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Abstract. In this paper, we present a systematic design and implemen-
tation of reconfigurable interconnects on demand. The proposed on-chip
interconnection network provides identical physical topologies to logical
topologies for given applications. The network has been implemented with
parameterized switches, dynamically multiplexed by a traffic controller.
Considering practical media applications, a multiprocessor system com-
bined with the presented network has been integrated and prototyped in
Virtex-II Pro FPGA using the ESPAM design environment. The experi-
ment shows that the network realizes on-demand traffic patterns, occupies
on average 59% less area, and maintains performance comparable with a
conventional crossbar.

1 Introduction

A crossbar is widely used as an internet switch due to its non-blocking dedi-
cated nature of communication and its simplicity, providing minimum network
latency and minimum network congestion. It accommodates all possible connec-
tions, since traffic patterns are in most cases unknown. It is also widely used
for networks-on-chip (NoC) as a basic building block [1]. Nevertheless, a major
bottleneck of a conventional crossbar is the increasing amount of wires, as the
number of ports grows. Figure 1 depicts the area of a conventional crossbar and
a typical implementation. A crossbar consists of a traffic controller and a switch
module. As the number of ports increases, the area of the switch module in-
creases in a more unscalable way than the traffic controller. This work alleviates
the scalability problem of a crossbar in a NoC-based reconfigurable platform.
In general, communication patterns of different applications represent different
logical topologies. The application performs best when the underlying physical
interconnects are identical to the communication behavior of the parallel appli-
cation. In modern NoC platforms, the logical topology information is available
from the parallel application specification and the applications in most cases re-
quire only a small portion of all-to-all communications. Figure 2 depicts realistic
applications [2], indicating that the required topologies are application-specific,
much simpler than all-to-all topologies. Moreover, Figure 2 depicts that a single
application can be specified differently (see MJPEG specifications).
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Fig. 1. A motivational example

Modern reconfigurable hardware can realize on-demand reconfigurability.
Therefore, we designed a partial crossbar network, which dynamically adapts
itself to traffic patterns, while using only the necessary wiring resources. In this
work, we present a systematic design of fully customized crossbar interconnects.
The presented network combines the high performance of a conventional cross-
bar and the reduced area of fully customized point-to-point interconnects for
raw data communications. The main contributions of this work are:

– The developed network provides identical physical topologies to arbitrary
logical topologies for an application.

– Experiments on realistic media applications show that on average 59% of
area reduction is obtained compared to a full crossbar.

– The network component has been integrated in the ESPAM design environ-
ment [3][4].

The organization of this paper is as follows. In Section 2, related work is de-
scribed. System designs including our network and their hardware implementa-
tion results are described in Sections 3 and 4. In Section 5, conclusions are drawn.

2 Related Work

The concept and our general approach of on-demand reconfigurable networks
are described in [5]. In this paper, partial crossbar interconnects in an FPGA
are proposed to implement an on-demand network. Our design proposed in this
paper is integrated in and verified using the ESPAM tool chain [3][4]. In [3][4], a
design methodology from sequential application specifications to multiprocessor
system implementations prototyped on an FPGA board is presented and consid-
ers a full crossbar interconnection network. Since a full crossbar is not scalable
in terms of area, we present a customized partial interconnection network.
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Fig. 2. Parallel specifications of practical applications

Numerous NoCs targeting ASICs (surveyed in [1]) employ rigid underlying
networks and typically packet routers constitute tiled NoC architectures. In a
typical tiled organization, one router is connected to a single processor (or IP
core). Those packet routers accommodate a buffer at each port and internal
full crossbar fabrics. NoCs targeting FPGAs [6]∼[11] employ fixed topologies
defined at design-time. In these related work, the topology is defined by the
interconnections between routers or switches, while the topology of our work is
defined by the direct interconnection between processors. Figure 3 summarizes
related work in terms of system sizes, clock frequencies, target devices, data
widths, buffer depths, number of I/O ports, occupied network areas per switch
(or router) and design characteristics of [6]∼[11]. Each of them entails specific
design goals and different characteristics. As an example, [7] is designed for a
partially reconfigurable module supported by the OS. [6]∼[8] adopt the packet
switching and each router contains a full crossbar fabric. In [10], 10 switches are
connected with 8 processors. In [11], 4 different topologies are presented and each
circuit router is connected with multiple nodes. [9] presents a topology adaptive
parameterized network component, which is a close approach to our work. While
the physical topology in [9] is constructed between multi-ported packet routers,
our adaptive topology is constructed between processors using partial crossbar
interconnects. Our centralized partial crossbar constitutes a system network.

