Embedded Systems:
Specification and Modeling (part II)

Todor Stefanov

Leiden Embedded Research Center,
Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

Outline

m Why considering modeling and specification?
m Requirements for Specification Techniques

m Models of Computation

m State-based models (not considered in this course!)
m FSM (classical automata)
m Timed automata
m StateCharts
m Petri Nets (not considered in this course!)
m Condition/Event Nets
m Predicate/Transition Nets
m Place/Transition Nets
m Actor-based Dataflow models
m SDF, CSDF, PPN, PSDF, PCSDF, PPPN, KPN

m Specification Languages
= VHDL, SystemC, Others

Embedded Systems and Software by Todor Stefanov 2024

Cyclo-Static Dataflow (CSDF)

= Introduced by Lauwereins et al.,
KU Leuven, 1994

= Network of concurrent actors
= Passive actors
= Communication is buffered

Tokens

EE

port port [

1
= Useful generalization of SDF [A ~—q
= Variable production/consumption I_ = I
. . . P
M VarlatlorTs f.orm periodic pattern coe IE
m Characteristics of CSDF 3 3

= Compile time analyzable
m Static schedule
m Buffer sizes
= Optimization for memory/speed

m Usually uses less buffer memory
compared to SDF

Iteration: ABBCBCD

Actor C has variable

production/consumption
rate with period of 2

Embedded Systems and Software by Todor Stefanov 2024 3

CSDF Operational Semantics:
Firing Rule
m CSDF actor is enabled if there Is a certain
number of tokens on each of its input channels

m Enabled actor is fired by removing
= number of tokens from each of its input channels
= placing tokens on each of its output channels

m [teration: sequence of actors firings that brings
CSDF to its initial state

1
= many possible sequences S tta o1
as long as firing rules are obeyed |— ~53 0
1

= actors can fire in parallel! %

1 S—— 7
(OO |
K 3

Iteration: ABBCBCD

Embedded Systems and Software by Todor Stefanov 2024

CSDF: Variable Production and
Consumption rate

Cyclic production pattern with
P phases

channel

fire A { fire B {

B onsume M.
[No,....N, . JM,..... M,]

= How can we exploit cyclic production/consumption for analysis?
m Define a Balance equations for each channel:

number of tokens consumed per phase

aggregated number of firings per iteration
actual number of firings per iteration

Embedded Systems and Software by Todor Stefanov 2024 5

produce Ni

CSDF: Scheduling

m Scheduling Is much like SDF

= Balance equations establish relative
firing rates as for SDF

= Any scheduling algorithm that avoids
buffer underflow will produce a valid
schedule Iif one exists

s Advantage: even more schedule
flexibility

m Makes it easier to avoid large buffers

Embedded Systems and Software by Todor Stefanov 2024

CSDF vs. SDF

m SDF actors consume/produce the same number
of tokens at each firing!

m Usually this lead to larger buffer requirements in
SDF compared to CSDF

m Example: Model a distributor actor (i.e., actor B)
SDF model of B

A B y B
—
Schedule: AABCD

Requires: 4 units of buffer memory
2 for edge (AB) and 1 for (BC) and (BD)

CSDF model of B

[1,0] 1:
[0,1] 1=E

Schedule: ABCABD

Requires: 3 units of buffer memory
1 for each edge (AB), (BC), and (BD)

Embedded Systems and Software by Todor Stefanov 2024 7

Polyhedral Process Network
(PPN)

Introduced at LIACS in 2000

Network of concurrent processes fire { fire {
= Active actors (processes) white (1 Tolken LSS
= Communicate over bounded FIFOs Bt _*IIIIIII‘I_’ read();
Processes: port port [N

= Perform some computation

= Communicate data (read/write)
m blocking read

m blocking write Process
Process behaviour expressed as o
parameterized polyhedral descriptions |E
Characteristics of PPNs 0000 Iﬁ

