
Embedded Systems Design:

Concepts and Methods
Todor Stefanov

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Embedded Systems and Software by Todor Stefanov 2024 2

Outline

◼ Trends in Embedded Systems Design

◼ Design Productivity Gap and Design Problem

◼ Design Methodologies for Embedded MPSoCs

◼ Y-chart of Gajski

◼ Y-chart of Kienhuis

◼ The DAEDALUS design flow for MPSoCs

◼ Introduction and Motivation

◼ DAEDALUS flow overview

Embedded Systems and Software by Todor Stefanov 2024 33

◼ Modern embedded systems must

◼ support multiple applications with limited energy and

resource budgets

◼ often provide real-time performance/guarantees

◼ These systems increasingly have heterogeneous

system architectures, integrating

◼ Dedicated hardware

◼ High performance and low power

◼ Embedded processor cores

◼ High flexibility

◼ Reconfigurable components (e.g. FPGAs)

◼ Good balance between performance/power/flexibility

Trends in Embedded
Systems Design (1)

Embedded Systems and Software by Todor Stefanov 2024 44

◼ Silicon budgets are increasing (Moore’s Law)

◼ High Integration of functions: Systems-on-Chip

◼ (Massively) Parallel Systems on a single chip!

The design of modern embedded systems
becomes increasingly complex

◼ Life cycle of systems is decreasing (e.g., look at
cell phones)

◼ Short time to market

Trends in Embedded
Systems Design (2)

Embedded Systems and Software by Todor Stefanov 2024 55

Design Productivity Gap

20291985 1989 1993 1997 2001 2005

L
o

g
 S

c
a
le

Gates per Chip (available to designers)

System Design

Productivity Gap

Gates per Day (designers can handle)

Time

2009 2013 2017

Technology Capability

grows 2x / 18 Months

2021 2025

Design Productivity

grows 1.6x / 18 Months

The Capability of IC Technology grows faster than the Design Productivity!

Embedded Systems and Software by Todor Stefanov 2024 66

The Design Problem

How to design complex embedded systems faster?

The challenge is:

◼ To increase the system design productivity,

◼ without sacrificing the quality of the system under design,

◼ in a complex design space with many tradeoffs and

conflicting design objectives:
◼ Low Cost (e.g., small silicon area)

◼ High Performance

◼ Low Power Consumption

◼ High Flexibility

In this course we will study only Methods, Techniques, and Tools

that help solving the Design Problem for

Embedded Multi-Processor Systems on Chip (MPSoC)

Embedded Systems and Software by Todor Stefanov 2024 9

Evolution of Design Methodologies

Historically, 3 generic evolutionary design methodologies

◼ Capture-and-Simulate (1960s to 1980s)

◼ Designers do complete design manually, no automation

◼ Designers validate design through simulation at the end of the design

◼ Describe-and-Synthesize (early 1980s to late 1990s)

◼ Designers describe just functionality, tools synthesize structure

◼ Simulation before and after the synthesis

◼ Specify-Explore-Refine (early 2000 to present)

◼ System design performed at several levels of abstraction

◼ At each level of abstraction designers:

◼ First, specify/model the system under design

◼ Then, explore alternative design decisions

◼ Finally, refine the model according to their decisions (i.e., put more details)

◼ Refined model used as specification for the next lower level

Design Methodologies have been drastically changing with the

increase in system complexity

Embedded Systems and Software by Todor Stefanov 2024 10

Specify-Explore-Refine Methodology:
MPSoC design aspects

◼ This methodology can be defined in two aspects:

◼ Synthesis-oriented design aspect

◼ Quality Assessment-oriented design aspect

◼ For each aspect, there is corresponding so

called Y-chart design methodology

◼ Gajski et al. Y-chart [1983 and modified several times

up to now]

◼ covers mainly the synthesis aspect

◼ Kienhuis et al. Y-chart [1997 and extended later]

◼ covers mainly the quality assessment aspect

Embedded Systems and Software by Todor Stefanov 2024 11

Y-chart Design Methodology
[Gajski et al.] – synthesis aspect

Design methodology is a sequence of models, components and tools used

to design the system. Every design has 3 views.