Recently, a couple of application-specific NoC designs are proposed. [12]
presents a multi-hop router based network customization, while our network is
single-hop based. [13][14] present an internal STbus crossbar customization and
verified it through simulation. Our work is similar to [13][14] in that a crossbar is
customized. In [13][14], each arbiter of the bus-based partial crossbar is connected
to all processors, while in our work, a point-to-point direct link is established
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and different sized multiplexors are utilized. Additionally, our work is verified
by actual prototyping. Finally, [15][16] present dynamic configurations of bus
segments, while our work presents a full customization of NoC topologies.

System Freq.
#cores MHz DataWidth BufferSize I/O Area (#slices, #BRAMs) Characeristic

[6] 2004 2X2 25 V2-1000-4 8-bit 8 flits 5 316  worm-hole
[7] 2004 3X3 33 V2-6000 16-bit BRAM 5 446,  5 BRAMs  virtual cut-through
[8] 2005 3X3 33 V2Pro30 8-bit BRAM 5 352, 10 BRAMs  parallel routing
[9] 2005 3X3 50 V2Pro40 16-bit BRAM 5 552,  5 BRAMs  flexible topology
[10] 2006 8 166 V2-6000-4 32-bit no buffer 4 732 or 1464  time-multiplexed
[11] 2006 8 134 V2Pro30-7 16-bit no buffer 8 1223,  1 BRAM  circuit switching

NoC Year Chip Switch

Fig. 3. Summary of related work

3 Design and Implementation

As mentioned earlier, our goal is to design reconfigurable interconnection net-
works, in which the physical topology is identical to the logical topology speci-
fied by the application partitioning. The physical interconnects are also required
to be instantly switched to adaptively meet the dynamic traffic patterns. The
logical topology is represented by a point-to-point graph, in which each node
has possibly a different number of input and output links. In this work, a pa-
rameterized multiplexor array has been implemented for switch modules as a
design technique. Topology-specific and different sized multiplexors ensure that
demanding interconnects are established. Additionally, routing paths are selected
by a crossbar traffic controller. The switch module is generic in terms of data
widths, number of processors, and custom topologies. In this way, the network
interconnects can be adapted to an arbitrarily specified logical topology and
arbitrary number of processors.

3.1 Design Environment

The parameterized switch module has been integrated as a modular communi-
cation component in the ESPAM tool chain as depicted in Figure 4, in which
the MJPEG data flow specification in Figure 2(3) is considered as an example.
Details of the ESPAM design methodology can be found in [3][4]. In ESPAM, 3
input specifications are required, namely application / mapping / platform spec-
ification in XML. An application is specified as a Kahn Process Network (KPN).
A KPN is a network of concurrent processes that communicate over unbounded
FIFO channels and synchronize by a blocking read on an empty FIFO. The KPN
is a suitable model of computation on top of the presented crossbar-based inter-
connection network, due to its point-to-point nature of communication and its
simple synchronization scheme. However, the design technique of the presented
network can be used in other systems. A KPN specification is automatically
generated from a sequential Matlab program using the COMPAAN tool [17].
From the KPN specification, a task dependency graph is manually extracted.
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Each process is assigned to a specific processor in the mapping specification.
The number of processors, type of network and a port mapping information are
specified in the platform specification. Figure 4 depicts how the customized in-
terconnects can be implemented from the specified application. In the platform
specification, four processors are port-mapped on a crossbar. From the mapping
and platform specifications, port-mapped logical network topology is extracted
as a static parameter and passed to ESPAM. Subsequently, ESPAM refines the
abstract platform model to an elaborate parameterized RTL (hardware) and
C/C++ (software) models, which are inputs of the commercial Xilinx Platform
Studio (XPS) tool. Finally, the XPS tool generates the netlist with regard to
the parameters passed from the input specifications and generates a bitstream
for the FPGA prototype board to check the functionality and performance.
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Fig. 4. An integration in the ESPAM design framework

3.2 Implementation of the Partial Crossbar

The switch module is customized with parameterized multiplexor arrays using a
generic VHDL function. Our network has been implemented with the following
steps:

1. Port mapping: Given an application and a mapping specification, topolog-
ically sorted processors are associated with crossbar ports in the platform
specification.

