
Processor Design Basics:

Instruction Set Architecture

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Overview

◼ Block Diagram of a Generic Processor
◼ Von Neumann vs. Harvard Architecture

◼ Example of a Simple 8-bit Processor

◼ Introduction to Instruction Set Architecture
◼ Programming Model

◼ Instruction Specifications

◼ Data Manipulation Instructions

◼ Data Movement Instructions

◼ Control Flow Instructions

◼ Instruction Formats

◼ How to Program Processors
◼ High-level Languages

◼ Low-level Languages (Assembly and Machine Languages)

◼ Compiling

◼ Summary

2

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Block Diagram of a Generic Processor

◼ We can divide the design of a processor into three

parts:

◼ An Instruction Set is the programmer’s interface to the

processor.

◼ The Datapath does all of the actual data processing.

◼ A Control unit uses the programmer’s instructions to tell

the datapath what to do.

◼ But first, Where Do The Program and Data Go?

Control

Unit
Datapath

Control signals

Status signals

Program Data

3

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Von Neumann vs. Harvard Architecture

◼ Von Neumann Architecture
◼ A single main memory that holds both program instructions and data.

◼ Harvard Architecture
◼ It includes two memory units: instruction and data memory.

◼ The instruction memory holds the program instructions.

◼ The separate data memory is used for computations.

◼ The advantage is that we can read an instruction (from the instruction memory)
and load or store data (from/to the data memory) in the same clock cycle.

◼ Further, we will consider a processor with Harvard architecture.

Control

Unit
Datapath

Control signals

Status signals

Main RAM Memory (Instructions and Data)

Control

Unit
Datapath

Control signals

Status signals
Data Memory

RAM
Instruction Memory

RAM or ROM

4

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple 8-bit Processor

Control Unit Datapath

Control

Signals

Status

Signals

Data Memory

215 x 8

PC
R0

ALU

R1

R3
R2

Z

C

V
N

Instruction

Decoder

Instruction

Memory

215 x 16
Branch

Control

Load

S
R

◼ The processor has a Harvard Architecture, i.e., separate Instruction and

Data memory.

◼ This is an 8-bit processor because all operations performed by the

Arithmetic and Logic Unit (ALU) are on 8-bit operands.

◼ The operands are stored in the Register File that consists of four 8-bit

general purpose registers (R0 to R3).

015
07Address

Instruction

5

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple 8-bit Processor (cont.)

◼ The register file is very small but very fast temporary storage needed by the ALU
for operands and intermediate results.

◼ A larger but slower storage is the Data Memory. The processor can move data
from the register file to the data memory and back.

◼ When operations like “addition”, “subtraction”, etc. are performed by the ALU the
following may happen:
◼ Carry or Overflow situation may occur.

◼ The result may be Zero or Negative.

◼ Thus, the ALU generates status bits stored in the Status Register (SR) to indicate
if carry, overflow, zero, or negative situation has occurred.

Control Unit Datapath

Control

Signals

Status

Signals

Data Memory

215 x 8

PC
R0

ALU

R1

R3
R2

Z

C

V
N

Instruction

Decoder

Instruction

Memory

215 x 16
Branch

Control

Load

S
R

015
07Address

Instruction

6

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple 8-bit Processor (cont.)

◼ The Control Unit fetches instructions from the Instruction Memory to
determine what operation needs to be executed.

◼ A register called Program Counter keeps the address of the instruction to
be executed.

◼ After an instruction is fetched from the Instruction Memory it is decoded
by the Instruction Decoder and control signals are sent to instruct the
Datapath what operation to perform.

◼ Next, the Program Counter is loaded with the address of the next
instruction to be executed.

Control Unit Datapath

Control

Signals

Status

Signals

Data Memory

215 x 8

PC
R0

ALU

R1

R3
R2

Z

C

V
N

Instruction

Decoder

Instruction

Memory

215 x 16
Branch

Control

Load

S
R

015
07Address

Instruction

7

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Example of a Simple 8-bit Processor (cont.)

◼ There are two possibilities to load the PC:
◼ Simply the PC is incremented, i.e., PC = PC + 1 (Hence the name “Program

Counter”).

◼ The PC is loaded with a number taken from the instruction or some of the
registers in the register file. In this case we say that the processor makes a
branch/jump in the program.

◼ The Branch Control unit determines whether the PC should be
incremented or loaded to make a branch/jump.
◼ The decision depends on the current instruction (whether it is a branch/jump

instruction) and the value of the status bits.

Control Unit Datapath

Control

Signals

Status

Signals

Data Memory

215 x 8

PC
R0

ALU

R1

R3
R2

Z

C

V
N

Instruction

Decoder

Instruction

Memory

215 x 16
Branch

Control

Load

S
R

015
07Address

Instruction

8

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Some Basic Terminology

◼ The first step in a processor design is to specify the

operations that the processor should perform, i.e.,

◼ to specify the instruction set of the processor.

◼ An instruction is a collection of bits that instructs the

processor to perform a specific operation.

◼ An instruction set is the collection of all instructions

for a processor.

