
RobustDiCE: Robust and Distributed CNN
Inference at the Edge

Xiaotian Guo Quan Jiang Andy D. Pimentel Todor Stefanov
Univ. of Amsterdam, Leiden Univ. Nanjing Agricultural Univ. Univ. of Amsterdam Leiden Univ.

Amsterdam, Netherlands Nanjing, China Amsterdam, Netherlands Leiden, Netherlands

x.guo3@uva.nl aapool@outlook.com a.d.pimentel@uva.nl t.p.stefanov@liacs.leidenuniv.nl

Abstract— Prevalent large CNN models pose a signifi-
cant challenge in terms of computing resources for resource-
constrained devices at the Edge. Distributing the computations
and coefficients over multiple edge devices collaboratively has
been well studied but these works generally do not consider the
presence of device failures (e.g., due to temporary connectivity
issues, overload, discharged battery, etc. of edge devices). Such
unpredictable failures can compromise the reliability of edge
devices, inhibiting the proper execution of distributed CNN
inference. In this paper, we present a novel partitioning method,
called RobustDiCE, for robust distribution and inference of CNN
models over multiple edge devices. Our method can tolerate in-
termittent and permanent device failures in a distributed system
at the Edge, offering a tunable trade-off between robustness (i.e.,
retaining model accuracy after failures) and resource utilization.
We evaluate RobustDiCE using the ImageNet-1K dataset on
several representative CNN models under various device failure
scenarios and compare it with several state-of-the-art partitioning
methods as well as an optimal robustness approach (i.e., full
neuron replication). In addition, we demonstrate RobustDiCE’s
advantages in terms of memory usage and energy consumption
per device, and system throughput for various system set-ups
with different device counts.

I. INTRODUCTION

As Artificial Intelligence (AI) continues its rapid evolution,

convolutional neural networks (CNNs) are becoming increas-

ingly prevalent across a variety of applications [1]. And the

surge of Internet-of-Things (IoT) devices has also elevated

the deployment requirements of CNNs at the Edge. However,

the growing complexity and size of CNN models, such as

VGG-16 [2], and CoAtNet-6 [3], pose a significant challenge

in terms of computing resources for resource-constrained edge

devices. One approach to address this challenge is to construct

a lightweight CNN model from a large CNN model utilizing

model compression [4] or neural architecture search [5] which

may decrease accuracy. Another approach is to distribute

inference models between edge devices and cloud servers [6],

but this approach introduces unpredictable inference latency

and raises trustworthiness, security, and privacy concerns.

To address these issues, studies on fully distributing the

CNN inference over multiple edge devices have been proposed

without the need for model compression and cloud servers. In

such a horizontal CNN distribution paradigm, model partition-

ing [7], [8] and data partitioning [9], [10] methods are typically

applied to alleviate the discrepancy between the constrained

resources of edge devices and the huge requirements of

deploying large CNN models. However, these partitioning

methods assume continuous availability of all involved edge

devices that cannot be always guaranteed because an edge

device could be temporarily unreachable (especially when

edge devices are mobile and use low-power short distance

radios for communication) or a device could experience a

temporary failure (e.g., due to a discharged battery). Therefore,

it is imperative to devise and utilize partitioning methods for

distributed CNN inference with robustness in mind.

In this paper, we present a novel partitioning method, called

RobustDiCE, for robust distribution and inference of CNN

models over multiple edge devices. RobustDiCE features both

system robustness, i.e., CNN inference can continue execution

even if one or more edge devices fail to function properly,

and model robustness, i.e. preserving the inference accuracy

of the CNN model as much as possible when some of the

intermediate CNN inference results are lost due to failed de-

vices. In this paper, however, we solely focus on RobustDiCE’s
model robustness. We address this model robustness challenge

by evaluating the relative importance of each neuron in the

CNN model and then partitioning these different neurons of

each CNN layer into different groups (to be mapped to the

various edge devices) as ’evenly’ as possible. Our main novel

contributions can be summarized as follows:

• Based on the importance criterion of different neurons in

each CNN layer, a new partitioning method is proposed to

preserve the model accuracy as much as possible against

device failures. This new method combines partial neu-

ron replication and importance-aware neuron clustering

to achieve CNN model robustness. It also provides a tun-

able trade-off between robustness (i.e., retaining model

accuracy after failures) and resource utilization.

