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◼ Modern embedded systems must 

◼ support multiple applications with limited energy and 

resource budgets

◼ often provide real-time performance/guarantees 

◼ These systems increasingly have heterogeneous 

system architectures, integrating

◼ Dedicated hardware 

◼ High performance and low power

◼ Embedded processor cores

◼ High flexibility

◼ Reconfigurable components (e.g. FPGAs)

◼ Good balance between performance/power/flexibility

Trends in Embedded 
Systems Design (1)
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◼ Silicon budgets are increasing (Moore’s Law)

◼ High Integration of functions: Systems-on-Chip

◼ (Massively) Parallel Systems on a single chip!

The design of modern embedded systems
becomes increasingly complex 

◼ Life cycle of systems is decreasing (e.g., look at 
cell phones)

◼ Short time to market

Trends in Embedded 
Systems Design (2)
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Design Productivity Gap
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The Capability of IC Technology grows faster than the Design Productivity! 
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The Design Problem

How to design complex embedded systems faster?

The challenge is: 

◼ To increase the system design productivity, 

◼ without sacrificing the quality of the system under design, 

◼ in a complex design space with many tradeoffs and 

conflicting design objectives:
◼ Low Cost (e.g., small silicon area)

◼ High Performance

◼ Low Power Consumption

◼ High Flexibility

In this course we will study only Methods, Techniques, and Tools 

that help solving the Design Problem for 

Embedded Multi-Processor Systems on Chip (MPSoC)
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Evolution of Design Methodologies 

Historically, 3 generic evolutionary design methodologies

◼ Capture-and-Simulate (1960s to 1980s)

◼ Designers do complete design manually, no automation 

◼ Designers validate design through simulation at the end of the design

◼ Describe-and-Synthesize (early 1980s to late 1990s)

◼ Designers describe just functionality, tools synthesize structure

◼ Simulation before and after the synthesis

◼ Specify-Explore-Refine (early 2000 to present)

◼ System design performed at several levels of abstraction

◼ At each level of abstraction designers:

◼ First, specify/model the system under design

◼ Then, explore alternative design decisions

◼ Finally, refine the model according to their decisions (i.e., put more details) 

◼ Refined model used as specification for the next lower level 

Design Methodologies have been drastically changing with the 

increase in system complexity
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Specify-Explore-Refine Methodology:
MPSoC design aspects

◼ This methodology can be defined in two aspects:

◼ Synthesis-oriented design aspect

◼ Quality Assessment-oriented design aspect

◼ For each aspect, there is corresponding so 

called Y-chart design methodology

◼ Gajski et al. Y-chart [1983 and modified several times 

up to now] 

◼ covers mainly the synthesis aspect

◼ Kienhuis et al. Y-chart [1997 and extended later] 

◼ covers mainly the quality assessment aspect    
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Y-chart Design Methodology
[Gajski et al.] – synthesis aspect

Design methodology is a sequence of models, components and tools used 

to design the system. Every design has 3 views.

◼ Three design views
◼ Behavior (specification)

◼ Structure (block diagram)

◼ Physical (floorplan)

◼ Four abstraction levels
◼ Circuit level

◼ Logic level

◼ Processor (RTL) level

◼ System level

◼ Four component libraries
◼ Transistors

◼ Logic (standard cells)

◼ RTL (ALUs, RFs, …)

◼ Processor/Communication (standard, 
custom)
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Synthesis-based Design Methodology

Synthesis is the process of generating the description of a system in terms 

of related components from a description of the expected system behavior.

