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Outline

◼ Why considering modeling and specification?

◼ Requirements for Specification Techniques

◼ Models of Computation
◼ State-based models (not considered in this course!)

◼ FSM (classical automata)

◼ Timed automata

◼ StateCharts

◼ Petri Nets (not considered in this course!)
◼ Condition/Event Nets

◼ Predicate/Transition Nets

◼ Place/Transition Nets

◼ Actor-based Dataflow models
◼ SDF, CSDF, PPN, PSDF, PCSDF, PPPN, BDF, DDF, KPN

◼ Specification Languages
◼ VHDL, SystemC, SpecC, Others
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Why considering specifications? 

◼ The first step in designing Embedded System is to 

precisely tell what the system behavior should be

◼ This can be extremely difficult

◼ Increasing complexity of ES

◼ Desired behavior often not fully understood in the beginning

◼ However, if something is wrong with the specification 

◼ difficult to get the design right

◼ potentially wasting a lot of time

◼ How can we (correctly and precisely) capture systems 

behavior? 

Specification: correct, clear and unambiguous 

description of the required system behavior
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Use Model-based Specifications!

◼ We use models of the system under design at 

different levels of abstraction (LoA)

◼ LoA alleviate the complexity problem of specification

◼ LoA will be discussed later

◼ Models allow to reason about the system under 

design 

◼ identifying flaws in the specification

◼ correcting flaws in the specification

◼ What is a model anyway?  
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Model

Definition [Jantsch, 2004]: A model is a simplification of an 

entity, which can be a physical thing or another model: 

1. Contains exactly those characteristics and properties of 

the entity that are relevant for a given task

2. Is minimal with respect to a task if it does not contain 

any other characteristics than those relevant for the task

Quote [George Box, 1987]:

Essentially, all models are wrong, but some are useful! 

-- Wrong: models are simplification of an entity!

-- Useful:  models help to explain, predict, and understand  some aspects of the entity!    

NOTE: Engineers use models differently to scientists! 

-- Scientists:  use models to describe what the physical world is doing!

-- Engineers: use models to construct a physical system that behaves like the model! 
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Requirements for Model-based
Specification Techniques (1)

◼ Modularity

◼ Systems specified as composition of objects

◼ Most humans not capable to understand systems

containing more than ~5 objects 

◼ BUT most actual systems require more objects!

◼ Hierarchical composition of objects
◼ Example for SW: statements -> procedures -> programs

◼ Example for HW: transistors -> gates -> functional blocks 

◼ It must be “easy” to derive system behavior from

behavior of subsystems

◼ Concurrency, synchronization and 

communication 
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Requirements for Model-based
Specification Techniques (2)

◼ Timing behavior

◼ Essential for embedded systems!

◼ Four types of timing specs required, according to Burns, 1990:

t

? execute

1. Techniques to measure elapsed time
Check, how much time has elapsed since 

some computation has happened

2. Means for specifying delays

t

4. Methods for specifying deadlines

t

execute

3. Possibility to specify timeouts

    Stay in a certain state a maximum time
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Models of Computation for Specs

◼ Models of Computation (MoC) define:

◼ Components and execution model for computations for 
each component

◼ Communication model for exchange
of information between components

◼ Thus, we must

◼ select appropriate MoC for specifying a system 

◼ this is key to successful and efficient design of ES 

There is NO model of computation 

that meets all specification 

requirements previously discussed! 

A

C

D

B
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Is Van Neumann MoC appropriate? 

◼ An instruction set, a memory, and a program 
counter, is all we need to execute whatever 
application we can dream of

◼ NOT appropriate for ES design!

◼ Timing cannot be described 

◼ instructions cannot be delayed 

◼ instruction cannot be forced to execute at a specific time

◼ Timing deadlines cannot be specified for instructions or 
sequence of instructions

◼ Timeouts cannot be specified for sequence of 
instructions
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Another Inappropriate MoC:
Thread-based concurrency model

◼ Threads may access global variables
◼ May lead to race conditions!