◼ Three design views
◼ Behavior (specification)

◼ Structure (block diagram)

◼ Physical (floorplan)

◼ Four abstraction levels
◼ Circuit level

◼ Logic level

◼ Processor (RTL) level

◼ System level

◼ Four component libraries
◼ Transistors

◼ Logic (standard cells)

◼ RTL (ALUs, RFs, …)

◼ Processor/Communication (standard,
custom)

Behavior

(Function)

Physical

(Layout)

Structure

(Netlist)

Processors, , NoCs

ALUs, , etc.

, - Latches

Transistors

Cell Module Plans

, Clusters

Processor Level

Circuit Level

Logic Level

System Level

System Model

Processor Model

Boolean Equations

Transfer Functions

Busses

Registers

Gates Flip Flops,

Rectangles

,

Floor Plans

Physical Partitions

Embedded Systems and Software by Todor Stefanov 2024 12

Synthesis-based Design Methodology

Synthesis is the process of generating the description of a system in terms

of related components from a description of the expected system behavior.

◼ Synthesis can be

performed at

every level of

abstraction

◼ Examples:

◼ Processor Level Synthesis

◼ System Level Synthesis

Behavior

(Function)

Physical

(Layout)

Structure

(Netlist)
Processor Level

Circuit Level

Logic Level

System Level

System Model

Processor Model

Boolean Equations

Transfer Functions

Processors, Busses, NoCs

ALUs, Registers, etc.

Gates, Flip-Flops, Latches

Transistors

Rectangles

Cell, Module Plans

Floor Plans, Clusters

Physical Partitions

Embedded Systems and Software by Todor Stefanov 2024 13

Processor Level Synthesis

◼ Processor Model
◼ FSM with Datapath

◼ CDFG

◼ Instruction Set
Flow Chart

◼ Processor Structure
◼ Datapath components

◼ Storage (registers)

◼ Functional units
(ALUs, multipliers)

◼ Connection
(buses)

◼ Controller component

◼ Registers (PC, Status register, Control word or Instruction register)

◼ Others (Control memory or Program memory)

◼ Synthesis consists of several tasks – see the figure

Embedded Systems and Software by Todor Stefanov 2024 14

System Level Synthesis

◼ System Behavior Model
◼ Use a MoC

◼ Many MoCs exist

◼ System Structural Model
◼ Set of computational

components
◼ Processors

◼ IPs

◼ Custom HW components

◼ Memories

◼ Set of communication
components
◼ Buses, bridges, arbiters

◼ NoCs

◼ Synthesis consists of several tasks – see the figure

Embedded Systems and Software by Todor Stefanov 2024 15

Bottom-up Design Methodology (1)

◼ Starts from
bottom level

◼ Each level generates
library for next
higher level
◼ Circuit level: use

transistors to build Gates and Flip-Flops (FF)
for Logic level

◼ Logic level: use gates, FF to build RTL components for Processor level

◼ Processor: build Processing and Communication components for system level

◼ System Level: build Embedded System platforms for different applications

◼ Physical Design (floorplaning and layout) on each level!

Embedded Systems and Software by Todor Stefanov 2024 16

Bottom-up Design Methodology (2)

◼ Pros

◼ Abstraction levels clearly separated with its own

library

◼ Accurate metric estimation (e.g. performance, power)

◼ Physical design with layout on each level

◼ Cons

◼ An optimal library for each design is difficult to predict

◼ All possible components with all possible parameters

◼ All possible optimizations for all possible metrics

◼ Library customization is outside the design group

◼ Physical design is performed on every level

Embedded Systems and Software by Todor Stefanov 2024 17

Top-down Design Methodology (1)

◼ Starts with the top level

◼ Functional description is converted into component netlist on each level

◼ Each component is functionally described and decomposed further on the
next abstraction level

◼ Layout is given only for transistor components

Embedded Systems and Software by Todor Stefanov 2024 18

Top-down Design Methodology (2)