= Compile time analyzable
= Deterministic execution
= Do not impose a particular schedule

Embedded Systems and Software by Todor Stefanov 2024

PPN: Example

int M = 10, P = 3; IntN =10, P =3;
for(i=L: | g M- i;+) (foi;g }:<1;:J ;)= N; j++) {
out = F1(); in = read(p6);
if(i<=P) else
write(p2, out); in =read(p5);
else F3(in);
write(p1, out); }
) |
DRV int P =3;
Tos for(j=1; j <= P; j++) {
S~ in = read(p3);
s Polyhedral Process Networks (PPN) - out = F2(in):
: : : L ite(p4, out);
= Equivalent to Static Affine Nested-loop Programs ~~-.__[, ""<P" "

m Can be derived automatically

= Well defined structure of a process
m READ - EXECUTE - WRITE code sections
m Parameterized, static, and affine control in
m for-loop bounds
m if-conditions
m Parameters cannot change values at run-time!

Embedded Systems and Software by Todor Stefanov 2024 9

PPN: Some Definitions

Mo D e T - intl\.|=1.0,P=3;
for(i=1; i <’: \Y i"|‘+) { foi;E }:<1;:J Ff): SN
out = F1(); in = read(p6);
if(i<=P) else
write(p2, out); in =read(p5);
else Ts. F3(in);
write(p1, out); I o}
} R) ST '
Vo int P = 3;
S for(j=1;j<=P; j++) {
. . T in =read(p3);
m Node Domain (NDg): out = F2(in):
: : : . TSl write(p4, out);
= [terations for which function F; is executed |3
s Example:ND; is 1<j=N
= |nput Port Domain (IPDg;): = Mapping (Mp;p)):
= [terations for which port P; is read = Relation between IPDg; and

OPDyg, corresponding to

s Example: IPDp; iIs P<] <N
channel (P;P)

s Output Port Domain (OPDy)):

; _ _ _ s Example: Mpgp, i 1=1%],
= [terations for which port P; Is written where j € IPDps
s Example: OPDy, is 1si<P i € OPD,,

Embedded Systems and Software by Todor Stefanov 2024 10

PPN: Polyhedral Description (1)

m Process behavior expressed as parameterized polyhedrons

= Whatis a parameterized polyhedron?
Pp) ={x ¢ Q)” |1Ax = Bp+ b/ > Dp+d}

= Set of pomtsx inthe n- dlmenS|onaI space satisfying some
constraints where
2OMlis a vector of parameters

= A, B, C,D are integral matrixes
= b and d are an integral vectors

s Example
P(p) ={(x1,29) € Q%[0 <y <4 A gy < 1y < a9

Embedded Systems and Software by Todor Stefanov 2024 11

PPN: Polyhedral Description (2)

Every Node, Input and Output
Port Domain can be represented
as Parameterized Polyhedron

s Example: IPD,;; as polyhedron

| > 2, 2<1< M,
-1 >—-M,| &= &
j= 2]—2=0

g

2<i<M,
2< j<N,
j—2=0

1*1 + 0*] > 0*M +0*N + 2,
-1%1 + 0% >-1*M+0*N+0,
*I+ *¥j= *M+ *N

y eZZ|é_[O 1]*(3:[0 O]*(I\N/Ij

L imim i m =Vl e et i

- R
/ N >1P2 OPIX / N\
(\ ND_0 OPljiD——o—Nlpl ND_lOPZ/:‘—EB_iN{\IPl ND 2)
v ™ 4 h

-~ -~

1 // process ND_1

2 void main() {

3— for(int i=2; i<=M; i++)
for(int j=2; j<=N;j++) {

CONTROL

If(j-2 =0)

read(IP1,in_0);
if(j-3>=0)

read(IP2,in_0);
Transformer(in_0, out_0); = EXECUTE
10 if(-j+N-1>=0)
11 write(OP 1, out_0);
12 if(j-N==0){
13 write(OP2, out_0);
14} /I forj
15 } // main