◼ Synthesis can be 

performed at 

every level of 

abstraction

◼ Examples:

◼ Processor Level Synthesis

◼ System Level Synthesis
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Physical

(Layout)

Structure
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Processor Level

Circuit Level

Logic Level
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System Model

Processor Model
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Processor Level Synthesis

◼ Processor Model
◼ FSM with Datapath

◼ CDFG

◼ Instruction Set 
Flow Chart

◼ Processor Structure
◼ Datapath components

◼ Storage (registers)

◼ Functional units 
(ALUs, multipliers)

◼ Connection 
(buses)

◼ Controller component

◼ Registers (PC, Status register, Control word or Instruction register)

◼ Others (Control memory or Program memory)

◼ Synthesis consists of several tasks – see the figure
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System Level Synthesis

◼ System Behavior Model
◼ Use a MoC

◼ Many MoCs exist

◼ System Structural Model
◼ Set of computational 

components
◼ Processors

◼ IPs 

◼ Custom HW components

◼ Memories

◼ Set of communication 
components
◼ Buses, bridges, arbiters

◼ NoCs

◼ Synthesis consists of several tasks – see the figure 
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Bottom-up Design Methodology (1)

◼ Starts from 
bottom level

◼ Each level generates
library for next 
higher level
◼ Circuit level: use 

transistors to build Gates and Flip-Flops (FF)
for Logic level

◼ Logic level: use gates, FF to build RTL components for Processor level

◼ Processor: build Processing and Communication components for system level

◼ System Level: build Embedded System platforms for different applications

◼ Physical Design (floorplaning and layout) on each level!
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Bottom-up Design Methodology (2)

◼ Pros

◼ Abstraction levels clearly separated with its own 

library

◼ Accurate metric estimation (e.g. performance, power) 

◼ Physical design with layout on each level

◼ Cons

◼ An optimal library for each design is difficult to predict

◼ All possible components with all possible parameters

◼ All possible optimizations for all possible metrics

◼ Library customization is outside the design group

◼ Physical design is performed on every level
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Top-down Design Methodology (1)

◼ Starts with the top level

◼ Functional description is converted into component netlist on each level

◼ Each component is functionally described and decomposed further on the 
next abstraction level

◼ Layout is given only for transistor components
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Top-down Design Methodology (2)

◼ Pros

◼ Highest level of customization possible on each 

abstraction level

◼ Only one small physical transistor library needed

◼ Only one physical (layout) design at the end

◼ Cons

◼ Difficult metric estimation (e.g. cost, power, 

performance) on upper levels because layout is not 

known until the end

◼ Impact of design decisions at higher level not clear
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Meet-in-the-Middle Design 
Methodology: Option 1

◼ Combines top-down
and bottom-up

◼ Processor level 
where they meet

◼ MoC is synthesized into processor components

◼ Processor components are synthesized with RTL library

◼ System layout is generated with RTL components
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Meet-in-the-Middle Design 
Methodology: Option 2

◼ Logic level 
where they meet

◼ MoC is synthesized 
with processor components

◼ Processor components are synthesized with RTL library

◼ RTL components are synthesized with standard cells

◼ System layout is performed with standard cells

◼ Two levels of layout
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Meet-in-the-Middle Design 
Methodology

◼ Pros

◼ Shorter synthesis

◼ Less layout

◼ Less physical libraries

◼ Better metric estimation

◼ Cons

◼ Still needs several physical libraries

◼ More then one layout

◼ Library components may not be optimal
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Specify-Explore-Refine Methodology:
MPSoC design aspects

◼ This methodology can be defined in two aspects:

◼ Synthesis oriented design aspect

◼ Quality Assessment oriented design aspect

◼ For both aspects, there exists corresponding so 

called Y-chart design methodology

◼ Gajski et al. Y-chart [1983 and modified several times 

up to now] 

◼ covers mainly the synthesis aspect

◼ Kienhuis et al. Y-chart [1997 and extended later] 

◼ covers mainly the quality assessment aspect    
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Y-chart Design Methodology
[Kienhuis et al.] – quality assesment

Mapping

Performance

Numbers

Performance
Analysis

Architecture Applications

Three different ways to improve the performance of a system

Separation of Concerns: application vs. architecture modeling

Suggest architectural
improvements

Rewrite the
applications

Use different
Mapping

 strategies
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Models of Application and Architecture

◼ Architecture Model:
◼ Resources

◼ ALUs, PE, etc.

