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Outline

m Why considering modeling and specification?
m Requirements for Specification Techniques

m Models of Computation

m State-based models (not considered in this course!)
m FSM (classical automata)
m Timed automata
m StateCharts
m Petri Nets (not considered in this course!)
m Condition/Event Nets
m Predicate/Transition Nets
m Place/Transition Nets
m Actor-based Dataflow models
m SDF, CSDF, PPN, PSDF, PCSDF, PPPN, KPN

m Specification Languages
= VHDL, SystemC, Others
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Cyclo-Static Dataflow (CSDF)

= Introduced by Lauwereins et al.,
KU Leuven, 1994

= Network of concurrent actors
= Passive actors
= Communication is buffered

Tokens

EE

port port [

1
= Useful generalization of SDF [A ~—q
= Variable production/consumption I_ = I
. . . P
M VarlatlorTs f.orm periodic pattern coe IE
m Characteristics of CSDF 3 3

= Compile time analyzable
m Static schedule
m Buffer sizes
= Optimization for memory/speed

m Usually uses less buffer memory
compared to SDF

Iteration: ABBCBCD

Actor C has variable

production/consumption
rate with period of 2
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CSDF Operational Semantics:
Firing Rule
m CSDF actor is enabled if there Is a certain
number of tokens on each of its input channels

m Enabled actor is fired by removing
= number of tokens from each of its input channels
= placing tokens on each of its output channels

m [teration: sequence of actors firings that brings
CSDF to its initial state

1
= many possible sequences S tta o1
as long as firing rules are obeyed |— ~53 0
1

= actors can fire in parallel! %

1 S—— 7
(OO |
K 3

Iteration: ABBCBCD
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CSDF: Variable Production and
Consumption rate

Cyclic production pattern with
P phases

channel

fire A { fire B {

B onsume M.
[No,....N, . JM,..... M, ]

=  How can we exploit cyclic production/consumption for analysis?
m Define a Balance equations for each channel:

number of tokens consumed per phase

aggregated number of firings per iteration
actual number of firings per iteration
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CSDF: Scheduling

m Scheduling Is much like SDF

= Balance equations establish relative
firing rates as for SDF

= Any scheduling algorithm that avoids
buffer underflow will produce a valid
schedule Iif one exists

s Advantage: even more schedule
flexibility

m Makes it easier to avoid large buffers

Embedded Systems and Software by Todor Stefanov 2024



CSDF vs. SDF

m SDF actors consume/produce the same number
of tokens at each firing!

m Usually this lead to larger buffer requirements in
SDF compared to CSDF

m Example: Model a distributor actor (i.e., actor B)
SDF model of B

A B y B
—
Schedule: AABCD

Requires: 4 units of buffer memory
2 for edge (AB) and 1 for (BC) and (BD)

CSDF model of B

[1,0] 1:
[0,1] 1=E

Schedule: ABCABD

Requires: 3 units of buffer memory
1 for each edge (AB), (BC), and (BD)
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Polyhedral Process Network
(PPN)

Introduced at LIACS in 2000

Network of concurrent processes fire { fire {
= Active actors (processes) white (1 Tolken LSS
= Communicate over bounded FIFOs Bt _*IIIIIII‘I_’ read();
Processes: port port [N

= Perform some computation

= Communicate data (read/write)
m blocking read

m blocking write Process
Process behaviour expressed as o
parameterized polyhedral descriptions |E
Characteristics of PPNs 0000 Iﬁ

= Compile time analyzable
= Deterministic execution
= Do not impose a particular schedule
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PPN: Example

int M = 10, P = 3; IntN =10, P =3;
for( i=L: | g M- i;+) ( foi;g }:<1;:J ;)= N; j++) {
out = F1(); in = read( p6 );
if(i<=P) else
write( p2, out ); in =read(p5);
else F3(in);
write( p1, out); }
) |
DRV int P =3;
Tos for(j=1; j <= P; j++) {
S~ in = read( p3);
s Polyhedral Process Networks (PPN) - out = F2(in ):
: : : L ite( p4, out );
= Equivalent to Static Affine Nested-loop Programs ~~-.__[, ""<P" "

m Can be derived automatically

= Well defined structure of a process
m READ - EXECUTE - WRITE code sections
m Parameterized, static, and affine control in
m for-loop bounds
m if-conditions
m Parameters cannot change values at run-time!
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PPN: Some Definitions

