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Abstract—In this paper, we study the problem of exploiting
parallelism in a hard real-time streaming application mod-
eled as an acyclic Synchronous Data Flow (SDF) graph and
scheduled on a heterogeneous Multi-Processor System-on-Chip
(MPSoC) platform to alleviate the capacity fragmentation due
to partitioned scheduling algorithms and reduce the number of
required processors when a throughput requirement is satisfied.
As the main contribution in this paper, we propose a method
to determine a replication factor for each task in an acyclic
SDF graph such that by distributing the workloads among more
parallel tasks with lower utilization in the obtained transformed
graph, the left capacity on the processors can be efficiently
exploited, hence reducing the number of required processors.
The experimental results, on a set of real-life streaming applica-
tions, demonstrate that our approach can reduce the minimum
number of processors required to schedule an application and
considerably improve the memory requirements and application
latency compared to related approaches while meeting the same
throughput constraint.

I. INTRODUCTION

STREAMING applications is an important group of embed-
ded software that spans different application domains such

as image processing, video/audio processing, and digital signal
processing. The ever-increasing computational demand and
hard real-time constraints of these applications push the system
designers toward using Multiprocessor System-on-Chip (MP-
SoCs) in modern embedded systems to benefit from parallel
execution. Nowadays, heterogeneous MPSoCs are becoming
increasingly common due to their capability to balance the
performance and energy efficiency by employing relatively
slower but low-power processors along with faster but high-
power ones, e.g., ARM big.LITTLE [1]. To efficiently exploit
the computational capacity of such MPSoCs, however, stream-
ing applications must be expressed primarily in a parallel
fashion. The common practice for expressing the parallelism
in an application is to use parallel Models of Computation
(MoCs). The main benefits of the MoCs are the explicit
representation of important properties in the application, e.g.,
parallelism, and the enhanced design-time analyzability of
certain system properties, e.g., throughput. Within a parallel
MoC, a streaming application is represented as a task graph
with concurrently executing and communicating tasks. Two
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well-known MoCs are Synchronous Dataflow (SDF) [2] and
its generalization, Cyclo-Static Dataflow (CSDF) [3].

Although parallel MoCs resolve the problem of explicitly
exposing the available parallelism in an application, the main
challenge is then how to allocate and schedule the tasks of
the application on an MPSoC such that all hard real-time
constraints are guaranteed. To address this challenge, a large
body of research exists in the classical real-time scheduling
theory for scheduling different real-time task models, e.g.,
periodic and sporadic task models, on multiprocessors [4].
However, since these theories typically assume sets of in-
dependent tasks, they are not directly applicable to modern
embedded streaming applications which have data-dependent
tasks. Recently, a scheduling framework has been presented
in [5] that shows how streaming applications modeled as
acyclic (C)SDF graphs can be scheduled as a set of real-
time implicit-deadline periodic tasks. This framework, thus,
enables a designer to reuse many well-developed algorithms
from the classical hard real-time multiprocessor scheduling
theory to guarantee hard real-time constraints and temporal
isolation among different concurrently running applications
on a multiprocessor system, using fast schedulability analysis.
Moreover, these algorithms provide fast analytical calculation
of the minimum number of processors needed to schedule the
tasks in an application. Therefore, because of the advantages
of [5] over conventional static scheduling, we adopt [5] in
this paper as a primary technique for scheduling streaming
applications.

In real-time systems, tasks can be scheduled on multiproces-
sors using three main classes of algorithms, i.e., global, parti-
tioned, and hybrid scheduling algorithms based on whether
a task can migrate between processors [4]. Under global
scheduling algorithms, all the tasks can migrate between all
the processors. Such scheduling guarantees optimal utiliza-
tion of the available processors but at the expense of high
scheduling overheads due to extreme task preemptions and
migrations. More importantly, implementing global schedul-
ing algorithms in distributed-memory MPSoCs imposes a
large memory overhead due to replicating the code of each
task on every processor [6]. Under partitioned scheduling
algorithms, however, no task migration is allowed and the
tasks are allocated statically to the processors, hence they
have low run-time overheads. The tasks on each processor
are scheduled separately by a uniprocessor (hard) real-time
scheduling algorithm, e.g., Earliest Deadline First (EDF) [7].
The third class of scheduling algorithms is hybrid scheduling
that is a mix of global and partitioned approaches to take
advantages of both classes. However, since hybrid scheduling
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algorithms allow task migration, they still introduce additional
run-time task migration/preemption overheads and memory
overhead on distributed-memory MPSoCs. By performing an
extensive empirical comparison of global, clustered (hybrid)
and partitioned algorithms for EDF scheduling, the authors in
[8] concluded that the partitioned algorithms outperform all
the other algorithms when hard real-time systems are consid-
ered. Thus, in this paper, we consider partitioned scheduling
algorithms.

Although partitioned scheduling algorithms do not impose
any migration and memory overheads, they are known to be
non-optimal for scheduling real-time tasks [4]. This is because
the partitioned scheduling algorithms fragment the processors’
computational capacity such that no single processor has suffi-
cient remaining capacity to schedule any other task in spite of
the existence of a total large amount of unused capacity on the
platform. Therefore, more processors are needed to schedule a
set of real-time tasks using partitioned scheduling algorithms
compared to optimal (global) scheduling algorithms.

However, for better resource usage and energy efficiency
in a real-time embedded system while taking advantages of
partitioned scheduling algorithms, the number of processors
needed to guarantee a performance constraint, i.e., throughput,
in an application should be minimized. This can be difficult
because often the given initial application task graph is not
the most suitable one for the given MPSoC platform because
the application developers typically focus on realizing certain
application behavior while neglecting the efficient utilization
of the available resources on MPSoC platforms. Therefore, to
better utilize the resources on an underlying MPSoC platform
while using partitioned scheduling algorithms, the initial ap-
plication task graph should be transformed to an alternative
one that exposes more parallelism while preserving the same
application behavior and performance. This is mainly because
by replicating a task, its workload is distributed among more
parallel task’s replicas in the obtained transformed graph.
Therefore, the task’s required capacity is split up in multiple
smaller chunks that can more likely fit into the left capacity
on the processors and alleviate the capacity fragmentation due
to partitioned scheduling algorithms. However, having more
parallelism, i.e., tasks’ replicas, than necessary introduces
significant overheads in code and data memory, scheduling
and inter-tasks communication. Thus, the right amount of
parallelism should be determined in a parallel application spec-
ification to achieve the required performance while minimizing
the number of required processors.

Therefore, considering partitioned scheduling algorithms,
in this paper, we address the problem of finding a proper
replication factor for each task in an initial application graph,
such that the obtained alternative one requires processors while
guaranteeing a given throughput constraint. More specifically,
the main novel contributions of this paper are summarized as
follows:
• We propose a novel heuristic algorithm to allocate the

tasks in a hard real-time streaming application modeled as
an acyclic SDF graph, which is subject to a throughput
constraint, onto a heterogeneous MPSoC such that the
number of required processors is reduced under partitioned

scheduling algorithms. The main innovation in this algo-
rithm is that by using the unfolding graph transformation in
[9], we propose a method to determine a replication factor
for each task in the SDF graph such that the distribution of
the workloads among more parallel tasks, in the obtained
graph after the transformation, results in a better resource
utilization, which can alleviate the capacity fragmentation
introduced by partitioned scheduling algorithms, hence
reducing the number of required processors.

• We show, on a set of real-life benchmarks, that our ap-
proach significantly reduces the number of required proces-
sors compared to the related approach in [10], called First-
Fit Decreasing (FFD) allocation algorithm, with slightly
increasing the memory requirements and application la-
tency while maintaining the same application throughput.
We also show that our approach can still reduce the number
of required processors compared to the related approaches
in [11], [12], [9], [13] with significantly improving the
memory requirements and application latency while main-
taining the same application throughput.