• We evaluate our novel partitioning method using the

ImageNet-1K dataset on several representative CNN

models under pessimistic device failure scenarios. We

compare it with a number of state-of-the-art (partitioning)

approaches, including the CDC method [11] leveraging

neuron replication to increase robustness and an ideal

robustness approach utilizing full neuron replication.

• We demonstrate our method’s superiority in terms of

memory usage and energy consumption per device, and

system throughput under different system configurations.

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

1B-2

26

20
24

 2
9t

h
A

si
a

an
d

So
ut

h
Pa

ci
fic

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

97
0

Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Model and data partitioning methods [7], [12] can be

exploited to distribute the workload of a large CNN model

inference along the edge-cloud continuum or fully among

multiple edge devices, thus reducing the required computation

resources of edge devices [8]. However, these partitioning

methods assume that the involved computing devices/servers

(and communication links) between them are always available

and work properly. Our partitioning method is designed to be

robust against temporary or permanent failures of devices.

The robustness of distributed CNN inference concerns the

property of a model of being resilient in terms of infer-

ence accuracy to the failure of physical computing nodes

due to power outages, unstable inter-node connections, other

hardware/software failures, etc. In distributed CNN inference,

the missing neurons on those failed nodes may result in a

significant accuracy drop of a CNN model [11]. The code

distributed computing (CDC) method in [11] utilizes one addi-

tional, presumed functional device to back up the summation

of partitioned neurons of other distributed devices and use

that to recover the output of missing neurons in the event

of a single node failure. Our method, on the other hand, can

cope with multiple node failures without integrating additional

devices and computations.

To minimize the influence of node failures on the CNN

inference accuracy, several failure-aware retraining meth-

ods [13], [14] for CNNs also have been developed. For

example, DeepFogGuard [13] utilizes retraining to add hy-

perconnections that can skip certain failed physical nodes

in a pipe-lined distributed inference. These retrained models

are designed to be aware of only specific failures such as

communication failures between two CNN layers, certain node

failures in a pipeline multi-node inference, etc. Moreover,

CNN retraining requires a large amount of data that may

not be always accessible for an end user of a pre-trained

CNN model to perform retraining before the deployment in an

unreliable environment. As most pre-trained models directly

available to an end user for deployment are not failure-aware,

our RobustDiCE method can be easily applied to partition

these pre-trained models to achieve model robustness without

any retraining, without assuming specific types of failures, and

without suffering from model accuracy degradation due to pa-

rameter changes (e.g., by retraining). Moreover, RobustDiCE

can be seen as complementary to these retraining approaches,

i.e., if we would apply our method to the aforementioned

retrained models, we can further improve their robustness

against node failures.

To summarize, performing robust inference on distributed

edge devices is vital. Existing robustness methods suffer

from extra computing resource requirements, time-consuming

retraining, etc. In contrast, our method RobustDiCE is de-

signed to guarantee robustness against device failures while

accounting for the limited resources of edge devices.

III. BACKGROUND AND MOTIVATION

In this section, we provide some background information

and a motivational example to understand our novel CNN

partitioning method for robustness.

a.

b.

c.

Grouping MethodsFilter Partitioning Neurons

Fig. 1: Typical vs. Robust Partitioning

Generally, state-of-the-art partitioning methods, such as

discussed in [7], do not consider robustness as they do not

consider the fact that different neurons/filters in CNN layers

have different importance, thereby causing various effects on

the inference accuracy of a CNN model, particularly those

neurons with larger values [15]. The relative importance of a

neuron in a CNN layer can be measured by calculating metrics

such as the l1-norm [16], l2-norm [17], etc. To partition a CNN

layer with robustness in mind, it is essential to find an effective

way to group and distribute its neurons/filters over computing

nodes as evenly as possible in terms of importance.