◼ To avoid races, we use mutual exclusion 
◼ May lead to deadlocks!

“… threads as a concurrency model are a poor 

match for embedded systems. … they work well 

only … where best-effort scheduling policies are 

sufficient.” Edward Lee: Absolutely Positively on 

Time, IEEE Computer, July, 2005
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Other problems with thread-based 
concurrency 

◼ Threads are nondeterministic!

◼ Programmers try to prune away the non 

determinism by imposing constraints on 

execution order (e.g., mutexes, locks, etc…)

◼ Nontrivial software written with threads, 

semaphores, and mutexes is incomprehensible 

to many humans

◼ Thus,
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The bottom line is

◼ Finding appropriate model to capture ES 

behavior is an important step!

◼ For control-dominated and reactive systems 

◼ State-based models are appropriate

◼ Monitor control inputs and set control outputs 

◼ For data-dominated systems

◼ Actor-based dataflow models are appropriate

◼ Transform input data streams to output data streams

When specifying and designing Embedded Systems we 

should search for and use NON-thread-based, NON-von-

Neumann Models of Computation!
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Actor-based Models of Computation:
Terminology

◼ Actor-based MoC
◼ Formal description of the operational 

semantics of a network of functional blocks 

◼ Actor 
◼ Functional block representing some 

computation 

◼ Relation
◼ Describes the communication 

between actors

◼ Token 
◼ Quantum of information

that is exchanged between actors

◼ Firing of actor
◼ Quantum of computation

◼ Moment of interaction with other actors

Relation

A

C

D

B

Network

Token

Port Port

fire {

   …

   token = get();

   …

    send(token);

   …

}

(Active/Passive)

Actor
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Active/Passive Actors

◼ Passive Actors:

◼ Scheduler needed to activate 
the firing 

◼ Schedule ABBCD

◼ A firing needs to terminate

◼ Fire-and-exit behavior

◼ Active Actors:

◼ Schedule themselves

◼ A firing typically does 
not terminate

◼ Endless while loop

◼ Process behavior

A

C

D

B

Two kinds of Actors:

fire {

   token = get();

   …

    send(token);

   …

} Exit

fire {

   while(1) {

      token = get();

      …

      send(token);

    }

}
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Communication Between Actors

◼ Data Type of Tokens
◼ Integer, Double

◼ Complex

◼ Matrix, Vector

◼ Record

◼ Way exchange takes 
place
◼ Buffered

◼ Timed

◼ Synchronized

Actor 2

fire {

   …

   get();

   …

}
port port

Token
fire {

   …

    send();

   …

}

Actor 1
Communication

(Semantics)
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Actor-based Dataflow Models (1)

◼ Network of concurrently 

executing actors 

◼ Dataflow Actors

◼ Can be Passive or Active

◼ Can be described with

imperative code

◼ Dataflow Communication

◼ Only through FIFO buffers

◼ Buffers usually treated as 

unbounded for flexibility

◼ Sequence of tokens read guaranteed

to be the same as the sequence of tokens written

◼ Destructive read: reading a token from a buffer 

removes the token

◼ Much more predictable than shared memory

fire {

   …

   get();

   …

   send();

}
port port

FIFOfire {

   …

    send();

   …

    send();

}

fire {

   …

   get();

   …

   get();

}

Actor 1 Actor 2

Actor 3
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Dataflow Modeling Space

Analyzability

KPN

DPN

DDF

BDF

SDF HSDF

PPN 

CSDF MDSDF 

PSDF
PCSDF

E
x

p
re

s
s
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e

n
e

s
s

 

PPPN

◼ Expressiveness:
◼ Indicate what type of systems can be 

modeled and how compact the model is

◼ Analyzability:
◼ Indicate the degree of possibility for 

compile-time analysis (scheduling, buffer 
sizes, etc.)