Scope of work. In this paper, we consider SDF graphs that
are acyclic. This restriction comes from the adopted hard real-
time scheduling framework [5] to schedule an SDF graph.
Although this restriction may seem to limit the scope of our
approach, our approach is still applicable to the majority of
real-life streaming applications. This is because, the authors
in [14] have shown that around 90% of streaming applica-
tions can be modeled as acyclic SDF graphs. In this paper,
we also consider heterogeneous multi-processor systems with
distributed program and data memory to ensure predictability
of the execution at runtime and scalability. We assume that the
communication infrastructure used for inter-processor commu-
nication is predictable, i.e., it provides guaranteed communica-
tion latency. We use the worst-case communication latency to
compute the worst-case execution time of a task, which in our
approach includes the worst-case time needed for the task’s
computation and the worst-case time needed to perform inter-
task data communication on the considered platform. Finally,
we adopt a partitioned scheduling algorithm, i.e., Partitioned
EDF, in this paper. Partitioned EDF outperforms the global
EDF scheduling algorithm for hard real-time task sets, as
empirically studied and shown in [8].

Organization. The remainder of the paper is organized as
follows: Section II gives an overview of the related work.
Section III introduces the background material needed for
understanding the contributions of this paper. Section IV gives
a motivational example. Section V presents the proposed
approach. Section VI presents the results of the evaluation
of the proposed approach. Finally, Section VII ends the paper
with conclusions.

II. RELATED WORK

In order to overcome the scheduling problems in global
and partitioned scheduling algorithms, a restricted-migration
semi-partitioned scheduling algorithm, called EDF-fm, in the
class of hybrid scheduling algorithms, is proposed in [11]
for homogeneous platforms. In this scheduling algorithm, the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JULY 2018 3

tasks can be either fixed or migrating between only two
processors at job boundaries. The purpose of this migration
is to utilize the remaining capacity on the processors where
a migrating task cannot be entirely allocated. However, this
scheduler provides hard real-time guarantees only for mi-
grating tasks and soft real-time guarantees for fixed tasks,
i.e., fixed tasks can miss their deadlines by a bounded value
called tardiness. In [13], another semi-partitioned scheduling
algorithm, called EDF-sh, is proposed that, in contrast to
EDF-fm, supports heterogeneous platforms and allows the
tasks to migrate between more than two processors. In EDF-
sh, however, both migrating and fixed tasks may miss their
deadlines.

Similarly, [15] proposes the C=D approach to split real-time
tasks on homogeneous multiprocessor systems while on each
processor a normal EDF scheduler is used. In this approach,
if a task cannot be entirely allocated to a processor, the C=D
approach splits the task into two parts. However, since the task
splitting is performed in every job execution, this approach
requires transferring the internal state of the splitted tasks
between processors at run-time, thereby imposing high task
migration overhead. Moreover, these approaches in [11], [13],
[15] only consider sets of independent tasks. In contrast, in this
paper, we consider a more realistic application model which
consists of tasks with data dependencies. In addition, we use
partitioned scheduling to allocate the tasks statically on the
processors. Therefore, since task migration is not allowed in
partitioned scheduling, no extra run-time overhead is imposed
to the system by our approach in comparison to [15] and no
task is subjected to a deadline miss in comparison to [11], [13].
Compared to the approaches in [11], [15] that only support
homogeneous platforms, our proposed approach also supports
heterogeneous platforms.

To allocate data-dependent application tasks to a multipro-
cessor platform, many techniques have already been devised
[16]. Existing approaches which are close to our work are [5],
[12], [9]. The authors in [5] propose a scheduling framework
to only convert each task in an acyclic (C)SDF graph to an
implicit-deadline periodic task by deriving parameters such
as period and start time to enable the usage of all well-
developed real-time theories. In [5], however, no optimiza-
tion technique for different system design metrics, such as,
throughput, latency, memory, number of processors, etc. is
proposed. In contrast, in this paper, we propose a heuristic ap-
proach on top of the scheduling framework in [5] to optimize
the number of required processors when scheduling a hard
real-time streaming application with a throughput constraint
onto a heterogeneous MPSoC under partitioned scheduling
algorithms.

Using the framework in [5], the authors in [12] propose
a heuristic under the semi-partitioned scheduling algorithm
in [11] to allocate tasks to processors while taking the data
dependencies into account. Although the fixed tasks can miss
their deadlines in the EDF-fm scheduling approach, a hard
real-time property can be guaranteed on the input/output inter-
faces of the application with the external environment, using
the extension of the framework in [5] proposed in [12]. In
[11], the authors also propose three task-allocation heuristics

under EDF-fm to allocate independent tasks to processors in
which the one called fm-LUF requires the least number of
processors. In a similar way, this heuristic can be used while
taking data dependencies into account using the approach
presented in [12]. However, in these approaches [12], [11], the
deadline misses of the fixed tasks due to task migration have
significant overheads on the memory requirements and the
application latency. In contrast, in this paper, we provide hard
real-time guarantees for all tasks in an application modeled as
an SDF graph. Moreover, we use partitioned scheduling and
to utilize processors efficiently, we adopt the unfolding graph
transformation technique. By using our proposed approach,
as shown in Section VI, processors can be more efficiently
utilized while imposing considerably lower overheads on the
memory requirements and the application latency compared
to the approaches in [12], [11]. In addition, our proposed ap-
proach supports heterogeneous platforms while the approaches
in [11], [12] can only support homogeneous platforms.

In [9], the authors propose an approach to increase the
application throughput in a homogeneous platform with a
fixed number of processors. This approach considers parti-
tioned scheduling and exploits an unfolding transformation to
fully utilize the platform by replicating the bottleneck tasks
which are the ones with the maximum workload, i.e., highest
utilization, when mapping a streaming application modeled as
an SDF. However, to guarantee a throughput constraint under
limited resources, the approach in [9] does not always replicate
the right tasks, as shown in Section IV. Consequently, this
leads to more parallelism than needed which increases the
memory requirements and application latency unnecessarily. In
contrast, we propose an approach that supports heterogeneous
platforms. In addition, our proposed approach first detects
which tasks cause the capacity fragmentation in partitioned
scheduling on the processors. Note that these tasks are not the
bottleneck tasks identified and used in [9]. This is because,
the bottleneck tasks efficiently utilize the processors’ capacity
and there is no need to replicate them. Then, using the
unfolding transformation technique, we replicate the detected
tasks causing the capacity fragmentation to distribute their
workloads among more parallel tasks and utilize the platform
more efficiently with less unused capacity on the processors.
As a result, shown in Section VI, our proposed approach can
reduce the number of required processors to guarantee the
same throughput while keeping a low memory and latency
overheads under partitioned scheduling in comparison to [9].

In [17], the authors use the same approach as in [9]
for energy efficiency purpose under partitioned scheduling
algorithms, when there are a lot of processors available on a
cluster heterogeneous MPSoC. To reduce energy consumption,
they iteratively take the bottleneck tasks which are limiting the
processors to work at a lower frequency and replicate them. By
replicating the application tasks with heavy utilization, their
utilization is distributed among more task’s replicas while still
providing the same application performance. Consequently, the
workload distribution of these bottleneck tasks enables the
processors to work at a lower frequency, thereby reducing
the energy consumption. In our paper, however, we focus on
and solve a totally different problem, that is, how the unfold-
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ing transformation technique can be exploited to reduce the
number of required processors when a partitioned scheduling
algorithm is used. In our approach, we do not search for and
take the bottleneck task, which is taken in [17], for replica-
tion in every iteration. In contrast, we detect which task is
responsible for fragmentation of the processors’ capacity when
using a partitioned scheduling algorithm and try to resolve this
fragmentation by replicating this task such that the number of
processors is reduced. We do not replicate the bottleneck task
because it can efficiently utilize the processor and it does not
contribute to the fragmentation of the processors’ capacity.

III. BACKGROUND

Given the fact that we use the unfolding transformation in
[9] to replicate the tasks in an application modeled as an SDF
graph, such transformation converts the initial graph into an
equivalent CSDF graph. Therefore, because the CSDF MoC is
a superset of the SDF MoC, in this section, we first introduce
the CSDF MoC, followed by the unfolding transformation
proposed in [9]. Then, we briefly introduce the scheduling
framework proposed in [5], which we use to schedule tasks
in a CSDF graph. After that, we present the system model
considered in this paper.

