
Affine Nested Loop Programs and their Binary Parameterized Dataflow Graph
Counterparts

Ed F. Deprettere and Todor Stefanov
Leiden Institite of Advanced Computer Science

Leiden University
Leiden, The Netherlands
edd, stefanov@liacs.nl

Shuvra S. Bhattacharyya and Mainak Sen
Department of Electrical and Computer Engineering

University of Maryland
College Park, MD 20742

ssb, mainak@eng.umd.edu

Abstract
Parameterized static affine nested loop programs
can be automatically converted to input-output
equivalent Kahn Process Network specifications.
These networks turn out to be close relatives of
parameterized cyclo-static dataflow graphs. Token
production and consumption can be cyclic with a
finite number of cycles or finite non-cyclic. More-
over the token production and consumption se-
quences are binary.

1. Introduction
The behavior of signal processing applications is
very often specified in terms of (parameterized)
static affine nested loop programs which are nested
loop programs in which the loop boundaries, the
conditions, and the variable indexing functions are
affine functions of the loop iterators and parame-
ters. An example of such a program 1 is shown in
Figure 1. Static affine nested loop programs can

for j = 1:1:N,

for i = 1:1:M,

[x(j), y(i)] = f(x(j), y(i));

end

end

Figure 1. Body of an affine nested-
loop program

be automatically converted to input-output equiv-
alent Kahn Process Networs [6], [8] which are
networks of processes that communicate point-
to-point over unbounded unidirectional FIFO-type
buffered channels, and synchronize by means of
blocking reads. A KPN that is derived from an
affine nested loop program 2 has limited expres-

1For lack of space we omit source and sink code
2Also called Compaan process network (CPN) because the

first affine nested loop program to KPN translator was called
COMPAAN [8].

sive power, and has properties a general KPN does
not have. Indeed, as we show in this paper, a CPN
turns out to be a close relative of a parameterized
cyclo-static dataflow graph (PCSDF) [1]. Cyclo-
static because the steady-state behavior of the un-
derlying affine nested loop program is cyclo-static,
and parameterized for two reasons: Because the
underlying program is in general parameterized,
and because aprameterized dataflow (PDF) can
model the initialization and termination that is in
general part of the underlying program. Moreover,
token production and consumption sequences are
binary. For these reasons the dataflow model coun-
terpart of the CPN model or its underlying affine
nested loop program model is a form of binary
parameterized cyclo-static dataflow (BPCSDF).
BPCSDF can be viewed as the integration of pa-
rameterized dataflow meta-modeling framework
[1] with cyclo-static dataflow graphs [2] that are
restricted to having binary-valued token produc-
tion/consumption rates on individual actor phases.
Like the cyclo-static dataflow graphs [2], the re-
stricred class of BPCSDF graphs that arise from
CPNs obey balance equations [11], [10] and can
be statically scheduled for bounded memory. To
show all this, we first analize affine nested loop
programs in two steps. The first step is to con-
vert the affine nested loop program to an equiva-
lent single assignment program [7] (SAP) which
explicitely reveals the dependencies between the
variables in the underlying affine nested loop pro-
gram. The second step is to convert the SAP to a
Polyhedral Reduced Dependence Graph (PRDG)
which is a compact mathematical representation of
the dependence graph counterpart of the SAP in
terms of polyhedra and lattices [12], [4]. BPCSDF
is built on this analysis.

