
Dynamic Fault Tolerance Through Resource Pooling
Christian M. Fuchs� , Nadia M. Murilloy, Aske Plaat� , Erik van der Kouwe� , and Todor P. Stefanov�

� Leiden Institute for Advanced Computer ScienceyLeiden Observatory;
Leiden University, The Netherlands email: christian.fuchs@dependable.space

Abstract—Miniaturized satellites are currently not considered
suitable for critical, high-priority, and complex multi-phased
missions, due to their low reliability. As hardware-side fault
tolerance (FT) solutions designed for larger spacecraft can not
be adopted aboard very small satellites due to budget, energy, and
size constraints, we developed a hybrid FT-approach based upon
only COTS components, commodity processor cores, library IP,
and standard software. This approach facilitates fault detection,
isolation, and recovery in software, and utilizes fault-coverage
techniques across the embedded stack within a multiprocessor
system-on-chip (MPSoC). This allows our FPGA-based proof-
of-concept implementation to deliver strong fault-coverage even
for missions with a long duration, but also to adapt to varying
performance requirements during the mission. The operator of a
spacecraft utilizing this approach can de�ne performance pro�les,
which allow an on-board computer (OBC) to trade between
processing capacity, fault coverage, and energy consumption using
simple heuristics. The software-side FT approach developed also
offers advantages if deployed aboard larger spacecraft through
spare resource pooling, enabling an OBC to more ef�ciently handle
permanent faults. This FT approach in part mimics a critical
biological system's ability to tolerate faults, adapt to permanent
failure, and enables graceful aging of an MPSoC.

I. I NTRODUCTION

Satellite miniaturization has enabled a broad variety of
scienti�c and commercial space missions, which previously
were technically infeasible, impractical or simply uneconom-
ical. However, very small satellites such as nanosatellites and
sometimes even microsatellites (� 100kg) are currently not con-
sidered suitable for critical and complex multi-phased missions,
as well as high-priority science applications, due to their low
reliability. On-board computer (OBC) and related electronics
constitute a large part of such a spacecraft's mass, yet these
components lack often even basic fault tolerance (FT) func-
tionality. Due to budget, energy, mass and volume restrictions,
existing FT solutions originally developed for larger spacecraft
can in general not be adopted. Nanosatellite OBCs also have
to cope with drastically varying workload throughout a mis-
sion, which traditional FT solutions can not handle ef�ciently.
Therefore, we developed a novel FT approach offering strong
fault coverage, which was implemented fully using only a single
FPGA with commodity processor designs, and library IP.

This architecture can protect generic applications with an
arbitrary structure, can adapt to varying performance require-
ments in longer multi-phased missions, and can adapt to a
shrinking pool of processing capacity similar to a biological
system, ef�ciently handling aging effects and accumulating per-
manent faults. As major parts of our approach are implemented
in or directly controlled by software, a spacecraft operator
can con�gure the OBC to deliver the desired combination of
performance, robustness, functionality, or to meet a speci�c
power budget. To offer strong fault detection, isolation and
recovery (FDIR), we combine software-side fault detection and
mitigation and con�guration scrubbing with various other FT

978-1-5386-7753-7/18/$31.00c 2018 IEEE

measures across the embedded stack, enabling strong, low-
cost FT with commodity hardware, while exploiting FPGA
recon�guration to mitigate permanent faults.

The next two sections contain background information, and
a discussion of related work. In Section IV a brief overview
over the three stages of our approach is provided. Our proof-
of-concept OBC-design is described in Section V, with the
functionality of each FT-stage outlined in the subsequent sec-
tions. How this approach can improve ef�ciency of OBC in
spacecraft of all weight classes, spare resource utilization and
fault coverage, is discussed in Section IX. Section X, introduces
performance pro�lesallowing a system-on-chips (SoC) to trade
compute performance for energy ef�ciency, robustness, and
functionality at runtime. Our approach provides advantages to
spacecraft of all weight classes, and can be implemented also
within distributed systems, for which further applications and
improvements are discussed in Section XI.

Contributions:

� An architecture enabling software-side fault detection and
mitigation for commercial-off-the-shelf (COTS) MPSoCs and
FPGA-based systems, implementing the full FDIR cycle and
combining FT measures across the embedded stack.

� A practical solution to safely repurpose redundancies in an
OBC by exploiting mixed criticality, allowing spare resource
pooling, thereby increasing fault coverage capacity and re-
ducing the need for over-provisioning.

� Functionality allowing an OBC to deliver a runtime con-
�gurable level of performance by dynamically trading fault
coverage, processing capacity, and energy consumption.