A. Cyclo-Static Data Flow (CSDF)

An application modeled as a CSDF [3] graph is a directed
graph G = (V,E), where V is a set of tasks and E is a
set of edges. Task τi ∈ V represents computation and edges
represent the transfer of data tokens between tasks. Each
task τi ∈ V has an execution sequence [fi(1), fi(2), · · · ,
fi(Pi)] of length Pi, i.e, it has Pi phases. This means that
the execution of each phase φ of task τi is associated with a
certain function fi(φ). Therefore, the k-th time the task τi is
fired, the function according to the phase (((k−1) mod Pi)+1)
is being executed, i.e., fi(((k−1) mod Pi)+1). Consequently,
the execution time and the data production/consumption rate
for each output/input edge of task τi are also defined for
each phase. Therefore, each task τi ∈ V has the following
sequences of length Pi: a sequence of the worst-case execution
time [Ci(1), Ci(2), · · · , Ci(Pi)], a predefined data production
sequence of [xui (1), xui (2), · · · , xui (Pi)] on its every output
channel eu, and a predefined data consumption sequence of
[yui (1), yui (2), · · · , yui (Pi)] on its every input channel eu. If
every task τi in a CSDF graph G has a single phase, i.e.,
Pi = 1, then the graph G is an SDF [2] graph that means the
SDF MoC is a subset of the CSDF MoC.

An important property of the CSDF MoC that is proven in
[3], is that a valid static schedule of a CSDF graph can be
generated at design-time if the graph is consistent and live. A
CSDF graph is said to be consistent if a non-trivial solution
exists for the repetition vector ~q = [q1, q2, · · · , qn]T ∈ Nn.
An entry qi indicates the number of invocations of task τi
in one graph iteration of the CSDF graph. If a deadlock-free
schedule can be found, G is then said to be live. Throughout
this paper, we consider and use consistent and live SDF and
CSDF graphs.
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Fig. 1. An SDF graph G.
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(a) A CSDF graph G′
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(b) A CSDF graph G′′

Fig. 2. Equivalent CSDF graphs of the SDF graph G in Figure 1 obtained
by (a) replicating task τ5 by factor 2 and (b) replicating tasks τ3 and τ4 by
factor 2.

Fig. 1 shows an example of an SDF graph. The worst-case
execution time of each task τi, i.e, Ci, is shown below its
name. For instance, task τ2 has worst-case execution time
C2 = 6 time units and its data production rate x2

2 on channel
e2 is 1. The repetition vector of G is ~q = [2, 1, 1, 1, 1, 2]T .
Fig. 2 shows two examples of a CSDF graph. The repetition
vector of the graphs shown in Fig. 2(a) and Fig. 2(b) are
[4, 2, 2, 2, 1, 1, 4]T and [4, 2, 1, 1, 1, 1, 2, 4]T , respectively.

B. Unfolding Transformation of SDF Graphs

The authors in [9] have shown that an SDF graph can
be transformed into an equivalent CSDF graph by using a
graph unfolding transformation technique to better utilize the
underlying MPSoC platform by exposing more parallelism in
the SDF graph. In fact, the intuition behind the unfolding,
i.e., task replication, is to evenly distribute the workload of a
task in the initial SDF graph among multiple of its replicas
that are running concurrently. Given a vector ~f ∈ Nn of
replication factors, where fi denotes the replication factor for
task τi, the unfolding transformation replaces task τi with
fi replicas of task τi. To ensure the functional equivalence,
the production and consumption sequences on channels in
the obtained CSDF graph are calculated accordingly to the
production and consumption rates in the initial SDF graph.
After the replication, each replica τi,k ∈ G′, k ∈ [1, fi], of
task τi ∈ G will have the repetition qi,k [9]:

qi,k =
qi · lcm(~f)

fi
, (1)

where lcm(~f) is the least common multiple of all replication
factors in ~f . For example, after the unfolding of the SDF
graph in Fig. 1 with replication vector ~f = [1, 1, 1, 1, 2, 1],
the CSDF graph shown in Fig. 2(a) is obtained which has the
repetition vector ~q′ = [4, 2, 2, 2, 1, 1, 4]T , e.g., q5,1 = q5,2 =
1·lcm(1,1,1,1,2,1)

2 = 1.
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C. Strictly Periodic Scheduling Framework

In [5], the real-time strictly periodic scheduling (SPS)
framework for acyclic (C)SDF graphs is proposed. In this
framework, every task τi ∈ V in an acyclic (C)SDF
graph G is converted to a real-time implicit-deadline pe-
riodic task by deriving the minimum period (Ti) and ear-
liest start time (Si). In this framework, the minimum pe-
riod (Ti) of every task τi ∈ V can be computed as:

Ti =
lcm(~q)

qi
·s, ∀τi ∈ V, (2) s =

⌈
Ŵ

lcm(~q)

⌉
, (3)

where lcm(~q) is the least common multiple of all repetition
entries in ~q, Ŵ = maxτj∈V {Cj .qj} is the maximum task
workload of the (C)SDF graph, and Cj is the worst-case
execution time of task τj . In general, the derived periods of
tasks satisfy the condition q1T1 = q2T2 = · · · = qnTn = α,
where α is the graph iteration period representing the duration
needed by the graph to complete one iteration. Note that the
derived period in Equation (2) is the minimum period for a task
scheduled by SPS. But, there exist other longer valid periods
for a task by scaling the minimum period by taking any integer

s >

⌈
Ŵ

lcm(~q)

⌉
. Once task periods are computed, the utilization

of task τi, denoted as ui, can be computed as ui = Ci/Ti,
where ui ∈ (0, 1]. Moreover, the throughput of each task τi can
be computed as 1/Ti. The throughput R of graph G, defined
as the number of samples the graph can produce during a
given time interval when its tasks are scheduled as strictly
periodic tasks, is determined by the period of the output task
(Tout) and is given by R = 1/Tout. Note that when all tasks
have the minimum periods, graph G can reach the maximum
throughput achievable by the SPS framework. In this paper, we
take this maximum achievable throughput as the throughput
constraint.

Then, the earliest start time (Si) of task τi is calculated such
that τi is never blocked on reading data tokens from any input
FIFO channel connected to it during its periodic execution,
using the following expression:

Si =

{
0 if prec(τi) = ∅
maxτj∈prec(τi) (Sj→i) if prec(τi) 6= ∅

(4)

where prec(τi) is the set of predecessors of τi, and Sj→i is
given by

Sj→i = min
t∈[0,Sj+α]

{t : prd[Sj ,max(Sj ,t)+k)(τj)

≥ cns[t,max(Sj ,t)+k](τi) ∀k ∈ [0, 1, · · · , α]} (5)

where prd[ts,te)(τj) is the number of tokens produced by τj
during the time interval [ts, te), cns[ts,te](τi) is the number of
tokens consumed by τi during the time interval [ts, te], and
Sj is the earliest start time of a predecessor task τj .

The authors in [5] also provide a method to calculate
the minimum required buffer size for each communication
channel and the latency L of the (C)SDF graph scheduled
in a strictly periodic fashion. In this method, once the start
time of tasks have been calculated, the minimum buffer size of
communication channel eu connecting tasks τj and τi, denoted

with bu(τj , τi), is calculated using the following expression:

bu(τj , τi) = max
k∈[0,1,··· ,α]

{
prd[Sj ,max(Sj ,Si)+k)(τj) −

cns[Si,max(Sj ,Si)+k)(τi)
}

(6)

that is the maximum number of unconsumed data tokens in
channel eu during the execution of τj and τi in one graph
iteration period. The latency is also calculated as the elapsed
time between the arrival of a data sample to the application
and the output of the processed sample by the application.

