hardware IPs and the generated aptzed solu-
tion.

1.3 Related Work

Systematic and automated application-to-architecture m@ping has been widely
studied in the research community. The closest to our work ithe Kosku MP-
SoC design ow and the SystemC-based design methodology ggated in Friedrich
Alexander University (Germany). Koski provides a single ifnastructure for model-
ing of applications, automatic architectural design spacexploration and automatic
system-level synthesis, programming and prototyping of leeted MP-SoCs §]. The
second methodology supports automated design space exatmn performance eval-
uation and automatic parallelization of applications, notdesign space exploration
level at application level [L0). Both tools require applications to be speci ed by hand
in UML and SystemC, respectively. Companies such as Xilinxnd Altera provide
design tool chains attempting to generate e cient implemetations starting from
descriptions higher than (but still related to) the registe transfer level of abstrac-
tion. The required input speci cations are still so detaile that designing a single
processor system is still error-prone and time consuming.

In the side of the JPEG2000 hardware commercial tools thre@mpanies have
been found with IPs that fully covers the image compressionigorithm: Analog
Devices ADV212 8], Barco Silex L2 and Cast P]. All of them o er high data
compressing speed as well as con guration options that arenited to standard
image features.

1.4 Thesis Organisation

The remaining parts of this thesis are organised as follows:

Chapter 2 gives an overview of the Delft University of Technology, raa where
the project has took place.

In Chapter 3 the main points of the project are shown: a detailed explaniain
of the Daedalus tool- ow and the bases of the JPEG2000 imagerapression.

Chapter 4 and Chapter 5 present the requirements and tools to challenge the
work and the way the project has been developed.

Chapter 6 as Chapter7 presents the results of the experiments realised during
the project in order to achieve the technical requirementsma the best implemented
solution is presented is compared with other related work.

In the nal Chapter 8 the objectives above are overviewed to give the conclusions
of the current work and the bases of the future works in this tbsis line.

Chapter 2

TU Delft

Founded in 1842, Delft University of Technology is the oldéslargest, and most
comprehensive technical university in the Netherlands. Wh over 13,000 students
and 2,100 scientists (including 200 professors), it is antaslishment of both national
importance and signi cant international standing.

Renowned for its high standard of education and research, TDelft collabo-
rates with other educational establishments and researcinstitutes, both within
and outside of the Netherlands. It also enjoys partnershipsgith governments, trade
organizations, numerous consultancies, industry and snhaind medium sized enter-
prises.

2.1 Activities

The TU is divided in 8 faculties:
3mE : Mechanical, Maritime and Materials Engineering
BK : Architecture
CiTG : Civil Engineering and Geosciences
EWI : Electrical Engineering, Mathematics and Computer Scieec(EEMCS)
IO : Industrial Design Engineering
LR : Aerospace Engineering
TBM : Technology, Policy and Management
TNW : Applied Sciences

2.2. ORGANISATION CHAPTER 2. TU DELFT

Figure 2.1: EWI faculty building

The faculty where the project has been developped is the EENBQEWI in Dutch),

more precisely the Computer Engineering department. The TWDelft Computer
Engineering deals with the architecture, design, developnt, testing, and evaluation
of hardware and software for computers and networks.

2.2 Organisation

Figure 2.2 below shows the TU Delft way of organisation:

[Supervisory Board j

[Executive Board]

[Works Council

[Student Council

Assistant Staff Office]

BTA]

%
%
%

LLL

[Board of Professors

Board of Doctorates]

Operatlonal Comlttee

/) T O

Dean of Faculty Dean of Faculty Dean of Faculty
[Delft Research Centers J
[[
[Research Schools]
[[
[Research Institutes j

J

Figure 2.2: An overview of the organizational structure of U Delft

2.3. RESEARCH (COMPUTER ENGINEERING) CHAPTER 2. TU DELFT

2.3 Research (Computer Engineering)

The general research topics of the TU Delft computer engin@ag include computer
hardware, software, and networks. More speci cally the coputer engineering re-
search focuses in the following areas:

Hardware: computer architecture, microarchitectures, digital degin, par-

allel vector and media processors, embedded processor€C50/LSI design,

computer arithmetic, low power designs, recon gurable peessors, feed for-
ward neural networks (threshold logic), memory and logic &ting, design for
testability.

Software: backend compilers, system software, software for automatsyn-
thesis, performance and software tools, hardware softwace-design, software
simulators, code instrumentation and performance enhanoent tolls, design
space exploration software for computer architectures andachine organiza-
tions, placement and routing algorithms, physical desigrinary translators.

Networks: computer architecture for Network processors, interconogon
networks, internet and web processing, mixed optical/eleéonic switches, dis-
tributed processing, ubiquitous (i.e., anywhere and anytie) and unobtrusive
(i.e., without much user intervention) communication envionments.

Speculative research: nano computing, chaotic computational systems,
threshold logic processors, non conventional computer arectures, interact-
ing migrating processes.

Chapter

Background

In this chapter the main points of the project are presented:.on the one hand
the high level MP-SoC design tool Daedalus and on the other hé@ the JPEG2000
compression application.

3.1 Daedalus

The Daedalus framework is the result of the work between theeiden Institute of
Advanced Computer Science and the Amsterdam University. $tmain objective is
to bridge the implementation gap between the system level seription to the RTL

implementation for the design of multimedia MP-SoCs.

Sequential application
(in C language)
Parallelization
KPNGen

Kahn Process Networks Platform Specifications Mapping Specifications
(in XML) (in XML) (in XML)

Parallel simulation
YML & PNRunner (SESAME)

Automated system-level sythesis
ESPAM

AN

I I [
[[[
IP cores C code for Auxiliary
in VHDL processors files

RTL synthesis (comercial tool)
Xilinx Plarform Studio

[

Platform
Netlist

Figure 3.1. The Daedalus Tool-Flow

3.1. DAEDALUS CHAPTER 3. BACKGROUND

MP-SoC designs need both software and hardware developmeiithe software
must be partitioned in order to enable parallel computatiorand the hardware must
be able to execute these computations. The Daedalus toolamastarts with the
software partition and follows with the hardware platform asign until arriving to
the MP-SoC implementation.

As illustrated in Figure 3.1 above, the Daedalus tool- ow has the application in
C language as rst input for the Kahn Process Network Generat (KPNGen). This
C application should be written in a specic way as will be exjained in Section
3.1.1

Before any other step it is possible to validate the generatgrocesses in a high
level of abstraction running YML and PNRunner (See Sectio.1.2.

The validated tasks are mapped into the processors with thenitbedded System-
level Platform synthesis and Application Mapping (ESPAM) bol following the plat-
form and mapping speci cations. Using IP libraries and RTL medels ESPAM re-
alises the necessary RTL level les for commercial synthegiools as Xilinx Platform
Studio (XPS). This last tool will be treated in Section3.1.3

3.1.1 KPNGen: Application Parallelization

The applications are typically speci ed in sequential progams using languages as C
or C++, what is relatively easy for program developers. But his sequential nature
does not reveal parallelism and makes very di cult the mappig of the program in
a multiprocessor platform.

By contrast, using parallel model of computation (MoC) the rapping becomes a
transparent and systematic process. But parallel MoC is natatural for developers
and this di culty is time consuming. KPNGen lIs this gap bet ween the sequential
program application to a parallel application speci catiom using di erent compiler
techniques.11]

Process Networks

KPNGen uses the process network model of computation. This & simple and

streaming oriented model that ts with the multimedia domain of the whole Daedalus
tool- ow. These process networks consist of a set of procesr nodes which com-
municate each other through channels. The processes are astheduled by the
communication channels, therefore a process will be blodk# it needs data from a

channel that is not available yet. In the same way, it will blak if it tries to write in

a full channel.

In the speci c case of the Kahn Process Networks (KPN) the clmaels are un-
bounded FIFOs which blocks in read. To implement this \unbooded" FIFOs, the
maximal size of the FIFO must be calculated o ine in order to aoid deadlocks when
a process wants to write and there is no space. The KPNs are @ldeterministic,
the output is always the same for a given input, and this beh&wur assures the well
operational behaviour of the application in any case of sotieling.