◼ A program is a list of instructions that specifies

◼ the operations to be performed by the processor

◼ their sequence

◼ A thorough description of the instruction set for a

processor is called instruction set architecture (ISA).
9

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Set Architecture (ISA)

◼ Any instruction set architecture has the following
three major components

◼ Programming Model:
◼ This is the processor structure as viewed by a user

programming the processor in a language that directly
specifies the instructions to be executed.

◼ Such language is called assembly language (more details
later!)

◼ Instruction Specifications:
◼ They describe each of the distinct instructions that can be

executed by a processor.

◼ Instruction Formats:
◼ They determine the meaning of the bits used to encode

each instruction.
10

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Programming Model for our Processor

◼ It gives the resources of our processor that the user sees

available for storing information.

◼ The model has two memories,

◼ one for storage of instructions (with size 32K 16-bit words)

◼ one for storage of data (with size 32KB).

◼ A register file with four 8-bit Registers (R0 to R3)

◼ Also, visible to the programmer are

◼ the 16-bit Program Counter (PC)

◼ the Status Register (SR) of our processor.

Data Memory

215 x 8

PC

R0
R1
R2

Instruction

Memory

215 x 16

R3

Program Counter

Register File with 4 general purpose

registers called accumulators.

SR Status Register

11

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Type Operation Mnemonic Operation Status Bits Description

Data Manipulation
Instructions

Register-format
Arithmetic &

Logic
Operations

LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

NOT Rj, Ri Rj Ri’ Z, N

Register-format
Shift Operations

SHL Rj, Ri Rj Ri << 1 NO effect

SHR Rj, Ri Rj Ri >> 1 NO effect

Data Movement
Instructions

Memory write
(from registers)

ST (Rj), Ri Mem[R0|Rj] Ri NO effect

Memory read
 (to registers)

LD Rj, (Ri) Rj Mem[R0|Ri] NO effect

Immediate
transfer

operations

LDI Rj, #const8 Rj const8 NO effect

STI (Rj), #const8 Mem[R0|Rj] const8 NO effect

Control Flow
Instructions

 Branches BZ #offset11 PC PC + offset11 NO effect

BNZ #offset11 PC PC + offset11 NO effect

BC #offset11 PC PC + offset11 NO effect

BNC #offset11 PC PC + offset11 NO effect

BV #offset11 PC PC + offset11 NO effect

BNV #offset11 PC PC + offset11 NO effect

BN #offset11 PC PC + offset11 NO effect

BNN #offset11 PC PC + offset11 NO effect

Jump JMP Rj, Ri PC Rj|Ri NO effect

Instruction Specifications for our Processor

12

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Data Manipulation Instructions

◼ Data manipulation instructions correspond to Arithmetic, Logic, and Shift
operations.

◼ Consider instruction ADDC of our processor:
◼ It corresponds to arithmetic operation “addition with carry-in”.

◼ It has two operands.

◼ It modifies the Carry, oVerflow, Zero, and Negative bits in the processor’s
Status Register.

◼ Consider instruction XOR of our processor:
◼ It corresponds to logic operation “bitwise XOR”.

◼ It has two operands.

◼ It modifies bits Z and N in the Status Register.

ADDC Rj, Ri

operation

soutce and
destination

source

operands

Rj Rj + Ri + C

Register transfer notation:

XOR Rj, Ri Rj Rj Ri

13

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Data Manipulation Instructions (cont.)

◼ Consider instruction NOT of our processor:
◼ It corresponds to logic operation “complement”.

◼ It has one operand.

◼ It modifies bits Z and N in the Status Register.

◼ Consider instruction SHL of our processor:
◼ It corresponds to shift operation “shift-left with one bit and fill with 0”.

◼ It has one operand.

◼ It does NOT modify bits in the Status Register.

NOT Rj, Ri

operation

destination source

operand

Rj Ri’

Register transfer notation:

SHL Rj, Ri

operation

destination source

operand

Rj Ri << 1

Register transfer notation:

14

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Data Movement Instructions

◼ Data movement instructions correspond to transfer operations of data
between the Data Memory and the Register File. Also, operations that
load/store a constant in a register/memory cell are considered here.

◼ Consider instruction ST of our processor:
◼ It copies (stores) data from a register to a memory cell.

◼ It does NOT modify bits in the Status Register.

◼ Consider instruction LD of our processor:
◼ It copies (loads) data to a register from a memory cell.

◼ It does NOT modify bits in the Status Register.

ST (Rj), Ri

operation

destination
is memory !

source is
register

Mem[R0|Rj] Ri

Transfer notation:
memory address

8-bit values in R0 and Rj form
16-bit address for data memory !

LD Rj, (Ri)

operation

destination
is register

source is
memory

Rj Mem[R0|Ri]

Transfer notation:
memory address

8-bit values in R0 and Ri form
16-bit address for data memory !

15

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Data Movement Instructions (cont.)

◼ Consider instruction STI of our processor:
◼ It stores an 8-bit constant to a memory cell.