[ol

Embedded Systems and Software by Todor Stefanov 2024 12

tM=5 P=3 | Tm---. intl\.I:5.’P:3;.
for(i=L; i <= M; i++) { s Ci<tm
out = F1(); » in = read(p6);
if(i<=P) /,/ p2 else
write(p2, out); e % in =read(p5);
else o AN F3(in);
write(p1, out); o p3 NN !
y)
oo int P =3;
s PPNs allow to perform formal for(=1; <=+
. . . Y in = read(p3);
algebraic transformations, i.e., out = F2(in);
. . . T write(p4, out);
= Affine (linear) transformations on polyhedrons RN

= PPNs allow to set and solve optimization
problems (such as FIFO size calculations, etc.)
= Expressed as Integer Linear Programing (ILPS)

m PPNSs can be converted to CSDFs 0,0,0,1,1] (0,0,0,1.1]

= PPNSs are very compact
representation of some class of CSDF |[1,1,1,0,0] 1 1 [1,1,1,0,0]

= Example:

Embedded Systems and Software by Todor Stefanov 2024 13

Decidable Dataflow Models

m SDF, CSDF, PPN are Decidable Models

= have limited expressive power
= they can model only applications with static behavior

m However, there are many applications that
employ high-level dynamics in their behavior
= User Iinterface functionality
= Mode changes
= Adaptive algorithms

= Behavior changes depending on available
processing resources, eftc...

= How to solve this problem?

Embedded Systems and Software by Todor Stefanov 2024

14

Partly Decidable Dataflow Models

m Observation: Key subsystems of dynamic
applications still

= exhibit large amounts of “quasi-static” structure
= stay fixed across significant windows of time

s Dynamic dataflow models have been proposed
= address the limitation of decidable models by
= abandoning most restrictions related to decidable dataflow

s However, these models are limited
= In their ability to exploit the quasi-static structures
= almost NO analysis can be done at design time

m Therefore, Partly Decidable Models are proposed!
m The Key Is the Dynamic Parameterization of actors!

Embedded Systems and Software by Todor Stefanov 2024 15

Dynamic Parametrization of Actors

The Key concept is:
* Introduce Dynamic Parameters (global and/or local)

Do Structured Control of Dynamic Parameters

params(®P) -set from above !

Embedded Systems and Software by Todor Stefanov 2024

16

Parameterized Dataflow Concept

Hierarchical modeling

parent graph
/

Subsystem is composed of ~_
3 parmeterized DF graphs: \

= init, subinit, body /
Subsystem parameters

= configured in init/subinit subsystem

= used in body parameter n, ...

subinit

Dynamically reconfigurable T~—

= init invoked at the beginning
of each invocation of parent
graph

writes n

= subinit invoked at the
beginning of each invocation
of the associated subsystem

body invoked after each reads n
invocation of subinit

Embedded Systems and Software by Todor Stefanov 2024

Meta-modeling with
parameterized dataflow concept

m Parameterized dataflow concept can be applied
to any dataflow MoC denoted with X

m Parameterized dataflow + X = “Parameterized X’

s Examples of parameterized dataflow MoC that we

will look at are:

s Parameterized Synchronous Dataflow (PSDF)

= Parameterized Cyclo-Static Dataflow (PCSDF)

= Parameterized Polyhedral Process Network (PPPN)

Embedded Systems and Software by Todor Stefanov 2024 18

PSDF Example: Speech Compression

subsystem Compress,
{params =L, R, N, M}

(sets L) (len=L)

_ Compress.nit _

(len=L)
(sets R N.M)