◼ Pros

◼ Highest level of customization possible on each

abstraction level

◼ Only one small physical transistor library needed

◼ Only one physical (layout) design at the end

◼ Cons

◼ Difficult metric estimation (e.g. cost, power,

performance) on upper levels because layout is not

known until the end

◼ Impact of design decisions at higher level not clear

Embedded Systems and Software by Todor Stefanov 2024 19

Meet-in-the-Middle Design
Methodology: Option 1

◼ Combines top-down
and bottom-up

◼ Processor level
where they meet

◼ MoC is synthesized into processor components

◼ Processor components are synthesized with RTL library

◼ System layout is generated with RTL components

Embedded Systems and Software by Todor Stefanov 2024 20

Meet-in-the-Middle Design
Methodology: Option 2

◼ Logic level
where they meet

◼ MoC is synthesized
with processor components

◼ Processor components are synthesized with RTL library

◼ RTL components are synthesized with standard cells

◼ System layout is performed with standard cells

◼ Two levels of layout

Embedded Systems and Software by Todor Stefanov 2024 21

Meet-in-the-Middle Design
Methodology

◼ Pros

◼ Shorter synthesis

◼ Less layout

◼ Less physical libraries

◼ Better metric estimation

◼ Cons

◼ Still needs several physical libraries

◼ More then one layout

◼ Library components may not be optimal

Embedded Systems and Software by Todor Stefanov 2024 22

Specify-Explore-Refine Methodology:
MPSoC design aspects

◼ This methodology can be defined in two aspects:

◼ Synthesis oriented design aspect

◼ Quality Assessment oriented design aspect

◼ For both aspects, there exists corresponding so

called Y-chart design methodology

◼ Gajski et al. Y-chart [1983 and modified several times

up to now]

◼ covers mainly the synthesis aspect

◼ Kienhuis et al. Y-chart [1997 and extended later]

◼ covers mainly the quality assessment aspect

Embedded Systems and Software by Todor Stefanov 2024 23

Y-chart Design Methodology
[Kienhuis et al.] – quality assesment

Mapping

Performance

Numbers

Performance
Analysis

Architecture Applications

Three different ways to improve the performance of a system

Separation of Concerns: application vs. architecture modeling

Suggest architectural
improvements

Rewrite the
applications

Use different
Mapping

 strategies

Embedded Systems and Software by Todor Stefanov 2024 24

Models of Application and Architecture

◼ Architecture Model:
◼ Resources

◼ ALUs, PE, etc.

◼ Registers, SRAM, DRAM

◼ Busses, Switches

◼ Communication

◼ Bits, Bytes

◼ Application Model:
◼ Computations

◼ IDCT, SQRT, Quantizer

◼ Communication

◼ Pixels, Blocks

bus

coproc

CPU

coproc.

Both describe a network of components that perform

a particular function and that communicate in a particular way

MPEG

Coded

video

Demux

VLD Q-1 IDCT

Motion

Buffer

Reorder

ordering

quantization control

motion vectors

& mode

Decoded

video

MPEG Decoding

+

Embedded Systems and Software by Todor Stefanov 2024 25

Mapping

◼ We formalize the descriptions of these 2 networks by using:
◼ Models of Computations (MoC)

◼ Models of Architectures (MoA less mature than MoCs)

◼ When the MoC and MoA match, simple mapping is possile!

bus

coproc

CPU

coproc.

MPEG

Coded

video

Demux

VLD Q-1 IDCT

Motion

Buffer

Reorder

ordering

quantization control

motion vectors

& mode

Decoded

video

MPEG Decoding

+

Architecture Application

Mapping

Mapping: Specifies the relation between the two models

Embedded Systems and Software by Todor Stefanov 2024 26

Mapping Example 1:
MoC and MoA match

◼ Model of Architecture:

◼ Sequential (Program
Counter)

◼ One item over the bus
at the time

◼ Shared Memory

◼ Model of Computation:

◼ Sequential

◼ Shared Memory

for i=1:1:10

 for j=1:1:10

 A(i,j) =FIR();

 end

end

for i=1:1:10,

 for j=1:1:10,

 A(i,j) =SRC(A(i,j));

 end

end

Program

Counter

Memory

ALU
Instruction

Decoder

(address)

Sequential ProgramMicro Processor

Compiler

(like GCC)

Simulator

Performance

Numbers

Natural FIT

Embedded Systems and Software by Todor Stefanov 2024 27

Mapping Example 2:
MoC and MoA do NOT match

◼ Model of Architecture:

◼ Parallel components

◼ Heterogeneity

◼ Distributed Memory

◼ Model of Computation:

◼ Sequential Execution

◼ Global Memory

Applications
ApplicationsArchitecture

Instance
Applications

Mapping

Performance

Analysis

Performance

Numbers

%parameter N 8 16;

%parameter K 100 1000;

for k = 1:1:K,

 for j = 1:1:N,

 [r(j,j), x(k,j), t]=Vectorize(r(j,j), x(k,j));

 for i = j+1:1:N,

 [r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t);

 end

 end

end

Sequential Program

NO Natural FIT

Programmable
Interconnect (NoC)

Programmable
Interconnect (NoC)

IP
c
o
re

IP
c
o
re

R
P

U
R

P
U

M
e
m

o
ry

M
e
m

o
ry

C
P

U
C

P
U

M
ic

ro

P
ro

c
e
s
s
o
r

M
ic

ro

P
ro

c
e
s
s
o
r

MemoryMemory

...