II. BACKGROUND

Tasks which would be handled by multiple dedicated payload
and subsystem processing systems aboard a larger satellite, are
usually handled by just one COTS-based command & data han-
dling system in nanosatellites. These utilize mobile-market and
embedded SoCs with one or more cores (MPSoCs), SDSoCs
[1], or FPGAs [2]. Due to manufacturing in �ne technology
nodes, such chips offer superior ef�ciency and performance as
compared to space-grade OBC designs, but are also non-FT1.
These SoCs consist mostly of extensively tested and optimized
standard logic, reused, supported, and evolved continuously
by several industries and used daily by countless developers.
In contrast, most radiation-hard-by-design (RHBD) processors
cores, and SoCs manufactured in more robust manufacturing
processed (RHBM) are crafted almost artisanally at high cost by
few designers with little commercial stimulus for optimization.
Their cost, energy consumption and mass often exceed such a
spacecraft's global power budget, total mass, and almost always
its overall project budget. Therefore, we developed a hybrid
FT-approach based upon only COTS components, library IP,

1Exceptions to this rule received uncommonly abundant funding, are tech-
nology demonstration for FT concepts, or custom fail-over designs.

and existing software, instead of artisanal processor designs and
proprietary instruction set architectures.

Existing hardware voting based FT solutions are design-
time static and can tolerate a �xed number of failures within
a voter setup, which can not be changed at runtime. Critical
biological systems instead consist of independent, cooperating
cells or clusters of similar functionality with a high degree
of inherent redundancy and self-healing capabilities. Damage
to a single cell is compensated by the remaining cells, and a
complete breakdown of functionality occurs only due severe
damage to the system at a broader scale. Our approach combines
various FT techniques to mimic such behavior at the logic
and SoC level, through FPGA recon�guration and software-
controlled thread migration within a globally share pool of
processor cores, enabling graceful aging. The replication level,
hence fault coverage capabilities, and various other parameters
can be adjusted at runtime, while spare capacity can be reused
to run background and lower-criticality applications instead of
remaining idle.

In low feature-size chips, the energy threshold above which
highly charged particles can induce faults in digital logic (single
event effects - SEE) decreases, while the ratio of events inducing
multi-bit upsets (MBU), and the likelihood of permanent faults
in logic and memory increases. Increased fault coverage of
hardware-FT based concepts on such chips through additional
FT-circuitry therefore implies diminishing returns, preventing
an application of traditional RHBD/RHBM concepts [3], [4]
to mobile-market SoCs. Total ionizing dose, however, becomes
less of a problem with �ner technology nodes, and recent gen-
eration FPGAs also show decent latch-up performance [5], [6].
FPGAs have drastically improved FDIR potential [7] despite
being more vulnerable to transients, as radiation-induced upsets
in the running con�guration can be corrected via recon�guration
with differently routed con�guration variants [8].

III. R ELATED WORK

Fine-grained, non-invasive, and scalable fault detection in
FPGA fabric is challenging, and subject of ongoing research
[9], [10], and often is simply ignored [11]. Most FPGA-based
FT-concepts rely on error scrubbing, which has scalability
limitations for complex logic [9], [12], unless special-purpose
of�ine testing is utilized [13]. In the future, memory-based
recon�gurable logic devices (MRLDs) [14] may allow pro-
grammed logic to be protected like conventional memory, and
thus would drastically simplify fault detection. If manufactured
using phase/polarity-change memory instead of charge-based
technologies, MRLDs could further increase robustness, but
this technology is only today being productized. In this paper,
we thus present an approach to general-purpose FT computing
that compensates for faults across the embedded stack and
through partial FPGA recon�guration. We realize �ne-grained
fault detection at the software level, and perform scrubbing only
as an auxiliary measure in the background to increase robustness
of our SRAM-based FPGA platform.

Hardware voting today is used exclusively for protecting
simpler FT processor cores at the microcontroller level [4],
[15], and for accelerators [16] supporting application code with
tightly constrained program structure. Hence, the application of

this hardware-centered approach has become a technical dead-
end for protecting widely used application processor designs
intended for general-purpose computing, while accelerators by
themselves would only assure FT for computation and data
of�oaded to such a device. In our research, however, we seek to
deliver strong fault coverage for general purpose computing, and
aim to ef�ciently protect even larger and more complex modern
application processors, such as those widely used in mobile
market and embedded devices. Mobile market processors can
run at gigahertz clock rates, for which hardware-side voting
or instruction-level lockstep are non-trivial, hence, hardware
voting approaches have been implemented only at lower clock
rates [15], [17], [18]. For comparison, today's highly optimized
COTS library IP achieves clock speeds comparable to traditional
FT-processor designs on ASIC even on an FPGA, without
requiring manual �ne-tuning. We instead utilize software-driven
coarse-grain lockstep to achieve fault detection, and maintain
consistency between cores, requiring no vast arrays of synchro-
nized voters, while utilizing COTS IP.