Mo D e T - intl\.|=1.0,P=3;
for(i=1; i <’: \Y i"|‘+) { foi;E }:<1;:J Ff): SN
out = F1(); in = read( p6 );
if(i<=P) else
write( p2, out ); in =read( p5);
else Ts. F3(in);
write( p1, out); I o}
} R ) ST '
Vo int P = 3;
S for(j=1;j<=P; j++) {
. . T in =read( p3);
m Node Domain (NDg): out = F2(in ):
: : : . TSl write( p4, out );
= [terations for which function F; is executed |3
s Example:ND; is 1<j=N
= |nput Port Domain (IPDg;): = Mapping (Mp;p)):
= [terations for which port P; is read = Relation between IPDg; and

OPDyg, corresponding to

s Example: IPDp; iIs P<] <N
channel (P;P)

s Output Port Domain (OPDy)):

; _ _ _ s Example: Mpgp, i 1=1%],
= [terations for which port P; Is written where j € IPDps
s Example: OPDy, is 1si<P i € OPD,,
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PPN: Polyhedral Description (1)

m Process behavior expressed as parameterized polyhedrons

= Whatis a parameterized polyhedron?
Pp) ={x ¢ Q)” |1Ax = Bp+ b/ > Dp+d}

= Set of pomtsx inthe n- dlmenS|onaI space satisfying some
constraints where
2OMlis a vector of parameters

= A, B, C,D are integral matrixes
= b and d are an integral vectors

s Example
P(p) ={(x1,29) € Q%[0 <y <4 A gy < 1y < a9
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PPN: Polyhedral Description (2)

Every Node, Input and Output
Port Domain can be represented
as Parameterized Polyhedron

s Example: IPD,;; as polyhedron

| > 2, 2<1< M,
-1 >—-M,| &= &
j= 2 ]—2=0

g

2<i<M,
2< j<N,
j—2=0

1*1 + 0*] > 0*M +0*N + 2,
-1%1 + 0% >-1*M+0*N+0,
*I+ *¥j= *M+ *N

y eZZ|é_[O 1]*(3:[0 O]*(I\N/Ij

L imim i m =Vl e et i

- R
/ N >1P2  OPIX / N\
(\ ND_0 OPljiD——o—Nlpl ND_lOPZ/:‘—EB_iN{\IPl ND 2 )
v ™ 4 h

-~ -~

1 // process ND_1

2 void main() {

3— for(int i=2; i<=M; i++)
for(int j=2; j<=N;j++) {

CONTROL

If( j-2 =0 )

read( IP1,in_0);
if(j-3>=0)

read( IP2,in_0);
Transformer(in_0, out_0); = EXECUTE
10 if(-j+N-1>=0)
11 write( OP 1, out_0);
12 if(j-N==0){
13 write( OP2, out_0 );
14} /I forj
15 } // main

[ ol
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tM=5 P=3 | Tm---. intl\.I:5.’P:3;.
for(i=L; i <= M; i++) { s Ci<tm
out = F1(); » in = read( p6 );
if(i<=P) /,/ p2 else
write( p2, out); e % in =read(p5);
else o AN F3(in);
write( p1, out ); o p3 NN !
y )
oo int P =3;
s PPNs allow to perform formal for(=1; <=+
. . . Y in = read( p3);
algebraic transformations, i.e., out = F2(in );
. . . T write( p4, out);
= Affine (linear) transformations on polyhedrons RN