3.1. DAEDALUS CHAPTER 3. BACKGROUND

Static A ne Nested Loop Programs

The KPNGen tool generates the process networks by means ofexhnically called
static a ne nested loop programs (SANLP). SANLPs are imporant in scienti ¢ or
matrix computation and multimedia or adaptive signal procssing applications.

They consist of a set of statements enclosed in loops or/andayded by condi-
tions, but all lower and upper bounds of the loops as well ad abndition expressions
must be known at compilation time and these conditions mustda ne with means
linear mathematical expressions, not power expressions xample.

3.1.2 YML and PNRunner: High Level Simulation

YML and PNRunner are both part of SESAME, a project of the Amserdam Uni-
versity. The SESAME environment provides modeling, simuteon methods and
tools for the e cient design space exploration of heterogesous embedded multime-
dia systems. The SESAME software project currently consstof an architecture
simulator (YMLPearl), an application simulator (PNRunner) and the Y-CHART
modeling language (YML) which glues the simulation model deriptions together.
YML makes a C++ object oriented program from the KPNGen outpu process
network speci cation. This program executes every procegsdependently, as it will
be in the FPGA. FIFOs read and write management is also inclul in the program.

3.1.3 ESPAM: Hardware Platform Generation

ESPAM is developed to allow system designers to specify at&ya and its related
applications at a higher level of abstraction (System Leveto save design e ort and
time. This tool uses these system-level input speci cati®) together with RTL ver-
sions of the components from the IP library, to automaticajl generate synthesizable
VHDL that implements the candidate MP-SoC platform architeture. In addition,
it also generates the C code for those application processkat are mapped onto
programmable cores. Using commercial synthesis tools anoihtilers, this imple-
mentation can be readily mapped onto an FPGA for prototyping Such prototyping
also allows for calibrating and validating Sesame's systelevel models, and as a
consequence, improving the trustworthiness of these mosi¢l1].
The ESPAM tool input are three speci cation les in XML language:

Application Speci cation: the Kahn Process Network speci cation gener-
ates by the KPNGen. It gives information about the di erent processes and
the communication between them.

Platform Speci cation: de nes the hardware platform (processors, periph-
eral, etc) of the MP-SoC.

Mapping Speci cation: maps the processes into the desired processor.

3.2. JPEG2000 CHAPTER 3. BACKGROUND

3.2 JPEG2000

JPEG2000 is a wavelet-based image compression standardated by the Joint
Photographic Expert Group (JPEG) committee in 2000 with theaim of replacing
the original discrete cosine transform-based JPEG.

Only the rst of the 13 parts of the standard is free of royaltes which has
prevented the standard expansion for example in the interbe This part speci es
the core and minimal functionality and is known as JPEG2000oziec.p]

The main advantages of JPEG2000 against the classical JPEGea

Superior compression performance: specially at low bitea{e.g. less that 0.25
bits/pixel).

Multiple resolution representation.

Progressive transmission: after a smaller part of the wholée has been re-
ceived, the viewer can see a lower quality version of the naicture.

Lossless and lossy compression.

Random codestream access and processing: di erent gradéscompression
could be given to some Regions Of Interest (ROI) of the image.

Error resilience: small independent block avoid error pr@gation.

The JPEG2000 algorithm ow shown in Figure3.2 reveals the rst and simple
stages: The whole raw image in divided in the three Red-Gre@&tue (RGB) com-
ponents. Each component is divided in equal smaller pieceslled tiles, which are
coded independently. The RGB components are transformed MUV model that
requires less memory. The last stages: Discrete Wavelet fisdorm (DWT) and T1
Arithmetic Enconding are explained more carefully in Seatns3.2.1and 3.2.2

10

3.2.

JPEG2000 CHAPTER 3. BACKGROUND

RGB Component

Reading Tiling

Raw Image
Multicomponent

Transformation

] — %

.
' ' Direct Wavelet

Transform

Compressed T2 Encoding T1 Ar|thmet|c
File Encoding

Figure 3.2: The JPEG2000 algorithm

3.2.1 Discrete Wavelet Transform

The Discrete Wavelet Transform is generally understood asee-structure subband

transform with the multi-resolution structure.

In contrast to the Discrete Cosines

Transform (DCT) used in the classical JPEG and other image oapression stan-
dards, the image is processed continuously and not in blodket afterwards improve
the compressed image quality for the same level of quantiza.

There are two main wavelet types:

Irreversible : the CDF 9/7 wavelet transform, lossless compression withhis
type of wavelet is impossible because the quantization neigitroduced by the
precision of the decoder.

Reversible : a rounded version of the bi-orthogonal CDF 5/3 wavelet tras-
form, the one used for lossless compression where only ietegoe cients are
used and the output does not need rounding (there is not quamation noise).

HLr-2

HLRr-1

LHr2 | HHr2

LHr1 ! HHr1

Figure 3.3: Wavelet multi-resolution Transform

11

3.2. JPEG2000 CHAPTER 3. BACKGROUND

Figure 3.3shows the multi-resolution behaviour of the wavelet transfm. Human
eye is much more sensitive to slow luminance changes than keetfast ones. Wavelet
transform nature divide every image in four bands taking théow frequencies band
(LL) as a new interpolated lower resolution image.

3.2.2 T1 Arithmetic Enconding

After DWT is performed, Tier-1 coding takes place. The aritmetic encoding re-
moves redundant data improving the size of the informationThe quantizer indices
for each subband are partitioned into codeblocks and each thie codeblocks is in-
dependently coded. The coding is performed using the bitgie coder.

For each codeblock, an embedded code is produced, comprisedumerous cod-
ing passes. The output of the Tier-1 encoding process is, tatore, a collection of
coding passes for the various codeblocks. In case of lossph@ession only some
of this coding passes are included, in contrast, in losslessmpression every pass is
included in the nal code stream.

There are 3 types of coding passes:

1. Signicance: Isthe rstcoding pass for each bit plane. The main informatn
of the image is obtained in this pass.

2. Renement: The second coding pass for each bit plane is the re nement
pass. This pass signals subsequent bits after the most sigant bit for each
sample.

3. Clean Up: The third (and nal) coding pass for each bit plane is the cleaup
pass. This pass is used to group the rest of bits that contaidgss signi cant
information.

Division of band Division of Codeblocks
T 1 into Codeblocks into Bit-Planes

> (a— IRERaAN II 1.Significance Pass

X :j 2.Refinament Pass

Arithmetically encoded
Passes (MQ Encoder)

‘ 3.Clean Up Pass

Figure 3.4: Tier-1 Encoding process

12

3.2. JPEG2000 CHAPTER 3. BACKGROUND

Figure 3.4 illustrated the division of each resolution into codeblock and how
in each cases codeblocks are traversed bit per bit in di eredirections in order to
compute speci c passes. After the coding passes the data msttametically coded
using MQ-Encoder.

13

Chapter I

Requirements and Constrainst

The technical constrainst are some of them shortly tied to # used Daedalus tools
and some others requirements imposed by Chess B.V. companglients. These
features as well as the other tools beyond Daedalus are menied in the subsections
below.

4.1 Constrainst
The fact of using Daedalus carries the following constrains

The reference code must be written in C and it should be oriesdtl to be
divisible in sub-processes.

Two versions of the reference code must be writen. As mentaxh in the
previous section there is a high level of abstraction wherbe code is executed
in a PC and an embedded environment (the FPGA) where the way obtaining
the image or writing the result is not the same.

Also using a FPGA to synthesize the hardware platform have thspeci cations
below:

Independent processes of DWT and T1 arithmetic encoding niuse developed
for a possible fast implementation of hardware accelerawsubstituting this
software processes by commercial IPs.

Images have to be computed in parts due to memory limitationsf the FPGA
card therefore this tiling option must be implemented.

4.2 Requirements

Chess B.V., as commercial partner, has oriented the projetd possible medical
application that have these requirements:

14

4.3. TOOLS CHAPTER 4. REQUIREMENTS AND CONSTRAINST

Lossless compression for medical certi cation reasons.
RGB raw image as input.

Measure of work time for each task through the work ow.

4.3 Tools

Several software and hardware tools have been used duringstproject. On the one
hand programs which facilitate the development of the code:

Eclipse IDE 3.2 environment.

CVS 1.12.13 version repository.

GDB 6.8 debugger.

IrfanView 4.10, JPEG2000 image viewer.
Meld 1.1.5.1 di erence viewer.