Thread migration has been shown to be a powerful tool
for assuring FT, but prior research ignores fault detection, and
imposed tight constraints on an application's type and structure
(e.g., video streaming and image processing [11]). However, to
implement sophisticated and ef�cient thread migration, fault-
detection must be facilitated at the OS or application-level
without falling back to design space exploration. Coarse-grain
lockstep of weakly coupled cores can do just that, and in the past
has already been used for high availability, non-stop service, and
error resilience concepts. However, in prior research, faults are
usually assumed to be isolated, side effect free and local to an
individual application thread [19] or transient [20], [21], and
entail high performance [22] or resource overhead [23], [24].
More advanced proof-of-concepts [20], [25], however, attempt
to address these limitations, and even show a modest perfor-
mance overhead between 3% and 25%, but utilize checkpoint &
rollback or restart mechanics [20], which make them unsuitable
for spacecraft command & control applications.

IV. SYSTEM OVERVIEW & REQUIREMENTS

Coarse-grain lockstep is one among several measures used
in our hybrid FT approach to facilitate forward-error-correction
(FEC) and deliver strong fault coverage. Our approach consists
of three fault mitigation stages:

Stage 1 utilizes coarse-grain lockstep for fault detection,
to generate a distributed majority decision between proces-
sor cores. Stage 1 utilizes time-triggered checkpoints to au-
tonomously resolved faults corrupting the state of applications,
and facilitate re-synchronization and thread migration in case
of repeated faults, enabling strongshort-term fault coverage.

Stage 2assures the integrity of programmed logic by inter-
facing with Stage 1 and functionality such as Xilinx SEM. Its
objective is to assure and recover the integrity of processor cores
and their immediate peripheral IP through FPGA recon�gura-
tion, therebycounteracting resource exhaustion.

Stage 3handles resource exhaustion and re-allocates process-
ing time within the system tomaintain stability of critical
applications and functionality in a degraded system.

The entire Stage1-3 form a closed cycle, which implements
FDIR in several steps as depicted in Figure 1. Additional

Tile Supervisor

Tile Bootup &
App Init

State Update

Checkpoint

Synchonization

Thread
Execution

Read Majority
Decision

Tile Fault
Counter

Tile (Partial)
Reconfig.

Update
Tile

Spare Tile
Activation

Faulty Tile
Recovery

Alternative
Variants

Update
Thread

Mapping
Full FPGA
Reconfig.

Thread
Migration

&

 <= limit

Success

> limit

Fig. 1: Stage 1 (white) implements a continuous checking loop,
which facilitates fault coverage through thread-level synchro-
nization and migration between tiles. Stage 2 (grey) can recover
faulty tiles using recon�guration. In case of resource exhaustion,
Stage 3 adapts the thread allocation to best utilize the remaining
processing capacity.

implementation details on Stage 1's thread-level coarse-grain
lockstep, beyond what is brie�y described in Section VI is
available in [26].

In low-end nanosatellites (e.g. 1U CubeSats), Stages 1+ 3
can be implemented separately on a generic MPSoC, providing
a level of system-level robustness which otherwise would be
only be achievable through proprietary hardware-FT solutions.
For all other spacecraft, we complement this functionality
with a tiled MPSoC architecture for FPGA as outlined in the
next section, which allows the system to recover defective
tiles through recon�guration, and enables it to more ef�ciently
handle permanent faults.

V. A DYNAMIC TILED MPSOC ARCHITECTURE

Figure 2 depicts a simpli�ed and publicly reproducible
version of our MPSoC design. It follows a tiled architecture
with each tile containing a processor core, local interconnect,
and peripheral IP-cores and interfaces. A debug bridge allows
supervisor access to each tile, e.g., to perform introspection
for testing purposes or to trigger a reset. The only globally
shared resources are a set of redundant main memory controllers
and non-volatile (nv) data storage. Code in nv-memory can be
shared between tiles, while widely used DDR and SDRAM
controllers are too large to instantiate for each tile, and would
require an excessive number of I/O-pins. Hence, our MPSoC
architecture consists of isolated SoC-compartments accessing
shared main memory and operating system code, in contrast
to the conventional MPSoC designs, where cores share most
infrastructure and peripherals.