D. System Model
The considered MPSoC platforms in this work are heteroge-

neous containing two types of processors 1, i.e., performance-
efficient (PE) and energy-efficient (EE) processors, with dis-
tributed memories. We use ΠPE and ΠEE to denote the
sets consisting of all PE processors and all EE processors,
respectively. We denote the heterogeneous MPSoCs containing
all PE and EE processors by Π = {ΠPE ,ΠEE}.

The processors execute a set Γ = {τ1, τ2, · · · , τn} of n
periodic implicit-deadline tasks, i.e., each task τi has a relative
deadline Di equal to its period Ti. Tasks can be preempted at
any time. Every periodic task τi ∈ Γ is represented by a tuple
τi = (Ci, Si, Ti), where Ci is the worst-case execution time,
Si is the start time, and Ti is the period of the task. Since tasks
may run on two different types of processors (PE and EE),
the worst-case execution time value Ci for each task τi has
two values, i.e., CPEi and CEEi , when EE and PE processors
run at their maximum operating frequencies supported by the
hardware platform. The utilization of task τi on a PE processor
and an EE processor, denoted as uPEi and uEEi , is defined as
uPEi = CPEi /Ti and uEEi = CEEi /Ti, respectively. The total
utilizations of the tasks assigned to a PE processor j and an
EE processor k can be calculated by:

U(πPEj ) =
∑

τi∈Γπj

CPEi
Ti

, U(πEEk ) =
∑

τi∈Γπk

CEEi
Ti

(7)

where Γπj and Γπk represent sets of tasks assigned to PE
processor j and EE processor k, respectively. In this paper,
we consider Partitioned Earliest Deadline First (EDF) [7]
scheduling algorithm to schedule the tasks on MPSoCs. The
EDF is known to be optimal scheduling algorithm for periodic
tasks on uniprocessors [4].

IV. MOTIVATIONAL EXAMPLE

In this section, we take the SDF graph shown in Fig. 1
as our motivational example to demonstrate the necessity and
efficiency of our proposed approach, presented in Section V,
compared to related approaches [9], [12], [11], and [13]
in terms of memory requirements, application latency, and
number of required processors on a homogeneous platform2,

1We refer to the ARM big.LITTLE architecture [1] including Cortex A15
’big’ (PE) and Cortex A7 ’little’ (EE).

2In this section, we adopt a homogeneous platform because the related
approaches [9], [12], [11] can support only such platform. Later, in Sec-
tion VI-B, we compare our proposed approach and the approach proposed in
[13] in terms of memory requirements and application latency on different
heterogeneous platforms for a set of real-life benchmarks.
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Fig. 3. A strictly periodic execution of the tasks in (a) the SDF graph G
in Fig. 1 and (b) the CSDF graph G′ in Fig. 2(a). The x-axis represents the
time.

i.e., including only PE processors, to schedule the tasks in
the SDF graph under a throughput constraint. By applying
the SPS framework, briefly explained in Section III-C, for
graph G shown in Fig. 1, the task set Γ = {τ1 = (C1 =
3, S1 = 0, T1 = 5), τ2 = (6, 10, 10), τ3 = (10, 20, 10),
τ4 = (7, 30, 10), τ5 = (5, 40, 10), τ6 = (3, 50, 5)} of 6 strictly
periodic implicit-deadline tasks can be derived. Based on these
tuples, a strictly periodic schedule, as shown in Fig. 3(a), can
be obtained for this graph. In this schedule, for instance, task
τ3 starts at time instant 20, executes for 10 time units, and
repeats its execution every 10 time units. Since task τ6 is the
output task in this graph, the throughput of this schedule can
be computed as R = 1

T6
= 1

5 . In this example, we consider
this throughput as the throughput constraint. The application
latency L for this schedule is 55 which is the elapsed time
between the arrival of the first sample to the application, at
t = 0, and the departure of the processed sample from task
τ6, at t = 55. The minimum number of processors needed
for this schedule using an optimal scheduling algorithm, for
instance [18], is mOPT =

⌈∑
τi∈Γ ui

⌉
=
⌈

3
5 + 6

10 + 10
10 +

7
10 + 5

10 + 3
5

⌉
= 4. However, using the partitioned EDF

and the First-Fit Decreasing (FFD) [10] allocation algorithm,
that is proven to be the resource efficient heuristic allocation
algorithm [19], 6 processors are required for this schedule
with task allocation ΓΠ = {Γπ1

= {τ3},Γπ2
= {τ4},Γπ3

=
{τ1},Γπ4 = {τ2},Γπ5 = {τ6},Γπ6 = {τ5}}. We refer to this
scheduler as partitioned First-Fit Decreasing EDF (FFD-EDF)
scheduler.

To reduce the number of required processors under the FFD-
EDF scheduler while guaranteeing the throughput constraint,
in this paper, we adopt the unfolding graph transformation
technique presented in [9]. Let us assume that the platform
has only 5 processors. Then, to schedule the application tasks
on 5 processors under FFD-EDF scheduler, our proposed

approach, explained in Section V, replicates task τ5 in G
by a factor of 2. Fig. 2(a) shows the CSDF graph obtained
after applying the unfolding transformation on the initial
graph G. By applying the SPS framework for graph G′,
shown in Fig. 2(a), the task set Γ′ = {τ1,1 = (3, 0, 5),
τ2,1 = (6, 10, 10), τ3,1 = (10, 20, 10), τ4,1 = (7, 30, 10),
τ5,1 = (5, 40, 20), τ5,2 = (5, 50, 20), τ6,1 = (3, 60, 5)} of
7 strictly periodic tasks can be derived that is schedulable
on 5 processors under FFD-EDF scheduler, with task allo-
cation ΓΠ = {Γπ1

= {τ3,1},Γπ2
= {τ4,1, τ5,1},Γπ3

=
{τ1,1, τ5,2},Γπ4

= {τ2,1},Γπ5
= {τ6,1}}, while guaranteeing

the throughput constraint of 1
5 . This is because, the workload

of task τ5 with u5 = 5
10 is now evenly distributed between

two replicas τ5,1 and τ5,2 of task τ5, i.e., u5,1 = u5,2 = 5
20 .

Apparently, this workload distribution using the unfolding
transformation can enable the FFD-EDF scheduler to more
efficiently utilize the processors and schedule the tasks on
fewer processors while guaranteeing the throughput constraint.
The strictly periodic schedule of the task set Γ′ is shown in
Figure 3(b).

The approach in [9] is very close to our approach as
it adopts the unfolding transformation technique to increase
the throughput of an SDF graph scheduled on an MPSoC
with fixed number of processors under partitioned scheduling.
However, to schedule Γ on a platform with 5 processors
under the throughput constraint of 1

5 , the approach in [9]
performs differently. It first scales the period of the tasks in
Γ using Equation (3) to make Γ schedulable on 5 processors
under FFD-EDF scheduler. Due to scaling the periods, i.e.,
s = 6 >

⌈
10
2

⌉
= 5, however, the throughput is dropped

to 1
6 . Then, to increase the throughput, the approach in [9]

replicates the bottleneck task, i.e., the task with the heaviest
workload during one graph iteration, and scales again the
minimum computed periods of the tasks such that the new
task set can be scheduled on 5 processors under FFD-EDF
scheduler. This procedure is repeated until no throughput
improvement can be gained anymore by task replication under
the resource constraint. For our example in Fig. 1, the approach
in [9] replicates tasks τ3 and τ4 by a factor of 2 that results
in the throughput of 1

3 . Fig. 2(b) shows the CSDF graph
G′′ obtained after applying the unfolding transformation on
graph G. Then, to schedule the tasks on 5 processors under
FFD-EDF scheduler, the periods of tasks are scaled by using
Equation (3), i.e., s = 5 >

⌈
12
4

⌉
= 3, where the throughput

of 1
5 finally could be achieved with the derived task set

Γ′′ = {τ1,1 = (3, 0, 5), τ2,1 = (6, 10, 10), τ3,1 = (10, 20, 20),
τ3,2 = (10, 30, 20), τ4,1 = (7, 40, 20), τ4,2 = (7, 50, 20),
τ5,1 = (5, 60, 10), τ6,1 = (3, 70, 5)} of 8 strictly periodic
tasks and the task allocation ΓΠ = {Γπ1