To clarify this statement, we use the simple example, shown

in Figure 1, where we consider a convolution layer with five

filters/neurons denoted as n1 to n5. We want to partition

these neurons over three computing nodes. In this example,

the importance score sj of each neuron nj is measured by

calculating the l1-norm, i.e., taking the filter corresponding to

neuron nj with shape Cin×k×k (where k denotes the kernel

size of the filter and Cin the number of input channels), we

calculate the sum of absolute values of all the weights in the

filter and its bias as shown in Line 7 of Algorithm 1. In Line

7, W c,h,w
j denotes a particular weight value in the jth filter

corresponding to neuron nj , and bj its bias. In the middle

and the right part of Figure 1, we visualize the importance sj
of each neuron nj by the size of the circle representing the

neuron, i.e., neuron n5 has the highest importance whereas n1

and n2 have the lowest importance.

As shown in Figure 1(a), a partitioning method without

robustness in mind (i.e., no consideration of the neurons’

importance sj) splits the five neurons into three groups (visu-

alized by the three colors in Figure 1) and the groups are

distributed over the three nodes. Such distribution reduces

computational resources per node because the layer workload

is split over the nodes. However, this distribution is not robust

at all because if, for example, the third node fails, which runs

the most important neuron n5, then the inference accuracy

will decrease significantly.

To maximize the robustness, well-known modular redun-

dancy methods can be applied as shown in Figure 1(b).

Here, we replicate all neurons over the three nodes, thereby

achieving maximum robustness against failures because even

if one or two nodes fail then the remaining available node

will run all the neurons without a decrease in inference

accuracy. However, this significantly increases the resource

1B-2

27Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

requirements (e.g., memory and energy consumption) for

each node. Moreover, this full replication approach might be

infeasible for resource-constrained nodes due to the limitations

with respect to their computational/memory resources and the

possible energy budget of an edge device.

The two example scenarios, illustrated in Figure 1(a) and

(b), clearly show that using existing, robustness-unaware par-

titioning methods or modular redundancy methods in isolation

cannot provide efficient, robust distributed CNN inference

on multiple resource-constrained edge devices. Therefore, in

this paper, we propose a novel method, explained in detail

in Section IV, which combines replication and importance-
aware partitioning to achieve high and tunable robustness in

an efficient way for distributed CNN inference. The result of

applying our method to our simple example is illustrated in

Figure 1(c). The basic idea is that some (not all) neurons in a

CNN layer are replicated and all neurons (initial and replicas)

are partitioned into groups and distributed evenly over the

nodes based on their importance.

The advantage of this partitioning method is that if either

the first or third node fails, the remaining nodes can still run

all the neurons, preserving inference accuracy. If the second

node fails, the critical neuron n5 still remains, limiting the

accuracy degradation. Therefore, we can achieve comparable

robustness to the scenario in Figure 1(b), but with reduced

computational resource requirements, as not all neurons are

replicated or run on each node.

IV. THE ROBUSTDICE METHOD

In this section, we present our new partitioning method

which achieves CNN model robustness by combining

importance-aware neuron grouping and clustering with partial

neuron replication in order to evenly distribute the neurons in

a CNN model over multiple nodes. The partitioning method is

applied layer-wise on every layer until the whole CNN model

is partitioned. The general layer-wise partitioning procedure is

outlined in Algorithm 1. It accepts as inputs a set of computa-

tional layers L from the CNN model and their coefficients W
as well as the total number of computing nodes ND across

which the CNN model will be distributed. Additionally, a set T
of threshold values corresponding to layers in L is provided as

another input. The threshold values serve as specific criteria

for identifying similar neurons in terms of importance, and

subsequently making neuron grouping decisions based on the

similarity. The output of Algorithm 1 is set P of neuron

partitions. Every partition Pi = {p1, ..., pND} ∈ P determines

how the neurons in layer li ∈ L are distributed across the

specified number of computing nodes ND.

The goal of Algorithm 1 is to evenly distribute the neurons

nj of every layer li ∈ L over ND nodes (i.e., devices)

in terms of importance. For example, applying Algorithm 1

(Lines 3–29) to the convolution layer with the five neurons

n1 to n5 shown in Figure 1 and setting ND = 3, the output

P of the algorithm is the partition illustrated in Figure 1(c).