Xilinx Platform Studio 9.1.

On the other hand, the Virtex Il (xcv6000) FPGA has been the mst signi cant
hardware resource, a PC-slot version accessible remotetynfi the internet. Its main
features are:

| | Gates | Slices | On-chip BRAM | O -chip RAM |
| xcv6000 | 6M | 33792 | 288kB | 6 x 256KB |

Table 4.1: Virtex Il features

Also in the hardware part, the is a list of used Xilinx IPs in tre Daedalus library:

Processor : Microblaze 4.00a.

Bus: Imb_v10 and ophv20 (connection between processors and o -chip mem-
ory controllers).

FIFO : fsl.v20 (shared memory between processes).

Memory : bram_block 1.00a (code and data memories).

15

Chapter

Development Steps

In this chapter the development stages of the project are dasgbed. From the
reference program selection, through the code partition drsimulation to an example
application that shows the potential of the tool once the prgram is made and
working.

1.Reference 2Code | . .
Code R 3.Simulation PNRunner
: Partitioning
Selection

. 5.Design A
. Space
Exploration :..

4.Example
Application

Figure 5.1: Work ow description

Platform &

Mapping
Specification

In Figure 5.1 the work ow is displayed where six development steps have &
de ned:

1. Reference Code Selection: An open-source JPEG2000 application written
in C language is chosen following Daedalus toolchain coretits.

2. Code Partitioning: The reference code is divided in modules or processes
that allows the automatic generation of process network tlmugh KPNGen
tool.

3. Simulation: The generated process networks are tested in a high level of
abstraction, if any modi cation is necessary at this step, e partitioned code
should be rewritten and KPNs must be regenerated.

4. Example Application: As piece of example, a simple example con guration
is shown, that means the number of processors, how the proses are mapped

16

5.1. REFERENCE CODE CHAPTER 5. DEVELOPMENT STEPS

onto them and the way of data connections. This example appétion allows
the explanation of the next steps of the work ow. Once the aggation con g-
uration is chosen, this step illustrates how to write the pldorm and mapping
speci cation for Daedalus.

5. Design Space Exploration: This step shows how to obtain the best con-
gurations for a given application using high level simulabbn. Mapping and
platform speci cations could be automatically generated.

6. MP-SoC: Finally, it is explained how the application and speci catons are
sythetized using ESPAM.

Therefore this chapter could be also understood as a tutoliaf how to develop
a project using the Daedalus toolchain.

5.1 Reference Code

The starting point of the tool ow is the sequential program. As input of KPNGen
tool, the application must be written in C language. The otherequirement is to
be open-source in order to be in line with Daedalus which issal freeware. There
has been found two open source JPEG2000 libraries implemeatin C language (as
required) Jasper and OpenJPEG.

51.1 JasPer

The JasPer Project is an open-source initiative to provide &ee software-based
reference implementation of the codec speci ed in the JPE&B00 Part-1 standard
(i.e., ISO/IEC 15444-1).

This project was started as a collaborative e ort between Irage Power, Inc. and
the University of British Columbia. Presently, the ongoingmaintenance and devel-
opment of the JasPer software is being coordinated by its mgipal author, Michael
Adams, who is a liated with the Digital Signal Processing Group (DSPG) in the
Department of Electrical and Computer Engineering at the Uiversity of Victoria.
The code is ready for download inhttp://www.ece.uvic.ca/ ~mdadams/jasper/.

5.1.2 OpendPEG

The OpenJPEG library is an open-source JPEG2000 codec wett in C language.
In addition to the basic codec, various other features are der development, among
them the JP2 and MJ2 (Motion JPEG2000) le formats, an indexng tool useful for
the JPIP protocol, JPWL-tools for error-resilience and a Jea-viewer for j2k-images.

The library is developed by the Communications and Remote B8ging Lab in
the Universie Catholique de Louvain (UCL). The JPWL module is developed
and maintained by the Digital Signal Processing Lab (DSPLgbof the Univer-
sity of Perugia, Italy (UNIPG)[9]. The application could be downloaded from:
http://www.openjpeg.org/

17

5.1. REFERENCE CODE CHAPTER 5. DEVELOPMENT STEPS

5.1.3 Comparison

Here the main characteristics of each of selected programs:

| | JasPer | OpenJPEG |
Licence Open Source (MIT) | Open Source (BSD)
Documentation PDF Files Web and Doxygen
Support Mail-list Forum
Last Version 2007 (1.900) 21/12/2007 (1.3)

Table 5.1: JasPer Vs OpenJPEG comparison table

As listed in the in Table 5.1, there are not many di erences in terms of licence,
documentation (going just through the API in both cases) andversion support.
That is why more detailed comparisons have been made.

During this step, comparisons focus in two main challengestbe work. First, the
compression time taken by the programs. The execution timder each program,
in a Pentium-4 2Ghz for a 22,9MB BMP (4056x1974) picture, arshown in Table
5.2

| | JasPer | OpenJPEG |
Real Time 17s 40s
Encondig Time not provided | 21s

Table 5.2: Executions times with \time" command

Second, in order to simplify the code partition that will be teated in Section
5.2.], the lines of the source code have been counted in Talde:

| | JasPer | OpenJPEG |
| Sources || 40k lines| 20k lines |

Table 5.3: Code lines of the source les

This last point, which has been followed with a deeper exanation of the codes,
has been determinant to choose OpenJPEG as the reference ead the project.
The examination shows that in OpenJPEG the di erent stages fothe JPEG2000
algorithm are more independent and therefore easier to dde. As well, some mem-
ory managements and screen printing could explain the comgssion time di erences
against Jasper. From now on this OpenJPEG library will be ctd \reference code".

1OpenJPEG gives the Encoding Time as output

18

5.2. CODE PARTITIONING CHAPTER 5. DEVELOPMENT STEPS

5.2 Code Partitioning

The input of the KPNGen tool, as mentioned in Section3.1.1 is a static a ne
nested loop C language program. This C program, must be orgaed in independent
processes which communicate through FIFOs and should be asadl and optimized
as possible to tin the embedded platform.

5.2.1 Program Organization

Firstly, data ow has been identi ed and unnecessary les hae been removed. As
mentioned in the previous section, the di erent processegseclearly shown in the
reference code, these processes are exactly the ones of kassical JPEG2000 al-
gorithm: MultiComponent Transform (MCT), Discrete Wavelet Transform (DWT),
T1 encoding (T1) and T2 encoding (T2). Moreover, this divigin allows the future
replacing of this speci ¢ software processes for hardwared.

The rst partition just previews an independent .C le for each process and
deletes any le that is not necessary for the compression mam as listed in Figure
52

/* Reference Code */ [* Partitioned Code */
codec/

|-- Makefile jpeg2000/

|-- compat [-- DWT.c

| |- getopt.c [-- DWT.h

| -- getopt.h [-- MCT.c

|-- convert.c [-- MCT.h

|-- convert.h |-- Makefile

|-- dirent.h [-- T1l.c

|-- image_to_j2k.c [-- T1l.h

|-- j2k_to_image |-- T2.c

-- j2k_to_image.c [-- T2.h
libopenjpeg/ |-- Videoln.c

|-- CMakeLists.txt |-- Videoln.h

|-- bio.c |-- VideoOut.c

|-- bio.h [-- VideoOut.h

|-- cio.c |-- jpeg2000.c

|-- cio.h |-- jpeg2000_func.h
|-- ... + 60 les more! “-- types.h

Figure 5.2: Code Partition Example

Two new processes, Videoln and VideoOut have been createdoirder to read
the original image and write the compressed le (Figur®.3):

19

5.2. CODE PARTITIONING CHAPTER 5. DEVELOPMENT STEPS

VideoOut

Compressed Image

Raw Image

Figure 5.3: Partition into Processes

At this state, only the required functionality (mentioned on Chapter 4) has
been left, that means, lossless compression (reversiblevalat), not oating point
operations, only support for RGB format images, etc. In thisvay code size is
optimized for the embedded version of the application.

5.2.2 Removing Global Shared Data

When partitioning, every part or process accesses to the sarshared data memory.
In the case of the reference code this share data is huge, irsgible to store in a
embedded platform and even more, each process only needs alspart of this data
structure.