= {τ4,1, τ1,1},Γπ2
=

{τ4,2, τ2,1},Γπ3 = {τ6,1},Γπ4 = {τ3,1, τ3,2},Γπ5 = {τ5,1}}.
The approaches in [11], [12], adopt differently the semi-

partitioned scheduling EDF-fm to allow certain tasks to
migrate between processors for efficiently utilizing the remain-
ing capacity on the processors. Under EDF-fm scheduling,
the LUF heuristic in [11] allocates the tasks in Γ to 5
processors with task allocation ΓΠ = {Γπ1 = {τ3},Γπ2 =
{τ4, τ5},Γπ3

= {τ5, τ1},Γπ4
= {τ6, τ2},Γπ5

= {τ2}}, where
task τ5 is allowed to migrate between π2 and π3 and task τ2 is
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TABLE I
THROUGHPUT R (1/TIME UNITS), LATENCY L (TIME UNITS), MEMORY
REQUIREMENTS M (BYTES), AND NUMBER OF PROCESSORS M FOR G

UNDER DIFFERENT SCHEDULING/ALLOCATION APPROACHES.

Scheduling Allocation R [ 1
t.u ] L [t.u] M [B] m mOPT

EDF

FFD 1/5 55 155 6 4

our 1/5 65 189 5 4(105) (327) (4)
FFD-EP [9] 1/5 75 228 5 4

EDF-fm FFD-SP [12] 1/5 90 197 5 4
LUF [11] 1/5 94 217 5 4

EDF-sh [13] 1/5 113 217 5 4(192) (311) (4)

allowed to migrate between π4 and π5. In this task mapping,
however, the fixed tasks τ1, τ4, and τ6 that are allocated to
the same processors as the migrating tasks τ2 and τ5, can
miss their deadline by a bounded tardiness. To reduce the
number of affected tasks by tardiness, the FFD-SP heuristic is
proposed in [12] to restrict the task migrations. Under EDF-
fm scheduling, this approach allocates the tasks in Γ to 5
processors with task allocation ΓΠ = {Γπ1

= {τ3},Γπ2
=

{τ4, τ5},Γπ3
= {τ5, τ1},Γπ4

= {τ6},Γπ5
= {τ2}}, where

only task τ5 is allowed to migrate between π2 and π3. Similar
to the approach in [12], EDF-sh [13] allocates the tasks in Γ to
5 processors with task allocation ΓΠ = {Γπ1 = {τ3},Γπ2 =
{τ4, τ5},Γπ3

= {τ5, τ1},Γπ4
= {τ6},Γπ5

= {τ2}}, where
only task τ5 is allowed to migrate between π2 and π3.

The reduction on the number of required processors using
our proposed approach and the related approaches, however,
comes at the expense of more memory requirements and
longer application latency either because of task replication3,
i.e., more tasks and data communication channels, or task
migration, i.e., task tardiness. The throughput R, latency L,
memory requirements M, i.e., sum of the buffer sizes of the
communication channels in the graph and the code size of the
tasks, and the number of required processors m for different
scheduling/allocation approaches are given in Table I. Table I
clearly shows that our proposed approach can reduce the
number of required processors while keeping a low memory
and latency increase compared to the related approaches for
the same throughput constraint.

Let us now assume that the platform has only 4 proces-
sors. Then, all the related approaches, except EDF-sh, fail to
guarantee the throughput constraint of 1

5 under this resource
constraint. However, our approach finds a vector of replication
factors ~f = [1, 2, 1, 1, 5, 1] such that the CSDF graph obtained
after applying the unfolding transformation on the initial SDF
graph G, is schedulable on 4 processors under FFD-EDF
scheduler using the SPS framework while guaranteeing the
throughput constraint of 1

5 . EDF-sh can also allocate the tasks
in Γ to 4 processors with task allocation ΓΠ = {Γπ1

=
{τ3},Γπ2

= {τ4, τ2},Γπ3
= {τ2, τ5, τ1},Γπ4

= {τ5, τ6}},
where task τ2 is allowed to migrate between π2 and π3 and
task τ5 is allowed to migrate between π3 and π4. The memory

3When replicating a task, its period is enlarged. As a consequence, the
production of data tokens that are required by its data-dependent tasks to
execute are postponed that results in a further offsetting of their start time,
when calculating the earliest start time of tasks in SPS framework using
Equation (4), hence increasing the application latency.

requirement and application latency to schedule G on 4
processors using our proposed approach and EDF-sh are given
in the third and seventh rows of Table I in parenthesis. As
a result, our proposed approach can decrease the application
latency by 45.3% while increasing the memory requirement
by only 4.9% compared to EDF-sh.

From the above example, we can see the deficiencies of the
related approaches because they have significant impact on the
memory requirements and application latency when reducing
the number of processors. Oppositely, our proposed approach
that adopts the graph unfolding transformation, can reduce the
number of processors while introducing lower memory and
latency increase compared to the related approaches for the
same throughput constraint.

V. PROPOSED APPROACH

As explained and shown in Section IV, the partitioned
scheduling algorithms, potentially, has the disadvantage that
processors cannot be fully utilized, i.e., capacity fragmen-
tation, because the static allocation of tasks on processors
leaves an amount of unused capacity that is not sufficient
to accommodate another task. Therefore, in this section, we
present our novel approach that aims to exploit these unused
capacity on the processors to reduce the number of processors
needed to schedule the tasks in a hard real-time streaming
application, modeled as an acyclic SDF graph and subjected to
a throughput constraint, onto a heterogeneous MPSoC under
partitioned scheduling algorithms, i.e., FFD-EDF scheduler.
Our propose approach can achieve this goal by replicating
tasks such that the required capacity of each resulting task
replica is sufficiently small to make use of the available
capacity on the processors.

The rationale behind our approach is the following: our
approach first detects every task which cannot be entirely
allocated to any individual under-utilized processor due to
insufficient free capacity while, in total, there exists sufficient
remaining capacity on under-utilized processors to schedule
the tasks. Then, our approach replicates some of these tasks
to distribute their workloads equally among more parallel
replicas and fit them entirely on the remaining capacity of the
processors without increasing the number of processors. As a
result, our approach can alleviate the capacity fragmentation
due to the FFD-EDF scheduler and utilize the processors
more efficiently. In this section, therefore, we present a novel
heuristic algorithm to derive the proper replication factor
for each task in an SDF graph and the task allocation to
reduce the number of required processors while guaranteeing
the throughput constraint. In our approach, we use the SPS
framework [5] to convert the tasks in the SDF graph to a set
of periodic tasks.

The algorithm is given in Algorithm 1. It takes as in-
put an SDF graph G, and a heterogeneous platform Π =
{ΠPE ,ΠEE} with fixed number of PE and EE processors
onto which the tasks in the graph have to be allocated.
The algorithm returns as output a CSDF graph G′, that is
functionally equivalent to the initial SDF graph, and a task
allocation set ΓΠ if a successful allocation is found. Otherwise,
it returns false as output.
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Algorithm 1: Proposed task allocation and finding proper
replication factors for an SDF graph.

Input: An SDF graph G = (V,E) and a heterogeneous
MPSoC Π = {ΠPE ,ΠEE}.

Output: True, an equivalent CSDF graph G′ = (V ′, E′), and a
task allocation set ΓΠ if a successful task allocation
onto platform Π is found, False otherwise.

