
12Application-Specific Processors

Tulika Mitra

Abstract

General-Purpose Processors (GPPs) and Application-Specific Integrated Circuits
(ASICs) are the two extreme choices for computational engines. GPPs offer
complete flexibility but are inefficient both in terms of performance and energy.
In contrast, ASICs are highly energy-efficient, provide the best performance at
the cost of zero flexibility. Application-specific processors or custom processors
bridge the gap between these two alternatives by bringing in improved power-
performance efficiency within the familiar software programming environment.
An application-specific processor architecture augments the base instruction-set
architecture with customized instructions that encapsulate the frequently occur-
ring computational patterns within an application. These custom instructions are
implemented in hardware enabling performance acceleration and energy benefits.
The challenge lies in inventing automated tools that can design an application-
specific processor by identifying and implementing custom instructions from
the application software specified in high-level programming languages. In
this chapter, we present the benefits of application-specific processors, their
architecture, automated design flow, and the renewed interests in this class of
architectures from energy-efficiency perspective.

Acronyms

ALU Arithmetic-Logic Unit
ASIC Application-Specific Integrated Circuit
BERET Bundled Execution of REcurring Traces
CAD Computer-Aided Design
CCA Configurable Compute Accelerator
CFG Control-Flow Graph

T. Mitra (�)
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: tulika@comp.nus.edu.sg

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_13

377

mailto:tulika@comp.nus.edu.sg

378 T. Mitra

CFU Custom Functional Unit
CIS Custom Instruction-Set
DFG Data-Flow Graph
DISC Dynamic Instruction-Set Computer
DSP Digital Signal Processor
FPGA Field-Programmable Gate Array
GPP General-Purpose Processor
GPU Graphics Processing Unit
ILP Integer Linear Program
IR Intermediate Representation
ISA Instruction-Set Architecture
ISEF Stretch Instruction-Set Extension Fabric
MAC Multiply-Accumulator
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
PFU Programmable Functional Unit
PRISC Programmable Instruction-Set Processor
RAM Random-Access Memory
RISC Reduced Instruction-Set Processor
RISPP Rotating Instruction-Set Processing Platform
SFU Specialized Functional Unit
VLIW Very Long Instruction Word

Contents

12.1 Introduction . 379
12.2 Architectural Overview and Design Flow. 382

12.2.1 Application-Specific Processor Architecture . 382
12.2.2 Design Flow. 384

12.3 Custom Instructions Identification and Selection . 387
12.3.1 Formal Definitions . 387
12.3.2 Enumeration of MISO Patterns . 390
12.3.3 Exhaustive Enumeration of All Valid Patterns . 390
12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns 393
12.3.5 Enumeration of Maximum Weighted Convex Patterns 395
12.3.6 Custom Instructions Selection . 395

12.4 Run-Time Customization . 397
12.4.1 Explicit Run-Time Customization . 398
12.4.2 Implicit Run-Time Customization . 403

12.5 Custom Instructions for General-Purpose Computing . 404
12.6 Conclusions . 405
References . 406

12 Application-Specific Processors 379

12.1 Introduction

Over the years, the General-Purpose Processors (GPPs) has been established as
the de facto choice for execution engine. Microprocessors – single chip GPPs –
were invented in 1971 and have enjoyed unprecedented performance growth aided
by technology scaling (Moore’s law [47] for transistor density) and microarchi-
tectural innovations (out-of-order execution, branch prediction, speculation, cache
memory) [53]. GPPs are designed to support a wide range of applications through
software programmability at reasonable power-performance point. The software is
the key here to provide application-specific functionality or specialization.

The generic nature of GPPs is also the reason behind their inefficiency, both in
terms of power and performance [30]. The GPPs need to support a comprehensive
Instruction-Set Architecture (ISA) as the abstraction and interface to the software.
But processing a computation expressed in a generic ISA involves significant
overhead in the front end of the processor pipeline – such as instruction fetch,
instruction decode, and register access – that does not contribute toward the core
computations, which are the arithmetic or logical operations.

At the other end of the spectrum, we have the Application-Specific Integrated
Circuits (ASICs) as the completely specialized execution engines. ASICs can
provide unprecedented power-performance benefits compared to the GPPs as they
completely eliminate the instruction processing overhead and only perform the
required computations. But the efficiency comes at the cost of flexibility as
ASICs does not provide any programmability (hence the name non-programmable
accelerators for computations implemented in an ASIC). Any change in the
application incurs complete redesign and fabrication cost. Thus ASICs are only
suitable for critical computational kernels, such as video encoding/decoding, whose
performance per watt requirements cannot be met through the GPPs.

The domain-specific processors offer an interesting design choice between the
two extreme alternative of GPPs and ASICs. Graphics Processing Units (GPUs)
and Digital Signal Processors (DSPs) are well-established examples of domain-
specific processors. The ISA and the microarchitecture are carefully designed to
accommodate the applications in a specific domain. Thus domain-specific proces-
sors attempt to balance specialization with programmability. Still these processors
cannot possibly cover all the application domains, and programming them is not as
straightforward as GPPs.

In this chapter, we will focus on an interesting and compelling alternative called
the application-specific processors or custom processors [34]. We will use the
terms application-specific processors and custom processors interchangeably in
this chapter. An application-specific processor is a general-purpose programmable
processor that has been configured and extended with respect to a particular
application or application domain [24]. Configurability refers to the ability to select
and set the size of different microarchitectural features such as number and types

380 T. Mitra

of functional units, register file size, instruction and data cache size, associativity,
etc. according to the characteristics of the application domain. For example, if
an application does not use floating-point operations, the floating-point functional
units can be eliminated from the underlying microarchitecture. Optimal setting of
the configuration parameters for an application domain is a complex design space
exploration problem [38] that has been investigated thoroughly [20, 29, 51] in the
past decade.

However, in this chapter, we will focus on the extensibility part of the application-
specific processors where the instruction-set architecture of the general-purpose
processor is augmented with application-specific Instruction-set extensions, also
known as the custom instructions . The custom instructions capture the key
computation fragments or patterns within an application. The custom instructions
are added to the base ISA of the general-purpose processor. The computation
corresponding to each custom instruction is synthesized as a Custom Functional
Unit (CFU), and all the CFUs are included in the processor’s data path alongside
existing functional units, such as Arithmetic-Logic Units (ALUs), multipliers, and
so on. The front end of the processor pipeline, for example, the decode stage, needs
to be suitably changed to take in these new instructions. Similarly, the compiler and
associated software tool chain are modified to support the custom instructions such
that a new application can exploit additional instructions in the ISA. As a custom
instruction combines a number of base instructions, it amortizes the front-end
processing overhead. Moreover, the synthesis process of the CFU can be optimized
so that the operations within a CFU can be parallelized and chained together to offer
a very competitive critical path delay that is far shorter than the sum of the delays
of the individual operations. These factors together lead to substantially improved
performance and energy efficiency for application-specific processors compared
to the GPPs. Thus, application-specific processors offer an easy and incremental
path toward specialization, while still staying within the comfortable and familiar
software programming environment of the GPPs.

Initially, application-specific processors were enthusiastically and successfully
adopted in the embedded systems domain. They are an excellent match for this
domain because an embedded system is designed to provide a well-defined set of
functionalities throughout its lifetime. Thus the custom instructions can be con-
structed to accelerate the specific computations involved in providing the required
functionality. The focus at that time has been on the automated design of the custom
instructions. More concretely, given an application, how do we automatically
enumerate the potential custom instructions (custom instructions enumeration) and
choose the appropriate ones under area, energy, and/ or performance constraints
(custom instructions selection)? A flurry of research activity in the past 15 years on
design automation of custom processors has made significant advances, even though
some open problems and challenges still remain unresolved. A number of processor
vendors have offered commercial customizable processor along with the complete
automation tool chain to enumerate, select, and synthesize the custom instructions,
followed by the synthesis of the application-specific processor including the custom
instructions, and the compiler to fully realize the potential of the custom instructions

12 Application-Specific Processors 381

from software with minimal engagement from the programmers. The Xtensa
customizable processors from Tensilica [39] are the best examples of this design
paradigm. In general, however, the interest in application-specific processors has
been primarily restricted to the embedded systems area till very recently.

In the past five years or so, a number of technological challenges have brought
the application-specific processors to the forefront even in the general-purpose
and high-performance computing domains. First, the energy efficiency rather than
performance has increasingly become the first-class design goal [48] for any system,
be it battery-powered embedded and mobile platforms, or high-performance servers
with continuous access to electrical power sockets. Second, the failure of Dennard
scaling [19] back in around 2005 has had a devastating effect on the microprocessor
design. As power per transistor does not scale any more with feature scaling
from one technology generation to another, increasing transistor density following
Moore’s law leads to increasing power density for the chip. Thus the core has to
operate at a frequency that is lower than the default frequency enabled through
technology scaling, so as to keep the power density of the chip within acceptable
limits. Moreover, complex microarchitectural features have long ceased to provide
any further performance improvements [50] as we have hit the instruction-level
parallelism wall [67] and the memory wall [69]. This loss of frequency scaling
and microarchitectural enhancement have kept the single-core performance at a
standstill for the past ten years or so. Instead, the abundance of on-chip transistors
as per Moore’s law has been employed to build multi- or even many-core chips
consisting of identical general-purpose processor cores [22]. The multi-cores are
perfect match for applications with high thread-level parallelism. But the sequential
fragment of the application still suffers from poor single-core performance and
thereby limits the performance potential of the entire application according to
Amdahl’s law [3].