Algorithm 1 consists of three main steps performed on each

layer li ∈ L.

In Step 1 (Lines 3–9), we first include each neuron nj ∈ li
into a separate group Gj which is stored in the set of groups

G (Line 5). Then, we calculate three importance scores for

Algorithm 1: Robust Partitioning

Input : Set of layers L; Number of nodes ND;
Set of layer coefficients W = {W1, ...,W|L|};
Set of threshold values T = {t1, ..., t|L|};

Output: Set of neuron partitions P = {P1, ..., P|L|};
1 P ← ∅
2 for li ∈ L do

// Step 1: neuron importance scores
3 G← ∅
4 for nj ∈ li do
5 Create Gj ; Gj ← Gj + nj ; G← G+Gj

6 Create Sj = {s1j , s2j , s3j}
7 s1j =

∑kh
h=1

∑kw
w=1

∑Cin
c=1 |W c,h,w

j |+ |bj |
8 s2j =∑kh

h=1

∑kw
w=1

∑Cin
c=1 | ∂y

∂W
c,h,w
j

·W c,h,w
j |+ | ∂y

∂bj
· bj |

9 s3j =JSD(ycomplete || yremoving neuron nj
)

// Step 2: neuron clustering
10 for Gz ∈ G do
11 for Gq ∈ G−Gz do
12 dmax = 0
13 for nj ∈ Gz do
14 for no ∈ Gq do
15 d(nj , no) =

√∑3
a=1 (s

a
j − sao)

2

16 if d(nj , no) > dmax then
17 dmax = d(nj , no)

18 if dmax < ti then
19 Gz ← Gz +Gq

20 G← G−Gq

// Step 3: round-robin distribution
21 Create Pi = {p1, ..., pND}; p1 ← ∅, ..., pND ← ∅
22 for Go ∈ G do
23 if (|Go| mod ND) �= 0 then
24 for j ∈ [1, ND − (|Go| mod ND)] do
25 Create n|Go|+j = REPLICA(nj ∈ Go)

26 Go ← Go + n|Go|+j

27 for nj ∈ Go do
28 r = (j mod ND) + 1; pr ← pr + nj

29 P ← P + Pi

30 return P

nj from three different perspectives. The first score s1j (Line

7) is the l1-norm [16] which is a magnitude-based approach,

widely used in CNN pruning techniques, to compute neuron

importance based on the sum of its absolute weights and bias.

The second importance score s2j (Line 8) of nj is computed by

summing the sensitivity scores of all its connections with other

neurons. We use the Taylor expansion approach [18] to obtain

the connection sensitivity scores through the gradient in the

propagation process [19]. The third score s3j (Line 9) assesses

the neuron importance by employing the Jensen-Shannon

divergence [20] denoted as JSD. A larger change in the CNN

output probability distributions y, induced by removing neuron

nj ∈ li, indicates that nj is more important. Instead of using a

single importance score only, set Sj = {s1j , s2j , s3j} of the three

different scores enables a more comprehensive evaluation of

the neuron importance because it performs a three-dimensional

assessment of the importance, thereby facilitating a more

effective clustering of neurons (see Table I).

In Step 2 (Lines 10–20), Algorithm 1 takes the initial set

of groups G created in Line 5, where each group contains

only one neuron nj ∈ li, and clusters these 1-neuron groups

into a new set of groups G where any group may contain

1B-2

28Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

multiple neurons with similar importance. To this end, the

following two actions are performed iteratively for every two

groups Gz ∈ G and Gq ∈ G−Gz . First, the largest distance

dmax between the neurons in Gz and Gq is determined in

Lines 12–17. Initially, dmax is set to zero. Then, for every

pair of neurons nj ∈ Gz and no ∈ Gq , the Euclidean

distance d(nj , no) between nj and no in the three-dimensional

importance score space (s1, s2, s3) is computed in Line 15. If

d(nj , no) is greater than dmax, then dmax is updated with

d(nj , no) in Line 17.

