Design Project FDSD: November — December 2024

Design, implement, and simulate a simple 4-bit processor using the Xilinx design tool and simulator.
The processor executes the following instruction set:

Instruction Operation Description
Mnemonic
LDA #value A « value Load register A with value
LDB #value B < value Load register B with value
SHLA A« A<<1 Shift-left with 1 bit the value of register A
SHRA A« A>>1 Shift-right with 1 bit the value of register A
MAB B« A Move the value of reg. A toreg. B
ADDAB A< A+B Add reg. A to reg. B and store the result in reg. A
NOTA A« A Complement reg. A
JC #value PC « value Jump to address = value, if carry flag is set

The top-level schematic of the processor is given in the Appendix file “myProcessor.pdf”. Use this
architecture when you make your design. The processor consists of the following components:

1. Two general purpose 4-bit registers — register_A and register_B;
2. One 4-bit Arithmetic and Logic Unit (ALU) that executes 4 operations:
¢ Addition: When S0 = 0 and S1 = 0 then res(3:0) « A(3:0) + B(3:0);
¢ Shift-left: = When SO = 0 and S1 = 1 then res(3:0) « (A(3:0) shifted-left with one bit);
¢ Shift-right: When S0 =1 and S1 = 0 then res(3:0) « (A(3:0) shifted-right with one bit);
¢ Complement: When S0 =1 and S1 = 1 then res(3:0) « A(3:0)’;

3. Two multiplexers 2-to-1 4-line MUXs - MUX4_2to1;

4. 1-bit Status Register — stores the carry flag of the ALU after ADDAB instruction is executed.

5. One 4-bit Program Counter (PC) register that is used as an address generator for the program
memory of the processor;

6. One program memory ROM16x7 that has size 16 memory locations each 7 bits wide. In this
memory the program is stored. Every instruction in the program occupies one memory location.
The format of each instruction in the memory is as follows:

6 4 3 0
| Operation Code (OPC) | Immediate operand (value) |

OPC is the code of the instruction. value is the operand that is used when instructions LDA,
LDB, and JC are executed (see the instruction table above).

7. One Instruction Decoder component. It takes as an input an OPC and decodes the
corresponding instruction. The outputs of the decoder are control signals that configure the data-
path of the processor (register_A, register_B, the two MUX4_2tol, Program Counter, Status
Register, and ALU) in accordance with the instruction that has to be executed.

Project Schedule and Deliverables

The project described above will be split and implemented in five small tasks.

1. Task1: Design, implementation, and simulation of components MUX4_2to1, register_A, and
register_B.

To be delivered no later than 20.11.2024;

2. Task2: Design, implementation, and simulation of components ALU and Status Register.
To be delivered no later than 27.11.2024;

3. Task3: Design, implementation, and simulation of components ROM16x7 and Program Counter.
To be delivered no later than 04.12.2024;

4. Task4: Design, implementation, and simulation of component Instruction Decoder.

To be delivered no later than 11.12.2024;

5. Task5: Connect all components designed in Tasks 1 to 4 in order to build the simple processor.
Write one small program that computes the absolute value of the expression |X/2 — Y|. The result
has to be in register B. The operation "/" is integer division. When the program is written run it 2
times. First, load the program in the memory with X = 5 and Y = 11. Second, load the same
program with X = 13 and Y = 4. The simulations should show that your processor works correctly.
To be delivered no later than 31.12.2024.

NOTEI1: You have to work on the project tasks in a group of max 2 students! So, make sure that
you find a partner to work with and you should not change your partner throughout the project.

NOTE2: When you design your specific processor components, you are allowed to (re-)use all pre-
designed components that you can find in the Xilinx project library! So, study all components that
are available in the library and try to use them as much as possible in order to save your time and effort.

NOTE3: You have to deliver each task in electronic form by e-mail to the assistants at
“dite.liacs@gmail.com”. To do this you have to automatically cleanup (ask the assistants how) and
zip the whole Xilinx project in which you do and simulate the tasks. After you zip the project try to
unzip it on another computer in rooms DM.0.09-PC, DM.0.13-PC, DM.0.17-PC, or DM.0.21-PC and to
run it in order to check if you have included all needed files. If sending the zip file via e-mail fails
because of SPAM filters, etc., then upload the zip file on GoogleDrive and send us a link to the zip
file such that we can download it. Make the link accessible to everyone and keep the link with each
zip file active/available at least 90 days after you send it to us!

IMPORTANT: If we cannot run and simulate the project, you have sent, we will assume that you have
not completed your task. So, be careful to send us a working/correct project (including all needed
testbench files) such that we can properly run, simulate, and test/check your project using your testbench
files.

Together with each zip file you have to send us a separate text file/report (max 2 pages) explaining
what you did and how to run and simulate the project that is in the zip file. The text file/report is
important and its quality will be graded as well in terms of clarity, completeness of explanation,
etc.

NOTE4: It is very beneficial for you to attend the on-campus Design Project hands-on classes every
Wednesday from 15:15h to 17:00h in all computer rooms DM.0.09-PC to DM.0.21-PC. There, you
can do parts of the project together with us, you can ask questions, and you will receive help from us
related to the tasks above. However, if needed, you have to spend sufficient amount of extra time on
the project in the computer rooms or at home in order to complete it successfully!

Grading of Your Project

To receive grade 6.0 you have to complete successfully Task1, Task2, Task3, and Task4;
* Receiving a grade higher than 6.0 will depend on how you perform Task5;

IMPORTANT: Completing a task successfully means:
1. You have delivered the task on time according to the schedule above. If you fail to do this we
will assume that you have not completed your task. So, take the schedule seriously!
2. The delivered task contains working/correct Xilinx implementation together with the testbench
files you have used for the simulation of your implementation.
3. You have delivered a text file/report that explains what you have done in the task and how to
simulate your implementation.