Programmable
Interconnect (NoC)

Programmable
Interconnect (NoC)

IP
c
o
re

IP
c
o
re

R
P

U
R

P
U

M
e
m

o
ry

M
e
m

o
ry

C
P

U
C

P
U

M
ic

ro

P
ro

c
e
s
s
o
r

M
ic

ro

P
ro

c
e
s
s
o
r

MemoryMemory

...

HARD to relate!

Embedded Systems and Software by Todor Stefanov 2024 28

Mapping Example 3:
MoC and MoA DO match

◼ Model of Architecture:

◼ Parallel components

◼ Heterogeneity

◼ Distributed Memory

◼ Model of Computation:

◼ Process Networks

◼ Distributed Memory

◼ Distributed Control

Applications
ApplicationsArchitecture

Instance
Applications

Mapping

Performance

Analysis

Performance

Numbers

Natural FIT

Programmable
Interconnect (NoC)

Programmable
Interconnect (NoC)

IP
c
o
re

IP
c
o
re

R
P

U
R

P
U

M
e
m

o
ry

M
e
m

o
ry

C
P

U
C

P
U

M
ic

ro

P
ro

c
e
s
s
o
r

M
ic

ro

P
ro

c
e
s
s
o
r

MemoryMemory

...

Programmable
Interconnect (NoC)

Programmable
Interconnect (NoC)

IP
c
o
re

IP
c
o
re

R
P

U
R

P
U

M
e
m

o
ry

M
e
m

o
ry

C
P

U
C

P
U

M
ic

ro

P
ro

c
e
s
s
o
r

M
ic

ro

P
ro

c
e
s
s
o
r

MemoryMemory

...

P1 P2

S1Source

P3 P4

Sink

EASY to relate!

Embedded Systems and Software by Todor Stefanov 2024 29

Y-chart MPSoC Design BUT
at Which Level of Abstraction?

High

M
o

d
e

lli
n

g
 a

n
d

 E
v
a

lu
a

ti
o

n
 E

ff
o

rt

Alternative realizations/Design Space

Low

10000
lines

Mins/
hours

10000+
lines

Hours/
days

Specification

Back-of-the-envelope calculations

Abstract executable models

Cycle-true simulation models

Synthesizable RTL models

A
b

s
tr

a
c
ti
o

n

High

Low

D
e

s
ig

n
 O

p
p

o
rt

u
n

it
ie

s

A
c
c
u

ra
c
yEstimation/Analytical Models

Abstraction Pyramid

Embedded Systems and Software by Todor Stefanov 2024 30

Stack of Y-charts

ApplicationsApplicationsEstimation
Models

Mapping

Applications

Matlab/
Mathematica

Performance
Numbers

ApplicationsApplicationsCycle Acc.
Models

Mapping

Applications

Cycle Acc.
Simulator

Performance
Numbers

ApplicationsApplicationsVHDL
Models

Mapping

Applications

VHDL
Simulator

Performance
Numbers

Refine and move Down into

Lower Abstractions

Specify and Explore at

Different Abstraction Levels

Embedded Systems and Software by Todor Stefanov 2024 3131

Design by Stepwise Refinement:
Narrow-down the Design Space

Explore

1000
lines

Secs/
minutes

10000
lines

Mins/
hours

10000+
lines

Hours/
days

Specification

Back-of-the-envelope calculations

Abstract executable models

Cycle-true simulation models

Synthesizable RTL models

A
b

s
tr

a
c
ti
o

n

High

Low

D
e

s
ig

n
 O

p
p

o
rt

u
n

it
ie

s

High

M
o

d
e

lli
n

g
 a

n
d

 E
v
a

lu
a

ti
o

n
 E

ff
o

rt

Low

A
c
c
u

ra
c
y

Alternative realizations/Design Space

Embedded Systems and Software by Todor Stefanov 2024 32

Some key points …

◼ Many different design methods are in use

◼ One for every group, product, and company

◼ They differ in:

◼ Input specification, MoC

◼ Modeling styles and languages

◼ Abstraction levels and amount of detail

◼ Verification strategy and prototyping

◼ CAD tools and component libraries

◼ They are based on the Y-chart methodologies!