◼ Registers, SRAM, DRAM

◼ Busses, Switches

◼ Communication

◼ Bits, Bytes

◼ Application Model:
◼ Computations

◼ IDCT, SQRT, Quantizer

◼ Communication

◼ Pixels, Blocks

bus

coproc

CPU

coproc.

Both describe a network of components that perform

a particular function and that communicate in a particular way

MPEG

Coded

video

Demux

VLD Q-1 IDCT

Motion

Buffer

Reorder

ordering

quantization control

motion vectors 

& mode

Decoded

video

MPEG Decoding

+
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Mapping

◼ We formalize the descriptions of these 2 networks by using:
◼ Models of Computations (MoC) 

◼ Models of Architectures (MoA less mature than MoCs)

◼ When the MoC and MoA match, simple mapping is possile!

bus
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CPU
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Motion

Buffer

Reorder

ordering

quantization control

motion vectors 

& mode
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Architecture Application

Mapping

Mapping: Specifies the relation between the two models
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Mapping Example 1:
MoC and MoA match

◼ Model of Architecture:

◼ Sequential (Program 
Counter) 

◼ One item over the bus 
at the time

◼ Shared Memory

◼ Model of Computation:

◼ Sequential

◼ Shared Memory

for i=1:1:10

 for j=1:1:10

     A(i,j) =FIR();

 end

end

for i=1:1:10,

 for j=1:1:10,

      A(i,j) =SRC( A(i,j) );

 end

end

Program

Counter

Memory

ALU
Instruction

Decoder

(address)

Sequential ProgramMicro Processor

Compiler

(like GCC)

Simulator

Performance

Numbers

Natural FIT
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Mapping Example 2:
MoC and MoA do NOT match

◼ Model of Architecture:

◼ Parallel components 

◼ Heterogeneity

◼ Distributed Memory

◼ Model of Computation:

◼ Sequential Execution 

◼ Global Memory

Applications
ApplicationsArchitecture 

Instance
Applications

Mapping

Performance

Analysis

Performance

Numbers

%parameter N 8 16;

%parameter K 100 1000;

for k = 1:1:K,

    for j = 1:1:N,

        [ r(j,j), x(k,j), t ]=Vectorize( r(j,j), x(k,j) );

        for i = j+1:1:N,

             [ r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t );

       end

    end

end
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Mapping Example 3:
MoC and MoA DO match

◼ Model of Architecture:

◼ Parallel components 

◼ Heterogeneity

◼ Distributed Memory

◼ Model of Computation:

◼ Process Networks

◼ Distributed Memory 

◼ Distributed Control
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Y-chart MPSoC Design BUT
at Which Level of Abstraction?
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Stack of Y-charts
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Design by Stepwise Refinement:
Narrow-down the Design Space
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Some key points …

◼ Many different design methods are in use

◼ One for every group, product, and company

◼ They differ in:

◼ Input specification, MoC

◼ Modeling styles and languages

◼ Abstraction levels and amount of detail

◼ Verification strategy and prototyping

◼ CAD tools and component libraries

◼ They are based on the Y-chart methodologies!
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Motivation
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Motivation
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The Daedalus design-flow
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Merits of the Daedalus design-flow

◼ Automated parallelization of applications into 

parallel specifications (PPNs)

◼ Automated synthesis of MPSoC platforms 

at system level, in a plug-and-play fashion

◼ Automated mapping of parallel application 

specifications onto MPSoC platforms

◼ Steering by means of efficient system-level 

design space exploration

37
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So, what about the name 
Daedalus?

◼ Daedalus means 

“cunning worker” in Latin

◼ He was an innovator in many 

arts

◼ Daedalus was the father

of Icarus

◼ Analogy: 

◼ It’s very good technology 

◼ But there are still limitations

◼ “Don’t fall into the sea”!
Daedalus and Icarus, by Charles Paul Landon, 1799

38
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