Our main platform is the commercial ARM Cortex-A53 ap-
plication processor core, which was chosen due to its �exibility,
wide-spread use in mobile-market MPSoCs and scalability. The
Xilinx Zynq Ultrascale+ SDSoC, also contains four discrete
A53 cores and is foreseen to launch in one of our main target
missions. The design outlined in this paper was facilitated using
Xilinx/Microblaze IP, and Microblaze-speci�c IP is replaced

with ARM equivalents. These are freely available as part of
the Xilinx IP-Library, and due to its maturity, �exibility, broad
OS support (for Linux, RTEMS, FreeRTOS), and are widely
availability. Hence both Microblaze and Cortex-A53 cores are
both solid choices for low-cost nanosatellite applications, with
a Cortex-A53 cores offering better absolute performance.

Each tile's checkpoint-related information is stored in a
dedicated on-chip dual-port BRAM memory (validation mem-
ory) and exposed to other tiles, to allow low-latency informa-
tion exchange between tiles without requiring inter-tile cache-
coherence or access to main memory. Validation memory is
writable through the tile-local interconnect, and is read-only
accessible by other tiles.

The address space layout on each tile, including mapping
of tile-private peripherals and interfaces are identical. Each tile
can access its own main memory address segment, which is
mapped to the same address range on all tiles. Additionally,
main memory in its entirety (all memory segments) is read-
only accessible system wide, to simplify state synchronization
between tiles.

All tiles are equipped with the same interface con�guration,
with controllers being mapped to identical locations in address
ranges. Hence, the address space layout is uniform across all
tiles in the system. Therefore, application code and data struc-
tures are portable between tiles, simplifying thread migration
drastically, and allowing direct re-use of many data structures.
Full replication of all interfaces across all tiles is not required,
but simpli�es thread assignment and development manpower.
Tiles can be made aware of varying interface con�gurations
per tile to reduce the MPSoC's footprint, fault potential, and
I/O pin count, but this is beyond the scope of this paper.

Caches, on-chip BRAM, and globally-shared memories are
ECC protected. Xilinx Library IP already offers SECDED
coding for on-chip BRAM and Microblaze caches, whereas
most recent Cortex cores foresee stronger ECC for caches. Main
memory is conventional DDRx-SDRAM with ECC, whereas
radiation-tolerant FeRAM [27] is used as nv-memory for oper-
ating system data and code, and COTS MLC-NAND-Flash for
data storage.

For nanosatellite missions to LEO, a variety of DDR memory
controllers with ECC support are available as part of stan-
dard vendor IP-libraries. For more deep-space and long-term
missions, stronger erasure coding should be used due to the
increased impact of SEEs and higher likelihood of MBU in
high-density SDRAM. Relevant well tested and proven con-
trollers implementing Reed-Solomon block coding are available
commercially, or can be assembled from generic ECC-IP and
standard controller cores2.

ECC-error syndromes generated within a tile, are handled
locally. Syndromes in validation memory generated due to
access by other tiles during a checkpoint are deferred and
processed after the checkpoint. Syndromes from globally shared
controllers can either be handled by the supervisor, or passed
through to all tiles and masked based on the related address;
this is a design decision. For simplicity, ECC syndromes in main
memory are passed on to the supervisor in our proof-of-concept.

2all necessary cores are available open-source e.g. from OpenCores

We implemented this MPSoC successfully on current genera-
tion Xilinx Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 tiles.
Tiles can be placed on separate con�guration partitions to enable
partial recon�guration of individual tiles, without affecting the
rest of the system. A positive side effect of such �oor planning
is a strong spatial separation of tile logic, thereby reducing the
likelihood of MBUs corrupting more than a single tile. Further
information on this implementation including �oor planning,
and a detailed utilization report can be found in [28].

In [28], we also conducted a series of benchmarks of our
lockstep implementation to estimate the performance impact of
our approach. As the overhead of software-side FT measures
has been shown in literature to vary broadly between very low
3% and extreme 25%, we intentionally chose extreme param-
eters for our benchmark application and drastically increased
the checkpoint frequency to 20hz. For comparison, based on
radiation testing data for Xilinx Ultrascale FPGAs, we would
today consider checkpoint periods of once per second to once
ever 5 seconds reasonable in low-earth orbit. Note that we
intentionally chose to carry out benchmarking in user-land, not
within our RTOS/RTEMS-based implementation running bare-
metal. Our approach is interrupt and context-switch heavy, and
utilizes a considerable amount of thread-management calls. In
user-land, such operations imply one or multiple system calls
in addition to the actually executed function. This increases the
computational cost of such operations drastically as compared to
our actual bare-metal implementation, and was done on purpose
to add an additional margin for overhead, to achieve an upper
bound of our approach's performance cost.