More importantly, though, multi-core scaling is also coming to an end in the
near future [21]. As we increase the number of core on chip, the failure of Dennard
scaling implies that the total chip power increases. But the packaging and cooling
solutions are not sufficient to handle this increasing chip power. Thus we can have
more core on chip; but we can only power on a subset of these cores to meet the
chip power budget. This phenomenon has been termed dark silicon [43], where
a significant fraction of the chip remains unpowered or dark. The dark silicon
era naturally leads to the design of heterogeneous multi-core architectures [44]
rather than the homogeneous multi-core designs prevalent today. Depending on the
applications executing on the architecture, only the cores that are well suited for the
current workload can be switched on at any point in time, leading to performance-
and energy-efficient computing [61]. In other words, the cheap silicon area (that
would have remained unused anyway due to limited power budget) is being traded
to add execution engines that will be used sparingly and judiciously. Thus, the dark
silicon era has automatically paved the way for specialized cores and have generated
renewed interest in application-specific or custom processors [11, 62].

The objectives and challenges in designing application-specific processors are
somewhat different, though, for embedded computing systems and general-purpose

382 T. Mitra

high-performance computing systems. First, unlike embedded systems that execute
only a fixed set of applications throughout its lifetime, general-purpose computing
systems encounter a diverse set of workloads that may be unknown at design
time. So, while we can profile the applications and design the best set of custom
instructions to accelerate the embedded workload, the same approach is not feasible
in general-purpose systems. This leads to the design of custom instructions that are
somewhat parameterized and can be reused across workloads [65]. Another possible
direction is the design of custom functional units or a flexible fabric that can be
reconfigured to support a varied set of custom instructions [32]. Second, custom
instruction enumeration in the context of embedded systems has been generally
restricted to computations and has mostly excluded storage elements inside a custom
instruction. The implication of this choice is that custom instructions are small
and the gain in performance comes from repeated occurrence – either statically
in the program code or dynamically due to its presence in a loop body – of the
same custom instructions. But the performance gain and energy improvement are
still modest with small custom instructions compared to the potential when large
custom instructions are formed combining computations with storage elements and
without any restrictions in terms of input/output operands [30, 71]. Thus bigger
custom instructions with storage elements are recommended for general-purpose
high-performance computing systems.

The rest of the chapter is organized as follows. We will start off with a
brief overview of the architecture of the application-specific processors and the
corresponding design automation flow. This will be followed by detailed discussion
on custom instructions enumeration and selection algorithms. We will next present
customizable architectures with dynamic or reconfigurable custom instructions
and the necessary algorithms to identify custom instructions and exploit such
architectures. Finally, we will provide a quick review of recent attempts to bring
customization to general-purpose computing platforms.

12.2 Architectural Overview and Design Flow

In this section, we provide an overview of the application-specific processor
architecture and the corresponding design flow.

12.2.1 Application-Specific Processor Architecture

The generic architecture of an application-specific processor or custom processor
is shown in Fig. 12.1. The instruction-set architecture of the base processor is
modified to include the application-specific instructions or custom instructions.
A custom instruction encapsulates a frequently occurring computational pattern
involving a number of basic operations (see Fig. 12.1b). Each custom instruction
is implemented as a CFU. The pipeline data path of the base processor core is
augmented with the CFUs alongside existing functional units (ALU, multiplier,

12 Application-Specific Processors 383

Fig. 12.1 Architecture of an application-specific processor with two CFUs

load/store units, etc.) and are treated the same way as shown in Fig. 12.1a. The
CFUs can access the input and output operands stored in the register file just
like regular functional units. Thus a custom instruction can be fetched, decoded,
and dispatched to the respective CFU just like normal instructions. The biggest
advantage of custom instructions is the improved latency and decreased power
consumption to execute the computational pattern. For example, in Fig. 12.1b, the
custom instruction consists of three basic operations (two AND and one OR). In the
base processor core, this computation pattern requires fetch, decode, and execution
of three instructions. This is reduced to only one custom instruction immediately
saving the fetch, decode, dispatch time, and energy. More importantly, as the custom
instruction is synthesized in hardware, the implementation can take advantage of
parallelism. For example, the two AND operations can be executed in parallel. Also
the critical path now consists of AND-OR operation. If the critical path can fit inside
the cycle time of the base processor, the CFU can execute the custom instruction
in one clock cycle. This is the case when the clock cycle time of the processor
is determined by a complex operation such as Multiply-Accumulator (MAC) or
even addition operation whereas the basic operations on the critical path are much
simpler (such as logical operations) such that multiple of them can be chained
together in a single cycle. If the critical path exceeds the cycle time, then the
CFU will execute the custom instruction in multiple cycles (possible pipelined),
say N , where N D .cri t ical path latency/=.clock period/. Still, N is likely
much less than M , the minimum number of cycles required to execute the basic
operations in the computational pattern individually. A positive side effect of the
custom instructions approach is the increased code density and hence reduced code
size, which is an important issue in embedded systems. A custom instruction also
reduces the number of register accesses significantly as the intermediate results (the
results of the AND operations) need not be written back and read from the register
file. In the example pattern in Fig. 12.1b, the custom instruction needs four register
reads and one register write as opposed to six register reads and three register writes
for the original three instruction sequence.

A custom instruction may require more input and output operands compared to
the typical two-input, one-output basic Reduced Instruction-Set Processor (RISC)
instructions. Yu and Mitra [71] showed experimentally that the performance
potential of custom instructions improves with increasing number of input and

384 T. Mitra

output operands. Later, Verma et al. [66] proved that under fairly weak assumptions,
increasing the number of nodes in a pattern (which typically results in increased
input/output operands) can never lead to reduced speedup. But supporting more
input and output operands within the framework of normal processor pipeline
requires some additional support from the underlying microarchitecture and the
ISA, which will be discussed in Sect. 12.3.4. The maximum number of input and
output operands supported per custom instruction in an architecture defines the
custom instruction identification algorithm for that architecture.

12.2.2 Design Flow

The main design effort in tailoring an extensible processor is to define the custom
instructions for a given application to meet certain design goals. Identifying suitable
custom instructions is essentially a hardware-software partitioning problem that
divides the computations between the software execution (using base instructions)
and hardware execution (using custom instructions). Various design constraints
must be satisfied in order to deliver a viable system, including performance,
silicon area cost, power consumption, and architectural limitations. This problem
is frequently modeled as a single-objective optimization where a certain aspect is
optimized (e.g., performance), while the other aspects are considered as constraints.

The generic design flow for application-specific processors is presented in
Fig.12.2. The input to this design flow is the reference software implementation
of the application written in a high-level programming language such as C or C++.
In the application-specific processor design flow, the compiler performs additional
steps toward customizing the base processor core: identifying the computational
patterns that can potentially serve as custom instructions, selecting a subset of these
patterns under various constraints to maximize the objective function, and finally
synthesizing the new CFUs and generating the binary executables under the new
instruction set. This automated hardware-software codesign approach ensures that
large programs can be explored and the software programmers can easily adapt to
the design flow without in-depth hardware knowledge.

In a generic compiler, high-level language statements are first transformed by
the compiler front end to an Intermediate Representation (IR). Various machine-
independent optimizations are carried out on the IR. Then, the back end of the
compiler generates binary executables for the target processor by binding IR objects
to actual architectural resources: operations to instructions, operands to registers
or memory locations, and concurrencies and dependencies to time slots, through
instruction binding, register allocation, and instruction scheduling, respectively.
Various machine-dependent optimizations are also performed in the back end. The
custom instruction identification, selection, and binary executable generation with
custom instructions are all performed in the back end on the IR.

The IR consists of a Control-Flow Graph (CFG) and a Data-Flow Graph (DFG)
(also called a data-dependency graph). The CFG is a graph structure where the nodes
are the basic blocks – sequence of instructions with a single-entry and single-exit

12 Application-Specific Processors 385

Fig. 12.2 The design flow for application-specific processors [52]

386 T. Mitra

Fig. 12.3 Control-flow graph and data-flow graph

point. The edges among the basic block represent control-flow transfer from one
basic block to another through conditional statements, loops, function calls, etc. For
each basic block, the computation within a basic block is captured by a DFG where
the nodes represent the operations and the edges represent dependency among the
operations. Figure 12.3 shows an example of CFG and DFG corresponding to a code
segment. In the base processor, each operation in the DFG typically corresponds
to an instruction in the ISA. However, a custom instruction can cover a cluster of
operations and is hence captured as a subgraph of the DFG.

Normally, custom instructions identification is restricted to the DFG within
each basic block. However, basic blocks are usually quite small consisting of
only few instructions. Thus there is limited opportunity to extract large custom
instructions within basic blocks and obtain significant performance improvement.
A limit study by Yu and Mitra [71] showed significant benefit in identifying custom
instructions across basic block boundaries. Thus it is essential to create larger blocks
containing multiple basic blocks, for example, traces, superblocks, and hyperblocks,
and provide architectural support to for these extended blocks. In that case, the DFG
can be built for these larger blocks.

The custom instruction identification is essentially a subgraph enumeration
problem. For each DFG, the computational patterns that satisfy certain constraints
are enumerated as potential custom instruction candidates. If a pattern appears
multiple times either within the same basic block or different basic blocks, these are
considered as different instances of the same computation pattern. This step builds a
library of potential candidate patterns. The next step evaluates the different patterns
and selects a subset that optimizes certain goals under the different constraints.
This step requires profiling data. The application is profiled on the base processor
with representative input data sets. The profiling identifies the hot spots where
most of the computation time is spent, and these hot spots are ideal candidates
for implementation as custom instructions and may benefit from faster execution
on CFUs. The performance benefit of each pattern combined with the frequency
of execution of that pattern from profiling information is used in the custom
instructions selection process.

12 Application-Specific Processors 387

Finally, the selected patterns are passed on to the last step of the design
framework. Each selected pattern is synthesized in hardware as a CFU, and the
CFUs are added to the data path of the processor. The processor control is modified
to accommodate these new instructions. The new instructions are acknowledged in
the instruction binding stage of the compiler either by simple peephole substitution
or by the pattern matcher to produce an executable that exploits the custom
instructions.

12.3 Custom Instructions Identification and Selection

We start off this section by first presenting the terminology and definitions related
to custom instructions identification from a data-flow graph.