Therefore, speci ¢ data structures have been developpedander to contain only
the minimal data to be share between given processes. Thesedures will become
the FIFOs that Kahn Process Network de ne for interprocessammunications5.4.

5

Compressed Image

Raw Image

Figure 5.4: Partition into Processes

Tile : This structure stores the 3 components of the original RGBmage in
separate tables. As all the structures below, it has the nung of the tile in
computation. In the same way it is the output of the MCT proces which
gives as well 3 components (YUV) and the result of the compueDWT that
being reversible (CDF 5/3) is also made by integer coe ciert.
typedef struct tile tf
int comp[NUM.COMPS][WIDTRILE*HEIGHTTILE];

int num;
g tile -t

Figure 5.5: Tile Structure

Codeblocks : After the T1 encoding the image information is presented as
codeblocks. If the wavelet is computed, the resulting restions and bands
are stored independently.

20

5.2. CODE PARTITIONING CHAPTER 5. DEVELOPMENT STEPS

typedef struct codeblock -t f
unsigned char data[NUM _RES][NUMBANDS][NUNMPRECS][NUM ODEBS][CBLKW*CBLKH];
int num;

g codeblock _t;

Figure 5.6: Codeblocks Structure

Passes: During the T1 arithmetic coding, the information is not only stored in
codeblocks, thegpassesstructure stores the number of passes for each codeblock
in order to make possible the reconstruction of the image.

typedef struct passes -tf
pass_t passes[NUM. RES][NUMBANDS][NUMPRECS][NUMCODEBS][MARASSES];
int passnum[NUM RES]|[NUMBANDS][NUNPRECS]|[NUMCODEBS];
int numbps[NUM RES][NUMBANDS][NUNPRECS][NUMCODEBS];
double distotile;
g passes.t;

Figure 5.7: Passes Structure

Packets : Finally, the T2 encoding presents the packets that completthe
compressed le. The length of each packet is also passed.

typedef struct packet _t f
unsigned char dataWIDTH_TILE*HEIGHT. TILE];
int length;
int num;

g packet _t;

Figure 5.8: Packets Structure

In the original data structure of the reference code, theresialso stored internal
data that has been reallocated in new internal structures. Vth these modi cations,
the Kahn Process Networks are generated automatically andeh structure become
a FIFO whose size is xed which are called static FIFOs.

5.2.3 Memory Optimization

The rst versions of the partitioned code were too big in terrs of the FIFO sizes
between processes when the implementation limit of each FIHs limited to 8KB.
Changing integer tiles to char tiles has been one of the takaolutions, reducing the
size of the structures 4 times:

typedef struct tile tf
#ifdef INTEGER_TILES

int comp[NUMCOMPS][WIDTHLE*HEIGHTTILE];
#else

char comp[NUMCOMPS][WIDTHLE*HEIGHTTILE];
#endif

int num;
g tile _t;

Figure 5.9: Char Optimized Tile Structure

21

5.2. CODE PARTITIONING CHAPTER 5. DEVELOPMENT STEPS

The table below shows the nal structures size for a 32x32 s char tile:

| Structure | Size |
tile _t 3076 bytes
codeblocks _t | 1032 bytes
passes t 456 bytes
packets _t 1036 bytes

Table 5.4: Structures nal size for 32x32 pixels tiles

5.2.4 Con gurable Parameters

After program modi cations, the con guration parameters ae given in the types.h
header le (and not through the command line as in the refere® code). In this
header le, the size of the original image must be given as wels the number of
tiles the image should be partitioned or the number of resdions (wavelet compu-
tations). Figure 5.10shows the beginning of this le and the multiple con gurable
options.

1 //Horizontal tiles
#define HTILES 4
[\ertical tiles
#define VTILES 4
5 // Name of the image
#define FILE_NAME "baboon_128x128"
/I Size of the image
#define WIDTH_IMAGE 128
#define HEIGHT_IMAGE 128
10 // Size of the tile
#define WIDTH_TILE WIDTH_IMAGE / HTILES
#define HEIGHT_TILE HEIGHT_IMAGE / VTILES
/[Tiles with 'int's instead of 'char's
/l#define INTEGER_TILES
15 // Number of components
#define NUM_COMPS 3
/I Number of resolutions
#define NUM_RES 1

Figure 5.10: types.h: Program Con gurable Parameters

525 KPNGen

Once the code is partitioned and optimized, it is possible tpass it through the
Kahn Process Network generator. Figur®.11is the main program of the static
a ne nested program and the input to the KPNGen.

22

5.3. SIMULATION CHAPTER 5. DEVELOPMENT STEPS

1 #include "jpeg2000 _func.h"

int main (int argc, char **argv)
f
5 int i;
tile _t tile;
codeblock _t codeblocks;
passes_t passes;
packet _t packets;
10
for (i = 0; i < NUMTILES; i++)
f
mainVideoln(&tile);
mainMCT (&tile,&tilec);

15 mainDWT (&tilec,&tilec);
mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

g
20

return O;

Figure 5.11: JPEG2000.c: Input le for KPNGen

In the main function there is shown the previously mentionedSection 3.1.1)
static a ne nested loop program. As can be seen, there is a Ip@f an a ne scalar
function (the number of tiles is linear, line 11) and the bouds of the loop as well
as the structure sizes are static (do not change during the esution) and they are
known at compilation time.

The output of the KPNGen tool is a \.kpn" le where all the necessary data to
make the process networks run as process function calls cs@sated communication
structures are stored.

5.3 Simulation

Taking the generated Kahn Process Network le, itis possiblto simulate the parallel
execution conditions. As explained in Sectio8.1.2the SESAME project previews
a simulator, PNRunner, for this purpose.

PNRunner runs each process independently and it is possilite detect errors
that otherwise will be found after the synthesis of the MP-SB. At this stage, the
simulator executes the network process model in the same wdyan embedded
processor will do in MP-SoC, therefore, it is possible to pdéct possible deadlocks
or simply bugs that work in the sequential model but do not rgsect the parallel
model of computation. The only di erence between this simaltion and the real
FPGA execution is that the hardware constraints as memory & limitations or

23

5.4. EXAMPLE APPLICATION CHAPTER 5. DEVELOPMENT STEPS

memory accesses are not veri ed.

This early simulation accelerates the prototyping delay,dr any modi cation only
the partitioned code must be modi ed and the new Kahn Proceskletwork le is
regenerated in one step.

5.4 Example Application

For a rst approach, a simple example is proposed: 3 MicroBt& processors with
two processes mapped in each. The platform (.pla) and the maipg (.map) speci -
cations are given using XML les with speci ¢ tags that are eplained in the sections
below.

54.1 Platform

The platform le describes the number of processors, theiype, their program/data
memory sizes and their connections as well as other peripaksrand links. Each XML
tag is linked with the Daedalus IP library which implements he desired module.

1 <platform name="j2kPlatform">

<processor name="MB_1" type="MB" data_memory="8192" program_memory="8192">
<port name="OPB_1" type="OPBPort"/>
5 </processor>
<processor name="MB_2" type="MB" data_memory="8192" program_memory="65536">
<port name="OPB_2" type="OPBPort"/>
</processor>
<processor name="MB_3" type="MB" data_memory="16384" program_memory="65536">
10 <port name="OPB_3" type="OPBPort"/>
</processor>

<peripheral name="ZBT_CTRL_1" type="ZBTCTRL" size="1000000">
<port name="I0_1" type="OPBPort"/>

</peripheral>

<peripheral name="ZBT_CTRL_2" type="ZBTCTRL" size="1000000">
<port name="I0_2" type="OPBPort"/>

</peripheral>

<peripheral name="ZBT_CTRL_3" type="ZBTCTRL" size="1000000">

20 <port name="10_3" type="OPBPort"/>
</peripheral>

1!

(4]

<link name="mb_opb_1">
<resource name="MB_1" port="OPB_1"/>
25 <resource name="ZBT_CTRL_1" port="10_1"/>
</link>
<link name="mb_opb_2">
<resource name="MB_2" port="OPB_2"/>
<resource name="ZBT_CTRL_2" port="10_2"/>
30 </link>
<link name="mb_opb_3">
<resource name="MB_3" port="OPB_3"/>
<resource name="ZBT_CTRL_3" port="10_3"/>
</link>
35 </platform>

Figure 5.12: JPEG2000.pla: Platform Speci cation

Figure 5.12 shows the platform le of the example con guration where inb the
\platform" tag the desired number of processor or periphefa could be de ned.
The ports of these modules are connected via links. The extat memory used to
store the raw and compressed images for the FPGA is a Zero-Blignaround ram
memory (ZBT) and it can be connected through link with the dessed processors.