(len=R)

while (1) {
*fire Compress.init */
fire genHdr,
fire setSpch; /* sets L */
/* fire Compress.subinit */
fire s!;
fire select /* sets R, N, M */
/*fire Compress.body */
fire s2
repeat (R/N) times {
fire An
repeat () times {
fire g/; fire d/
}
repeat (M) times {
fire g2; fire d2
}

fire Sn

}
fire Pl

Embedded Systems and Software by Todor Stefanov 2024

PCSDF Example: Speech Compression

/* fire C-Compress.body */
fire 52

q repeat (p) times {

' fire An

__Ll repeat (N) times {

(sets L) | | || (len=L) (set‘(slf\’/f;}:;,Q) fire g1 fire d!

|| }

[5 o repeat (M) times {
fire ¢2; fire d2

}

fire Sn

subsystem C-Compress,
{params =L, N, M, p, O}

}
fire An

repeat (Q) times {
fire g1, fire d!

repeat (M) times {
fire g2; fire d2

}

fire Sn

fire Pl

Pl
(len=L)

I
I
I
I
I
)
I
|
|
I

C-Compress.body

Embedded Systems and Software by Todor Stefanov 2024

Parameterized PPN (P3N)

m Extends the PPN model by allowing parameters to
change values at run-time

m Special control channels are added to set the values of
the parameters

= Global parameters - values are changed by the
environment

= Local parameters - values are changed by ||
nodes in the network |

m Semantics defined to allow some —
compile time analysis (for buffer sizes)

m Parameter values are changed
In a way that preserves consistency
(exec. with bounded buff memory) N Y

Embedded Systems and Software by Todor Stefanov 2024 21

4 I

)
S
©
:
©
]
=
O
©
=
x
LL

Low

XY

P3N Example:
Speed Obstacle Detection

for(ever) {
extract frame(X, Y) // 2 frames from the captured image
/[detect targets
/[for each frame of resolution (x1,y1) or (x2,y2)
N = getNumTargets(...);

for(n=0..N) { /l for each found Target

eight, Width, TargetData = getTarget(...);

for(j=1..Height) { /
for(i=1..Wid { /] for each found Target
= ProcessTarget(TargetData[j][i]);

b /

e

TargetData . Result

Height, Width 1

Embedded Systems and Software by Todor Stefanov 2024

22

Undecidable Dataflow Models

= Models for which the following questions cannot
be answered at compile time:

= Is the model deadlock free?
= Can the model execute with bounded buffer memory?
» Does a schedule exist?

= Undecidable models in this sense are
= Boolean/Integer Data Flow (BDF, IDF)
= Dynamic Data Flow (DDF)
= Kahn Process Network

Embedded Systems and Software by Todor Stefanov 2024

23

Kahn Process Network (KPN)

m Proposed by Kahn in 1974
as a scheme for parallel

programming
= Laid the theoretical

foundation for dataflow
m Network of concurrent

fire {

while (1) { Token

fire {

while (1) {

wite() _.lllllm:_. read()

} port
}

port

pProcesses
= Active actors N Process
= Communicate over o Tcl
unbounded FIFOs o
m Synchronization 2999
Stream channel

= Blocking read on an empty

channel

Embedded Systems and Software by Todor Stefanov 2024

26

KPN: Operational Semantics

m Processes either perform computation or communicate

s Reading an empty channel blocks until data is available
= Process can not wait for data on multiple channels at the same time

= Writing to a channel is non-blocking

m There is only one producer and one consumer per channel
/ FIFO \

m Characteristics of KPN —@2—. —>
m Deterministic /

get

w @
Exec(A) 0 o get
0\ &

= Distributed Control put R & Exec(B)
= no global schedule needed put @ -
m Distributed Memory et
m no shared memory used Exec(C)
= N0 memory contention - i o

Embedded Systems and Software by Todor Stefanov 2024 27

KPN: Some Remarks

m Well suited for specifying streaming application
= signal and image processing

s Whether a KPN can execute in bounded
memory Is undecidable

= In general, KPNs are difficult to impossible to
analyze at compile time
m BUT KPNs are very useful because

= they are deterministic

= dynamic streaming application can be modeled
efficiently

Embedded Systems and Software by Todor Stefanov 2024

29

Specification Languages

Sequent.