12.3.1 Formal Definitions

The custom instructions are identified on the data-flow graphs corresponding to
the basic blocks of a program. A DFG G is a directed acyclic graph that captures
the flow of data within a basic block. The set of nodes or vertices V .G/ represent
the operations, while the set of edges E.G/ represent the flow of data among the
operations. An edge e D .u; v/ where e 2 E.G/, u; v 2 V .G/ denotes a data
dependency from u to v where v can execute only after u completes execution.
Figure 12.4 shows a data-flow graph consisting of the blue and the red nodes.

Each graph G is also associated with a supergraph GC that contains additional
nodes V C and edges EC. The additional nodes V C represent the input and output
variables of the basic block, while the additional edges EC connect the nodes in
V C to the nodes in V .G/. The green nodes in Fig. 12.4 correspond to the additional

Fig. 12.4 Data-flow graph

5

1 2

4 3

0

LD
DFG

388 T. Mitra

nodes to create the supergraph corresponding to the DFG. The DFG requires three
input variables and three output variables.

Given an edge e D .u; v/, the node u is called the immediate predecessor of node
v, while v is the immediate successor of u. Let us define IP red.v/ D fuj.u; v/ 2

E.G/g and ISucc.v/ D fuj.v; u/ 2 E.G/g as the immediate predecessor set and
immediate successor set of node v, respectively. The in-degree and out-degree of
node v are jIP red.v/j and jISucc.v/j, respectively. A path v0 vn is a sequence
hv0; v1; : : : ; vni of nodes where vi 2 V .G/ for 0 � i � n such that .vi ; viC1/ 2

E.G/ for 0 � i � .n � 1/. We define predecessor set P red.v/ as the set of nodes
that can reach v through a path in the graph, i.e., P red.v/ D fuju v 2 Gg.
Similarly, we define successor set Succ.v/ as the set of nodes that can be reached
from v through a path in the graph, i.e., Succ.v/ D fujv u 2 Gg.

A source node in the supergraph GC has no predecessor (zero in-degree), while
a sink node has no successor (zero out-degree). The source nodes represent the
input operands (including immediate operands), while the sink nodes represent the
output operands corresponding to the DFG. Together the source nodes and the sink
nodes correspond to V C. The remaining nodes V .G/ are the internal nodes of the
data-flow graph that represent the operations (arithmetic and logical operations,
load/store, etc.) supported by the ISA of the baseline processor. The green nodes
in Fig. 12.4 are the source and sink nodes, while the blue and red nodes are the
internal nodes of the data-flow graph.

A custom instruction or a pattern C is a subgraph of the DFG G induced by the
set of vertices C � V .G/. The subgraph consists of vertices V .C / � V .G/ and
edges f.u; v/ 2 E.G/ju; v 2 V .C /g. For example, the set of vertices f0; 1; 2g form
a pattern. A node u is an input of pattern C if u … V .C /, v 2 V .C /, and there exists
an edge .u; v/ 2 E.GC/. Similarly, a node u is an output of pattern C if u 2 V .C /,
v … V .C /, and there exists an edge .u; v/ 2 E.GC/. Let In.C / and Out .C /

be the set of input and output nodes of pattern C , respectively. The input nodes
represent the input values or variables used by the custom instruction, while the
output nodes present values produced by the custom instruction that will be used by
other operations, either in G or in another basic block. Many architectures impose
constraints on the number of inputs and outputs per custom instruction, known as
the I/O constraint. The nodes 3; 4; LD are the input and nodes 0; 1; 2 are all output
corresponding to the pattern f0; 1; 2g in Fig. 12.4.

An architecture may impose restrictions on the kind of operations that may
be included as part of a custom instruction. Most architectures do not allow
memory operations (load/store) and control operations (branch) to be part of
custom instructions. A node is valid if it can be part of a custom instruction;
otherwise it is invalid. By definition, the source and the sink nodes are not part
of custom instructions and hence are invalid. Internal nodes can be invalid too if
the corresponding operation cannot be accommodated within a custom instruction.
For example, the red node in Fig. 12.4 corresponds to a load operation, and it is an
invalid node in addition to the green source/sink nodes. Let X.G/ 2 V .G/ be the
set of internal invalid nodes of the DFG.

12 Application-Specific Processors 389

The following special patterns are of interest in custom instructions enumeration
problem.

Connected pattern A pattern C is connected if for any pair of nodes u; v 2 V .C /

in the pattern, there exists a path between u and v within the pattern in the
undirected graph that underlies the directed induced subgraph of C . f0; 1; 2g is
a connected pattern in Fig. 12.4.

Disjoint pattern A pattern is disjoint if it is not connected. A disjoint pattern
consists of two or more connected patterns. The pattern f3; 4; 5g is a disjoint
pattern consisting of two connected patterns f4g and f3; 5g.

MISO pattern A pattern C with only one output (jOut .C / D 1j) is called a
Multiple Input Single Output (MISO) pattern. Clearly, a MISO pattern should
be a connected pattern. f3; 5g is a MISO pattern with 3 as the output. Note that
f0; 1; 2g is not a MISO pattern as it has three outputs.

MIMO pattern A pattern with multiple input and multiple output is called a
Multiple Input Multiple Output (MIMO) pattern. We can further distinguish
between connected MIMO pattern and disjoint MIMO pattern.

Convex pattern A pattern C is convex if any intermediate node t on any path in
the DFG G from a node u 2 V .C / to a node v 2 V .C / belongs to C , i.e.,
t 2 V .C /. A pattern is non-convex if there exist at least one path in the DFG
G from a node u 2 V .C / to a node v 2 V .C / that contains an intermediate
node t 2 V .G/ n V .C /. A non-convex pattern is infeasible because it cannot be
executed as a custom instruction in an atomic fashion. The pattern f0; 1; 2; 4g is
a non-convex pattern because there is a path from 4 to 0 that contains the invalid
LD node.

Valid pattern A pattern C is a valid custom instruction candidate if (a) the pattern
does not contain any invalid node V .C / \ X.G/ D �, (b) the pattern is convex,
and (c) the pattern satisfies the I/O constraints imposed by the architecture, i.e.,
In.C / � Nin and Out .C / � Nout where Nin and Nout are the maximum
number of inputs and outputs allowed per custom instruction, respectively.

Maximal valid pattern A pattern C is a maximal valid pattern if it is a valid
pattern, and there is no v 2 V .G/ n V .C / such that the subgraph induced
by the set of vertices .V .C / [v/ is a valid pattern. For example, f0; 1; 2; 3; 5g

is a maximal valid pattern.

We will primarily concentrate on techniques to enumerate connected patterns as
the disjoint patterns can be easily constructed from the connected patterns.

In the context of pattern enumeration, it is useful to define topologically sorted
level of the nodes in the directed acyclic graph G. Each node in V .G/ that is
only connected to the source nodes V C has level 0. The level of any other node
level.v/ D l if the longest path (in terms of number of edges) from some source
node to v is of length l C1. We can also define the order of the nodes in G according
to the topological sort; if G contains an edge e D .u; v/, then v should appear after

390 T. Mitra

u in this topologically sorted order. In the example DFG of Fig. 12.4, nodes 4; 5

belong to level 0, node 3 belongs to level 1, and nodes 1; 2 belong to level 2, and
node 0 belongs to level 3. A topologically sorted order for the valid nodes of the
DFG is 5; 4; 3; 2; 1; 0.

12.3.2 Enumeration of MISO Patterns

The simplest custom instruction enumeration problem is the one of identifying max-
imal MISO (MaxMISO) patterns. A linear-time algorithm to identify MaxMISO
patterns has been presented in [2]. Note than a MaxMISO pattern has a single
output. So it is efficient to start with the sink nodes and proceed level by level to
the source nodes. We initialize a MaxMISO pattern C D fvg with any node v

that has only one output. We can then iteratively add in the predecessors’ nodes
IP red.v/ at the next level to the pattern C as long as u 2 IP red.v/ does
not contribute a new output to the pattern or u is an invalid node (u 2 X). The
process can continue with the predecessors of the newly added nodes in the pattern
till we have no more predecessors to consider. As the intersection of MaxMISOs
should be empty, i.e., two MaxMISOs cannot overlap, it is easy to see that the
algorithm will have linear time. In contrast, Cong et al. [18] identify all valid
MISO patterns. This problem, in the most general case, has exponential complexity
because each node can potentially be included or excluded from a candidate pattern.
Thus, Cong et al. [18] impose restrictions on number of input operands and/or area
constraint to limit the number of candidate patterns resulting in efficient pattern
generation.

12.3.3 Exhaustive Enumeration of All Valid Patterns

The exhaustive enumeration of all possible valid connected patterns of a DFG G

under the convexity and a specified I/O constraint is quite challenging. At first
glance, in the worst case, the number of possible patterns can be .2jV .G/j as each
vertex can be either included or excluded to form a pattern. But closer examination
of the problem reveals that most of the patterns are not valid due to convexity and/or
I/O constraints. Chen at al. [13] and Bonzini and Pozzi [9] have proven that the
number of such valid patterns for a graph G with bounded in-degree (which is true
for data-flow graphs of programs) is at most jV .G/jNinCNout . If the I/O constraint is
quite tight, then the enumeration is fast. A number of algorithms have been proposed
in the literature to solve this problem efficiently. Gutin et al. [28] have designed an
algorithm with worst-case complexity of O.jE.G/j�N 2

in�.nCjV .G/jNout // where
n is the number of valid patterns. This bound is theoretically optimal if the number
of valid patterns n is asymptotically smaller than jV .G/jNinCNout . As a follow-up
work, Reddington et al. [59] have proposed a version of this algorithm that has
jV .G/jNinCNout C1 worst-case complexity, but runs much faster in practice. At the

12 Application-Specific Processors 391

point of this writing, the algorithm by Reddington et al. [59] is known to be the
fastest algorithm in practice for exhaustive enumeration of all valid convex patterns
under I/O constraints.

In the following, we present a few representative algorithms so that the readers
can better appreciate the problem and the possible solutions.