2 Analysis of Affine Nested Loop Pro-
grams

The single assignment program (SAP) for the
affine nested loop program in Figure 1 is shown
in Figure 2.

for j = 1:1:N,

for i = 1:1:M,

if i-2 >= 0,

[in0] = ipd(x2(j , i-1));

else % if -i+1 >=0

[in0] = ipd(x1(j));

end

if j-2>= >0
[in1] = ipd(y2(j-1, i));

else % if -j+1 >= 0
[in1] = ipd(y1(i));

end
[out0, out1] = f(in0, in1);
[x2(j, i)] = opd(out0);
[y2(j, i)] = opd(out1);

end
end

Figure 2. The Single Assignment Pro-
gram version of the Affine Nested
Loop Program in Figure 1

In this program the functions ipd() and opd()
are the identity function binding input variables
to arguments of the function f(), and results of
the function f() to output variables, respectively.
The name ipd refers to the fact that an input vari-
able is taken from a certain domain. For example,
the variable x2(j, i-1) is taken from the do-
main .
Because the SAP is in output normal form, out-
put variables are all of the form . The ac-
tual domain of an output variable is obtained by
substituting the input-to-output mapping or depen-
dence function in the domain of an input variable
that reads this output variable. Thus, for the vari-
able with name , the dependence function
is , and its output do-
main is . With the
SAP goes a dependence graph which can be com-
pactly represented as a polyhedral reduced depe-
nence graph (RPDG) consisting of
Nodes 3 and Edges

between output Ports
and input Ports of Nodes, where ,

, , and are polyhedral domains of atomic
(functional) nodes , atomic edges ,

3 stands for a polytope with
and being integral matrices of appropriate dimension, and

b eing a parameter vector.

and atomic input ports and output ports , re-
spectively, all derived from the iteration spaces and
conditions on these spaces in the SAP. is
the pair of input and output Port sets of the Node

. There is a Node in the
PRDG for each and every function call and its con-
text in the underlying SAP. A Node has an input
Port for each variable and its context that binds
to an input argument of the node’s atomic func-
tion, and an output Port for each variable and its
context to which an output argument of the node’s
atomic function binds. The contexts of input vari-
ables and output variables are related through de-
pendence functions as explained above. The topol-
ogy of the PRDG 4 for the example in Figure. 2 is
shown in Figure 3. To each polyhedral domain in

ND_1
Read_SourceX|

ND_3
f|

ED_2

ND_2
Read_SourceY|

ED_4

ED_1

ED_3

ND_4
Write|ED_5

ND_5
Write|

ED_6

Figure 3. The PRDG corresponding to
the SAP in Figure 2

the PRDG is also assigned an ordering of its inte-
gral points that may be based on the schedule and
affine conditions in the SAP. For example, Node

in Figure 3 is characterized by the polytope
with possi-

ble ordering based on the loop nest
schedule , and has
four input ports corresponding to the four condi-
tions , , ,
and , respectively. The polyno-
mial is called the ranking poyno-
mial of the Node and is the result of a parameter-
ized counting of the integral points in the domain
of the Node [5], [3], [13]. The ranking polyno-
mial of an output Port domain is also called the
write ploynomial of that domain because an
output Port writes tokens in the order given by its
ranking polynomial. An input Port has a ranking
polynomial and a read polynomial , ,
which is obtained from the write polynomial ,

, of the domain it reads from, by substi-
tuting the input Port to output Port affine depen-
dence or mapping function . That
is, . An input Port’s
read polynomial need not necessary be equal to its
ranking polynomial. For the PRDG structure in
Figure 3 and the underlying SAP in Figure 2, the
output ports to edges and have write
poynomials and

4Including source and sink nodes.

, respectively. The input
ports from edges and have read polyno-
mials

and ,
respectively.

3 Binary Parameterized Dataflow
Graph

In this section we show that a PRDG can be
converted to a parameterized cyclo-static dataflow
graph (PCSDF) [1]. Parameterized dataflow can
model the initializations and terminations that are
in general part of the underlying affine nested loop
program, that has otherwise a cyclo-static steady-
state behavior. Moreover, the dataflow graph de-
rived from a PRDG has token production and con-
sumption sequences that are binary. For this reason
we call these dataflow graphs binary parametrized
cyclo-static dataflow graphs (BPCSDF).