We deployed erasure coding based con�guration error miti-
gation using Xilinx Soft-Error-Mitigation for Ultrascale FPGAs
(SEM) and supervisor-side scrubbing safeguard logic integrity.
However, SEM and scrubbing only address speci�c faults in
certain parts of an FPGA, and leave large parts of logic
unprotected. Therefore, the software-side functionality outlined
in the next sections closes this protective gap.

During a checkpoint, the state of a all threads mapped to
a tile is compared and synchronized with its siblings. To do
so, the checkpoint handler executes an application-provided
callback function for all pending threads, producing checksums
generated from thread-private data structures. Checksums are
stored in the tile's local validation memory and thereby exposed
to the other tiles, and then compared with the other tiles in the
system. In case of disagreement, the tile signals disagreement
with that sibling and executes synchronization callbacks for all
affected threads. If necessary, it then also executes relevant
update callbacks and then resumes application execution. We
published an in depth description of these mechanics as well as
benchmark results for an astronomical application in [26].

VI. STAGE 1: SHORT-TERM FAULT M ITIGATION

The objective of Stage 1 is to detect and correct faults within
a tile, and assure a consistent system state through checkpoint-
based FEC. It is implemented as sets of tiles running two
or more copies of application threads (siblings) in lock step.
Checkpoints interrupt execution, facilitating the lockstep and
enforcing synchronization, allowing thread assignment within
the system to be adjusted if required, as depicted in Figure 1.

MCTLR

MCTLR

Debug
Bridge MMU

X

Main
Memory

Memory
Scrubber

Non-Volatile
Memory

X

Validation
Memory

Memory
Scrubber

Core IRQ

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Inter
faces

Off-Chip
Supervisor

RO

Fig. 2: A high-level topology diagram of our tiled MPSoC
architecture with memory controllers highlighted in yellow, and
interconnect-logic in blue. A debug-bridge on each tile allows
supervisor access. Access to each tile's validation memory is
possible read-only through the global interconnect.

This approach enables us to utilize application intrinsics to
assess the health state of the system without requiring in-depth
knowledge about the application code. The supervisor just reads
out the results of the tiles' decentralized consistency decision.
Threads can be scheduled and executed in an arbitrary order
between two checkpoints, as long as their state is equivalent
upon the next checkpoint.

We avoid thread synchronization issues due to invasive lock-
step mechanics [25] by merely reusing existing OS functionality
without breaking existing ABI contracts. Therefore, we can con-
tinue relying upon pre-existing synchronization mechanics such
as POSIX cancellation points3 and their bare-metal equivalents
(e.g.,RTEMS_NO_PREEMPTin RTEMS's Classic API if used
instead ofnewlib or the POSIX API). Stage 1 can even deliver
real-time guarantees, and the tightness of the RT guarantees
depends upon the time required to execute application call-
backs. In our RTEMS/POSIX-based implementation, we utilize
priority-based, preemptive scheduling with timeslicing, allowing
threads to delay checkpoints until they reach a viable state for
checksum comparison.

Checkpoints are time triggered, but can also be induced by the
supervisor through an interrupt e.g. to signal that new threads
have been assigned. Thus, the OS only has to support interrupts,
timers, and a multi-threading capable scheduler. To the best of
our knowledge, such functionality is available in all widely used
RT- and general purpose OS implementations.

A fault resolved during a checkpoint may cause the affected
tile to emit incorrect data through I/O interfaces, an inherent
limitation to coarse-grain lockstep [20]. For many very small
nanosatellite missions this is acceptable, as the use of COTS
components requires incorrect I/O to be sanitized anyway. In
contrast, larger spacecraft already utilize interface replications
or even voting, usually requiring considerable effort at the
interface level to facilitate this replication. Our approach com-
bined with the previously described MPSoC architecture inher-

3e.g. sleep, yield, pause, for further details, see IEEE Std 1003.1-2017 p517

ently provides interface-level replications by design, no longer
requiring extra measures to be taken. Additional protection
is therefore only needed for space applications where non-
propagation of incorrect I/O is required but interface replica-
tion is undesirable, i.e., due to PCB-space constraints aboard
CubeSats or unchangeable subsystem requirements. For packet-
based interfaces such as Spacewire, AFDX, CAN, or Ethernet,
no hardware-side solution is necessary, as data duplication can
be managed more ef�ciently at OSI layer 2+. This approach
today is widely used as part of real-time capable FT-networking
[29]. Other interfaces like I2C and SPI allow a simple majority
decision per I/O line, which can be implemented on-chip
through FIFO buffers, as the remaining on-tile interfaces have
low pin count and run at relatively low clock frequencies.