12.3.3.1 Search-Tree-Based Enumeration Algorithm
We present the first and the simplest algorithm proposed for this purpose by Atasu
et al. [7,55], which is based on a search tree. It has been later shown by Reddington
and Atasu [58] that the search-tree-based exhaustive algorithm has worst-case
complexity of jV .G/jNinCNout C1, which is quite close to the theoretical complexity.

The main insight behind the search-tree-based algorithm is that if a pattern C is
not convex, then adding in the nodes that appear in lower levels in G (according
to the topological sort) compared to the nodes in C would not make the resulting
pattern convex. For example, the pattern f0; 1; 3g in Fig. 12.4 is non-convex.
Including the nodes 4 and 5 to this pattern will not remove the non-convexity.

Similarly, if a pattern C violates the output constraint, then adding in the nodes
that appear in lower levels in G (according to the topological sort) compared to the
nodes in C would not decrease the number of output operands. For example, the
pattern f0; 1; 2g in Fig. 12.4 requires three output operands. Adding the nodes that
are at lower level in topological sort 3; 4; 5 to this pattern will not reduce the number
of output operands of the resulting pattern. In other words, we can easily prune away
all such patterns without examining them explicitly. This effective pruning of the
search space leads to the efficiency of the algorithm.

The search tree is a binary tree of nodes that represent the possible patterns.
The root represents an empty pattern. The nodes are added in this tree in reverse
topological order. Let the order of the nodes of G in reverse topological order by
v1; v2; : : : vjV .G/j. The branches at level i corresponds to including (the 0-branch) or
excluding (the 1-branch) the node vi in the pattern. The pattern along the 0-branch is
the same as the parent node and can be ignored. The search tree can be constructed
in this manner till we examine the node vV .G/ at level jV .G/j. Figure 12.5 shows
the search tree corresponding to the DFG in Fig. 12.4. The shaded regions represent
the pruned design space.

1 0

1

1

1

1

1

1

11 1 1 1 1 1

11

1 1 1

1 1 1 1 1 1

1 1

1 1

1 1

1 1

1

1

1 111

1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

00

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0

Empty
Operation 0

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5

11

11

11

11

1111 11

0

0

00 00 00 00

0

11 11

11 0

00 001

11 0

11

11

001

11 11

11 1100 00

11

1100

11

1

11

1100

11

1100

11

1100

11

1100

Fig. 12.5 Search tree for pattern enumeration

392 T. Mitra

As mentioned earlier, the complexity of the search is reduced by employing
the convexity and the output constraint. Suppose that the output constraint has
been violated at a pattern. Then adding the nodes that appear later in the reverse
topological order cannot possibly reduce the number of outputs for the pattern.
Similarly, if the convexity constraint is violated, then it is not possible for the pattern
to regain feasibility by adding the nodes that appear later in the reverse topological
order. Therefore, when we reach a search tree node where either the convexity
constraint or the output constraint is violated, the subtree rooted at that node can
be completely eliminated from the search space.

Clearly, the search-tree-based exhaustive algorithm can prune based on the output
constraint, but it cannot prune based on the input constraint. Each pattern simply
needs to be checked for violation of the input constraint. Later, Pozzi et al. [55]
extended the algorithm in [7] to include a simple input check. This input check is
based on the observation that if a source node or an invalid node is the input to a
pattern, then it is a permanent input and cannot be absorbed by adding in additional
nodes to the pattern. Moreover, if an ancestor node of a pattern has been considered
and excluded (0-branch), then the ancestor node also becomes a permanent input for
the pattern. So if a pattern at a node in the search tree violates the input constraint
based on the permanent inputs, then the subtree rooted at that node can also be
eliminated. This new pruning criteria reduces the search space of the algorithm
further.

12.3.3.2 Hierarchical Algorithm
The search-tree-based enumeration algorithm generates all the patterns within a
single step. In contrast, Yu and Mitra [72, 73] proposed a multi-step algorithm that
proceeds to generate all the feasible patterns in a hierarchical fashion. It breaks up
the pattern generation process into three steps corresponding to cone, connected
MIMO, and disjoint MIMO patterns. Cones are special kinds of patterns. A cone is
a rooted DAG in the data-flow graph such that either there is a path from the root
node r to every other node in the cone (downCone.r/) or there is a path from every
other node to the root node (upCone.r/). An upCone.r/ is a MISO pattern if it
has only one output. For example, f3; 5g is an upCone rooted at 3 and it is also MISO
pattern, but f0; 1; 2g is an upCone rooted at 1 although it is not a MISO pattern. The
pattern f1; 2; 3g is a downCone rooted at 3.

The first step generates upCones and downCones. Recall that a MISO pattern
is a upCone with only one output node. Therefore, the first step implicitly
generates all the MISO patterns. The second step combines two or more cones
to generate connected MIMO patterns, and finally the third step combines two or
more cones/MIMO patterns to generate disjoint MIMO patterns. The hierarchical
algorithm is based on the intuition that it is advantageous to separate out connected
and disjoint MIMO pattern generation. The reason is the following. On the one
hand, connected MIMO pattern generation algorithm does not need to consider
nodes that are far apart and have no chance of participating in a connected pattern
together. Therefore, the design space is reduced considerably. On the other hand,
lots of infeasible patterns are filtered out during connected pattern generation step

12 Application-Specific Processors 393

and are not considered subsequently during disjoint pattern generation step. Thus
the separation of concerns speeds up the algorithm substantially.

Theorem 1. Any connected MIMO pattern C with In.C / input operands and
Out .C / output operands can be generated by combining convex upCones with at
most In.C / input operands or convex downCones with at most Out .C / output
operands.

In other words, it is possible to generate any feasible connected MIMO patterns
by combining one or more cones. For example, the pattern {1, 2, 3, 5} in Fig. 12.4
can be generated by combining upCone.3/ D f3; 5g with downCone.3/ D

f1; 2; 3g. The above theorem provides a key search space reduction technique by
excluding some combination of cones. Specifically, to generate all the connected
MIMO patterns, the hierarchical algorithm only needs all upCones that satisfy con-
vexity/input constraints and all downCones that satisfy convexity/output constraints.
This allows the algorithm to prune aggressively.

Theorem 2. Any connected component Ci of a feasible disjoint pattern Di must be
a feasible connected pattern.

This theorem states that a feasible disjoint pattern can be generated from one or
more feasible connected patterns. The possible combination of feasible patterns is
much smaller than that of arbitrary patterns, resulting in more efficient enumeration.

12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns

The I/O constraint restricts the size of the valid patterns as either the input or
the output constraint gets easily violated with increasing number of nodes in a
pattern. Pothineni et al. [54] first proposed to relax the I/O constraint. It is well
known that the speedup potential grows with increasing number of input and output
nodes for the patterns [71]. Pothineni et al. observed that the convexity constraint is
immutable, along with the exclusion of the invalid nodes in a pattern. They wanted
to observe the limits of performance potential without I/O constraints. Later Verma
et al. [66] formally proved that it is sufficient to consider only the maximal convex
patterns.

Definition 1. A speedup model is monotonic, if for any two convex patterns C1

and C2

.V .C1/ � V .C2// H) .Speedup.C1/ � Speedup.C2//

Let SW _latency.C / and HW _latency.C / be the latency for software and
hardware implementation of a pattern, respectively. Then Verma et al. [66] proved
the following theorem.

394 T. Mitra

Theorem 3. The speedup model for pattern generation for RISC proces-
sor is monotonic, under the assumption that for any convex pattern C ,
SW _latency.C / � HW _latency.C /.

The theorem indicates that under fairly weak assumptions, increasing the number
of nodes in a pattern can never reduce the speedup. Consequently, the optimal
pattern will also be the maximal pattern, and it is sufficient to enumerate only the
maximal convex patterns.

However, the relaxed I/O constraint implies that the custom functional unit has
to somehow obtain all the input and output operands from the register file. Cong
et al. [17] proposed a shadow register file to overcome the limited bandwidth from
the main register file. Jayaseelan and Mitra [36] leveraged the data forwarding or
bypassing logic in the processor pipeline to supply additional operands to the CFU.
Pozzi and Ienne [56] suggested distributing the register file accesses over multi-
cycle, pipelined execution of the pattern in the CFU. This approach is known as
I/O serialization in the literature. A number of algorithms [1, 4, 56, 66] have been
proposed to appropriately schedule the I/O over multiple cycles to ensure that the
convex pattern can be implemented in practice.

Pothineni et al. [54] defined the incompatibility graph as the first step toward
solving the maximal convex pattern enumeration problem. Let x 2 X.G/ be an
invalid node in the DFG G. Clearly, any node a 2 P red.x/ cannot be involved with
any node b 2 Succ.x/ in a pattern because it will violate the convexity constraint.
This is because there will be a path from a to b that involves the node x and the
node x cannot be included in any pattern, violating convexity. Thus the cluster
of nodes in P red.x/ is incompatible with the cluster of nodes Succ.x/. Similar
incompatibility can be defined between predecessor and successor nodes of each
invalid node. For example, in Fig. 12.4, f0g and f4g are incompatible clusters. Then
we can define the incompatibility graph as an undirected graph where there is an
edge between each pair of incompatible cluster. Any convex pattern cannot include
the incompatibility edges. Therefore, enumerating maximal convex subgraphs of G

is equivalent to enumerating the maximal independent sets in the incompatibility
graph (A set of vertices in a graph is independent if for every pair of vertices, there
is no edge connecting the two. A maximal independent set is one which is not a
proper subset of any independent set.). The maximal independent sets for the DFG in
Fig. 12.4 are f0; 1; 2; 3; 5g and f4; 1; 2; 3; 5g. Verma et al. [66] proved an equivalent
result by defining a cluster graph, which is the complement of the incompatibility
graph, and hence the maximal convex subgraphs can be enumerated by enumerating
the maximal cliques in the cluster graph.