Second, if dmax is below a given threshold value ti ∈ T
then the neurons in Gz and Gq are merged (Line 19) into

one group Gz because they are considered similar in terms

of importance, and group Gq is removed from set G in

Line 20. The threshold value ti affects the result of the

neurons clustering in Step 2. For example, a small ti would

result in set G having many groups with a few neurons per

group. If ti is too small then every group in G will contain

only one neuron, thereby ”forcing” the following Step 3 in

Algorithm 1 to perform full replication of all neurons, thus

maximizing the robustness at the expense of high resource

requirements per node in the distributed system. In contrast, a

large ti would result in a few groups with many neurons per

group. If ti is too large then all neurons would be clustered

into one group, thereby ”forcing” Step 3 to perform very

limited or no replication of neurons which could lead to a

significant reduction of the robustness. Recall that a set T of

threshold values ti is given as an input to Algorithm 1, thus an

optimal set of such values could be determined by integrating

Algorithm 1 in a design space exploration (DSE) procedure

with multiple optimization objectives including distributed

CNN inference accuracy, energy and resource requirements

per node in the distributed system, and system performance.

Finally, in Step 3 (Lines 21–29), Algorithm 1 distributes

all neurons nj in every group Go ∈ G across a number

of nodes ND in a round-robin fashion (Lines 27–28). If

the number of neurons in group Go is not a multiple of

the number of nodes ND then some neurons in the group

are replicated (Lines 23–26) in order to increase the neuron

number to the closest multiple of the number of nodes before

the round-robin distribution. Such round-robin distribution can

guarantee that every node runs the same number of similarly

important neurons from a group, thereby providing CNN

model robustness by reducing the CNN inference accuracy

degradation in the event of failures in the distributed system.

V. EVALUATION OF THE ROBUSTDICE METHOD

In this section, we present a range of experiments demon-

strating the merits of RobustDiCE in terms of achieved robust-

ness and resource utilization per node/device in a distributed

system performing CNN inference.

A. Experimental Setup

We implement RobustDiCE and apply it to the following

distributed system configurations and real-world CNNs, and

considering the following device failure scenarios.

CNNs and System Configurations: We experimented

with three CNNs, namely AlexNet [21], VGG16-BN [2],

TABLE I: Top-1 accuracy (1D-Fail case in SysConf4D)

Importance Scores AlexNet (%) VGG16 BN (%) ConvNext Tiny (%)

s1 43.718 60.426 76.618
s2 43.642 58.920 75.904
s3 43.432 59.942 76.134

s1 + s2 51.268 69.152 76.678
s1 + s3 51.658 71.736 76.580
s2 + s3 51.250 67.360 76.572

s1 + s2 + s3 52.396 72.500 76.820

and ConvNext-Tiny [22], taken from the TorchVision li-

brary. Given their widespread use in image classification and

their diversity in layer types, operation counts, and memory

requirements for weights, we consider these CNNs to be

representative targets to demonstrate the merits of our method.

By applying RobustDiCE, every CNN is distributed for in-

ference on three system configurations: one with four edge

devices (SysConf4D), one with three devices (SysConf3D),

and one with two devices (SysConf2D). All devices in a

system configuration are NVIDIA Jetson Xavier NX boards

connected over a Gigabit network switch. Each device has an

embedded MPSoC featuring a 6-core Carmel ARMv8.2 CPU,

an NVIDIA Volta GPU with 384 CUDA cores, 48 Tensor

cores, and 8 GB of LPDDR4x memory.

Device Failure Scenarios: For each of the aforementioned

CNNs, we consider three scenarios.