Do not confuse program
Specification Languages with
Models of Computation!!!

= Models of Computation describe system behavior
= Conceptual notion, e.g., sequential execution, dataflow, FSM

m Specification Languages capture Models of Computation
= Concrete syntax (textual or graphical) form, e.g., C, C++, Java

m Variety of languages can capture one model
= E.g., C, C++, Java - sequential execution model

s One language can capture variety of models

= E.g., C++ - sequential execution model, dataflow model, state
machine model

m Certain languages are better at capturing certain model
of computation

Embedded Systems and Software by Todor Stefanov 2024 30

Hardware Description
Languages

s HDL = hardware description language

m Textual HDLs replaced graphical HDLs in the
1980s (better for complex behavior)

s Example of HDL i1s VHDL language:
= VHDL = VHSIC hardware description language
= VHSIC = very high speed integrated circuit
= 1980: Definition started

m 1984: first version of the language defined, based on
ADA, PASCAL

= 1987: IEEE standard 1076; 1992 revision;
= Extention: VHDL-AMS models analog

= Another example is Verilog
= Preferred in US

Embedded Systems and Software by Todor Stefanov 2024 31

VHDL: Entities and Architectures

= Each design unit is called an entity

= Entities are comprised of entity declarations and one or
several architectures

Entity declaration

Architecture 1 Architecture 2 Architecture 3

m Each architecture includes a model of the entity
= The used architecture specified in a configuration

Embedded Systems and Software by Todor Stefanov 2024

32

VHDL: Entity Declaration

sum
full adder

carry_out

carry_in

entity full_adder is
port(a, b, carry_in: in Bit; -- input ports
sum,carry _out: out Bit); --output ports
end full_adder;

Embedded Systems and Software by Todor Stefanov 2024 33

VHDL: Architecture

architecture behavior of full _adder is

begin

sum <= (a xor b) xor carry_in after 10 ns;
carry _out <= (a and b) or (a and carry_in) or

(b and carry _in) after 10 ns;
end behavior;

Architectural bodies can include:
 behavioral model
e structural model

Bodies not referring to hardware components are called
behavioral bodies

Embedded Systems and Software by Todor Stefanov 2024

VHDL: Structural Body

full_adder

—

i1: carry_out
half_adder .
i2:

carry_in half adder

architecture structure of full_adder is
component half _adder
port (inl,in2:in Bit; carry:out Bit; sum:out Bit);
end component;
component or_gate
port (inl, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit; --local signals
begin -- port map section
11: half _adder port map (a, b, X, y);
12: half_adder port map (y, carry_in, z, sum);
13: or_gate port map (x, z, carry_out);
end structure;

Embedded Systems and Software by Todor Stefanov 2024

VHDL: Processes

Processes model parallelism in hardware

General syntax:

label: --optional
process

declarations --optional
begin

statements --optional
end process

Example:
process
begin
a <= Db after 10 ns
end process,;

Embedded Systems and Software by Todor Stefanov 2024

VHDL: Wait Statements

Processes synchronize via WAIT-statements

Four possible kinds of wait-statements:
= wait on signal list; process

= wait until signal changes; begin

= Example: wait on a; d <= dv -
= wait until condition: progi==xandy.

= wait until condition is met; wait on x.y;

= Example: wait until c="1"; end process;

= wait for duration;
= wait for specified amount of time,
= Example: wait for 10 ns;

= wait;
m suspend indefinitely

Embedded Systems and Software by Todor Stefanov 2024

37

VHDL: Sensitivity List

Sensivity lists are a shorthand for wait on signal list at the
end of the process body:

process (X, V)
begin
prod <=x andy;
end process;

IS equivalent to
Process
begin
prod <=x andy,

wait on X,y;
end process;

Embedded Systems and Software by Todor Stefanov 2024

38

VHDL Summary

Behavioral hierarchy (procedures & functions)
Structural hierarchy but no nested processes
No object-orientation

Static number of processes

Complicated simulation semantics

Too low level for initial specification

Good as Iintermediate language for hardware
generation

Embedded Systems and Software by Todor Stefanov 2024

39

SystemC language

s Why SystemC if we have VHDL or Verilog?