The relation between the BPCSDF graph and
the PRDG is simple: for every Node in the PRDG
we have an actor in the BPCSDF graph, and for
every edge in the PRDG we have an edge in the
BPCSDF graph. Because actors in dataflow graphs
are characterized by token production and con-
sumption patterns, we have to derive these patterns
from the PRDG. Thus let be a parameterized
static affine nested loop program. For each func-
tion call and its context in the program there is
an actor . The actor has input ports ,

, and output ports ,
corresponding to the program

input variable and output variable , re-
spectively. Each actor input port has a port domain
that is a subset of the actor function domain, and
a read polynomial defined on that domain. Sim-
ilarly, each actor output port has a port domain
that is a subset of the actor function domain, and a
write polynomial defined on that domain. Let
be the cardinality of the domain of the input port

, and let be the cardinality of the domain
of output port , then actor will read to-
kens from input port , and write tokens to
output port . Finally, if is the cardinality of
the actor function domain, then the consumption
pattern of the input port can be characterized
by a consumption sequence of length contain-
ing ones and zeros. Similar, the
production pattern of the output port can be
characterized by a production sequence of length

containing ones and zeros.
These production and consumption sequences
can in principle be generated as follows. Let ac-

tor have a function domain

, and let be an
output port domain. Start out with an empty se-
quence . For if

, put a in , else put a in .
Because is independent of , all output
ports have a sequence of the same length. Next
let be an input port domain. Start out
again with an empty sequence . For

if , put a in ,
else put a in . Again, is independent of

and, therefore, also all input port sequences
have the same length equal to the length of all out-
put port sequences. Clearly, the production and
consumption sequencies are binary. The scan-
ning of the domains and will in general
lead to production and consumption sequences that
have compact representations, because the patterns
of zeros and ones can be generated by means of
counting polynomials. The patterns may take the
form of a repetitions period and a repetitions fac-
tor in case the sequence is periodic and repeats for
finitely many periods, or a finite non-periodic se-
quence. We illustrate this for the example in Fig-
ure 3 and the underlying program in Figure 2. The
f-actor is shown in Figure 4 together with the com-
pact consumption and production sequences.

f

N[0, M−1(1)]x

[M(1), (N−1)M(0)]y

N[M−1(0), 1] x

[(N−1)M(0), M(1)] y

1

5

4

8

N[0, M−1(1)] N[M−1(1), 0]

[M(0), (N−1)M(1) [(N−1)M(1), M(0)]

x_2

y_2

2

6

3

7

Figure 4. f-actor for the program in
Figure 2 with superimposed produc-
tion and consumption sequences

Input port 2 has domain ,
and lexical order . For
any , the repetitions perid is because

is in the domain and is not in
the domain. Because , the repetitions
factor is N whence the consumption sequence is

. Similarly, output port 3 has do-
main , and lexical
order . For any
, the repetitions period is because

is in the domain and is not
in the domain. Because , the repeti-
tions factor is whence the production sequence
is . And similarly for the other
ports, except for input Port 5 and output port 8

whose consumption and production sequences are
compact but not factored into a repetitions period
and a repetitions factor. Now, given the consump-
tion and production sequences for the actors ,
we can construct the topology matrix whose

column has entries and , respectively.
We may thus conclude that a PRDG has a dataflow
graph counterpart. The actors are characterized by
parameterized finite length token production and
consumption sequences which may or may not be
cyclic. This is different from CSDF graphs in
which the actors are characterized by constant to-
ken production and consumption vectors, called
phase signatures, that repeat indefinitly. The dif-
ference arises because an affine nested loop pro-
gram operates in principle on finite sequences and
has neither initial tokens nor termination tokens in
its buffers whereas a CSDF graph operates on in-
finite sequences modeling a steady-state behavior,
whence it has in general initial and termination to-
kens in its buffers. PCSDF can easily model such
program initializations and terminations [1]. In the
example of Figure 4 and the underlying program in
Figure 2, the initial state is taken from the y-source
Node at , and the final state is sent to the y-
sink Node at . Therefore,
is the steady-state region, and if we assume that