24

5.4. EXAMPLE APPLICATION CHAPTER 5. DEVELOPMENT STEPS

The size of the data and program memories are calculated ugisome meth-
ods explained in Sectiorb.6.2 The Figure 5.13 below gives a visual idea of the
implemented platform:

[ZBT CTRL_1] [ZBT CTRL 2] [ZBT CTRL_3]
\ A

<’ mb_opb_1 Y mb_opb_2 Y mb_opb_3

4 I 4) 4 I
MB 1 MB 2 MB 3

o _J o _J o _J

Figure 5.13: MP-SoC Example Platform

5.4.2 Mapping

For a given platform, the mapping le puts each process in théesired processor.
For example in Figure5.14from line 3 to 6 processes NI and ND_1 are mapped
onto processor MBL.

1 <mapping name="j2kMapping">

<processor name="MB_1">
<process name="ND_0" />
5 <process name="ND_1" />
</processor>

<processor name="MB_2">
<process name="ND_2" />
10 <process name="ND_3" />
</processor>

<processor name="MB_3">
<process name="ND_4" />
15 <process name="ND_5" />
</processor>

</mapping>

Figure 5.14: JPEG2000.map: Mapping Speci cation

As can be seen in Figur®.15the mapping speci cation lIs the platform with
the processes and makes possible di erent implementatiofa a single platform.

25

5.5. DESIGN EXPLORATION CHAPTER 5. DEVELOPMENT STEPS

ZBT CTRL_1] [ZBT _CTRL_ 2] [ZBT _CTRL_3
<> mb_opb_1 <> mb_opb_2 <> mb_opb_3
4) 4) 4)
=
MB_1 MB_2 MB_3
- J - J - J

Figure 5.15: Processes Mapped into the Example Platform

5.5 Design Exploration

As mentioned in Chapter3, with the SESAME tool of the Amsterdam University
it is possible through high level simulation to obtain the bst con guration of the
system. This computation, which takes some hours, gives theest disposition of
processes even splitting them for best timing results. Onihe results that t the
hardware constraints of the FPGA can be implemented.8]

Due to the limited time of the project this Desgin Space Explation step has
been done empirically. Through speci c experiments that & shown in next chapter,
the JPEG2000 application has been characterized. The fact doing it manually
allows to realize step by step of the di erent peculiaritiesof the application and
apply speci ¢ solution to each problem.

5.6 MP-SoC

With the Kahn Process Network, Mapping and Platform speci ations the ESPAM
tool generates the necessary les to open a new Xilinx Platim Studio. But before
nal synthesis and test, there are some modi cations that sbuld be done in the
partitioned program and in the ESPAM generated les. Thesessues will be treated
in the following sections.

5.6.1 Program FPGA version

Now that the program needs to be executed in a FPGA, some funahalities di er
from the high level partitioned version. The changes are @dked to the read and
write of the raw and compressed images.

For reading, the high level version previews three les (\.R \.G" and \.B")
which are read once in a static table for the rest of the exedah. But in the
FPGA there is not le management, therefore, the original rav image must be
stored somehow in the FPGA memory and read from there as a tablHow to store
the image is explained in Sectiob.6.3and in Figure 5.16 the switch between the
two readings ways is shown. This switch is made using the deenPC" (line 1).

26

5.6. MP-SOC

CHAPTER 5. DEVELOPMENT STEPS

/* Videoln.h */

1

#ifdef PC

static int RtablelWIDTH _IMAGE * HEIGHIMAGE / 4];
static int Gtable[WIDTH _IMAGE * HEIGHIMAGE / 4];
static int Btable[WIDTH _IMAGE * HEIGHIMAGE / 4];

#else

static volatile int *Rtable = ZBT _MEM;
static volatile int *Gtable = (volatile int *) (ZBT
static volatile int *Btable = (volatile int *) (ZBT
#endif

}: Videoln.c */

1

10

#ifdef PC // Read the image once
if (num == 0)

char name[MAX_NAME];

_MEM + (WIDTMIAGE * HEIGHIMAGE / 4));
_MEM + (2 * (WIDTHMAGE * HEIGHIMAGE / 4)));

strepy(name,FILE _NAME);
FILE *f;
strecpy(name,FILE _NAME);
strcat(name,".R");
f = fopen(name,"rb");
fread(Rtable, 4, WIDTH _IMAGE * HEIGHIMAGE / 4, f);
fclose(f);
/¥ Made twice more for B and G components */
g
#endif

Figure 5.16: Original Raw Image Reading Versions

For the writing of the compressed le, a similar solution is &aken (Figure 5.17).
The high level version used to write a new le with the compresed image, for that,
a table is lled until the last tile when the le is generated. In the FPGA version,
this table is addressed to the FPGA memory, and the le is gemated with external
tools as will be explained in Sectiorb.6.3 The o set variable store the size of the
compressed data to enable the le generation.

/* VideoOut.h */

1 #ifdef PC
static FILE *f;

static int outMemory[IMAGE _SIZE];

t#else

5 static volatile int *outMemory=(volatile int *)(ZBT _MEM +1);

#endif

)-*- VideoOut.c */

1 if ((leno == NUMTILES -1) && (compno == 2))
f

#ifdef PC
f = fopen("test.j2k","wb");

5 for(k = 0; k < offset; k++)
f
putc(outMemory[K],f);

¢}
fclose(f);
10
t#else
*ZBT_MEM = offset;
#endif
9

Figure 5.17: Original Raw Image Writing Versions

Finally, before opening the Xilinx Platform Studio projectthe \.MHS" (le where
the hardware modules are described) must be changed to intduthe FIFO sizes for
the example application.L3]

27

5.6. MP-SOC CHAPTER 5. DEVELOPMENT STEPS

5.6.2 Xilinx Platform Studio

The Xilinx Platform Studio is the last tool from where the bitstream to con gure
the FPGA will be obtained. The project is opened through the XMP" le and
some updates are demanded for the last XPS version.

Program Sofware MP-SoC
and Compiler Options Hardware Modules

T T

/ |

1]

/]

] I

1]

: Y

Figure 5.18: Xilinx Platform Studio

The XPS tool is shown in the Figure5.18 above. On the right side the auto-
matically generated MP-SoC hardware could be modi ed if nessary, for example,
changing a software processor for a hardware IP. On the leftls the sources must
be attached and after that, the compiler options and the stdcsize must be set.

Stack, Code and Data Memory
The platform le must preview the necessary code and data mesry for each pro-
cessor. Cross compiling the code with the microblaze congil\.text" (code) and

\.data" section size could be obtained. But this informatim is not enough to set
the processor memory because it is impossible to get the nmasl stack size without

executing the program.
Therefore, the processor minimal memory will be set addinghé empirically

obtained maximal stack plus the code and data memory of the pgram. Another
solution could be to allocate the stack into the 1,5Mb o -chh memory, but this
memory is connected though a ZBT bus that does not Il the timeconstraints of

the stack instructions.

28

5.6. MP-SOC CHAPTER 5. DEVELOPMENT STEPS

5.6.3 Execution

For the MP-SoC execution a PC connected Virtex |l FPGA has beeused. The
main challenges to make the MP-SoC work are: the initialisain of the FPGA, the

load of the raw original image into the o -chip ZBT memory, the execution of the
hardware and the recuperation of the compressed image fromet same memory.
These problems are solved with a C++ program using Visual Stlio and the FPGA

DLLs for the PC use of the Virtex Il board. The main function ofthis program is

summarized in Figure5.19

. Generate the
Read the raw image))
compressed image file

Tile -1

Load the image in the _5 Write the J2k stream

[Main trailler]

ZBT MEMORY

..

¢
[ZBT_CTRL_1] [ZBT_CTRL 2] [ZBT_CTRL 3]

¢ mb_opb_1 ¢mb_upb_2 ¢ mb_opb_3

Load the BitStream .
(into the FPGA] Mesure Timings

ommmAm e ————————
’
A

Run the MP-SoC

Figure 5.19: J2K MP-SoC Execution

Read the raw image: the three RGB raw image les are read.