Scenario A: The CNN is distributed for inference on system

configuration SysConf4D where 1 device fails (1D-Fail), 2

devices fail (2D-Fail), or 3 devices fail (3D-Fail).
Scenario B: CNN on SysConf3D where 1D-Fail or 2D-Fail.
Scenario C: CNN on SysConf2D where 1D-Fail.
Under every scenario with a different number of failing

devices, we evaluate the preserved Top-1 accuracy on the

ImageNet-1K test dataset when the CNN is distributed using

our RobustDiCE method. We compare RobustDiCE to state-

of-the-art robustness-unaware partitioning that performs filter

and layer output partitioning, referred to as LOP [7], as well

as the robustness-aware CDC method from [11]. In addition,

we also show the Top-1 CNN accuracy results under an ideal

scenario, called Optimal. This Optimal scenario assumes

that in system configurations SysConf4D, SysConf3D, and

SysConf2D no devices fail or all CNN neurons are replicated

on every device in order to have quadruple (QMR), triple

(TMR), and dual (DMR) modular redundancy, thus achieving

maximum robustness.

By continuously providing 1000 images as an input data

stream for the distributed CNN inference, we measure the

system performance in images (frames) per second (FPS),

memory usage per device in megabytes (MB), and energy

consumption per device in joules per image (J/img) of the

distributed CNN inference for the different system configura-

tions. We measure the overall latency in processing the 1000

images and compute averaged FPS as throughput. The energy

consumption per device, including CPUs, GPU, communica-

tion cost, etc., is obtained through a sampling thread reading

power values from the INA3221 monitor on the NVIDIA

Jetson Xavier NX board. The memory usage per device is

reported directly by the executed CNN code itself during the

CNN inference.

1B-2

29Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

(a) AlexNet (b) VGG16-BN (c) ConvNext-Tiny

Fig. 2: CNN Model Robustness under different Device Failure Scenarios

TABLE II: System performance and resource utilization

Network System Max. per-device System Max. per-device
Configuration Energy (J/img) Throughput (FPS) Memory (MB)

QMR/TMR/DMR 0.179 46.255 150.914
CDC-SysConf3D 0.165 43.670 94.117

AlexNet CDC-SysConf4D 0.157 45.587 78.852
Robust-SysConf2D 0.159 48.214 99.254
Robust-SysConf3D 0.148 50.045 80.777
Robust-SysConf4D 0.142 51.219 72.801

QMR/TMR/DMR 0.850 10.744 429.215
CDC-SysConf3D 0.809 10.634 313.688

VGG16-BN CDC-SysConf4D 0.799 10.485 272.293
Robust-SysConf2D 0.826 10.761 328.426
Robust-SysConf3D 0.799 10.993 295.086
Robust-SysConf4D 0.779 11.078 267.395

QMR/TMR/DMR 0.308 28.223 88.895
CDC-SysConf3D 0.307 27.107 69.129

ConvNext-Tiny CDC-SysConf4D 0.297 28.248 59.961
Robust-SysConf2D 0.301 28.044 76.465
Robust-SysConf3D 0.296 28.415 65.203
Robust-SysConf4D 0.288 29.034 58.090

B. Experimental Results

Ablation Study of Importance Scores: To substantiate

the efficacy of using multi-dimensional importance evaluation

for neuron clustering, we carried out an ablation study with

various combinations of importance scores (s1, s2, s3). We

only list the top-1 accuracy of the 1D-Fail case for the

SysConf4D system configuration in Table I due to paper page

limitations but the other failure scenarios show similar results.

It is clear that the combination of all three scores preserves

top-1 accuracy (model robustness) the best under the 1D-fail

scenario for all three models: 52.396% (AlexNet), 72.500%
(VGG16 BN), and 76.820% (ConvNext Tiny). These find-

ings confirm the potential for enhancing model robustness in

distributed CNN inference using the combination of multiple

importance scores.

Model Robustness Comparison: The results, obtained

with the experimental setup described in Section V-A, are

presented in Figure 2 and Table II. For every CNN model,

we show a graph where the X-axis represents the considered

scenarios with a different number of failing devices, and the

Y-axis indicates the evaluated Top-1 CNN model accuracy. For

every scenario and number of failing devices, we plot a bar for

the RobustDiCE results (blue bar), LOP results (orange bar),

and CDC results (green bar). In addition, the horizontal dashed

(red) line shows the accuracy under the Optimal scenario.