VII. STAGE 2: TILE REPAIR & RECOVERY

Stage 1 can not reclaim defective tiles, eventually resulting
in resource exhaustion. Therefore, in this stage, we recover
defective tiles through recon�guration to counter transients in
FPGA fabric. To do so, the supervisor will �rst attempt to
recover a tile using partial recon�guration. Afterwards, the
supervisor validates the relevant partitions to detect permanent
damage to the FPGA (well described in, e.g., [30]), and executes
self-test functionality on the tile to detect faults in the tile's
main memory segment and peripherals. If unsuccessful, the
supervisor can repeat this procedure with differently routed
con�guration variants, potentially avoiding or repurposing per-
manently defective logic.

As tiles are placed along partition borders in our MPSoC
architecture, tiles can be recovered in the background without
interrupting the rest of the system. The supervisor can also
attempt full recon�guration implying a full reboot of all tiles.
Further details on recon�guration and error scrubbing with a
microcontroller-based proof-of-concept implementation for a
nanosatellite are available in [31]. If both partial- and full-
recon�guration are unsuccessful and all spare resources have
been exhausted, Stage 3 is utilized to assure a stable system
core to enable operator intervention.

VIII. S TAGE 3: APPLIED M IXED CRITICALITY

Stage 3 autonomously maintains system stability of an aged
or degraded OBC. When considering a miniaturized satellite's
OBC, we can differentiate individual applications or parts of
�ight software by criticality. At the very least, we will �nd
software essential to a satellite's operation, e.g. platform control
and commandeering, as well as other applications of various
levels of lower criticality. If the previous stages no longer have
enough spare processing capacity or tiles to compensate the
loss of a tile, this stage utilizes thread-level mixed criticality to
assure stability of core OBC functions. To do so, it can sacri�ce
lower criticality tasks in favor of providing compute resources
to reach the desired replication level for critical threads.

Dependability for higher-criticality threads ef�ciently can be
maintained by reducing compute performance or reliability of
lower-criticality applications. Lower-criticality tasks may be
executed less frequently or on fewer tiles, thereby reducing
functionality or fault coverage for these tasks, retaining re-
sources for higher-criticality threads. This decision is taken
autonomously, and the operator can then de�ne a more resource

conserving satellite operation schedule at a spacecraft level, e.g.,
sacri�ce link capacity, or on-board storage space, to make best
use of the OBC in its degraded state.

IX. SPARE RESOURCEPOOLING

This FT approach enables FT even for very small satellites,
but provides bene�ts for spacecraft of all weight classes. To in-
crease fault coverage in traditional hardware voting FT systems,
additional cores and spares must be provisioned, while compute
performance can be increased by utilizing faster processors
cores and adding more hardware voting instances. This is done
at design time, requiring over-provisioning, and can not be
changed throughout a mission. Cores are hardwired to a speci�c
instance, therefore, an instance will degrade once its spares are
exhausted, even if idle spares were available elsewhere.

In contrast, our approach is not based on hardwired voting
instances, as applications are mapped to a global pool of tiles
with a given replication level. In principle, our approach does
utilize spare resources too, but spare tiles do not differ from
conventional tiles in any way. Hence, spare tiles do not have to
remain idle, and unused processor capacity becomes a spare
resource that can be re-purposed. Thus, the fault coverage
capabilities of the system are no longer dependent on the
distribution and location of permanent faults within the system,
increasing overall robustness.

As applications can be migrated between tiles, low critical-
ity threads and background tasks can be assigned to utilize
free spare capacity. These lower-criticality threads can be de-
scheduled in favor of higher-criticality applications, if needed.
Spare capacity can also be used to increase FT for threads,
which usually would be executed without majority voting or
separately due to resource constraints. We can distribute a
defective tile's workload to other tiles, to best take advantage
of the remaining system resources.

The best target tiles and to-be-evicted threads are not deter-
mined ad-hoc, but before a fault actually occurs, to reduce the
time spent in a checkpoint. We can maintain one replacement
strategy for every tile, due to the low tile and thread counts
common in space applications today4. Subsequent to a fault,
these strategies are recomputed to consider the now reduced
processing capacity of the system. As thread assignments are not
controlled by the supervisor, but only adjusted, threads may exit,
fork or create new child threads. Therefore, an update to adjust
these strategies to the currently running threads is also triggered
based on the fault counter mechanics of Stage 2. Even if a fault
occurs immediately after the current checkpoint, these strategies
will only be needed at the next checkpoint. Therefore, this is a
background operation which can be handled by the supervisor,
allowing the OBC to resume processing immediately.