In general, this problem has exponential time complexity in the worst case,
because the number of maximal independent sets of a graph with n nodes is upper
bounded by 3n=3 [46]. But due to the clustering performed w.r.t. each invalid node
in constructing the incompatibility graph, Atasu et al. [6] showed that the number
of maximal convex patterns is O.2jX.G/j/ where X.G/ is the set of invalid nodes
in the DFG G and can be enumerated in as many computational steps. Moreover,
Reddington and Atasu [58] have proved that no polynomial-time maximal convex

12 Application-Specific Processors 395

pattern enumeration algorithm can exist. But by carefully choosing the order of
clustering of the nodes, the enumeration can be performed quite effectively [5,6,40].

12.3.5 Enumeration of Maximum Weighted Convex Patterns

We can associate a weight with each vertex in the DFG. For example, the weight
weight.v/ of a node v can correspond to the software latency SW _latency.v/

of the operation corresponding to the node. Then the weight of a pattern C can
be defined as

P
v2V .C / weight.v/. A pattern C is called the maximum (weighted)

convex pattern if it is the maximal convex pattern with the maximum weight.
As mentioned earlier, it is not possible to design polynomial-time algorithm to

enumerate all possible maximal convex patterns (as there can be exponential number
of them present in a graph). But the problem of finding the maximum convex
pattern is equivalent to finding the maximum independent set in the compatibility
graph [58], and there exist polynomial-time solutions for this problem by further
converting it into a minimum flow problem in a network.

Given a polynomial-time solution for the maximum convex pattern problem, we
can design an iterative algorithm that identifies the maximum convex pattern in each
iteration, removes those nodes from the DFG, and then repeats the process for the
remaining nodes. Such an algorithm can cover the vertices of the DFG with a set of
nonoverlapping convex patterns and has been demonstrated to generate high-quality
custom instructions [5].

Recently, Giaquinta et al. [23] have studied the maximum weighted convex
pattern identification problem under I/O constraint. This problem is useful when
the maximal or maximum convex subgraphs might be too big to be realized in
practice through I/O serialization. Including the I/O constraint from the beginning
can generate feasible patterns that are implementable. At the same time, identifying
maximum convex patterns under relatively large I/O constraint is more tractable
than the original exhaustive enumeration of all convex patterns under I/O constraints
discussed earlier. This problem requires first identifying the maximal convex
patterns and then searching for the maximum weighted patterns from among this set.

12.3.6 Custom Instructions Selection

Given the set of candidate patterns, we need to first identify the identical subgraphs
using graph isomorphism algorithm. All the identical subgraphs map to a single
CFU or custom instruction; that is, a custom instruction has multiple instances.
The execution frequencies of custom instruction instances are different and result in
different performance gains. The selection process attempts to cover each original
instruction in the code with zero/one custom instruction to maximize performance.
Zero custom instruction covering an original instruction means that the original
instruction is not included in any custom instruction. The selection of the custom
instructions can be optimal or nonoptimal (heuristic). One way to optimally select

396 T. Mitra

the custom instructions is by modeling it as an Integer Linear Program (ILP) and
solve the ILP using an efficient ILP solver. The problem can also be solved optimally
using dynamic programming or branch-and-bound methods.

12.3.6.1 Optimal Solution Using ILP
The ILP formulation presented here was originally proposed in [37] and then mod-
ified to this particular context in [37]. Let N be the number of custom instructions
identified during the first step defined by C1 : : : Cn. A custom instruction Ci can have
ni different instances occurring in the program code denoted by ci:1 : : : ci:ni . Each
instance has execution frequency given by fi:j . Let Ri be the area requirement of the
custom instruction Ci and Pi be the performance gain obtained by implementing Ci

in custom functional unit as opposed to software (given in number of clock cycles).
The binary variable si:j is equal to 1 if custom instruction instance ci:j is selected
and 0 otherwise. The following objective function maximizes the total performance
gain using custom instructions:

max W

NX

iD1

niX

j D1

.si:j � Pi � fi:j /

The objective function has to be optimized under the constraint that a static
instruction can be covered by at most one custom instruction instance. If custom
instruction instances ci1:j1 : : : cik :jk

can all potentially cover a particular static
instruction, then

si1:j1 C : : : C sik :jk
� 1

In order to model the area constraint or the constraint on the total number of
custom instructions, the variable Si is defined. Si is a binary variable that is equal
to 1 if Ci is selected and 0 otherwise. Si is defined in terms of si:j .

Si D 1 if
niX

j D1

si:j > 0

D 0 otherwise

However, the above equation is not a linear one. The following equivalent linear
equations can model the constraint.

niX

j D1

si:j � U � Si � 0

niX

j D1

si:j C 1 � Si > 0

where U is a large constant greater than max.ni /.

12 Application-Specific Processors 397

If R is the total area budget for all the CFUs, then

NX

iD1

.Si � Ri / � R

Similarly, if M is the constraint on the total number of custom instructions, then

NX

iD1

Si � M

12.3.6.2 Other Approaches
As the ILP-based custom instruction selection may become computationally expen-
sive for large number of custom instruction instances, heuristic selection algorithms
are more practical. One idea is to assign priorities to the custom instruction
instances. The instances are chosen starting with the highest priority one. In
addition, any search heuristic such as genetic algorithm, simulated annealing,
hill climbing, etc. can be applied for this problem. While most approaches con-
sider single-objective optimization, the custom instruction selection exposes an
interesting multi-objective optimization as well. Bordoloi et al. [10] proposed a
polynomial-time approximation algorithm that can help the designers explore the
area-performance trade-off for multi-objective optimization. The approach approxi-
mates the (potentially exponential size) set of points on the area-performance Pareto
curve with only a polynomial number of points such that any point in the original
Pareto curve is within � distance (the value of � is decided by the designer) from at
least one of the selected points. Custom instruction selection problem has also been
considered in the context of real-time systems [31, 45].

12.4 Run-Time Customization

Application-specific processor design as presented so far is quite promising. But it
has a drawback that a new application-specific processor has to be designed and
fabricated for at least each application domain, if not for each application. This
is because a processor customized for one application domain may fail to provide
any tangible performance benefit for a different domain. Soft core processors with
extensibility features synthesized in Field-Programmable Gate Arrays (FPGAs)
(e.g., Altera Nios [49], Xilinx MicroBlaze [60]) somewhat mitigate this problem
as the customization can be performed post-fabrication. Still, customizable soft
cores suffer from lower frequency and higher energy consumption issues because
the entire processor (and not just the CFUs) is implemented in FPGAs. Apart from
cross-domain performance problems, extensible processors are also limited by the
amount of silicon available for the implementation of the CFUs. As embedded
systems progress toward highly complex and dynamic applications (e.g., MPEG-4

398 T. Mitra

video encoder/decoder, software-defined radio), the silicon area constraint becomes
a primary concern. Moreover, for highly dynamic applications that can switch
between different modes (e.g., run-time selection of encryption standard) with
unique custom instructions requirements, a customized processor catering to all
scenarios will clearly be a suboptimal design.

Run-time adaptive application-specific processors offer a potential solution to
all these problems. An adaptive custom processor can be configured at run time to
change its custom instructions and the corresponding CFUs. Clearly, to achieve run-
time adaptivity, the CFUs have to be implemented in some form of reconfigurable
logic. But the base processor is implemented in ASIC to provide high clock
frequency and better energy efficiency. As CFUs are implemented in reconfigurable
logic, these extensible processors offer full flexibility to adapt (post-fabrication) the
custom instructions according to the requirement of the application running on the
system and even midway through the execution of the application. Such adaptive
custom processors can be broadly classified into two categories:

• Explicit Reconfigurability: This class of processors needs full compiler or
programmer support to identify the custom instructions, synthesize them, and
finally cluster them into one (or more) configuration that can be switched at
run time. In other words, custom instructions are generated off-line, and the
application is recompiled to use these custom instructions.

• Implicit Reconfigurability: This class of processors does not expose the extensi-
bility feature to the compiler or the programmer. In other words, the extensibility
is completely transparent to the user. Instead, the run-time system identifies the
custom instructions and synthesizes them while the application is running on the
system. These systems are more complex, but may provide better performance
as the decisions are taken at run time.

12.4.1 Explicit Run-Time Customization

In this subsection, we focus on extensible processors that require extensive compiler
or programmer intervention to achieve run-time reconfigurability.

Programmable Instruction-Set Processor (PRISC) [57] is one of the very first
architectures to introduce CFU reconfigurability. The architecture supports a set
of configurations, where each configuration corresponds to a computational kernel
or custom instruction. There can be only one active configuration at any point
in time. However, the CFU can be reconfigured at run time to support different
configurations during the execution of an application or different applications.
The temporal reconfigurability gives the illusion of a large CFU as multiple
configurations can be supported using the same silicon, but it comes at the cost
of reconfiguration overhead.

The CFU in PRISC is called Programmable Functional Unit (PFU). The PFU
however is restricted in the sense that it can support only two input operands and
one output operand. Thus the PFU cannot support large custom instructions that can

12 Application-Specific Processors 399

potentially provide significant performance benefit. Moreover, each configuration
can only include one custom instruction. This effectively restricts PRISC to use
only one custom instruction per loop body because it is expensive to reconfigure
within a loop body to support multiple instructions.

OneChip [35] reduces the reconfiguration overhead by allowing multiple config-
urations to be stored in the PFU, but only one configuration can be active at any
point of time. Unfortunately, OneChip does not provide enough details regarding
how the programmers can specify or design the custom instructions that will be
mapped onto the PFU.

Both PRISC and OneChip allow only one custom instruction per configuration.
This decision leads to high reconfiguration overhead specially if multiple custom
instructions need to be supported within a computational kernel executing fre-
quently, such as the loop body. This restriction is lifted in the next set of architecture
that enables both spatial and temporal reconfiguration. That is, multiple custom
instructions can be part of a single configuration. This combination of spatial and
temporal reconfiguration is a powerful feature that can significantly reduce the
reconfiguration overhead.