= PPNs allow to set and solve optimization
problems (such as FIFO size calculations, etc.)
= Expressed as Integer Linear Programing (ILPS)

m PPNSs can be converted to CSDFs 0,0,0,1,1] (0,0,0,1.1]

= PPNSs are very compact
representation of some class of CSDF  |[1,1,1,0,0] 1 1 [1,1,1,0,0]

= Example:

Embedded Systems and Software by Todor Stefanov 2024 13



Decidable Dataflow Models

m SDF, CSDF, PPN are Decidable Models

= have limited expressive power
= they can model only applications with static behavior

m However, there are many applications that
employ high-level dynamics in their behavior
= User Iinterface functionality
= Mode changes
= Adaptive algorithms

= Behavior changes depending on available
processing resources, eftc...

= How to solve this problem?

Embedded Systems and Software by Todor Stefanov 2024
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Partly Decidable Dataflow Models

m Observation: Key subsystems of dynamic
applications still

= exhibit large amounts of “quasi-static” structure
= stay fixed across significant windows of time

s Dynamic dataflow models have been proposed
= address the limitation of decidable models by
= abandoning most restrictions related to decidable dataflow

s However, these models are limited
= In their ability to exploit the quasi-static structures
= almost NO analysis can be done at design time

m Therefore, Partly Decidable Models are proposed!
m The Key Is the Dynamic Parameterization of actors!
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Dynamic Parametrization of Actors

The Key concept is:
* Introduce Dynamic Parameters (global and/or local)

Do Structured Control of Dynamic Parameters

params(®P) -set from above !

Embedded Systems and Software by Todor Stefanov 2024
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Parameterized Dataflow Concept

Hierarchical modeling

parent graph
/

Subsystem is composed of ~_
3 parmeterized DF graphs: \

= init, subinit, body /
Subsystem parameters

= configured in init/subinit subsystem

= used in body parameter n, ...

subinit

Dynamically reconfigurable T~—

= init invoked at the beginning
of each invocation of parent
graph

writes n

= subinit invoked at the
beginning of each invocation
of the associated subsystem

body invoked after each reads n
invocation of subinit
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Meta-modeling with
parameterized dataflow concept

m Parameterized dataflow concept can be applied
to any dataflow MoC denoted with X

m Parameterized dataflow + X = “Parameterized X’

s Examples of parameterized dataflow MoC that we

will look at are:

s Parameterized Synchronous Dataflow (PSDF)

= Parameterized Cyclo-Static Dataflow (PCSDF)

= Parameterized Polyhedral Process Network (PPPN)
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PSDF Example: Speech Compression

subsystem Compress,
{params =L, R, N, M}

(sets L) (len=L)

_ Compress.nit _

(len=L)
(sets R N.M)

(len=R)

while (1) {
*fire Compress.init */
fire genHdr,
fire setSpch; /* sets L */
/* fire Compress.subinit */
fire s!;
fire select /* sets R, N, M */
/*fire Compress.body */
fire s2
repeat (R/N) times {
fire An
repeat () times {
fire g/; fire d/
}
repeat (M) times {
fire g2; fire d2
}

fire Sn

}
fire Pl
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PCSDF Example: Speech Compression

/* fire C-Compress.body */
fire 52

q repeat (p) times {

' fire An

__Ll repeat (N) times {

(sets L) | | || (len=L) (set‘(slf\’/f;}:;,Q) fire g1 fire d!

|| }

[ 5 o repeat (M) times {
fire ¢2; fire d2

}

fire Sn

subsystem C-Compress,
{params =L, N, M, p, O}

}
fire An

repeat (Q) times {
fire g1, fire d!

repeat (M) times {
fire g2; fire d2

}

fire Sn

fire Pl

Pl
(len=L)

I
I
I
I
I
)
I
|
|
I

C-Compress.body
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Parameterized PPN (P3N)

m Extends the PPN model by allowing parameters to
change values at run-time

m Special control channels are added to set the values of
the parameters

= Global parameters - values are changed by the
environment

= Local parameters - values are changed by ||
nodes in the network |

m Semantics defined to allow some —
compile time analysis (for buffer sizes)

m Parameter values are changed
In a way that preserves consistency
(exec. with bounded buff memory) N Y
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©
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]
=
O
©
=
x
LL