Figure 3 depicts a six tile MPSoC running four applications
of different criticality. A fault has occurred in tile 3, which has
been marked as permanently defective, and there are multiple
recovery solutions:

� Affected threads could be relocated to a tile running lower-
criticality applications, replacing them as depicted in Figure
3a. For example, the threads previously run on tile 3 can be

4Manycore systems would allow too many combinations, but they will not
be applied to on-board data handling in the foreseeable future.

Tiles have direct read-only access to another tile's memory
segment to allow rapid thread migration and allow real-time
capacity. However, direct access to shared main memory is not
necessary to facilitate Stages 1-3. The data exchange required
to facilitate thread migration could very well be implemented
using IPC or through sockets, when considering complex net-
worked architectures. In distributed systems, our approach could
thus manage threads across multiple nodes sharing data when
required, at the cost of higher latency.

We developed this approach to guarantee FT for opaque
threaded applications on POSIX-compatible RTOS and general
purpose operating systems such as RTEMS and Linux.
However, the same functionality can also be applied to
virtualized, voted systems and to runtime based platforms. It
would be very well imaginable to implement Stage 1 within
MicroPython or a hypervisor, and instead vote on Python
scripts or virtual machines.

XII. C ONCLUSIONS

To the best of our knowledge, the on-board computer
(OBC) design presented in this paper is the �rst practical,
non-proprietary, and affordable fault tolerance (FT) approach
suitable even for very small spacecraft. It offers strong fault
coverage, using just commercial-off-the-shelf hardware, library
IP, and commodity processor cores, requiring only a single
FPGA and a microcontroller based supervisor. The software-
side FT approach outlined in Stage 1 is non-invasive to appli-
cations and the OS, therefore existing software can be reused
and extended easily, while retaining real-time capabilities. The
research presented in this paper covers the entire FDIR loop,
and does not ignore or make unrealistic assumptions regarding
fault detection.

Our approach enables the re-use of existing development
tools and IP designed for mass-produced mobile-market appli-
cations, taking an important step towards departing from the
artisanal development approach in today's space computing.
Instead of requiring new technologies to be re-invented con-
stantly and maintained at high cost, the FT mechanics presented
in this paper are �exible, which can adapt and grow with
the development of computer and processor technology. We
implemented this design on recent-generation Xilinx Virtex
and Zynq/Kintex Ultrascale+ FPGAs with less than 2W power
consumption (6 tiles on Kintex XCKU5P) and validated the
approach through fault injection.

We do not just enable FT for a satellite class which today
is considered unreliable, but also enhance the fault coverage
capabilities of OBCs in larger spacecraft, and other applica-
tions with similar constraints and fault pro�le. Our approach
facilitates majority voting through dynamic, replicated thread
groups mapped to the available processor cores dynamically
at runtime, instead of hardwiring them. Thus, all processing
capacity, including spares, are part of a shared resource pool.
Therefore, spare resources can be used more ef�ciently, and
allowing idle compute capacity to be used productively until it
is needed for fault coverage. An OBC running the presented
hybrid hardware-software FT approach can adapt to varying
mission requirements regarding adjusting the OBC transparently
at run-time, trading processing capacity for reduced energy
consumption or increased fault coverage.

XIII. A CKNOWLEDGEMENTS
This approach was developed for a 4-year European Space Agency (ESA) NPI

project, and we are implementing a prototype jointly with two industrial partners. We
would like to thank Gianluca Furano, Giorgio Magistrati, Antonios Tavoularis and Kostas
Marinis at ESTEC/TEC-EDD for their support and feedback. We thank ARM Ltd. and
Softbank for making available the relevant processor and infrastructure IP. N.M. Murillo
acknowledges funding through the European Union A-ERC grant 291141 CHEMPLAN,
by the Netherlands Research School for Astronomy (NOVA), and a Royal Netherlands
Academy of Arts and Sciences (KNAW) professor prize.

REFERENCES

[1] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip technology in next-
generation instruments avionics for space exploration,” inIEEE VLSI-SoC, revised
paper. Springer, 2016.