2. Topology extracting: The topology information is extracted from the three
input specifications.

3. Parameter passing: The extracted topology tables are passed as static parame-
ters to the switch module. Multiplexor select signals are generated in the traffic
controller and also passed as a dynamic parameter to the switch module.
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Figure 5 depicts how actual interconnects are customized for the MJPEG ap-
plication specification in Figure 2 (3). First, priorities are given to task-assigned
processors based on the topological sort in the task graph. Figure 5(1) depicts
the topological sort and linear ordering of processors. The dotted lines represent
the levels of sorting. Considering Video in node P1 as a root in the first level, a
next priority is given to the directly connected processor in the second level. Fol-
lowing the precedence graph, these steps are repeated until the priority is given
to all candidates. Consequently, the processors are linearly ordered in the follow-
ing sequence: P1,P2,P3,P4. After that, all of these processors are associated with
the crossbar ports. The round-robin scheduler in the traffic controller performs
an arbitration of the requests during run time using the topology sort. Note that
the processor without incoming links in the task graph does not request for data
and the scheduler excludes those processors in the scheduling candidate lists. As
an example, V ideo in nodes in Figure 2(5) and (6) are not considered for the
scheduling in the traffic controller.

Second, the graph topology is extracted from the three input specifications.
Each processor port has a set of incoming and outgoing links, as depicted in
Figure 5(3). Table 1 shows the number of incoming links and a list of ports
from which the links are originated (for the task graph in Figure 2(3)). As an
example, port P1 has two incoming links from ports P1 and P4, indicating that
processor P1 reads the data located in the FIFOs connected to either P1 or P4.
Table 2 shows the number of outgoing links and a list of ports to which the links
are directed. As an example, P1 port has two outgoing links to ports P1 and
P2, indicating that the data in FIFOs connected to P1 is transferred to either
processor P1 or processor P2. The topology of the physical interconnection net-
work can be efficiently constructed using customized multiplexor arrays. Table
1 and 2 are used to systematically implement customized multiplexor arrays
instead of full multiplexors. Note that an N -port full crossbar contains N -way
multiplexors per port, while our network contains variable-way multiplexors, de-
pending on the graph topology. There are two types of multiplexors, namely
processor-side multiplexors and FIFO-side multiplexors, as depicted in Figure
5(3). Table 1 is used to implement processor-side multiplexors controlled by
CTRL FIFO signals and Table 2 is used to implement FIFO-side multiplexors
controlled by CTRL PROC signals. A state diagram of the traffic controller
which controls signals CTRL FIFO and CTRL PROC is depicted in Figure
5(2). The traffic controller deals with a handshaking protocol (i.e., data request,
acknowledgement, data transfer) and a round-robin arbitration. The arrows indi-
cate state transition conditions and the bold words indicate the actions in each
state. The traffic controller checks whether there is a request using a circular
round robin policy. The request signal contains a target port and a target FIFO
index. In case there is a request, the request is registered and the traffic controller
checks whether the target port is busy or idle. If the target port is idle and the
designated FIFO contains data, CTRL FIFO and CTRL PROC signals are
generated and multiplexor input links are selected by those two signals.
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6.       /* connection cleared */
7.      MUX_OUT = 0;  

8.   else
9. for each INPUT_LIST  loop  
10. if INPUT_LIST = CTRL_FIFO then
11.    /* channel established */
12. MUX_OUT = CTRL_FIFO;
13.          exit loop;

14.      end if;
15.   end loop;
16. end if;  
17. return MUX_OUT; 

18. } 
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Parameter 1 
Topology tables

 Port   NUM_INPUT INPUT_LIST
  P 1           2              P1, P4
  P 2           1                 P1
  P 3           1                 P2
  P 4           1                 P3

Port   NUM_OUTPUT OUTPUT_LIST
 P 1            2                 P1, P2
 P 2            1                    P3
 P 3            1                    P4
 P 4            1                    P1