, then we arrive at the infinite sequence
steady-state equivalent shown in Figure 5 which is
a genuine CSDF graph. In this figure, the repeti-

F
X1

X2

X3

X6

MD

[M(1)

1D

[0, M−1(1)]
[1, M−1(0)]

[M(1)]

[M−1(1), 0]

X4

X5

[M−1(0), 1]

Figure 5. BPCSDF graph with CSDF
behavior obtained by restricting the
BPCSDF graph in Figure 4 to its
steady-state region and assuming
that

tions factor N does not appear because of the as-
sumption that . If not, then a repetitions
factor will apply, and the steady-state graph
will be finite sequence equivalent to a CSDF graph.
Now assuming that the two source nodes and the
two sink nodes in the example of Figure 4 and the
underlying program in Figure 2 produce and con-

sume one token at a time, the balance equations are
as follows,

1 0 - 0 0
0 1 - 0 0
0 0 -1 0
0 0 0 -1

N
M

NM
N
M

(1)
Similarly, the balance equations for the steady-
state model of Figure 5 are

1 - 0
0 -1

1
M
1

(2)

In the first case, in a single cycle, the source nodes
fire times and times, respectively, the Node
fires times, and the sink nodes fire and
times, respectively. In the second case, the Node
fires times for every single firing of the source
node and the sink node. BPCSDF graphs not only
obey balance equations, they also can be statically
scheduled for bounded memory [14]. The proce-
dure starts out with the embedding of all function
domains, one at a time, in a common domain at
offsets that guarantee minimal causal dependence
mapping functions (write before read). Ordering
in the common domain is lexical and defines a
schedule. After this scheduling, edges can simply
be considered self-loops in the common domain.
Buffer sizes for self-loops are relatively easy to de-
termine. Of course the buffer sizes that are com-
puted this way depend on the underlying schedule
and may not be the absolute minimum buffer sizes
but at best the minimum buffer sizes for the com-
puted schedule.

4 Application example:Speech Cod-
ing

As an application example, consider the following
speech coding algorithm in Figure 6 [9]. In this

for k = 1 : 1 : K,
[e[k], r[k]] = F1(s[k]);
for p = 1 : 1 : P,
[rho(k)] = F2(e[k], r[k]);
[e[k], r[k]] = F3(e[k], r[k], rho(k));

end
[v[k]] = F4(e[k]);
[b[k], N(k) , phase(k)] = F5(v[k]);

end
Figure 6. A speech coding algorithm

program, all variables are vectors of length 5,
except for rho(k) which is a scalar variable. The

5Corresponding to a partition of the speech signal in seg-
ments of length .

function generates the vectors and
, where is the current speech

segment and is the (right) shift operator. Func-
tion computes filter coefficients (the so-called
reflection coefficients) and function performs
inverse filtering. Function computes an ap-
proximate excitation signal for the speech repro-
duction filter. Finally, function finds the best
downsampled version of , where is the
downsampling factor, and phase is the downsam-
pling phase which is a value between 1 and N. The
BPCSDF graph for this program is shown in Fig-
ure 7.

So F1s[k]
1 1

e[k]
r[k]

1
1
1

1

r[k]

F2

F3

F4 F5
1 1 1 1

[1, P−1(0)] [0, P−1(1)]

[1, P−1(0)]

1

[P−1(0), 1][0, P−1(i)]

e[k] r[k]rho(k)e[k]

e[k]

r[k]

v[k]
Si

b[k],phase(k)

Figure 7. The BPCSDF graph for the
speech coding algorithm in Figure 6

The balance equations for this algorithm are as fol-
lows.

1 -1 0 0 0 0 0
0 1 - 0 0 0 0
0 1 0 - 0 0 0
0 0 1 -1 0 0 0
0 0 - 0 0 0
0 0 0 -1 0 0
0 0 0 0 1 -1 0
0 0 0 0 0 1 -1

1
1
P
P
1
1
1

(3)
We deduce from these equations that actors and

fire P times for every firing of the other actors
in the graph.