The Chimaera [70] architecture is one of the first works to consider both
temporal and spatial configuration of the custom functional units. The architec-
ture is inspired by PRISC as it tightly couples reconfigurable functional unit
(RFU) with a superscalar pipeline. But a crucial difference is that Chimaera
RFU can use up to nine input registers to produce the result in one destination
register. The architecture, however, suffers from inadequate compiler support.
The compiler can automatically map a cluster of base instructions into custom
instructions. However, the Chimaera compiler lacks support for spatial and temporal
reconfiguration of custom instructions so as to fully exploit run-time reconfigura-
tion.

The Stretch S6000 [25] architecture is a commercial processor that follows this
trend of spatial and temporal reconfiguration. Figure 12.6 shows the Stretch S6000
engine that incorporates Tensilica Xtensa LX dual-issue Very Long Instruction
Word (VLIW) processor [39] and the Stretch Instruction-Set Extension Fabric
(ISEF). The ISEF is a software-configurable data path based on programmable
logic. It consists of a plane of arithmetic/logic units (AU) and a plane of multiplier
units (MU) embedded and interlinked in a programmable, hierarchical routing
fabric. This configurable fabric acts as a functional unit to the processor. It is built
into the data path of the base processor and resides alongside other traditional
functional units. The programmer-defined application-specific instructions (called
extension Instructions) need to be implemented in the ISEF. One or more custom
instructions are combined into a configuration, and the compiler generates multiple
such configurations. When an extension instruction is issued, the processor checks
if the corresponding configuration containing the extension instruction is loaded
into the ISEF. If not, the configuration is automatically and transparently loaded
prior to the execution of the custom instruction. ISEF provides high data bandwidth
to the core processor through 128-bit wide registers. In addition, 64KB embedded
RAM is included inside ISEF to store temporary results of computation. With all

400 T. Mitra

Local Memory System

32KB
I-Cache

32KB
D-Cache

64KB
Dual port RAM

Execution Unit

32-bit Register

FPU ALU

ISEF
IRAM

Xtensa LX Dual-Issue VLIW

32-bit Register 128-bit Wide Register

Fig. 12.6 Stretch S6000 data path [25]

these features, a single custom instruction can potentially implement a complete
inner loop of the application. The Stretch compiler also fully unrolls any loop with
constant iteration counts.

Most reconfigurable application-specific processors use a traditional reconfig-
urable fabric to implement the custom instructions or a configuration consisting of
multiple custom instructions, for example, Stretch S6000 [25] architecture. This
approach has the advantage of flexibility but suffers from computational ineffi-
ciency. Just-in-time customizable (JiTC) [12] architecture reconciles the conflicting
demands of performance and flexibility in extensible processor. The key innovation
in this architecture is a Specialized Functional Unit (SFU) tightly integrated into the
processor pipeline. The SFU is a multistage accelerator that has been purpose-built
to execute most common computational patterns across a range of representative
applications in a single cycle. The SFU can be reconfigured on a per cycle basic
to support different custom instructions in different cycles. The JiTC compiler
identifies the appropriate custom instructions, generates the configuration bitstream
for each such instruction to be implemented on the SFU, and replaces the selected
patterns in the software binary with custom instructions. The JiTC core can thus
provide near-ideal performance of an extensible processor with very little silicon
area dedicated for customization. The JiTC core has recently been employed
in a low-power many-core architecture [63] for wearables to enable low-cost
application-specific customization at run time.

12.4.1.1 Partial Reconfiguration
So far the architecture presented requires full reconfiguration, that is, the entire
fabric is reconfigured to support the next configuration. This can result in wasted

12 Application-Specific Processors 401

reconfiguration cost specially when there is overlap between two consecutive
custom instructions. That is, only a subset of custom instructions from the current
configuration should be replaced with new custom instructions. Partial reconfigura-
tion comes to rescue in this situation as it provides the ability to reconfigure only part
of the reconfigurable fabric. With partial reconfiguration, idle custom instructions
can be removed to make space for the new instructions. Moreover, as only a part of
the fabric is reconfigured, it saves reconfiguration cost.

Dynamic Instruction-Set Computer (DISC) [68] is one of the earlier attempts
in designing an extensible processor to provide partial reconfiguration feature.
DISC implements each instruction of the instruction set as an independent circuit
module. Thus the individual instruction modules can be paged in and paged
out onto the reconfigurable fabric in a demand-driven manner. Moreover, the
circuit modules are relocatable. If needed, an existing module can be moved
to a different place inside the fabric so as to create enough contiguous free
space to accommodate the incoming instruction module. The drawback of DISC
system is that both the base and the custom instructions are implemented in the
reconfigurable logic leading to performance loss. On the other hand, the host
processor remains severely underutilized as its only task is resource allocation and
reconfiguration.

Extended instruction set RISC (XiRisc) [41] follows this line of development to
couple a VLIW data path with a run-time reconfigurable hardware. The architecture
can support four source operands and two destination operands for each custom
instruction. One of the interesting developments in XiRisc is that the reconfigurable
hardware can hold internal states for several cycles reducing the register pressure
on the base processor. However, XiRisc did not include configuration caching
leading to higher reconfiguration overhead. Also like most early reconfigurable
application-specific processor, XiRisc lacked compiler support to automate the
custom instruction design and reconfiguration process.

Molen [64] is an interesting polymorphic processor that incorporates an arbitrary
number of reconfigurable functional units. This allows the architecture to execute
two more independent custom instructions in parallel in the reconfigurable logic. To
support the functionality of the reconfigurable fabric, eight custom instructions are
added to the instruction set. Molen requires a new programming paradigm where
general-purpose instructions and hardware descriptions of custom instructions co-
exist in a program. Molen compiler automatically generates optimized binary code
from applications specified in C programming language with pragma annotation
for custom instructions. The architecture hides the reconfiguration cost through
scheduling where the configuration corresponding to a custom instruction is pre-
fetched before the instruction is executed.

12.4.1.2 Compiler Support
Compiler support is instrumental in ensuring greater adoption of application-
specific processors by software designers. Unfortunately, as mentioned earlier,
most of the run-time reconfigurable application-specific processors suffer from

402 T. Mitra

Hot Loops
Detection

CIS versions
Generation

Hot Loop Trace
Generation

Datapath SynthesisSoftware Loops

Partitioning

Bit Stream
for Each Config

Application in C

Fig. 12.7 Compiler framework for run-time adaptive extensible processors [33]

inadequate compiler assistance. The burden falls entirely on the programmer to
select appropriate the custom instructions and cluster them into one or more
configurations. Choosing an appropriate set of custom instructions for an application
itself is a difficult problem as discussed in Sect. 12.3. Run-time reconfiguration
introduces the additional complexity of the temporal and spatial partitioning of the
selected custom instructions into a set of configurations.

Huynh et al. [33] developed an efficient compilation framework that takes in
as input an application specified in ANSI-C and automatically selects appropriate
custom instructions as well as bundles them together into one or more configurations
as shown in Fig. 12.7. First, a profiling step identifies and extracts a set of compute-
intensive candidate loop kernels from the application. For each candidate loop, one
or more Custom Instruction-Set (CIS) versions are generated (e.g., by changing
loop unrolling factor) differing in performance gain and area trade-offs. The control
flows among the hot loops are captured in the form of a loop trace obtained through
profiling. The hot loops with multiple CIS versions and the loop trace are fed to the
partitioning algorithm that decides the appropriate CIS version and configuration
for each loop. The algorithm models the temporal partitioning of the custom
instructions into different configurations as a k-way graph partitioning problem.
A dynamic programming-based pseudo-polynomial-time algorithm determines the
spatial partitioning of the custom instructions within a configuration. The selected
CIS versions to be implemented in hardware pass through a data-path synthesis tool
generating the bitstream corresponding to each configuration. These bitstreams are
used to configure the reconfigurable fabric at run time. The source code is modified
to exploit the new custom instructions while the remaining code executes on the
base processor.

12 Application-Specific Processors 403

12.4.2 Implicit Run-Time Customization

We now proceed to describe extensible processors that are reconfigured transpar-
ently by the run-time system.

Configurable Compute Accelerator (CCA) [15] enables transparent instruction-
set customization support through a plug-and-play model that can integrate different
accelerators into a predesigned and verified processor core at run time. The
compiler framework comprises of static identification of subgraphs for execution
on CCA [16]. This is supplemented with run-time selection of custom instructions
to be synthesized to CCA. First, the program is analyzed to identify the most
frequent computation patterns (custom instructions) to be mapped onto CCA. These
patterns are replaced by function calls in the binary code. At run time, when the
function corresponding to a custom instruction is encountered for the first time, it
executes in the base processor pipeline. But, in parallel, the architecture determines
the CCA configuration required for this particular custom instruction. When the
same function is encountered again in the future, it can execute on the CCA using
the generated configuration.

Unlike CCA that requires compiler-architecture cooperation, the WARP [42]
architecture has been designed with completely transparent instruction-set cus-
tomization in mind. WARP processor consists of a base core, an on-chip profiler,
WARP-oriented FPGA, and an on-chip Computer-Aided Design (CAD) module.
An application starts executing on the base processor. The on-chip profiler identifies
the critical hot-spot kernels (loops) during the execution of the application. These
kernels are then passed onto the riverside on-chip CAD (ROCCAD) tool chain
through the on-chip CAD module. ROCCAD tool chain decompiles the application
binary into high-level representation that is more suitable for synthesis. Next, the
partitioning algorithm determines the most suitable loops to be implemented in
FPGA. For the selected kernels, ROCCAD uses behavioral and register transfer level
(RTL) synthesis to generate appropriate hardware descriptions. Finally, ROCCAD
configures the FPGA using just-in-time FPGA compilation tools that optimizes
the hardware description and performs technology mapping followed by place and
route to map the hardware description onto the reconfigurable fabric. Finally, the
application binary is updated to be used to kernels mapped onto the FPGAs.