Load the image in the ZBT memory: the image is copied to the o -chip
memory of the FPGA board.

Load the BitStream: the FPGA is con gured with the synthesized hardware
and compiled software.

Run the MP-SoC: the execution is started as well as the counters to measure
the execution time.

Measure and display timings: once the execution is nished, the measure
are read from the FPGA registers and from the ZBT memory if imigmented.

Read the stream and generate the le: the JPEG2000 compressed image
is read from the ZBT memory and is copied into a le.

29

Chapter

Experiments and Results

In this chapter the experiments that have been done during thproject are presented
as well as their results. The variations between the experants are the number and
size of processors, the di erent mappings for a given platim and the number of tiles
in which the image is divided. The main limitation for the exgriments has been the
144 BRAM blocks memory (288KB) of the Virtex Il FPGA. All the con gurations
have been tested using the same methodology explained in ghevious chapter.

All the mentioned experiments are ready to be tested in the C¥ repository
(restricted server) of the Leiden Institute of Advanced Comuter Science (LIACS)
in : ~/docs/students/MikelAzkarate/Experiments/

6.1 Multiprocessing

The rst experience illustrates the computational time impovement depending on
the number of Microblaze processors in the MP-SoC.

For that, 4 platforms have been developped which have from b ¥4 embedded
processors, 64 tiles (16x16 pixels) and the mappings deked in Table 6.1

| [1xMB [2xMB_| 3xMB | 4xMB |
Videon |MB.1 [MB1 |[MB.1 |MB.1

MCT MB1 [MB.1 |MB.1 | MB_.1
DWT MB1 [MB.1 |[MB2 | MB_1
T1 MB.1 |[MB.1 |[MB2 | MB.2
T2 MB.1 |[MB2 |MB.3 | MB_.3

VideoOut MB.1 |[MB2 |[MB3 | MB4

Table 6.1: Mapping for the Increasing Processors

As can be seen in Figuré.1 once at least two processors are de ned in the
platform there is not signi cant improvement in computational time and additional
measures should be taken to improve the compression time.idtclear that processes

30

6.2. SPLITTING CHAPTER 6. EXPERIMENTS AND RESULTS

have enough processor resources after the second MicroBla&t this point, the are
two new ways to accelerate the application, one of them is tadrease the processor
clock frequency but this one is limited by the FPGA technolog And the other one
is to prot the fact of using Kahn Process Networks and exploiparallelism. Using
KPNs means that each process is independent from others anat@scheduled. As
a result most time consuming processes can be divided in mplé processes that
execute tiles in parallel. This principle is applied in the axt section.

x 10°

25

Clock Cycles

Number of MicroBlaze processors

Figure 6.1: Clock cycles Vs. Number of processors

6.2 Splitting

In order to identify the most time consuming processes, th@mputing times of each
process has been measured using a hardware counter in the PRGhis is the same
principle applied in a manufacturing company: to improve tke developing time of
a product, the critical path of the production tasks are meaged and additional
resources are given to the longest stages.

For 3 MicroBlaze con guration with 16x16 pixels tile the reslt has been the
following (Figure 6.2):

31

6.2. SPLITTING CHAPTER 6. EXPERIMENTS AND RESULTS

- Video In
I vicT
[Jowr
[]TiEnc.
I T2 Enc.
- Video Out

2%

| [CkCyc. [% |
80% Videoln 11.944 0,27
MCT 7.940 0,18
DWT 8730 0,20
T1 3.457.941| 80,14
T2 781.268 | 18,10
VideoOut 47.260 1,09

Figure 6.2: Computing time percentage taken by each process

Therefore, the experiment clearly points the main computanal charge in the
Tier-1 encoder process. This fact has been also identi ed mbliography [7]. The
solution for this problem is to split this process and paradlize it mapping it twice.

Two examples have been done using this philosophy, the rstne with a 2
processor platform and the other one with 4 processors whete T1 process has
been mapped twice. In the rst case the T1 processes are mapsharing space with
other processes, in the second case, T1 processes have agpieadent MicroBlaze
(Figure 6.3).

Clock Cycles
=

I 1xT1-encoder |-
I 2xT1-encoders
n

2 4
Number of MicroBlaze processors

Figure 6.3: Speed-up with parallel T1-encoders

32

6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

The Figure 6.3 above shows how the improvement is almost double faster ingh
case where T1 processes are mapped independently and notigaigant if they
are sharing processors with the rest of functions.

Knowing that, a 5 Microblaze platform with 3 independently napped T1 pro-
cesses has been developped. As the Fig@d denote, this technique accelerates
the processing time almost as many times as number of indepently mapped T1
processes in the system.

Clock Cycles

Figure 6.4: Speed-up against number of T1 independent preses

6.3 Optimizing

Once the two main techniques (multiprocessing and T1 encadgplitting) have been
analysed, other optimizations are explored in this sectiorFirst, the e ect of image
partitioning in tiles and in components is compared. Then, Emory occupation of
each process is calculated and the validity of the waveletansform process is eval-
uated. And nally, the processors connection type and the copiler optimizations
are took into consideration.

6.3.1 Tiling

During the project, experience and bibliography show thatdr a di erent number
of tiles the execution time varies. In the same 3 MicroBlazelgiform, three tile
options have been tested: 16 tiles (32x32 pixels), 64 til&ésk16 pixels) and 128 tiles
(8x8 pixels) for a 128x128 pixels 48KB original raw image.

33

6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

x 10

44 2.4

421 122
g 4of 2
I [&)
N 3
X
[} Q
& °
E 38 18°

36} 16

34 ! ‘ 1 1.4

Tiles

Figure 6.5: Tiling e ect in size and time

On the right part of Figure 6.5, it can be seen that the computing time grows
proportionally with the number of computed tiles. On the lef part another obser-
vation shows that the compressed image size also increaséh the number of tiles,
that is because for each tile a new header is included in thenspressed image le
overloading it (Figure 6.6).

Tile -1
Tile header
Tile -n Tile Body
Main trailler

Figure 6.6: Final JK2 File and Tile Header Overload

Therefore, the reasons to use tiles are that dividing the inge the shared mem-
ory between the processes is smaller and makes the platformin the FPGA's
limitations and also the fact of using parallelism is only pssible if the image is
partitioned.

6.3.2 Division into Components

As seen in the previous section tiling is necessary but ineient. That could be
solved by partitioning the computation in another more e cient way. Analysing
the reference code there is denoted that each component oétimage is computed
separately even if they are send together from process to pess. Dividing the shared

34

6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

memory into components the FIFO size will be decreased in asany component as
the image have, in this case 3. The structure remains as shownFigure 6.7.

typedef struct tile ct f
int comp[WIDTHTILE*HEIGHTTILE];
int num;

g tile _c_t;

Figure 6.7: Tile Component Structure

However, this change needs also the rewriting the code of tieNGen input le
where another loop (Figure6.8), this time for components, is attached (line 16).

1 #include "jpeg2000 _func.h"

int main (int argc, char **argv)
f

5 int ij;
tile _t tile;
tile _c_tile;

codeblock _t codeblocks;
passes_t passes;
10 packet _t packets;

for (i = 0; i < NUMTILES; i++)
f
mainVideoln(&tile);

15
for(j = 0; j< NUM_COMPS; j++)
mainMCT (&tile,&tilec);
mainDWT (&tilec,&tilec);

20 mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

g
25
return O;
g

Figure 6.8: Improved JPEG2000.c with Components

6.3.3 Memory occupation

As commented in previous sections, the memory size of the {ftam processor must
be calculated cross compiling the FPGA version code with thdicroBlaze compiler

35

6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

and adding the needed stack obtained empirically.

In Table 6.2the code and data sizes in bytes for the processes in the rsilamn
as well as the minimal stack for a 16x16 pixels tiles versiomealisted. The code
and data includes also the necessary code to read, write an@mage FIFOs, which
is xed for processor. That is why putting two processes togfeer the amount of
memory is less that the theoretical addition. Medium optinzation level has been
used as compiler requirements.

| | Code | Data | Stack |

Videoln + MCT 2.268 | 60 3.000
Videoln + MCT + DWT 3.548 | 92 5.000
T1 34.934/ 8.960 | 3.250
T2 36.002| 872 | 5.000
VideoOut 9.440 | 52 3.000
T2 + VideoOut 39.122| 876 | 5.000

Table 6.2: Memory Occupation Processes

Focussing in the T1 process, it can be conclude that a new pessor of around
48KB of memory is needed for each additional parallel T1 ender.