5 Conclusion
We have shown that affine nested loop programs
can be converted to binary parameterized cyclo-
static dataflow graphs (BPCSDF). In contrast with
CSDF graphs, BPCSDF graphs have actors that
need not fire for an unbounded number of cycles
in a periodic firing pattern, but can fire cyclically
for a finite number of cycles or in a finite non-
cyclic way. Parametrized CSDF can deal with that.
Finally, the addition binary refers to the fact that
the graphs originating from affine nested loop pro-
grams have actor token production and consump-
tion patterns that are binary.

References

[1] B. Bhattacharya and S. Bhattacharyya. Parame-
terized dataflow modeling for dsp systems. IEEE
Trans. Signal Processing, 49(10):2408–2420, Oct.
2001.

[2] G. Bilsen, M. Engels, R. Lauewrijns, and J. Peper-
straete. Parameterized dataflow modeling for
dsp systems. IEEE Trans. Signal Processing,
44(2):397–408, Feb. 1996.

[3] P. Claus and V. Loechner. Parametric analysis of
polyhedral iteration spaces. In IEEE Int. Conf.
on Application Specific Array Processors, ASAP96,
pages 415, 424, Aug 1996.

[4] E. F. Deprettere, E. Rijpkema, and B. Kienhuis.
Translating imperative affine nested loop programs
to process networks. In E. F. Deprettere, J. Te-
ich, and S. Vassiliadis, editors, Embedded Proces-
sor Design Challenges, LNCS 2268, pages 89–111.
Springer, Berlin, 2002.

[5] E. Ehrhart. Sur les polyèdres rationnels ho-
mothétiques à n dimensions. In C.R. Acad. Sci.
Paris, volume 254, pages 616–618, 1962.

[6] G. Kahn. The semantics of a simple language
for parallel programming. In Proc. of the IFIP
Congress 74, pages 5 – 10. North-Holland Publish-
ing Co., August 1974.

[7] B. Kienhuis. MatParser: An array dataflow analysis
compiler. Technical report, University of California
at Berkeley, 2000. UCB/ERL M00/9.

[8] B. Kienhuis, E. Rijpkema, and E. F. Deprettere.
Compaan: Deriving process networks from matlab
for embedded signal processing architectures. In
8th International Workshop on Hardware/Software
Codesign (CODES’2000), San Diego, USA, May
2000.

[9] P. Kroon, E. Deprettere, and R. Sluyter. Regular
pulse excitation. IEEE Trans. Acoustics, Speech,
and Signal Processing, 34(5):179–194, October
1986.

[10] R. Lauwereins, P. Wauters, M. Adi, and J. Peper-
straete. Geometric parallelism and cyclo-static
dataflow in grape-ii. In Proc. 5th Int. Workshop on
Rapid System Prototyping. North-Holland Publish-
ing Co., June 1994.

[11] E. Lee and D. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245,
September 1987.

[12] E. Rijpkema. Modeling Task Level Parallelism in
Piece-wise Regular Programs. PhD thesis, Leiden
Institute of Advanced Computer Science, Leiden
University, The Netherlands, September 2002.

[13] S. Verdoolaege, K. Beyis, M. Bruynooghe,
R. Seghir, and V. Loechner. Analytical computa-
tion of ehrhart polynomials and its applications for
embedded systems. In 2nd Workshop on Optimiza-
tions for DSP and Embedded Systems, (ODES’02),
Palo Alto, CA, 2004.

[14] S. Verdoolaege, H. Nikolov, and T. Stefanov. Im-
proved derivation of process networks. In Pro-
ceedings 2nd Workshop on Optimization for DSP
and Embedded Systems (Odes’06), Palo Alto, Mar.
2006.