A unique approach toward run-time customization is proposed in the Rotating
Instruction-Set Processing Platform (RISPP) [8] architecture. RISPP introduces
the notion of atoms and molecules where atom is the basic data path, while a
combination of atoms creates custom instruction molecule. Atoms can be reused
across different custom instruction molecules. RISPP reduces the overhead of
partial reconfiguration substantially through an innovative gradual transition of
the custom instructions implementation from software into hardware. At compile
time, only the potential custom instructions (molecules) are identified, but these
molecules are not bound to any data path in hardware. Instead, a number of possible
implementation choices are available including a purely software implementation.
At run time, the implementation of a molecule can gradually “upgrade” to hardware

404 T. Mitra

as and when the atoms it needs become available. If no atom is available for a
custom instruction, it will be executed in the base processor pipeline using the
software implementation. RISPP requires fast design space exploration at run time
to combine appropriate atoms and evaluate trade-offs between performance and
area of the custom instructions implementations. A greedy heuristic selects the
appropriate implementation for each custom instruction.

12.5 Custom Instructions for General-Purpose Computing

As mentioned earlier, the design goals for specialization in the context of general-
purpose applications are somewhat different. The added custom instructions should
support a large number of computations (some unknown at design time) so that only
a few of them are sufficient to cover significant fraction of execution of a diverse set
of applications.

An example of this approach is the specialized processors called quasi-specific
cores (QsCores) proposed by Venkatesh et al. [65]. QsCores have been proposed
in the context of dark silicon era where the cheap silicon area can be traded in
to accommodate few QSCores. Each QsCore is an application-specific processor
that can accelerate a set of computations through custom instructions. The main
insight here is that there exist nearly identical code fragments within and across
applications. These “similar” code fragments can be represented by a single
computational pattern that is implemented as a custom instruction, thereby leading
to reuse. Unlike the computation patterns we introduced before, QsCores support
large hot spot containing hundreds of instructions, complex control flows, and
irregular memory accesses as a single pattern as prescribed by Hameed et al. [30].
This enables the QsCores to be an order of magnitude more energy-efficient than
general-purpose cores. In the general form of this architecture, a general-purpose
processor core is coupled with a number of QsCores – each accelerating different
computations – to create a heterogeneous tiles. The entire chip consists of a number
of heterogeneous tiles, each responsible for different workloads.

A different approach is taken by Govindaraju et al. [26] where the main
idea is to dynamically specialize the hardware according to the phases within an
application. They introduce dynamically specialized data paths called DYnamically
Specialized Execution Resource (DySER) blocks. The DySER blocks are similar
to the CFUs and are integrated in the processor pipeline as additional functional
units. Each block is a heterogeneous array of computational units interconnected
with a circuit-switched mesh network; but unlike QsCores, there is no memory
access involved within DySER block. A DySER block uses specific computational
units (arithmetic and logical operations) depending on the common instruction mix
of the applications. By interconnecting these operations through the network, a
computational pattern can be mapped to the DySER block. The compiler partitions
the application into phases, identifies the most frequently executed paths within each
phase, and then maps the computations corresponding to each of these paths on

12 Application-Specific Processors 405

DySER blocks. Note that the identification of computational patterns as discussed
in Sect. 12.3 has been restricted to within basic blocks, but Yu and Mitra had
quantized the benefit of crossing basic blocks boundaries and generating custom
instructions spanning multiple basic blocks along hot paths [71]. DySER reaps
these benefits through a concrete architectural design and implementation. There
are some similarities between DySER and coarse-grained reconfigurable arrays
(CGRAs) [14]. But the main difference is that CGRAs accelerate complete loops,
while DySER focuses on computation within a hot path and does not support control
flow or load/store that is required to map an entire loop. The other difference lies
in using computational units that are decided based on instruction mix rather than
generic functional units used in CGRAs and the use of circuit-switched network.
The main strength of DySER is that the same specialized hardware can accelerate
different applications and diverse domains through dynamic specialization.

Gupta et al. [27] proposed a configurable coprocessor called Bundled Execution
of REcurring Traces (BERET) that can leverage recurring instruction sequences in
a program’s execution. The instruction sequence may include intervening control
instructions because of the irregularity of general-purpose code. Essentially each
sequence is a hot trace that forms a loop, but is much shorter compared to the
original unstructured loop body. Similar to other application-specific processor
approaches for general-purpose computing, BERET also aims to support multiple
applications. The architecture is based on the observation that the hot trace can
be broken down into a sequence of subgraphs that can execute sequentially, while
exploiting parallelism and chaining within subgraph to improve performance (as
is common in any custom instruction). The concept of subgraph is called bundled
execution model in this approach. The observation and insight is that many subgraph
structures or patterns are common within as well as across applications. Therefore,
if the architecture supports some common subgraphs, any hot trace can be mapped
to a series of these subgraphs for acceleration.

12.6 Conclusions

In this chapter, we presented the current state of the art in the application-specific
processor design. The application-specific processors, also known as customizable
processors or specialized cores, present an exciting alternative in today’s energy-
constrained design space. We discussed the opportunities and challenges presented
by this special class of processors and the progress made in automated design
of such cores over the last decade. The renewed interest in application-specific
processors for general-purpose computing and even supercomputing domain have
opened up interesting new research directions, both in terms of architecture and
compiler, that we hope will be pursued extensively in the coming decade.

Acknowledgments This work was partially supported by Singapore Ministry of Education
Academic Research Fund Tier 2 MOE2014-T2-2-129.

406 T. Mitra

References

1. Ahn J, Choi K (2013) Isomorphism-aware identification of custom instructions with i/o
serialization. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(1):34–46

2. Alippi C, Fornaciari W, Pozzi L, Sami M (1999) A dag-based design approach for reconfig-
urable VLIW processors. In: Proceedings of the conference on design, automation and test in
Europe. ACM, p 57

3. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the spring joint computer conference, 18–20 Apr
1967. ACM, pp 483–485

4. Atasu K, Dimond RG, Mencer O, Luk W, Özturan C, Diindar G (2007) Optimizing instruction-
set extensible processors under data bandwidth constraints. In: Design, automation & test in
Europe conference & exhibition, DATE’07. IEEE, pp 1–6

5. Atasu K, Luk W, Mencer O, Özturan C, Dündar G (2012) Fish: fast instruction synthesis for
custom processors. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(1):52–65

6. Atasu K, Mencer O, Luk W, Özturan C, Dündar G (2008) Fast custom instruction identification
by convex subgraph enumeration. In: International conference on application-specific systems,
architectures and processors, ASAP 2008. IEEE, pp 1–6

7. Atasu K, Pozzi L, Ienne P (2003) Automatic application-specific instruction-set extensions
under microarchitectural constraints. Int J Parallel Program 31(6):411–428

8. Bauer L, Shafique M, Kramer S, Henkel J (2007) Rispp: rotating instruction set processing
platform. In: Proceedings of the 44th annual design automation conference. ACM, pp 791–796

9. Bonzini P, Pozzi L (2007) Polynomial-time subgraph enumeration for automated instruction
set extension. In: Proceedings of the conference on design, automation and test in Europe.
EDA Consortium, pp 1331–1336

10. Bordoloi UD, Huynh HP, Chakraborty S, Mitra T (2009) Evaluating design trade-offs in
customizable processors. In: 46th ACM/IEEE design automation conference, DAC’09. IEEE,
pp 244–249

11. Borkar S, Chien AA (2011) The future of microprocessors. Commun ACM 54(5):67–77
12. Chen L, Tarango J, Mitra T, Brisk P (2013) A just-in-time customizable processor. In: 2013

IEEE/ACM international conference on computer-aided design (ICCAD). IEEE, pp 524–531
13. Chen X, Maskell DL, Sun Y (2007) Fast identification of custom instructions for extensible

processors. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(2):359–368
14. Choi K (2011) Coarse-grained reconfigurable array: architecture and application mapping.

IPSJ Trans Syst LSI Des Methodol 4:31–46
15. Clark N, Blome J, Chu M, Mahlke S, Biles S, Flautner K (2005) An architecture framework

for transparent instruction set customization in embedded processors. In: Proceedings of the
32nd international symposium on computer architecture (ISCA’05). IEEE Computer Society,
pp 272–283

16. Clark N, Kudlur M, Park H, Mahlke S, Flautner K (2004) Application-specific processing
on a general-purpose core via transparent instruction set customization. In: 37th international
symposium on microarchitecture, MICRO-37 2004. IEEE, pp 30–40

17. Cong J, Fan Y, Han G, Jagannathan A, Reinman G, Zhang Z (2005) Instruction set extension
with shadow registers for configurable processors. In: Proceedings of the 2005 ACM/SIGDA
13th international symposium on field-programmable gate arrays. ACM, pp 99–106

18. Cong J, Fan Y, Han G, Zhang Z (2004) Application-specific instruction generation for con-
figurable processor architectures. In: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on field programmable gate arrays. ACM, pp 183–189

19. Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of Ion-
implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits
9(5):256–268

12 Application-Specific Processors 407

20. Dubach C, Jones T, O’Boyle M (2007) Microarchitectural design space exploration using an
architecture-centric approach. In: Proceedings of the 40th annual IEEE/ACM international
symposium on microarchitecture. IEEE Computer Society, pp 262–271

21. Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K, Burger D (2011) Dark silicon and
the end of multicore scaling. In: International symposium on computer architecture (ISCA)

22. Geer D (2005) Chip makers turn to multicore processors. Computer 38(5):11–13
23. Giaquinta E, Mishra A, Pozzi L (2015) Maximum convex subgraphs under i/o constraint for

automatic identification of custom instructions. IEEE Trans Comput-Aided Des Integr Circuits
Syst 34(3):483–494

24. Gonzalez RE (2000) Xtensa: a configurable and extensible processor. IEEE Micro 20(2):60–70
25. Gonzalez RE (2006) A software-configurable processor architecture. IEEE Micro 26(5):42–51
26. Govindaraju V, Ho CH, Sankaralingam K (2011) Dynamically specialized datapaths for

energy efficient computing. In: 2011 IEEE 17th international symposium on high performance
computer architecture (HPCA). IEEE, pp 503–514

27. Gupta S, Feng S, Ansari A, Mahlke S, August D (2011) Bundled execution of recurring traces
for energy-efficient general purpose processing. In: Proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture. ACM, pp 12–23