[2] F. Kastensmidt and P. Rech,FPGAs and Parallel Architectures for Aerospace Applica-
tions: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[3] K. Reick et al., “FT design of the IBM Power6 microprocessor,”IEEE micro, 2008.
[4] M. Hijorth et al., “GR740: Rad-hard quad-core LEON4FT system-on-chip,” inEu-

rospace DASIA, 2015.
[5] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-

2015,” inNASA NEPP/ETW, 2015.
[6] L. A. Tambaraet al., “Heavy ions induced single event upsets testing of the 28 nm xilinx

zynq-7000 all programmable soc,” inIEEE REDW, 2015.
[7] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and

beyond,”Proceedings of the IEEE, vol. 103, no. 3, 2015.
[8] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically recon�gurable sram-based

FPGAs,” inNASA/ESA AHS. IEEE, 2017.
[9] M. Ebrahimi et al., “Low-cost multiple bit upset correction in sram-based FPGA

con�guration frames,”IEEE Transactions on VLSI Systems, 2016.
[10] F. Rittner, M. Ristic, R. Glein, and A. Heuberger, “Automated test procedure to detect

permanent faults inside sram-based FPGAs,” inNASA/ESA AHS. IEEE, 2017.
[11] U. Martinez-Corral and K. Basterretxea, “A fully con�gurable and scalable neural

coprocessor ip for soc implementations of machine learning applications,” inNASA/ESA
AHS. IEEE, 2017.

[12] A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “A hybrid approach to FPGA
con�guration scrubbing,”IEEE Transactions on Nuclear Science, 2017.

[13] F. Siegleet al., “Availability analysis for satellite data processing systems based on
SRAM FPGAs,”IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 3,
2016.

[14] S. Wanget al., “Testing of interconnect defects in memory based recon�gurable logic
device (MRLD),” in IEEE ATS, 2017.

[15] X. Iturbeet al., “A triple core lock-step ARM Cortex-R5 processor for safety-critical and
ultra-reliable applications,” inIEEE DSN, 2016.

[16] A. Guerrieri et al., “FPGA based multithreading for on-board processing,” inSpacE
FPGA Users Workshop, 2018, eSA.

[17] R. DeCourseyet al., “Non-radiation hardened microprocessors in space-based remote
sensing systems,” inInt. Society for Optics and Photonics: Remote Sensing, 2006.

[18] M. Pigno et al., “A testbench for validation of DST fault-tolerant architectures on
PowerPC G4 COTS microprocessors,” inEurospace DASIA, 2011.

[19] A. Höller et al., “Software-based fault recovery via adaptive diversity for COTS multi-
core processors,” 2015, arXiv:1511.03528.

[20] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. dissertation,
Dresden University, 2014.

[21] P. Munket al., “Toward a fault-tolerance framework for COTS many-core systems,” in
IEEE EDCC, 2015.

[22] A. D. Santangelo, “An open source space hypervisor for small satellites,” inAIAA
SPACE, 2013.

[23] E. Missimer, R. West, and Y. Li, “Distributed real-time fault tolerance on a virtualized
multi-core system,”Euromicro ECRTS, OSPERT, 2014.

[24] Z. Al-bayati et al., “Fault-tolerant scheduling of multicore mixed-criticality systems
under permanent failures,” inIEEE DFT, 2016.

[25] U. Kretzschmaret al., “Synchronization of faulty processors in coarse-grained TMR
protected partially recon�gurable FPGAs,”Elsevier RESS, 2016.

[26] C. M. Fuchset al., “Bringing fault-tolerant gigahertz-computing to space: A multi-stage
software-side fault-tolerance approach for miniaturized spacecraft,” inIEEE ATS, 2017.

[27] Z. Zhanget al., “Single event effects in COTS ferroelectric RAM technologies,” in
REDW. IEEE, 2015.

[28] C. M. Fuchset al., “Preliminary Performance Estimations and Benchmark Results for
a Software-based Fault-Tolerance Approach aboard Miniaturized Satellite Computers,”
2017, arXiv:1706.02086, supplement.

[29] Aeronautical Radio, INC,ARINC Speci�cation 664: Avionics Full Duplex Switched
Ethernet (AFDX) Network, 2005.

[30] N. T. H. Nguyen, “Repairing FPGA con�guration memory errors using dynamic partial
recon�guration,” Ph.D. dissertation, The University of New South Wales, 2017.

[31] C. M. Fuchset al., “Enhancing nanosatellite dependability through autonomous chip-
level debug capabilities,” inSpringer ARCS, 2016.

[32] A. K. Singh, M. Sha�que, A. Kumar, and J. Henkel, “Mapping on multi/many-core
systems: survey of current and emerging trends,” inDAC. ACM, 2013.

[33] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic task mapping in noc-
based heterogeneous mpsocs,” inRSP. IEEE, 2007.

[34] M. Kochiyamaet al., “Radiation effects in silicon-on-insulator transistors with back-
gate control method fabricated with OKI semiconductor 0.20� m FD-SOI technology.”
Elsevier, 2011.

[35] J. Zhou, H. Li, T. Wang, and X. Li, “Loft: A low-overhead fault-tolerant routing scheme
for 3D NoCs,”Integration, the VLSI Journal, 2016.