= Many standards (e.g. the GSM and MPEG-
standards) are published in C

= Using special HDLs require translation from C

m The functionalities of systems are provided by a mix
of HW (in HDL) and SW (in C) components

m If different languages are used for the description of
HW and SW

= Simulations require an interface between HW and SW
simulators

m Aims at describe SW and HW in same language
s SW and HW developers are very familiar with C/C++

Embedded Systems and Software by Todor Stefanov 2024 40

SystemC: Features

C++ class library: including required objects for
modeling HW components in a SW language
Concurrency. via processes, controlled by
sensitivity lists and calls to wait primitives

Time: Units ps, ns, Us, etc ...

Support of bit-datatypes: bitvectors of different
lengths; multiple-valued logic (2 and 4
resolution, i.e., '0’, ‘1°, ‘u’-undefined, and ‘z’-high
Impedance)

Communication: plug-and-play channel models,
allowing easy composition of IP components

Embedded Systems and Software by Todor Stefanov 2024 41

SystemC: Language Architecture

Channels for MoCs Methodology-specific Channels
Kahn process networks, SDF, etc Master/Slave library

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Core Language
Module

Ports

Processes
Events

Interfaces
Channels

Event-driven simulation kernel

Data types

Bits and bit-vectors

Arbitrary precision integers
Fixed-point numbers

4-valued logic types, logic-vectors
C++ user defined types

C++ Language Standard

Embedded Systems and Software by Todor Stefanov 2024

	Slide 1: Embedded Systems: Specification and Modeling (part II)
	Slide 2: Outline
	Slide 3: Cyclo-Static Dataflow (CSDF)
	Slide 4: CSDF Operational Semantics: Firing Rule
	Slide 5: CSDF: Variable Production and Consumption rate
	Slide 6: CSDF: Scheduling
	Slide 7: CSDF vs. SDF
	Slide 8: Polyhedral Process Network (PPN)
	Slide 9: PPN: Example
	Slide 10: PPN: Some Definitions
	Slide 11: PPN: Polyhedral Description (1)
	Slide 12: PPN: Polyhedral Description (2)
	Slide 13: PPN: Some Remarks
	Slide 14: Decidable Dataflow Models
	Slide 15: Partly Decidable Dataflow Models
	Slide 16: Dynamic Parametrization of Actors
	Slide 17: Parameterized Dataflow Concept
	Slide 18: Meta-modeling with parameterized dataflow concept
	Slide 19: PSDF Example: Speech Compression
	Slide 20: PCSDF Example: Speech Compression
	Slide 21: Parameterized PPN (P3N)
	Slide 22: P3N Example: Low Speed Obstacle Detection
	Slide 23: Undecidable Dataflow Models
	Slide 26: Kahn Process Network (KPN)
	Slide 27: KPN: Operational Semantics
	Slide 29: KPN: Some Remarks
	Slide 30: Specification Languages
	Slide 31: Hardware Description Languages
	Slide 32: VHDL: Entities and Architectures
	Slide 33: VHDL: Entity Declaration
	Slide 34: VHDL: Architecture
	Slide 35: VHDL: Structural Body
	Slide 36: VHDL: Processes
	Slide 37: VHDL: Wait Statements
	Slide 38: VHDL: Sensitivity List
	Slide 39: VHDL Summary
	Slide 40: SystemC language
	Slide 41: SystemC: Features
	Slide 42: SystemC: Language Architecture