1 ~f = [1, 1, · · · , 1]; G′ ← G; Π′ ← Π;
2 Calculate period T ′i for PE type of processors for each task τ ′i,k

in G′ by using Equation (2) and Equation (3);
3 Γ← Sort tasks in G′ in order of decreasing utilization;
4 while True do
5 ΓΠ ← {Γπ1 ,Γπ2 , · · · ,Γπ|Π′|};
6 Γ1 ← ∅;
7 for τ ′i,k ∈ Γ do
8 for 1 ≤ j ≤ |Π′| do
9 if πj is an EE processor then

10 Uleft =
j−1∑̀
=1

(1− U(πEE` )); ui = uEEi ;

11 if πj is a PE processor then

12 Uleft =
CPE
i

CEE
i

|ΠEE|∑̀
=1

(1− U(πEE` ))+

j−1∑
`=|ΠEE|+1

(1− U(πPE` )); ui = uPEi ;

13 Check EDF schedulability test on πj ;
14 if τ ′i,k is not schedulable on πj then
15 continue;
16 else
17 if U(πj) = 0 ∧ Uleft ≥ ui then
18 if τ ′i,k is not stateful/in/out then
19 Γ1 ← Γ1 + {τ ′i,k, πj};

20 Γπj ← τ ′i,k;
21 break;

22 if τ ′i,k is not allocated then
23 if ui > Uleft then
24 return False;

25 Π′ ← Π′ + πPE ;
26 go to 5

27 for |ΠEE | < j ≤ |Π′| do
28 if Γπj = ∅ then
29 Π′ ← Π′ − πPEj ;

30 if |Π′PE | ≤ |ΠPE | then
31 break;
32 if Γ1 6= ∅ then
33 uleft = 0;
34 for {τ ′i,k, πj} ∈ Γ1 do
35 if 1− U(πj) > uleft then
36 uleft = 1− U(πj); sel = i;

37 else
38 return False;

39 fsel = fsel + 1; fsel ∈ ~f ;
40 Get CSDF graph G′ = (V ′, E′) by unfolding G with

replication factors ~f using the method in Section III-B;
41 Calculate period T ′i for PE type of processors for each task

τ ′i,k in G′ by using Equation (2) and Equation (3);
42 Γ← Sort tasks in G′ in order of decreasing utilization;
43 return True, G′, ΓΠ;

In Line 1, the algorithm initializes the replication factor
of all tasks in graph G to 1, G′ to G, and Π′ to Π. In
Line 2, the tasks in the graph G′ are converted to periodic

tasks using the SPS framework, explained in Section III-C,
where the minimum period T ′i of each task in G′ is calculated
for PE type of processors, i.e., using CPEi for each task
τ ′i,k, by Equation (2) and Equation (3). In this paper, we
take the maximum throughput of graph G, achievable by the
SPS framework with the minimum calculated periods, as the
throughput constraint. Note that we can set another throughput
constraint by scaling the minimum calculated periods. Then,
the algorithm builds a set of periodic tasks Γ in Line 3 and
sorts the tasks in the order of decreasing utilization. Next,
the algorithm enters to a while loop, Lines 4 to 42, where
the task allocation is started on platform Π′. The body of the
while loop, then, is repetitively executed to better utilize the
processors’ capacity using the graph unfolding transformation,
explained in Section III-B, and allocate the tasks on platform
Π′.

In Line 5, a task allocation set ΓΠ is created, to keep
the tasks allocated to each processor individually. Please
note that in sets Π′ and ΓΠ, the processors are ordered
according to their type, where EE processors are followed by
PE processors, to first utilize the energy-efficient processors.
In Line 6, an empty task set Γ1 is defined to keep the candidate
tasks for replication. In Lines 7 to 26, the algorithm allocates
every task τ ′i,k ∈ Γ to one of the processors according to the
FFD-EDF scheduler. In Lines 9 to 12, the total unused capacity
Uleft from the first processor π1 to the current processor πj
is calculated. The current processor πj can be either an EE
processor or a PE processor. If it is an EE processor, all
the previous processors are also EE processors due to the
ordering of processors based on their type in platform Π′.
In this case, the total unused capacity is calculated in Line
10 and stored in variable Uleft. Otherwise, if πj is a PE
processor, the total unused capacity from π1 to the current
processor πj , that includes all the EE processors followed by
a subset of PE processors, is calculated in Line 12 and stored
in variable Uleft. Since the tasks have different utilization on
the PE and EE processors, the total unused capacity on the
EE processors are scaled accordingly by the proportion of the
worst-case execution time of task τ ′i,k on the PE processor and
EE processor, in Line 12.

In Line 13, the EDF schedulability test [7] is performed
to check the schedulability of task τ ′i,k on processor πj , i.e.,
τ ′i,k is schedulable if the total utilization of all tasks currently
allocated to processor πj (including τ ′i,k) is not greater than
the utilization bound of 1. If task τ ′i,k is not schedulable on
processor πj , the procedure of visiting the next processors
is continued in Line 15. Otherwise, the candidate tasks for
replication are identified first in Lines 17 to 19. If task τ ′i,k
is allocated to an unused processor πj while there is, in
total, a sufficient unused capacity on the other under-utilized
processors, the task is selected as a candidate to be replicated.
This condition is checked in Line 17. Note that stateful tasks,
whose next execution depends on the current execution, and
input and output tasks, which are connected to the external
environment, are not replicated. So, if task τ ′i,k satisfies the
condition in Line 18, it is added in Line 19 to task set Γ1

together with the processor πj which it will be allocated to.
Task τ ′i,k is actually allocated on processor πj in Line 20 and
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the procedure of vising the next processors is terminated in
Line 21.

If task τ ′i,k is not allocated after visiting all processors in
platform Π′ and if the utilization of the task is larger than the
total unused capacity left on the platform, then the algorithm
cannot allocate the application tasks onto the given platform
and returns False in Line 24. Otherwise, a PE processor is
added to platform Π′ in Line 25. This is because to reasonably
find all candidate tasks for replication, the algorithm first
checks how the processors are finally utilized by continuing
the task mapping through adding an extra processor and
finding a valid tasks’ allocation using the FFD-EDF scheduler.
For instance, the capacity of a processor that is fragmented by
a big task can be efficiently exploited later by smaller tasks.
Therefore there is no need to replicate such a big task. Later,
by iteratively replicating the selected tasks, the algorithm
gradually exploits the processors’ capacity more efficiently and
removes the extra added PE processors to finally find a valid
tasks’ allocation on the given platform Π. Next, the procedure
is moved to Line 5 to find new tasks’ allocation on the new
platform Π′.

In Lines 27 to 29, the reduction of the number of required
processors is performed by removing PE processors. If a PE
processor with no allocated tasks is found, it means the task set
Γ requires one PE processor fewer to be scheduled under FFD-
EDF scheduler. Therefore, the PE processor with no allocated
tasks is removed from platform Π′ in Line 29. Then, Line
30 checks whether the number of PE processors in platform
Π′ is fewer than or equal to the number of PE processors
in the given platform Π (Note that both platforms Π′ and Π
have an equal number of EE processors as the algorithm only
adds/removes PE processor to/from platform Π′). If yes, then
the CSDF graph G′ and the task allocation set ΓΠ are returned
in Line 43 and the algorithm terminates successfully.

If not, to better utilize the processors, a task is selected
among the candidate tasks in Γ1 for replication, in Lines
32 to 36. If task set Γ1 is empty then no task could be
selected for replication, therefore the algorithm cannot allocate
the application tasks onto platform Π and returns False as
output in Line 38. Among all the candidates in task set Γ1,
the task allocated to a processor with the largest amount of
unused capacity is identified as a fragmentation-responsible
task, in Lines 35 and 36. Then, the replication factor of
this task is increased by one in Line 39 and the initial SDF
graph is transformed into an equivalent CSDF graph using the
unfolding transformation technique with unfolding vector ~f ,
in Line 40. The periods of the tasks in the obtained CSDF
graph are calculated again for PE type of processors using
Equation (2) and Equation (3) in Line 41 and the new periodic
tasks are sorted in Γ in the order of decreasing utilization, in
Line 42. The body of the while loop, then, is repeated to
either find successfully a task allocation of the transformed
graph onto platform Π or fail due to lack of candidate tasks
for replication, i.e., empty task set Γ1.

VI. EVALUATION

In this section, we present the experiments to evaluate our
proposed approach in Section V. The experiments have been

TABLE II
BENCHMARKS USED FOR EVALUATION TAKEN FROM [12].