6.3.4 Wavelet in Lossless Compression

When the JPEG2000 compression is lossless, wavelet is noéfull because it does
not use quantization. The only use of wavelet in this case, @gving several resolu-
tions of the image. For optimization wavelet could be remodefrom the JPEG2000
lossless algorithm, removing the size of the code that is nédnger use and the
memory occupation of the additional FIFO for the DWT stage.

6.3.5 CrossBar Switch

In the previous experiments, no connection type for commusations between pro-
cessors was speci ed. That is because by default point to pbconnection is applied.
Point to point is the best connection type in terms of time e ciency but when im-
plemented is not optimal from the memory occupation point ofiew. For every new
communication channel a new FIFO is implemented and this FIBs has a xed size
that must be power of 2. When the real size of the channel is fnom the power of
2 size of the implemented FIFO memory is wasted.

36

6.3. OPTIMIZING CHAPTER 6. EXPERIMENTS AND RESULTS

Channel_2
MB_1) -
Crossbar
Memory Box Switch
Channel_3]

Channel 4

Figure 6.9: Crossbar Switch

The crossbar switch connects every processor to each otheraugh multiplexers
that schedule the di erent accesses. In this case all the amwaels of a single pro-
cessor share the memory module which optimize the memory apation. On the
other hand, the scheduling for memory accesses makes thigi@ap slower but not
signi cantly.

* jpeg2000.pla */
1 <network name="CS" type="CrossbarSwitch">

<port name="I0_1" />
<port name="10_2" />

</network>

5
<link name="BUS1">
<resource name="MBl" port="I0 _1" />
<resource hame="CS" port="10 1" />
</link>

10

<link name="BUS2">

<resource name="MB2" port="I0 _1" />
<resource hame="CS" port="10 2" />
</link>

Figure 6.10: Part to be added in the platform speci cations

To include the crossbar into the MP-SoC the platfrom speciations must be
changed including the crossbar and the connections to eadopessor (Figures.10.

37

6.4. BEST RESULT CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.3 below shows the small di erence in executing time (clock clgs) for a 3
T1 encoders and 16x16 tile, with crossbar and point to pointoninections:

| | Clock Cycles |

Crossbar 61.720.707
Point to point 61.613.191

Table 6.3: Crossbar Vs Point to point

At the end, the previously mentioned memory organisation (i§ure 6.9) has been
found as not optimal for the studied case. As explained, silkgmemory boxes are
used by several FIFOs and this will improve the memory utilition only in the cases
where big memory boxes are used to store single small FIFOsutBn this case, the
addition of FIFOs forces to uses bigger memory boxes and das similar memory
amount to the ones using in point to point connections.

6.3.6 Compiler Options

Microblaze GGC compiler options have been left in medium inrder to have a
compromise between program code size and execution time.this experience, op-
timization level have been grown to high, increasing the cedsize but improving the
timing of the execution. This table show the improvements,or the same implemen-
tation conditions than for the crossbar in the previous sen (16x16 pixels tiles, 3
T1 encoders):

| | Clock Cycles |
Medium optimization 61.613.191
High optimization 55.998.573

Table 6.4: Compiler optimization improvement

As listed in Table 6.4 the number of necessary clock cycles for the 48KB image
compression decrease almost a 10%. But this optimizationcireases the code size
of the T1 encoder process from 34KB to 44KB while the data anché necessary
minimal stack does not change but adding their 8KB and 3KB mads in total 55KB
which does not allow more T1 encoders in the actual FPGA memor

6.4 Best Result

The best result is the 3 T1 encoders implementation with 16%1pixels tiles with high
code optimization (Figure6.11). A better implementation with 4 T1 encoders was
also possible with medium optimization if 48KB were enouglof each T1 process
holding processor. But when two memories are used (32KB an@KIB to obtain

38

6.5. 3 T1 ENCODERS CHAPTER 6. EXPERIMENTS AND RESULTS

48KB) instead of a single one of 64KB, there is a \one memoryniitation" in the
Xilinx \data2zmem" loader where the second contiguous memgpris not lled with
the executable code.

As will be demonstrated in the following chapter, better imfementation are
possible beyond the technological limitations.

6.5 3 T1 Encoders

Figure 6.11below is the architecture that with the mentioned limitations, better ts
the FPGA:

ZBT_CTRL_1] MB_2 [ZBT_CTRL_5 J
(9 N,

¢ mb_opb_1

S MB4

Figure 6.11: Best MP-SoC platform

For every process that want to be splitted the main le, that s the input of the
KPNGen tool, must be changed in order to provide to the systernthe necessary
connections and computation loops. For this best solutionhe le is shown in
Figure 6.12 In lines 20-22, the T1 process splitting is shown in a expiiavay: three
processes are processing each YUV component of the tile.

39

6.5. 3 T1 ENCODERS CHAPTER 6. EXPERIMENTS AND RESULTS

1 #include "jpeg2000 _func.h"

int main (int argc, char **argv)
f

5 int i,j;
tile _t tile;
tile _c_tile;

codeblock _t codeblocks;
passes_t passes;
10 packet _t packets;

for (i = 0; i < NUMTILES; i++)
f
mainVideoln(&tile);
15
for(= 0; j< NUM_COMPS; j++)

mainMCT (&tile,&tilec);
mainDWT (&tilec,&tilec);

20 if (%3 == 0) mainT1(&tilec,&codeblocks,&passes);
if (j%3 == 1) mainT1(&tilec,&codeblocks,&passes);
if (%3 == 2) mainT1(&tilec,&codeblocks,&passes);
mainT2(&codeblocks,&passes,&packets);
mainVideoOut(&packets);

25

g

return O;

Figure 6.12: JPEG2000.c File for Best Solution

In this case the FPGA is not completely used, because 5 proses of 64KB
are used instead of the enhanced 48KB, but the extra memory used to increase
the compiler optimization. The Table 6.5 shows the platform size, mapping and
executable size of each processor. In the last column the sBed memory size is
listed. As mentioned before, it will be possible to used thisiemory for additional
T1 coder processes if the Xilinx \one memory limitation" is slved.

40

6.5. 3 T1 ENCODERS CHAPTER 6. EXPERIMENTS AND RESULTS

| | Mapping | Size | Executable | Lost |
MB _1 || Videoln + MCT | 8KB | 5KB 3K
MB 2 || T1 64KB | 58KB 6KB
MB 3| T1 64KB | 58KB 6K
MB 4 || T1 64KB | 58KB 6K
MB _5 || T2 + VideoOut | 64KB | 50KB 14KB

Table 6.5: Platform, Mapping and Section sizes for Best Rdsu

Table 6.6 list the features of the Virtex Il FPGA use. As can be seen the BAM
utilisation is the critical one in order to improve possiblecon gurations.

| | Implementation |

Slices 3895 out of 33792 (11%)
LUTs 7789 out of 67584 (11%)
BRAMs 143 out of 144(99%)

Clock Cycles 55.998.573 (128x128 pixels)
Clock Frequency 74.683MHz

Table 6.6: Implementation information

41

Chapter ;

Comparison

This chapter makes a comparison between hardware IPs memtéml in Section1.3
with the obtained best result also with hypothetical con guations that could be
implementable in the future with more available memory. Prect stage worktimes
are also displayed as gure of the fast prototyping capabtles of the Daedalus
framework.

7.1 Comparison with Related Work

In Table 7.1 below, some features of commercial hardware IP are comparedthe
Daedalus proposed architecture, speed is measured pixeds pecond4]

| | Analog Dev. | Barco Silex | Cast | Daedalus |
Technology | XC2V3000-6 | XC2V6000-6 | Altera/Xilinx | XCV6000
T1 Coders 3 8 con gurable | unlimited
Max Tile 2048x4096 32x32 4096x4096 unlimited
Max Cbkl 64x64 32x32 64x64 same as tile's
Memory not provided | 167 KB not provided | 288 KB
Speed 250-500Mbps | 98-200Mbps | 60Mbps 28,5Kbps

Table 7.1: Comparison with Commercial tools

As can be seen, the obtained best Daedalus architecture caatrachieve the
timing and memory levels of commercial IPs. However, the twmain advantages of
Daedalus architecture are:

The price : These hardware IPs are very expensive and the Daedalus twin
is obtained through open-source tools free of costs. Fortasce the JPEG2000
IP for Xilinx or Altera of Cast company costs 100.000 euros pelesign.