Low

XY

P3N Example:
Speed Obstacle Detection

for(ever) {
extract frame( X, Y ) // 2 frames from the captured image
/[ detect targets
/[ for each frame of resolution (x1,y1) or (x2,y2)
N = getNumTargets( ... );

for(n=0..N) { /l for each found Target

eight, Width, TargetData = getTarget( ... );

for(j=1..Height) { /
for(i=1..Wid { /] for each found Target
= ProcessTarget( TargetData[j][i]);

b /

e

TargetData . Result

Height, Width 1

Embedded Systems and Software by Todor Stefanov 2024
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Undecidable Dataflow Models

= Models for which the following questions cannot
be answered at compile time:

= Is the model deadlock free?
= Can the model execute with bounded buffer memory?
» Does a schedule exist?

= Undecidable models in this sense are
= Boolean/Integer Data Flow (BDF, IDF)
= Dynamic Data Flow (DDF)
= Kahn Process Network

Embedded Systems and Software by Todor Stefanov 2024
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Kahn Process Network (KPN)

m Proposed by Kahn in 1974
as a scheme for parallel

programming
= Laid the theoretical

foundation for dataflow
m Network of concurrent

fire {

while (1) { Token

fire {

while (1) {

wite() _.lllllm:_. read()

} port
}

port

pProcesses
= Active actors N Process
= Communicate over o Tcl
unbounded FIFOs o
m Synchronization 2999
Stream channel

= Blocking read on an empty

channel

Embedded Systems and Software by Todor Stefanov 2024
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KPN: Operational Semantics

m Processes either perform computation or communicate

s Reading an empty channel blocks until data is available
= Process can not wait for data on multiple channels at the same time

= Writing to a channel is non-blocking

m There is only one producer and one consumer per channel
/ FIFO \

m Characteristics of KPN —@2—. —>
m Deterministic /

get

w @
Exec(A) 0 o get
0\ &

= Distributed Control put R & Exec(B)
= no global schedule needed put @ -
m Distributed Memory et
m no shared memory used Exec(C)
= N0 memory contention - i o
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KPN: Some Remarks

m Well suited for specifying streaming application
= signal and image processing

s Whether a KPN can execute in bounded
memory Is undecidable

= In general, KPNs are difficult to impossible to
analyze at compile time
m BUT KPNs are very useful because

= they are deterministic

= dynamic streaming application can be modeled
efficiently

Embedded Systems and Software by Todor Stefanov 2024
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Specification Languages

Sequent.

Do not confuse program
Specification Languages with
Models of Computation!!!

= Models of Computation describe system behavior
= Conceptual notion, e.g., sequential execution, dataflow, FSM

m Specification Languages capture Models of Computation
= Concrete syntax (textual or graphical) form, e.g., C, C++, Java

m Variety of languages can capture one model
= E.g., C, C++, Java - sequential execution model

s One language can capture variety of models

= E.g., C++ - sequential execution model, dataflow model, state
machine model

m Certain languages are better at capturing certain model
of computation
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Hardware Description
Languages

s HDL = hardware description language

m Textual HDLs replaced graphical HDLs in the
1980s (better for complex behavior)

s Example of HDL i1s VHDL language:
= VHDL = VHSIC hardware description language
= VHSIC = very high speed integrated circuit
= 1980: Definition started

m 1984: first version of the language defined, based on
ADA, PASCAL

= 1987: IEEE standard 1076; 1992 revision;
= Extention: VHDL-AMS models analog

= Another example is Verilog
= Preferred in US
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VHDL: Entities and Architectures

= Each design unit is called an entity

= Entities are comprised of entity declarations and one or
several architectures

Entity declaration

Architecture 1 Architecture 2 Architecture 3

m Each architecture includes a model of the entity
= The used architecture specified in a configuration