28. Gutin G, Johnstone A, Reddington J, Scott E, Yeo A (2012) An algorithm for finding input–
output constrained convex sets in an acyclic digraph. J Discret Algorithms 13:47–58

29. Halambi A, Grun P, Ganesh V, Khare A, Dutt N, Nicolau A (2008) Expression: a language
for architecture exploration through compiler/simulator retargetability. In: Design, automation,
and test in Europe. Springer, The Netherlands, pp 31–45

30. Hameed R, Qadeer W, Wachs M, Azizi O, Solomatnikov A, Lee BC, Richardson S, Kozyrakis
C, Horowitz M (2010) Understanding sources of inefficiency in general-purpose chips. In:
ACM SIGARCH computer architecture news, vol 38, no 3. ACM, pp 37–47

31. Huynh H, Mitra T (2007) Instruction-set customization for real-time embedded systems. In:
Proceedings of the conference on design, automation and test in Europe. EDA Consortium,
pp 1472–1477

32. Huynh HP, Mitra T (2009) Runtime adaptive extensible embedded processors–a survey. In:
International workshop on embedded computer systems. Springer, Berlin/Heidelberg, pp 215–
225

33. Huynh HP, Sim JE, Mitra T (2007) An efficient framework for dynamic reconfiguration
of instruction-set customization. In: Proceedings of the 2007 international conference on
compilers, architecture, and synthesis for embedded systems. ACM, pp 135–144

34. Ienne P, Leupers R (2006) Customizable embedded processors: design technologies and
applications. Academic Press

35. Jacob JA, Chow P (1999) Memory interfacing and instruction specification for reconfigurable
processors. In: Proceedings of the 1999 ACM/SIGDA seventh international symposium on
field programmable gate arrays. ACM, pp 145–154

36. Jayaseelan R, Liu H, Mitra T (2006) Exploiting forwarding to improve data bandwidth of
instruction-set extensions. In: Proceedings of the 43rd annual design automation conference.
ACM, pp 43–48

37. Kastner R, Kaplan A, Memik SO, Bozorgzadeh E (2002) Instruction generation for hybrid
reconfigurable systems. ACM Trans Des Autom Electron Syst (TODAES) 7(4):605–627

38. Kathail V, Aditya S, Schreiber R, Rau BR, Cronquist DC, Sivaraman M (2002) Pico:
automatically designing custom computers. Computer 35(9):39–47

39. Leibson S (2006) Designing SOCs with configured cores: unleashing the tensilica Xtensa and
diamond cores. Academic Press

40. Li T, Sun Z, Jigang W, Lu X (2009) Fast enumeration of maximal valid subgraphs for custom-
instruction identification. In: Proceedings of the 2009 international conference on compilers,
architecture, and synthesis for embedded systems. ACM, pp 29–36

408 T. Mitra

41. Lodi A, Toma M, Campi F, Cappelli A, Canegallo R, Guerrieri R (2003) A VLIW processor
with reconfigurable instruction set for embedded applications. IEEE J Solid-State Circuits
38(11):1876–1886

42. Lysecky R, Stitt G, Vahid F (2004) Warp processors. In: ACM transactions on design
automation of electronic systems (TODAES), vol 11, no 3. ACM, pp 659–681

43. Merritt R (2009) ARM CTO: power surge could create ‘dark silicon’. EE Times, Oct 2009.
44. Mitra T (2015) Heterogeneous multi-core architectures. Inf Media Technol 10(3):383–394
45. Mitra T, Yu P (2005) Satisfying real-time constraints with custom instructions. In: Third

IEEE/ACM/IFIP international conference on hardware/software codesign and system synthe-
sis, CODES+ ISSS’05. IEEE, pp 166–171

46. Moon JW, Moser L (1965) On cliques in graphs. Israel J Math 3(1):23–28
47. Moore GE et al (1965) Cramming more components onto integrated circuits
48. Mudge T (2000) Power: a first class design constraint for future architectures. In: International

conference on high-performance computing. Springer, pp 215–224
49. Nios I (2009) Processor reference handbook
50. Palacharla S, Jouppi NP, Smith JE (1997) Complexity-effective superscalar processors. In:

Proceedings of the 24th annual international symposium on computer architecture (ISCA’97),
Denver. ACM, New York, pp 206–218. doi: 10.1145/264107.264201

51. Palermo G, Silvano C, Zaccaria V (2005) Multi-objective design space exploration of
embedded systems. J Embed Comput 1(3):305–316

52. Pan Y (2008) Design methodologies for instruction-set extensible processors. Ph.D. thesis,
National University of Singapore

53. Patterson D, Hennessy JL (2012) Computer architecture: a quantitative approach. Elsevier
54. Pothineni N, Kumar A, Paul K (2007) Application specific datapath extension with distributed

i/o functional units. In: Proceedings of the 20th international conference on VLSI design,
Bangalore

55. Pozzi L, Atasu K, Ienne P (2006) Exact and approximate algorithms for the extension of
embedded processor instruction sets. IEEE Trans Comput-Aided Des Integr Circuits Syst
25(7):1209–1229

56. Pozzi L, Ienne P (2005) Exploiting pipelining to relax register-file port constraints of
instruction-set extensions. In: Proceedings of the 2005 international conference on compilers,
architectures and synthesis for embedded systems. ACM, pp 2–10

57. Razdan R (1994) Prisc: programmable reduced instruction set computers. Ph.D. thesis, Harvard
University Cambridge

58. Reddington J, Atasu K (2012) Complexity of computing convex subgraphs in custom
instruction synthesis. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(12): 2337–2341

59. Reddington J, Gutin G, Johnstone A, Scott E, Yeo A (2009) Better than optimal: fast
identification of custom instruction candidates. In: International conference on computational
science and engineering, CSE’09. vol 2. IEEE, pp 17–24

60. Rosinger HP (2004) Connecting customized ip to the microblaze soft processor using the fast
simplex link (fsl) channel. Xilinx Application Note

61. Shafique M, Garg S, Mitra T, Parameswaran S, Henkel J (2014) Dark silicon as a challenge
for hardware/software co-design. In: Conference on hardware/software codesign and system
synthesis (CODES)

62. Shalf JM, Leland R (2015) Computing beyond moore’s law. Computer 48(12):14–23
63. Tan C, Kulkarni A, Venkataramani V, Karunaratne M, Mitra T, Peh LS (2016) Locus: low-

power customizable many-core architecture for wearables. In: Proceedings of the international
conference on compilers, architecture, and synthesis for embedded systems (CASES)

64. Vassiliadis S, Wong S, Gaydadjiev G, Bertels K, Kuzmanov G, Panainte EM (2004) The molen
polymorphic processor. IEEE Trans Comput 53(11):1363–1375

65. Venkatesh G, Sampson J, Goulding-Hotta N, Venkata SK, Taylor MB, Swanson S (2011)
Qscores: trading dark silicon for scalable energy efficiency with quasi-specific cores. In:
Proceedings of the 44th annual IEEE/ACM international symposium on microarchitecture.
ACM, pp 163–174

http://dx.doi.org/10.1145/264107.264201

12 Application-Specific Processors 409

66. Verma AK, Brisk P, Ienne P (2007) Rethinking custom ise identification: a new processor-
agnostic method. In: Proceedings of the 2007 international conference on compilers, architec-
ture, and synthesis for embedded systems. ACM, pp 125–134

67. Wall DW (1991) Limits of instruction-level parallelism. In: Proceedings of the fourth interna-
tional conference on architectural support for programming languages and operating systems
(ASPLOS IV), Santa Clara. ACM, New York, pp 176–188. doi: 10.1145/106972.106991

68. Wirthlin MJ, Hutchings BL (1995) A dynamic instruction set computer. In: IEEE symposium
on FPGAs for custom computing machines. Proceedings. IEEE, pp 99–107

69. Wulf WA, McKee SA (1995) Hitting the memory wall: implications of the obvious. ACM
SIGARCH Comput Archit News 23(1):20–24

70. Ye ZA, Moshovos A, Hauck S, Banerjee P (2000) CHIMAERA: a high-performance archi-
tecture with a tightly-coupled reconfigurable functional unit. In: ACM SIGARCH computer
architecture news, vol 28, no 2. ACM, pp. 225–235

71. Yu P, Mitra T (2004) Characterizing embedded applications for instruction-set extensi-
ble processors. In: Proceedings of the 41st annual design automation conference. ACM,
pp 723–728

72. Yu P, Mitra T (2004) Scalable custom instructions identification for instruction-set extensible
processors. In: Proceedings of the 2004 international conference on compilers, architecture,
and synthesis for embedded systems. ACM, pp 69–78

73. Yu P, Mitra T (2007) Disjoint pattern enumeration for custom instructions identification. In:
International conference on field programmable logic and applications, FPL 2007. IEEE,
pp 273–278

http://dx.doi.org/10.1145/106972.106991

	12 Application-Specific Processors
	Contents
	12.1 Introduction
	12.2 Architectural Overview and Design Flow
	12.2.1 Application-Specific Processor Architecture
	12.2.2 Design Flow

	12.3 Custom Instructions Identification and Selection
	12.3.1 Formal Definitions
	12.3.2 Enumeration of MISO Patterns
	12.3.3 Exhaustive Enumeration of All Valid Patterns
	12.3.3.1 Search-Tree-Based Enumeration Algorithm
	12.3.3.2 Hierarchical Algorithm

	12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns
	12.3.5 Enumeration of Maximum Weighted Convex Patterns
	12.3.6 Custom Instructions Selection
	12.3.6.1 Optimal Solution Using ILP
	12.3.6.2 Other Approaches

	12.4 Run-Time Customization
	12.4.1 Explicit Run-Time Customization
	12.4.1.1 Partial Reconfiguration
	12.4.1.2 Compiler Support

	12.4.2 Implicit Run-Time Customization

	12.5 Custom Instructions for General-Purpose Computing
	12.6 Conclusions
	References