Looking at the blue and orange bars in Figure 2, we observe

that RobustDiCE consistently delivers higher Top-1 accuracy

compared to the state-of-the-art but robustness-unaware LOP

partitioning method. This clearly demonstrates the superiority

of our method in terms of CNN model robustness. Taking

Figure 2(a) as an example, the Top-1 accuracy of AlexNet

under the Optimal scenario is 56.55% which is our refer-

ence point. When a system configuration experiences device

failures as in Scenario A, our RobustDiCE method delivers a

Top-1 accuracy of 52.40%, 45.28%, and 28.93% for cases 1D-

Fail, 2D-Fail, and 3D-Fail, respectively. In contrast, the LOP

method exhibits more significant drop in accuracy, namely

41.07%, 23.50%, and 6.42% for the same device failure

cases. A similar trend can be observed for VGG-16BN and

ConvNext-Tiny in Figure 2(b) and (c), respectively. Here, we

have used an optimistic device failure scenario for LOP, i.e.,

devices with the least important groups of neurons fail.

Comparing our RobustDiCE method (orange bars) with the

CDC method (green bars), we see that CDC is capable of

perfectly handling a single device failure due to its approach

of using actor replication and a spare node. However, the CDC

method cannot handle multiple device failures, resulting in

very low accuracy (much lower than RobustDiCE) or even

complete failure (0% accuracy) when all but one devices fail.

Looking at Figure 2 and comparing the Top-1 accuracy

delivered by RobustDiCE with the reference accuracy under

the Optimal scenario, we observe that our method does

not maintain the reference accuracy level in the event of

device failures. The reason is that, in this experiment, we

set threshold values ti ∈ T discussed in Section IV to be

greater than 0. Because of this, our method does not replicate

all CNN neurons on every device, thereby trading off CNN

model robustness (loss of Top-1 accuracy) for reduced system

resource utilization. This tradeoff could be tuned by changing

the ti values. Moreover, if all ti values are set to 0 then

our method will maintain Top-1 accuracy at the same level

as under the Optimal scenario. Under this scenario, all

CNN neurons are replicated on every device in order to have

quadruple (QMR), triple (TMR), or dual (DMR) modular

redundancy, thus achieving maximum robustness. However,

achieving this maximum robustness is at the expense of higher

memory usage and energy consumption per device compared

to the resource utilization, imposed by our method, when

trading off robustness against utilization. This statement is

supported by the resource utilization results in Table II. In

this table, for every CNN, we show the maximum per-device

memory usage (Column 5), the maximum per device energy

consumption (Column 3), and the overall system throughput

(Column 4) for the three system configurations SysConf4D,

1B-2

30Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

SysConf3D, and SysConf2D with our RobustDiCE method

and the CDC method as well as for the QMR/TMR/DMR

configuration associated with the Optimal scenario.
System Performance: Considering the memory usage

numbers for AlexNet, shown in Column 5, we see that

the replication of all neurons on every device in system

configuration QMR/TMR/DMR requires about 150 MB of

memory per device. In contrast, our RobustDiCE method

significantly reduces the required memory per device, i.e., with

51.76% for system configuration SysConf4D, with 46.47%
for SysConf3D, and with 34.23% for SysConf2D. Significant

memory reduction trends can be observed in Column 5 for

VGG16-BN and ConvNext-Tiny as well. The memory usage

numbers for CDC show that this method reduces the memory

footprint in comparison to the all-neuron replication method

(QMR/TMR/DMR) but still has higher memory usage com-

pared to RobustDiCE.
The energy consumption per device is also reduced by

RobustDiCE as compared to applying all-neuron replication

to achieve CNN model robustness. For example, Column 3

in Table II shows that our method applied on SysConf4D

achieves an effective energy reduction over the all-neuron

replication method (QMR/TMR/DMR), i.e., 20.67% reduc-

tion for AlexNet, 8.35% for VGG16-BN, and 6.49% for

ConvNext-Tiny. The CDC energy results again show an

improved behavior compared to QMR/TMR/DMR but are

inferior to the results from RobustDiCE.
Finally, as shown in Column 4 of Table II, RobustDiCE

slightly improves the system throughput for almost all CNNs

and system configurations as compared to QMR/TMR/DMR

(except for SysConf2D on ConvNext-Tiny). For CDC, on the

other hand, the system throughput is generally lower than

QMR/TMR/DMR and RobustDiCE.
We note, however, that the system throughput of distributed

CNN inference is highly dependent on the quality of the

network interconnecting the devices in the system. In our

experiments, we have used a Gigabit network switch. Evi-

dently, in other edge/IoT settings, the connectivity between

devices may have a lower bandwidth, e.g., using WiFi or other

wireless protocols. Thus, our RobustDiCE method cannot

always guarantee system throughput improvements but it can

guarantee memory usage and energy consumption reductions.