Table1 : Input links

Table2: Output links P1
P4

MUX_OUT
= P4

CTRL_FIFO=4

P1

Fig. 5. Parameterized switch module and traffic controller

Third, a VHDL function has been implemented to generate multiplexor arrays.
The two parameters described above are passed to a VHDL function to actually
establish a circuit link. As an example, processor P1 reads a data located in a FIFO
connected to P4, with CTRL FIFO = 4 generated by the traffic controller, as
depicted in Figure 5(3). The function to generate processor-side multiplexors has
been implemented with a simple priority encoder as described in lines 9∼15 in
Figure 5(3). The function for FIFO-side multiplexors can be implemented in the
same way. Once the request is given the priority, 2 cycles are required to establish
a circuit link to the designated target port. Once a link is established, a remote
memory behaves as a local memory until the link is cleared.

The communication controller in [3][4] is also used in this work as a common
network interface in order to integrate the presented network component in ES-
PAM. Figure 6(1) depicts that P1 connected to the crossbar port 0 reads from
a remote memory connected to crossbar port 3 (represented by the bold line).
The switch module requires three multiplexors per crossbar port as depicted in
Figure 6(2). Multiplexors for other ports are not depicted for the sake of clar-
ity. P1 sends a read-request to the traffic controller and the traffic controller
sends the designated FIFO index to the communication controller connected



68 J.Y. Hur et al.

switch module

traffic controller

Read (0)

Data (0)

Request(0)

FIFO_sel(0)
FIFO_sel(1)
FIFO_sel(2)
FIFO_sel(3)

Request(1)
Request(2)
Request(3)

Read (1)

Data (1)

Read (3)
Data (3)

Read (2)
Data (2)

CTRL_FIFOCTRL_PROC

Empty (0)Empty(0)

Read(0)
Data(0)

Empty(1)

Read(1)
Data(1)

Empty(2)

Read(2)

Data(2)

Empty(3)

Read(3)
Data(3)

Empty (1)

Empty (2)

Empty (3)

Processors    side

FIFO
s    side

P4
interface

P 1
interface 

FIFO 4
interface

FIFO 1
interface

Request (0)

Read (0)

Data (0)

Empty (0)

Request (3)

Read (3)
Data (3)

Empty (3)

FIFO_sel(3)

Empty(3)

Data(3)

FIFO_sel(0)

Empty(0)

Data(0)

traffic 
controller

Read- requested
Select target FIFO and check if data is available
Establish circuit and start read operation

Read(3)

Read(0)

CC4 CC1

(3) Customized interconnects

switch module

1
2
3

P1 P2 P3 P4

P1

P2

FIFOs 3

FIFOs 4

0

1

2

3

Data(0)

Empty(0)

1

2
3

(1) Port mapped system

CC3

CC4

CC1

CC2

FIFOs 1

FIFOs 2

0

1

CC1

CC2

P3

P4

2

3

CC3

CC4

 CC : communication controller 

(2) Handshaking-based communications

Fig. 6. Customized interconnection network

to P4. P4 responds to the traffic controller whether the FIFO is empty or not.
If the FIFO is not empty, the traffic controller generates CTRL PROC and
CTRL FIFO signals to establish a communication line. Figure 6(3) depicts the
finally customized 4-port switch module, in which 12 multiplexors are instanti-
ated. In general, a N -port switch module in our network contains 3×N variable-
way multiplexors. In our network, the data is communicated in a point-to-point
manner without a packetization, without multi-hop header processing overheads,
and without intermediate buffering overheads. Therefore, a low latency and a
high throughput communication is achieved. The occupied network area depends
on the logical topology of an application. Only in case the application requires
an all-to-all topology, the network is identical to a full crossbar. Additionally,
our network efficiently utilizes the available bandwidth, since only required links
are established and the links are fully utilized.