Embedded Systems and Software by Todor Stefanov 2024
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VHDL: Entity Declaration

sum
full adder

carry_out

carry_in

entity full_adder is
port(a, b, carry_in: in Bit; -- input ports
sum,carry _out: out Bit); --output ports
end full_adder;

Embedded Systems and Software by Todor Stefanov 2024 33



VHDL: Architecture

architecture behavior of full _adder is

begin

sum <= (a xor b) xor carry_in after 10 ns;
carry _out <= (a and b) or (a and carry_in) or

(b and carry _in) after 10 ns;
end behavior;

Architectural bodies can include:
 behavioral model
e structural model

Bodies not referring to hardware components are called
behavioral bodies
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VHDL: Structural Body

full_adder

—

i1: carry_out
half_adder .
i2:

carry_in half adder

architecture structure of full_adder is
component half _adder
port (inl,in2:in Bit; carry:out Bit; sum:out Bit);
end component;
component or_gate
port (inl, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit;  --local signals
begin -- port map section
11: half _adder port map (a, b, X, y);
12: half_adder port map (y, carry_in, z, sum);
13: or_gate  port map (x, z, carry_out);
end structure;
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VHDL: Processes

Processes model parallelism in hardware

General syntax:

label: --optional
process

declarations --optional
begin

statements --optional
end process

Example:
process
begin
a <= Db after 10 ns
end process,;
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VHDL: Wait Statements

Processes synchronize via WAIT-statements

Four possible kinds of wait-statements:
= wait on signal list; process

= wait until signal changes; begin

= Example: wait on a; d <= dv -
= wait until condition: progi==xandy.

= wait until condition is met; wait on x.y;

= Example: wait until c="1"; end process;

= wait for duration;
= wait for specified amount of time,
= Example: wait for 10 ns;

= wait;
m suspend indefinitely

Embedded Systems and Software by Todor Stefanov 2024

37



VHDL: Sensitivity List

Sensivity lists are a shorthand for wait on signal list at the
end of the process body:

process (X, V)
begin
prod <=x andy;
end process;

IS equivalent to
Process
begin
prod <=x andy,

wait on X,y;
end process;

Embedded Systems and Software by Todor Stefanov 2024
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VHDL Summary

Behavioral hierarchy (procedures & functions)
Structural hierarchy but no nested processes
No object-orientation

Static number of processes

Complicated simulation semantics

Too low level for initial specification

Good as Iintermediate language for hardware
generation

Embedded Systems and Software by Todor Stefanov 2024
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SystemC language

s Why SystemC if we have VHDL or Verilog?

= Many standards (e.g. the GSM and MPEG-
standards) are published in C

= Using special HDLs require translation from C

m The functionalities of systems are provided by a mix
of HW (in HDL) and SW (in C) components

m If different languages are used for the description of
HW and SW

= Simulations require an interface between HW and SW
simulators

m Aims at describe SW and HW in same language
s SW and HW developers are very familiar with C/C++
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SystemC: Features

C++ class library: including required objects for
modeling HW components in a SW language
Concurrency. via processes, controlled by
sensitivity lists and calls to wait primitives

Time: Units ps, ns, Us, etc ...

Support of bit-datatypes: bitvectors of different
lengths; multiple-valued logic (2 and 4
resolution, i.e., '0’, ‘1°, ‘u’-undefined, and ‘z’-high
Impedance)

Communication: plug-and-play channel models,
allowing easy composition of IP components

Embedded Systems and Software by Todor Stefanov 2024 41



SystemC: Language Architecture

Channels for MoCs Methodology-specific Channels
Kahn process networks, SDF, etc Master/Slave library

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Core Language
Module

Ports

Processes
Events

Interfaces
Channels

Event-driven simulation kernel

Data types

Bits and bit-vectors

Arbitrary precision integers
Fixed-point numbers

4-valued logic types, logic-vectors
C++ user defined types

C++ Language Standard
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