Domain Application |V | |E|

Signal Processing
Fast Fourier transform (FFT) kernel 32 32
Multi-channel beamformer 57 70
Time delay equalization (TDE) 35 35

Cryptography
Data Encryption Standard (DES) 55 64
Serpent 120 128

Video processing MPEG2 video 23 26
Sorting Bitonic Parallel Sorting 41 48

performed on a set of seven real-life streaming applications
(benchmarks) modeled as acyclic SDF graphs taken from [12].
All SDF graphs are consistent and live. These benchmarks,
from different application domains, are listed in Table II. In
this table, |V | denotes the number of tasks in a benchmark and
|E| denotes the number of communication channels among
tasks in the corresponding SDF graph of the benchmark.

To demonstrate the effectiveness and efficiency of our
proposed approach, we perform two experiments. In the
first experiment, Section VI-A, we consider a homogeneous
platform as considered in the related works [11], [12], [9].
In this experiment, we compare the application latency, the
memory requirements, and the minimum number of processors
needed to schedule the tasks of each benchmark under a
given throughput constraint for a homogeneous platform, i.e,
platform with only PE processors, obtained with six dif-
ferent scheduling/allocation approaches: (i) Partitioned EDF
with FFD heuristic; (ii) Partitioned EDF with our proposed
heuristic; (iii) Partitioned EDF with the heuristic proposed in
[9]; (iv) Semi-partitioned EDF-fm, with the FFD-SP heuristic
proposed in [12]; (v) Semi-partitioned EDF-fm, with the LUF
heuristic proposed in [11]; (vi) Semi-partitioned EDF-sh [13].
These approaches are denoted in Table III with FFD, our,
FFD-EP, FFD-SP, fm-LUF, and EDF-sh, respectively. In the
second experiment, Section VI-B, we consider heterogeneous
platforms, including PE and EE processors, as considered in
the related work [13]. In this experiment, we compare the
application latency and the memory requirements needed to
schedule the tasks of each benchmark under a given throughput
constraint obtained with Partitioned EDF with our proposed
heuristic and Semi-partitioned EDF-sh [13] for different het-
erogeneous platforms. Please note that we use the approach
presented in [12] to handle data dependencies when using the
scheduling/allocation approaches in [11], [13] for comparison
with our approach. The throughput constraint R of each
benchmark, that is the maximum achievable throughput under
the SPS framework, is given in the second column in Table III.

A. Homogeneous platform

Let us first compare our approach with the related ap-
proaches in terms of the number of required processors. The
number of required processors to guarantee the throughput
constraint for each benchmark using an optimal scheduler, for
instance [18], denoted as mOPT, is given in the third column
in Table III. To find the number of required processors using
our proposed approach and the related approaches proposed
in [11], [12], [9], [13], we set the number of PE processors on
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TABLE III
COMPARISON OF DIFFERENT SCHEDULING/ALLOCATION APPROACHES.

Benchmark R [ 1
t.u. ]

OPT Partitioned Semi-partitioned
FFD our FFD-EP FFD-SP fm-LUF EDF-sh

mOPT mFFD MFFD[B] LFFD[t.u.] mour
Mour

MFFD

Lour

LFFD
mEP

MEP

MFFD

LEP

LFFD
mSP

MSP

MFFD

LSP

LFFD
mLUF

MLUF

MFFD

LLUF

LFFD
msh

Msh

MFFD

Lsh

LFFD

FFT 1/6016 24 30 144680 192512 24 1.545 1.313 24 2.420 2.344 26 1.413 1.483 26 1.485 1.676 24 3.114 3.772(26) (1.115) (1.063)
Beamformer 1/5076 26 28 14492 60912 26 1.144 1.166 26 2.781 1.750 26 1.145 1.474 26 1.229 1.606 26 1.326 2.091

TDE 1/32205 20 25 516282 1127175 20 1.597 1.286 21 1.301 1.195 20 1.560 1.396 21 1.722 1.860 20 3.139 3.086(21) (1.180) (1.086)

DES 1/704 26 33 3381 33088
26 1.182 1.213

27 1.357 1.340 27 1.138 1.218 28 1.684 1.862 26 1.592 2.301(27) (1.103) (1.106)
(28) (1.073) (1.085)

Serpent 1/3336 39 42 59815 370296 39 1.016 1.090 40 3.78 1.81 40 1.012 1.074 39 1.068 1.479 39 1.069 1.648(40) (1.005) (1.027)
MPEG2 1/7680 8 9 61909 138240 8 1.104 1.055 8 1.478 1.141 8 1.290 1.217 9 3.014 3.432 8 1.665 1.544
Bitonic 1/91 11 13 2374 2275 11 1.104 1.080 11 1.102 1.120 11 1.139 1.185 11 1.413 1.395 11 1.291 1.502
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Fig. 4. Memory and latency reduction of our approach compared to the related approach with the same number
of processors.
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Fig. 5. The total number of task repli-
cations needed by FFD-EP and our
proposed approach.

the homogeneous platform initially to mOPT. Then, if the task
set cannot be scheduled on the platform, we add one more PE
processor and repeat the task allocation procedure again until
a successful task allocation is found.

As can be seen in Table III, the FFD approach requires
considerably more processors, on average 17.6% more, than
the number of required processors by an optimal scheduler, see
column mFFD. In contrast, our approach and EDF-sh require
the same number of processors as the optimal scheduler while
maintaining the same throughput for this set of benchmarks,
see columns mour and msh, respectively. For the other ap-
proaches, although they require fewer processors than FFD,
they still require more processors than our approach for some
benchmarks. For instance, the approach FFD-EP requires one
more processor for TDE, DES, and Serpent, see column
mEP; The approach FFD-SP requires two more processors
for FFT and one more processor for DES and Serpent, see
column mSP; Finally the approach fm-LUF requires two more
processors for FFT and DES and one more processor for TDE
and MPEG2, see column mLUF. Although this difference in
terms of number of required processors is not too large, it
clearly reveals that our approach is more capable of scheduling
the benchmarks with fewer processors compared to the FFD-
EP, FFD-SP, and fm-LUF approaches while meeting the same
throughput constraint.

However, this reduction on the number of required proces-
sors comes at the expense of increased memory requirements
and application latency. For each benchmark, columns MFFD
and LFFD report the memory requirements, expressed in bytes,
and the application latency, expressed in time units, under
FFD, respectively. The memory requirements is computed as

the sum of the buffer sizes of the communication channels
in the (C)SDF graph and the code size of the tasks. For
each benchmark, the increase on memory requirements and
application latency by our approach over FFD are given in
columns Mour

MFFD
and Lour

LFFD
, respectively, that are on average 24.2%

and 17.2%, respectively. Similarly, the increases on memory
requirements and application latency are on average respec-
tively 100% and 52.85% for FFD-EP, 24.3% and 29.2% for
FFD-SP, 65.9% and 90.2% for fm-LUF, and finally 88.5% and
127.8% for EDF-sh compared to FFD. From these numbers,
we can conclude that not only our approach requires fewer
processors compared to the related approaches, but also it
imposes, on average, lower memory and latency overheads.

To further compare our approach with the related ap-
proaches, we compute the memory requirements and applica-
tion latency of our approach when equal number of processors
as the related approaches are used, see the bolded numbers
in parenthesis in columns mour, Mour

MFFD
, and Lour

LFFD
. To ease the

interpretation of Table III for this comparison, Fig. 4(a) and
Fig. 4(b) illustrate the memory and latency reductions obtained
by our approach compared to the related approaches, respec-
tively. For instance, the reduction on memory requirements is
computed using the following equation:

r =
Mrel −Mour

Mrel
(8)

where Mrel is the memory requirements of scheduling an appli-
cation using a related approach and Mour denotes the memory
requirements achieved by our approach for the same number
of processors. In Fig. 4(a), we can see that our approach can
reduce the memory requirements by an average of 31.43%,
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TABLE IV
RUNTIME (IN SECONDS) COMPARISON OF DIFFERENT

SCHEDULING/ALLOCATION APPROACHES.