Decidable Models:

• Synchronous Data Flow (SDF)

• Homogeneous SDF (HSDF) 

• Multi-Dimensional SDF (MDSDF)

• Cyclo-Static Data Flow (CSDF)

• Polyhedral Process Network (PPN) 

Partly-Decidable Models:

• Parameterized [SDF, CSDF, PPN]

Undecidable Models:

• [Boolean, Dynamic] Data Flow

• [Dataflow, Kahn] Process Network
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Synchronous Data Flow (SDF)

◼ Introduced by Lee and 
Messerchmitt,  UC Berkeley, 1987

◼ Network of concurrent executing 
actors 

◼ Passive actors

◼ Communication is buffered

◼ The model progresses as a 
sequence of “iterations”

◼ A “firing rule” determines the firing 
condition of an actor

◼ At each firing, a fixed number of 
tokens is consumed and produced

◼ Characteristics of SDF

◼ Compile time analyzable

◼ Static schedule  

◼ Optimization for 
memory/throughput/latency

Iteration: ABBBCD

A

C

D

B

1

1

1 1

3

33

3

port

fire {

   …

   get();

   …

}port

Tokensfire {

   …

    send();

   …

}
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SDF Operational Semantics:
Firing Rule

◼ An actor of SDF is enabled if there is a certain 

number of tokens on each of its input arcs

◼ An enabled actor is fired by removing a 

number of tokens from each of its input arcs and 

placing tokens on each of its output arcs

◼ Iteration: a sequence of actors’ firings that brings 

the SDF network to its initial state

◼ Many possible sequences 

as long as firing rules are obeyed

Iteration: ABBBCD

A

C

D

B

1

1

1 1

3

33

3
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SDF: Fixed Production and 
Consumption Rate

fire B {

   …

   consume M

   …

}

fire A {

   …

   produce N

   …

}

channel

N M

◼ Balance equations (one for each channel):

◼ Schedulable statically

◼ Decidable:

◼ buffer memory requirements

◼ deadlock

MfNf BA =
number of tokens consumed

number of firings per “iteration”

number of tokens produced
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SDF: Scheduling

◼ Goal: Find a sequence of actor firings that

◼ Runs each actor at least once

◼ Avoids underflow 

◼ no actor fired unless all tokens it consumes are available

◼ Returns the number of tokens in each buffer to their initial state

◼ Result: Schedule can be executed repeatedly without 

accumulating tokens in buffers

◼ Schedule can be determined completely at compile-

time, i.e., before the system runs

◼ Two steps:

1. Establish relative firing rates of actors by using the balance 

equations

2. Determine periodic sequence of actor firings by simulating the 

model for a single iteration 
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Step 1: Calculating Rates (1)

◼ Each channel imposes a constraint
◼ The number of tokens produced should be equal to the number 

of the tokens consumed

◼ The balance equation guarantees this for each channel

◼ Example:

b

d

1

2
3

2

c

a

3

41

3

2

1

6

3a – 2b = 0 (for ch. ab)

4b – 3d = 0 (for ch. bd)

b – 3c = 0 (for ch. bc)

2c – a  = 0 (for ch. ca)

d – 2a = 0 (for ch. da)

Solution:

a = 2c (a should fire twice more than c)

b = 3c

d = 4c
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Step 1: Calculating Rates (2)

◼ The modeled embedded system is Consistent!
◼ Has more than one solution (all-zeros solution + other solutions)

◼ Usually we want the smallest integer non-all-zeros solution

◼ Inconsistent systems:
◼ Have only the all-zeros solution

◼ Disconnected systems:
◼ Relative rates between some 

actors undefined 

◼ Example: Consistent Systems

Solution:

a = 2c (a should fire twice more than c)

b = 3c

d = 4c

This is the smallest integer 

solution which is non-zero

a=2  b=3  c=1  d=4

3a – 2b = 0 (for ch. ab)

4b – 3d = 0 (for ch. bd)

b – 3c = 0 (for ch. bc)