Toward Composable

MPSoC Design

Leiden Embedded Research Center,

Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Universiteit van Amsterdam

Embedded Systems and Software by Todor Stefanov 2024 34

Motivation

Silicon

Chip

Commercial CompilerCommercial Synthesizer

Gate-Level

Specification A
u

to
m

a
te

d

Application SpecificationPlatform Specification

Design of Multi-processor System:

… Code for

Processor N

Code for

Processor 1

… IP Cores

in HDL

IP Cores

in HDL

Too detailed, time consuming and error-prone design

RTL-Level

Specification

Embedded Systems and Software by Todor Stefanov 2024 35

Motivation

Application Specification

RTL-Level

Specification

A
u

to
m

a
te

d

Silicon

Chip

Commercial CompilerCommercial Synthesizer

Gate-Level

Specification

… Code for

Processor N

Code for

Processor 1

… IP Cores

in HDL

IP Cores

in HDL

System-Level

Specification
Platform Specification Application Specification

Platform Specification

Implementation Gap

Embedded Systems and Software by Todor Stefanov 2024 3636

The Daedalus design-flow

System-level synthesis

Library of

IP cores

Sequential

application

Parallel application

specification

Automatic

Parallelization
High-level

Models

Mapping

specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level

Models

Common XML

Interface

Library of

IP cores

PNgenSesame

ESPAM

Xilinx Platform Studio (XPS)

RTL

Level

System

Level

Synthesizable

VHDL

C/C++ code for

processors
MP-SoC

Polyhedral

 Process Network

Sequential

application
C program

Platform

specification

Embedded Systems and Software by Todor Stefanov 2024

Merits of the Daedalus design-flow

◼ Automated parallelization of applications into

parallel specifications (PPNs)

◼ Automated synthesis of MPSoC platforms

at system level, in a plug-and-play fashion

◼ Automated mapping of parallel application

specifications onto MPSoC platforms

◼ Steering by means of efficient system-level

design space exploration

37

Embedded Systems and Software by Todor Stefanov 2024

So, what about the name
Daedalus?

◼ Daedalus means

“cunning worker” in Latin

◼ He was an innovator in many

arts

◼ Daedalus was the father

of Icarus

◼ Analogy:

◼ It’s very good technology

◼ But there are still limitations

◼ “Don’t fall into the sea”!
Daedalus and Icarus, by Charles Paul Landon, 1799

38

	Slide 1: Embedded Systems Design: Concepts and Methods
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5: Design Productivity Gap
	Slide 6: The Design Problem
	Slide 9: Evolution of Design Methodologies
	Slide 10: Specify-Explore-Refine Methodology: MPSoC design aspects
	Slide 11: Y-chart Design Methodology [Gajski et al.] – synthesis aspect
	Slide 12: Synthesis-based Design Methodology
	Slide 13: Processor Level Synthesis
	Slide 14: System Level Synthesis
	Slide 15: Bottom-up Design Methodology (1)
	Slide 16: Bottom-up Design Methodology (2)
	Slide 17: Top-down Design Methodology (1)
	Slide 18: Top-down Design Methodology (2)
	Slide 19: Meet-in-the-Middle Design Methodology: Option 1
	Slide 20: Meet-in-the-Middle Design Methodology: Option 2
	Slide 21: Meet-in-the-Middle Design Methodology
	Slide 22: Specify-Explore-Refine Methodology: MPSoC design aspects
	Slide 23: Y-chart Design Methodology [Kienhuis et al.] – quality assesment
	Slide 24: Models of Application and Architecture
	Slide 25: Mapping
	Slide 26: Mapping Example 1: MoC and MoA match
	Slide 27: Mapping Example 2: MoC and MoA do NOT match
	Slide 28: Mapping Example 3: MoC and MoA DO match
	Slide 29: Y-chart MPSoC Design BUT at Which Level of Abstraction?
	Slide 30: Stack of Y-charts
	Slide 31: Design by Stepwise Refinement: Narrow-down the Design Space
	Slide 32: Some key points …
	Slide 33: Toward Composable MPSoC Design
	Slide 34: Motivation
	Slide 35: Motivation
	Slide 36: The Daedalus design-flow
	Slide 37: Merits of the Daedalus design-flow
	Slide 38: So, what about the name Daedalus?