VI. CONCLUSIONS

This paper presented RobustDiCE, a robust partitioning

method for distributed CNN inference at the Edge that

preserves the model accuracy as much as possible against

device/link failures. Several CNN experiments demonstrated

that RobustDiCE can retain the CNN model accuracy after

failures much better as compared to the state-of-the-art parti-

tioning methods. We have also shown the advantages of our

RobustDiCE method over the optimal robustness approach and

CDC method in terms of memory usage per device, energy

consumption per device, and system throughput.

ACKNOWLEDGMENTS

I am profoundly grateful to Qi Wang for his inspirational

guidance and indispensable support for this research. I am also

thankful to Yixian Shen, who provided insightful suggestions

for the revision.

REFERENCES

[1] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on CVPR, 2009, pp. 248–255.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying convolution
and attention for all data sizes,” Advances in NeurIPS, vol. 34, pp.
3965–3977, 2021.

[4] Y. Guo, “A survey on methods and theories of quantized neural
networks,” 2018. [Online]. Available: https://arxiv.org/abs/1808.04752

[5] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017.

[6] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

[7] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Deeperthings: Fully distributed cnn inference on
resource-constrained edge devices,” International Journal of Parallel
Programming, vol. 49, no. 4, pp. 600–624, 2021.

[8] X. Guo, A. D. Pimentel, and T. Stefanov, “Automated exploration and
implementation of distributed cnn inference at the edge,” IEEE IoT
Journal, vol. 10, no. 7, 2023.

[9] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in SEC, 2019, pp. 195–208.

[10] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn: Local
distributed mobile computing system for deep neural network,” in IEEE
DATE, 2017, pp. 1396–1401.

[11] R. Hadidi, J. Cao, B. Asgari, and H. Kim, “Creating robust deep
neural networks with coded distributed computing for iot,” in IEEE
International Conference on Edge Computing and Communications,
2023.

[12] E. Aghapour, D. Sapra, A. Pimentel, and A. Pathania, “Cpu-gpu
layer-switched low latency cnn inference,” in 2022 25th Euromicro
Conference on Digital System Design (DSD), 2022, pp. 324–331.

[13] A. Yousefpour et al., “Guardians of the deep fog: Failure-resilient dnn
inference from edge to cloud,” in Workshop on challenges in artificial
intelligence and machine learning for IoT, 2019, pp. 25–31.

[14] S. Itahara, T. Nishio, and K. Yamamoto, “Packet-loss-tolerant split
inference for delay-sensitive deep learning in lossy wireless networks,”
in IEEE GLOBECOM, 2021, pp. 1–6.

[15] J. L. Bernier, J. Ortega, E. Ros, I. Rojas, and A. Prieto, “A quantitative
study of fault tolerance, noise immunity, and generalization ability of
mlps,” Neural Computation, vol. 12, no. 12, pp. 2941–2964, 2000.

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv, 2016. [Online]. Available:
https://arxiv.org/abs/1608.08710

[17] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” arXiv, 2018.

[18] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv, 2018.

[19] S.-K. Yeom et al., “Pruning by explaining: A novel criterion for deep
neural network pruning,” Pattern Recognition, vol. 115, p. 107899, 2021.

[20] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in Int. symposium on Information theory, 2004, p. 31.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Comm. of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[22] Z. Liu et al., “A convnet for the 2020s,” CVPR, 2022.

1B-2

31Authorized licensed use limited to: Universiteit Leiden. Downloaded on April 02,2024 at 13:51:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