2c – a  = 0 (for ch. ca)

d – 2a = 0 (for ch. da)
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Inconsistent and Disconnected  
Systems

◼ Inconsistent system

◼ Only solution is “do nothing”, i.e.,

◼ The only integer solution is a=0 b=0 c=0

◼ No way to execute it without an unbounded

accumulation of tokens on the channels

b
1

ca
1

32

1

1

a – c = 0

a – 2b = 0

3b – c = 0

Or

2b – c = 0

 3b – c = 0

◼ Disconnected system (under-constrained system)

◼ Two or more unconnected pieces

◼ Relative rates between pieces undefined

ba
1 1

dc
3 2

a – b = 0 

3c – 2d = 0 
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Consistent Rates Not Enough!

◼ A consistent system may NOT have schedule

◼ Rates do not  avoid deadlock

◼ Example: deadlock in consistent system

◼ Solution here: add an initial token on one of the 
channels

ba
1 1

1 1

ba
1 1

1 1

1

Initially No Tokens

a waits for b

b waits for a 

Deadlock!!!

Initially 1 Token on arc ab 

b can fire
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Step 2: Fundamental SDF 
Scheduling Theorem

◼ Theorem guarantees that any valid model simulation will produce 
a schedule

◼ Example:

If rates can be established, any scheduling algorithm that avoids 

buffer underflow will produce a correct schedule if it exists

b

d

1

2
3

2

c

a

3

41

3

2

1

6

Rates: a=2  b=3  c=1  d=4

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid
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SDF: Scheduling Choices

◼ The SDF Scheduling Theorem guarantees that a 

schedule will be found if it exists

◼ A SDF system often has many possible schedules

◼ How can we use this flexibility?

◼ Reduce size of code

◼ Reduce sizes of buffers
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SDF: Code Generation

◼ Consider schedule

BBBCDDDDAA

◼ Rewrite schedule in 

“looped” form:

(3 B) C (4 D) (2 A)

◼ Generated inline code 

becomes

for ( i = 0 ; i < 3; i++) B;

C;

for ( i = 0 ; i < 4 ; i++) D;

for ( i = 0 ; i < 2 ; i++) A;

◼ Consider schedule

    BDBDBCADDA

◼ Rewrite schedule in 

“looped” form:

     (2 BD) BCA (2 D) A

◼ Generated inline code 

becomes

     for ( i = 0 ; i < 2; i++) {B;D;}

             B;C;A;

     for ( i = 0 ; i < 2 ; i++) D;

                A;

Which code is smaller?
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SDF: Code Size optimization

◼ Goal: Find Single Appearance Schedule:

◼ (3 B) C (4 D) (2 A)

◼ a looped schedule in which each block appears 

exactly once

◼ Leads to efficient block-structured code

◼ Only requires one copy of each block’s code

◼ Does not always exist!

◼ Often requires more buffer space than other schedules!

◼ Generated program with efficient code size

for ( i = 0 ; i < 3; i++) B;

C;

for ( i = 0 ; i < 4 ; i++) D;

for ( i = 0 ; i < 2 ; i++) A;
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SDF: Buffer Size optimization

◼ Goal: Find Minimum Memory Schedules

◼ Often increases code size (block-generated 
code)

◼ Static scheduling makes it possible to exactly 
predict memory requirements

◼ Example:

BA
20 10

C
20 10

(1)  ABCBCCC  
(2)  A(2B)(4 C)
(3)  A(2(B (2C)))
(4)  A(2(BC))(2 C)

Schedule  Total buffer sizes  

60 tokens
40 tokens

50 tokens  

50 tokens
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SDF: Parallel Scheduling

A

C

D

B

SDF is suitable 

for automated 

design of multi-

processor 

systems and 

synthesis of 

parallel circuits

Many scheduling 

optimization 

problems can be 

formulated. Some 

can be solved, too!

Sequential Parallel
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To be continued
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