The con gurability : With no memory limitation, tile size and the number
of T1 entropy coder could be increase arriving to very accegitle compression
times.

42

7.2. PROJECTED ARCHITECTURES CHAPTER 7. COMPARISON

7.2 Projected Architectures

As previously seen, the limitation of the architectures istte on-chip RAM memory of
the FPGA. But with the informantion obtained into the experiences it is possible to
estimate the theoretical performance of more sized implentations. In this section
the tile number and the number of T1 branches will be variabkof the equation in
order to get high performace timing solutions.

From Figure 6.5 can be obtained that for every new tile in which the image is
divided the number of clock cycles increases in 775.000. 0w tother hand, we know
that for every double independent encoder the speed up is df,25. In this case we
must specify that the T2 process should be also splitted fovery 3 T1 encoders
because the time consummation of this process begins to béical. For any T1
or T2 processor 48KB or memory will be reserved and the origihimage will have
48KB (that will be taken into consideration for memory constaints). The other
memory resources which are not processes or FIFOs will not tad&en into account.

The memory approximate occupation formule will be:

Mem = P+ P agationa (T1+T2)+ QESEe (1+ (FIEOHD 1)

Mem = 8KB +48KB (T1+ T2)+ KB (2 TlT2)

Figure 7.1: Memory Occupation Formules

The formule reveal that only critical memory amounts are coputed, hardware
memory requirements as controller's registers or softwacentrainst as stack are not
included. For computational calculation here the formule:

Cycles=3xT1.1Tile_Cycles<1;95 (% 1))+ TileNb CyclesTile

Cycles=50M=(1;95 (LX 1))+ TileNb 775000

Figure 7.2: Computation Time Formules

| | T1 Enc. | T2 Enc. | Tiles | Memory | Cycles |

Best Result x3 x1 64 264KB 56M
5 Processors x3 x1 1 528KB 50M
9 Processors X6 X2 2 438KB 27TM
17 Processors || x12 x4 4 888KB 16M

Table 7.2: Proposed Architectures

For a piece of example, this 17 processors implementationafile 7.2) for a
128x128 pixels image encoded in 16M clock cycles in a startlapeed of 100MHz
clock, means 96Kbps processing speed.

43

7.3. WORKTIME OF PROJECT STEPS CHAPTER 7. COMPARISON

7.3 Worktime of Project Steps

Finally, the time of each task has been measured in working yiin order to illustrate
the time e ort of each task. Table 7.3 makes clear that the main e ort resides in
developing the partitioned code and once this is made and theols are known, it

is possible to develop MP-SoC prototypes in less than one hou

| | Time
Library Selection 2 days
Code Partition 33 days
Simulation 7 days
First Demo Example and Synthesis 5 days
Next Speci cations and Synthesis 1 hour

Table 7.3: Time periods through the work ow

This fast prototyping is very interesting for companies thaonce they have the
partitioned program could present di erent implementatians to their clients in terms

of days in order to t their performance/cost requirements.

44

Chapter

Conclusion and Future Work

The main conclusion of the work is that the Daedalus tool ows ready for com-
mercial use in terms of worktime improvement and satisfactg results. Commercial
requirements have been achieved and an optimized versiortlod solution have been
obtained within 5 months of work. Daedalus potential residein the easy and fast
prototyping capability once the partitioned program verson is ready.

Using Daedalus, a fully functional lossless JPEG2000 apgdtion has been de-
velopped written in a static way. This application is dividel into modules and
connected via xed sized structures. The main le of the progm is the input for
the Daedalus system, the Kahn Process Network Generator imst term.

The obtained Kahn Process Networks have been mapped into drent test plat-
form through automatized procedures in order to modelate & behaviour of the
system. Two conclusions have been obtained from this modida: 1) Image tiling
IS ine cient in compression size and time but necessary forocnputation memory
and 2) The T1 encoding takes around the 80% of the whole encoglitime.

In the last part of this thesis several improvement have beeapplied to the
system in order to improve the compression timing featuresA nal best result
have been obtained with the Virtex II FPGA memory limitations and some new
architectures have been proposed with no memory restrictis.

The results are far from commercial IP hardwares in computeinal time. That is
because this commercial tools use hardware implementat®of T1 encoders which
is determinant to improve speed signi cantly, therefore, @ame hardware accelerators
for this T1 coder should be integrated to be closer of this relés. But the Daedalus
open-source obtained solutions are more con gurable andedper than commercial
products that cost around hundreds thousands of euros.

For future work, 4 main points should be taken into considetan:

1. Program optimizations: to the mentioned T1 hardware accelerators many
other optimization could be added, as putting the stack in tk o -chip memory
or sharing single coding tables for the multiple T1 processeimproving the
use of memory.

2. Design Space Exploration: Amsterdam University's SESAME tool can give

45

CHAPTER 8. CONCLUSION AND FUTURE WORK

the best con guration of processes in order to achieve the flanemory/timing
performances. This results could be interesting for futurenplementations.

. New JPEG2000 features: for medical sector requirement only lossless com-
pression have been left from the reference OpenJPEG librarin the future,
lossy compression as well as the whole decoder could be imm@eted to have

a complete JPEG2000 application.

. Automization: Daedalus is already a highly automatized tool, but still som
improvement could be done. Between them, FIFOs size could Aetomatically
obtained as well as program size. Code les les could be alsotomatically
attached to the project. The main diculty for the whole auto matization
is the stack calculation, maybe some tools must be explored bbtain this
parameter o -line.

46

Bibliography

[1] Artemis. http://ce.et.tudelft.nl/artemis/, 2008.

[2] Cast. http://www.cast-inc.com/, 2008.

[3] Analog Devices. http://www.analog.com/en/audioviden-products/, 2008.
[4] IEEE. A exible, hardware jpeg2000 decoder for digitalioema, 2004.
[5] JPEG. The jpeg-2000 still image compression standard)@s.

[6] T. Kangas. Acm trans. on embedded computing systems, 200

[7] Ashwani Kumar. E cient synthesis of application specic mp architectures for
process networks (case study-jpeg-2000), 2005.

[8] University of Amsterdam. Towards e cient design space xploration of hetero-
geneous embedded media systems, 2001.

[9] OpendPEG. http://www.openjpeg.org, 2008.

[10] Friedrich Alexander University. A systemc-based degi methodology for digital
signal processing systems, 2007.

[11] LIACS UvA and Chess BV. Daedalus: Toward composable ninhedia mp-soc
design, 2008.

[12] Xilinx and Barco Silex. Jpeg2000 encoder and decoded0Z.

[13] Wei Zhong. Embedded system-level platform synthesiadapplication mapping
for heterogeneous and hierarchical multiprocessor systen?2004.

a7

	Introduction
	Motivation and Goals
	Contributions
	Related Work
	Thesis Organisation

	TU Delft
	Activities
	Organisation
	Research (Computer Engineering)

	Background
	Daedalus
	KPNGen: Application Parallelization
	YML and PNRunner: High Level Simulation
	ESPAM: Hardware Platform Generation

	JPEG2000
	Discrete Wavelet Transform
	T1 Arithmetic Enconding

	Requirements and Constrainst
	Constrainst
	Requirements
	Tools

	Development Steps
	Reference Code
	JasPer
	OpenJPEG
	Comparison

	Code Partitioning
	Program Organization
	Removing Global Shared Data
	Memory Optimization
	Configurable Parameters
	KPNGen

	Simulation
	Example Application
	Platform
	Mapping

	Design Exploration
	MP-SoC
	Program FPGA version
	Xilinx Platform Studio
	Execution

	Experiments and Results
	Multiprocessing
	Splitting
	Optimizing
	Tiling
	Division into Components
	Memory occupation
	Wavelet in Lossless Compression
	CrossBar Switch
	Compiler Options

	Best Result
	3 T1 Encoders

	Comparison
	Comparison with Related Work
	Projected Architectures
	Worktime of Project Steps