Benchmark tFFD tour tFFD-EP tFFD-SP tfm−LUF tEDF-sh

FFT 0.001 5.95 451.48 0.22 0.17 0.024
Beamformer 0.011 5.16 126.30 0.100 0.037 0.022

TDE 0.005 3.96 138.32 0.011 0.013 0.011
DES 0.002 9.41 14.20 0.28 1.013 0.021

Serpent 0.025 56.43 960.30 1.44 0.45 0.09
MPEG2 0.001 0.015 3.25 0.002 0.002 0.004
Bitonic 0.001 0.127 0.093 0.003 0.011 0.034

5.72%, 27.11%, and 27.46% compared to FFD-EP, FFD-SP,
fm-LUF, and EDF-sh, respectively. In Fig. 4(a), however, there
are two exceptions where our approach requires 2.43% and
0.19% more memory for TDE and Bitonic compared to FFD-
SP and FFD-EP, respectively. In Fig. 4(b), we can also see that
our approach can reduce the application latency considerably
for all benchmarks by an average of 22.60%, 13.24%, 37.92%,
and 44.09% compared to FFD-EP, FFD-SP, fm-LUF, and EDF-
sh, respectively. This comparison clearly demonstrates that for
most of the benchmarks our approach is more efficient than the
related approaches in exploiting the available resources. Com-
pared to FFD-EP, that is the closest approach to our approach
as both approaches adopt the graph unfolding transformation,
our efficiency comes from significantly reducing the number
of required task replications due to our novel Algorithm 1, as
shown in Fig. 5. This figure clearly shows that, by replicating
the right tasks, our proposed approach can reduce the total
number of task replications significantly, up to 30 times,
compared to FFD-EP. From Figure 4, it can be also observed
that our proposed approach works better for some applications
than for others compared to the related approaches. Given the
(C)SDF graph of each application has different properties, e.g,
the number of tasks, the tasks’ workload, the graph’s topology,
repetition vector, etc., the applications are represented with
a different set of periodic tasks in terms of the number of
tasks and the utilization of tasks. Therefore, this variation on
the number of tasks and the utilization of tasks in the set of
periodic tasks according to each application can have different
impact on the performance of different scheduling/allocation
approaches.

Finally, we evaluate the efficiency of our algorithm in
terms of the execution time. We compare the execution time
of our algorithm with the corresponding execution times of
FFD, FFD-EP, FFD-SP, fm-LUF, and EDF-sh. The comparison
is given in Table IV. As can be seen from Table IV, the
execution time of FFD and EDF-sh are always within less
than 34 millisecond, while the execution times of FFD-SP
and fm-LUF are within less than 1.5 seconds. However, the
execution time of our algorithm is longer than FFD, FFD-SP,
fm-LUF, and EDF-sh due to its iterative execution nature, but
it is within less than 10 seconds for most of the cases and
within less than 1 minute for one case which is reasonable
given that our proposed approach is a design-time approach
and that it achieves better resource utilization. Among all the
approaches, FFD-EP has the highest execution time, which
is within less than 17 minutes, due to excessive number of
algorithm iterations. This excessive number of iterations is due

to the excessive number of required task replications in FFD-
EP as shown in Fig. 5.

B. Heterogeneous platform

To compare our proposed approach and EDF-sh [13] on het-
erogeneous platforms, in this section, we conduct experiments
on a set of heterogeneous platforms including different number
of PE and EE processors. To do so, we initially generate a
heterogeneous platform having mFFD−1 PE processors (see
Table III for mFFD) and 1 EE processor for each benchmark
and iteratively replace one PE processor with one EE processor
(or more EE processors if the task set is not schedulable on the
platform). However, due to the restrictive allocation rules in
EDF-sh to ensure bounded tardiness for deadline misses, EDF-
sh cannot find a task allocation for some heterogeneous plat-
forms that have fewer than a certain number of PE processors.
Therefore, we only compare our approach with EDF-sh on the
heterogeneous platforms for which EDF-sh can successfully
allocate the tasks for each benchmark. Fig. 6 shows the
memory and latency reductions obtained by our approach
compared to EDF-sh for each benchmark individually. The
reductions are computed using Equation (8). In Fig. 6, the
x-axis shows different heterogeneous platforms, comprised of
different number of PE and EE processors denoted by {number
of PEs, number of EEs}. The y-axis shows the reduction on
the memory requirements and application latency. Note that for
the Serpent benchmark, a subset of heterogeneous platforms
is shown in Fig. 6(g) due to the space limitation, while for the
other benchmarks all successful heterogeneous platforms are
shown.

From Fig. 6, it can be observed that our proposed approach
outperforms EDF-sh in terms of memory requirements and
application latency for most of the cases. Compared to EDF-
sh, our approach can reduce the memory requirements and
application latency by an average of 42.6% and 51.1%, 12.4%
and 43.8%, 21.7% and 36.2%, 21.8% and 35.4%, 11.9 % and
20.1%, 37.6 % and 42.2%, and 3.6 % and 33.8% for the
FFT, Beamformer, DES, Bitonic, MPEG, TDE, and Serpent
benchmarks, respectively. For the MPEG benchmark, however,
our proposed approach increases the memory requirements
compared to EDF-sh by 20.6% on a platform including
6 PE and 3 EE processors. This is because our approach
excessively replicates a task to utilize the unused capacity
left on the under-utilized processors. Therefore, the memory
requirements increase significantly due to the code and data
memory overheads. However, since the replicated task has
low impact on the application latency, our approach can still
reduce the application latency by 8.3% compared to EDF-
sh. For the TDE benchmark, both approaches find a task
allocation without requiring either task replication (our) or
task migration (EDF-sh) on a platform including 24 PE and
1 EE processors, therefore no reduction is achieved for both
memory requirements and latency in this case.

In addition, it can be observed in Fig. 6 that for most of the
cases by replacing more PE processors with EE processors on
the platform, our approach can further reduce the memory
requirements and application latency compared to EDF-sh.
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Fig. 6. Memory and latency reduction of our approach compared to EDF-sh [13] for real-life benchmarks on different heterogeneous platforms.

This is mainly because, by replacing more number of PE
processors with EE processors on the platform, the number
of migrating tasks under EDF-sh scheduler is considerably
increased while the number of task replications is only gently
increased in our approach. As a result, more fixed tasks are
affected by migrating tasks and can miss their deadlines, by a
bounded tardiness, under EDF-sh scheduler that comes at the
expense of more memory requirements and longer application
latency. According to the approach presented in [12], the
memory requirements increases due to both the size of buffers,
that have to be enlarged to handle task tardiness, and the code
size overhead of task replicas, which are necessary in case of
migrating tasks. In addition, the application latency increases
due to the postponement of task start times needed to handle
task tardiness.

VII. CONCLUSION

In this paper, we have presented a novel heuristic algorithm
that determines a replication factor for each task in an acyclic
SDF graph, which is subject to a throughput constraint, such
that the number of required processors to schedule the tasks
in the obtained transformed graph is reduced under partitioned
scheduling algorithms. By performing tasks replication, the
tasks’ workload is distributed among more parallel tasks’
replicas with larger period and lower utilization in the obtained
transformed graph. Therefore, the required capacity of the
tasks which are replicated, is split up in multiple smaller
chunks that can more likely fit into the left capacity on the
processors and alleviate the capacity fragmentation due to
partitioned scheduling algorithms, hence reducing the number
of required processors. The experiments on a set of real-life
streaming applications show that our proposed approach can
reduce the number of required processors by up to 7 processors
with increasing the memory requirements and application
latency by 24.2% and 17.2% on average compared to FFD
while meeting the same throughput constraint. We also show
that our approach can still reduce the number of required
processors by up to 2 processors and considerably improve
the memory requirements and application latency by up to

31.43% and 44.09% on average compared to the other related
approaches while meeting the same throughput constraint.
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