4 Experimental Results

In this work, two experiments have been conducted for realistic applications.
First, a full crossbar and the presented partial crossbar have been compared in
terms of area utilization in order to measure the area reduction. The application
task graphs of MPEG4, PIP, MWD are taken from [2]. The task graphs of H.263
encoding, MP3 encoding, and MMS are taken from [18]. The task graphs of
802.11 MAC, TCP checksum, VOPD are taken from [15],[19],[20], respectively.
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Assuming each node is associated with a single crossbar port, the full and partial
crossbar networks are synthesized, placed and routed using the Xilinx ISE tool on
Virtex-II Pro (xc2vp20-7-896) FPGA and the areas have been obtained. Figure 7
depicts topologies, number of nodes, number of required links, area of the traffic
controller, area of the switch module, area of the crossbar, chip occupation and
area reduction in percentage. The crossbar area is the summation of the area
of the traffic controller and switch module. As Figure 7 shows, the area of the
network is highly dependent on the number of nodes and links. The partial
crossbar network requires on average 61% less area, compared to the full crossbar.
The same traffic controller is used for both cases. The area of our network is not
only dependent on the number of nodes that determine its size but also on the
network topology. It is observed that the higher area reduction is obtained as
the network size increases. This is due to the fact that the average number of
incoming and outgoing links per node does not increase as the number of nodes
increases.

Controller Switch Combined
Full 148 340 488 5.3

Partial 148 143 291 3.1
Full 148 340 488 5.3

Partial 148 107 255 2.7
Full 196 476 672 7.2

Partial 196 142 338 3.6
Full 211 544 755 8.1

Partial 211 124 335 3.6
Full 315 1224 1539 16.6

Partial 315 231 546 5.9
Full 387 1632 2019 21.8

Partial 387 328 715 7.7
Full 387 1632 2019 21.8

Partial 387 200 587 6.3
Full 493 2448 2941 31.7

Partial 493 291 784 8.4
Full 798 6800 7598 81.9

Partial 798 587 1385 14.9
MMS 25 47 81.8

VOPD 16 20 73.3

MWD 12 13 70.9

MPEG4 12 26 64.6

PIP 8 8 55.6

 802.11 MAC 9 20 64.5

H.263 enc 7 14 49.7

MP3 enc 5 10 47.7

TCP Checksum 5 14 40.4

Chip area(%)  Reduction(%)Area (#slices)Topologies #nodes #links Type

Fig. 7. Experiments on topologies of practical applications

Second, actual systems have been implemented in order to measure the per-
formance and the area of the presented network on a prototype board. We con-
sidered an MJPEG encoder application that operates on a single image with size
128 × 128 pixels. We experimented with different MJPEG task graph topolo-
gies. We used the ESPAM tool chain and prototyped a multiprocessor MJPEG
system onto the ADM-XPL FPGA board[21]. Figure 8 depicts the experimental
results. We have experimented with the three alternative task graphs in Fig-
ure 2(3),(5),(6), where our network provided the on-demand topologies. The
implemented system is homogeneous in that each node contains a MicroBlaze
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processor. It can be observed that the topology plays an important role for the
system performance. The partial crossbar network requires on average 48% less
area, compared to the full crossbar. The system cycles decrease as the number
of processors increase and the performance of the partial crossbar is comparable
to the full crossbar. The operating clock frequency varies with the network con-
figurations. As an example, the network component for Figure 2(3) is operated
at 119MHz and the data width is 32-bit. Therefore, 3.8Gbps of bandwidth per
link is available in the standalone network. The network component is not a
bottleneck for the system performance, since the embedded block RAMs (used
for FIFOs) operate at 100MHz.

(1) MJPEG case study

(2) Area and performance
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Performance Performance Performance
System cycles Controller Switch Combined System cycles ControllerSwitch Combined System cycles ControllerSwitch Combined

Full 61104796 107 272 379 18580930 148 340 488 15940149 176 408 584
Partial 60862613 107 73 180 18580768 148 76 224 15940023 176 186 362
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5 Conclusions

In this paper, we presented an actual design and implementation of novel par-
tial crossbar interconnects designed for reconfigurable hardware. We showed that
on-demand interconnects can be implemented using parameterized multiplexor
arrays. The network was integrated in the ESPAM tool and multiprocessors
interconnected with our networks were implemented on a prototype board. We
showed that the performance of our partial crossbar-based network is comparable
to the performance of a conventional crossbar. The presented network efficiently
utilizes the available bandwidth. Moreover, our network provides a single hop
communication latency and the network area is significantly reduced compared
to a full crossbar.
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