◼ It does NOT modify bits in the Status Register.

◼ Consider instruction LDI of our processor:
◼ It loads a register with an 8-bit constant.

◼ It does NOT modify bits in the Status Register.

STI (Rj), #const8

operation

destination
is memory !

constant

Mem[R0|Rj] const8

Transfer notation:
memory address

8-bit values in R0 and Rj form
16-bit address for data memory !

LDI Rj, #const8

operation

destination
is register

constant

Rj const8

Transfer notation:

16

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Addressing Modes

◼ We have seen several instructions containing the # or () symbols.

◼ The # and () are important!

◼ These symbols are ways of specifying different addressing modes.

◼ For our simple processor we use three addressing modes: direct mode,
index mode () and immediate mode #.

◼ Direct mode - when we address a register (no specific symbol is used!)

◼ Index mode - when we address a memory cell by using the content of
registers as address. Here we use the symbol () !

◼ Immediate mode - when we refer to a constant we use the symbol # !

LDI R2 , #35 // R2 35

STI (R3), #10 // Mem[R0|R3] 10

ST (R3), R1 // Mem[R0|R3] R1

LD R3 ,(R1) // R3 Mem[R0|R1]

LDR R3, R1 // R3 R1

SUB R2, R0 // R2 R2 + R0’ + 1

17

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Programs consist of a sequence of instructions, which are
meant to be executed one after another.

◼ Thus, programs are stored in the program memory so that:
◼ Each program instruction occupies one memory cell.

◼ Instructions are stored one after another.

◼ A Program Counter (PC) keeps track of the current
instruction address.
◼ Ordinarily, the PC just increments after executing each instruction.

◼ But sometimes we need to change this normal sequential behavior,
with special control flow instructions.

Control Flow Instructions

...

Addr 0x0010: LDI R0, #0x25 // R0 0x25

Addr 0x0011: LDI R1, #0xfc // R1 0xfc

Addr 0x0012: LD R3, (R1) // R3 Mem[0x25fc]

Addr 0x0013: INC R3, R3 // R3 R3 + 1

Addr 0x0014: ST (R1),R3 // Mem[0x25fc] R3

...

18

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Control Flow Instructions (cont.)

◼ Control Flow Instructions change the value stored in

the Program Counter.

◼ Thus, the programmer can use them when it is

necessary to change the sequence of executions of

instructions in the program.

◼ The change of the instruction sequence can be

unconditional or conditional.

◼ An unconditional change is accomplished by using

Jump instructions.

◼ A conditional change is accomplished by using

Branch instructions.

19

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ A jump instruction always changes the value of the PC.
◼ The operand specifies exactly how to change the PC.

◼ For example, a program can skip certain instructions.

◼ You can also use jumps to repeat instructions.

0x0010: LDI R1, #0x00 // R1 0x00

0x0011: LDI R2, #0x15 // R2 0x15

0x0012: JMP R1, R2 // PC 0x0015 (go to address 0x0015)

0x0013: LDI R1, #0x20 // These two instructions

0x0014: LDI R2, #0x04 // would be skipped

0x0015: SUB R3, R0 // R3 R3 + R0’ + 1

0x0016: ADD R3, R3 // R3 R3 + R3

Jump Instructions

0x0010: LDI R1, #0x00 // R1 0x00

0x0011: LDI R2, #0x12 // R2 0x12

0x0012: ADD R0, R3 // R0 R0 + R3

0x0013: JMP R1, R2 // PC 0x0012 (go to address 0x0012)

20

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Instructions

◼ A branch instruction may change the PC, depending on whether a given
condition is true.

◼ Branch conditions are often based on the result of Arithmetic and Logic
operations.

◼ This is what the Status Register bits C, V, Z and N are used for. With
them we can implement various branch instructions like the ones below
for our simple processor.

◼ Other branch conditions (e.g., branch if greater, equal or less) can be
derived from these, along with the right Arithmetic/Logic operation.

Instruction Mnemonic Condition Status bit

BV Branch on overflow V = 1
BNV Branch on no overflow V = 0

BC Branch if carry set C = 1
BNC Branch if carry clear C = 0

BN Branch if negative N = 1
BNN Branch if positive N = 0

BZ Branch if zero Z = 1
BNZ Branch if non-zero Z = 0

21

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Branch Instructions Example

◼ Let us write the program on the right
for our simple processor.

◼ Below, you see that we need many
instructions for this simple program
but that is how processors work.

...

0x0010: LDI R0, #0x5a // R0 0x5a

0x0011: LDI R1, #0x38 // R1 0x38

0x0012: LD R3, (R1) // R3 Mem[0x5a38]

0x0013: SUB R3, R2 // R3 R3 + R2’ + 1

0x0014: BNC #0x005 // if Carry = 0 then PC PC + 0x005

 (go to address 0x0019).

0x0015: INC R3, R3 // R3 R3 + 1

0x0016: ST (R1),R3 // Mem[0x5a38] R3

0x0017: SUB R3, R3 // This two lines are equal to a jump

0x0018: BZ #0x003 // instruction because always PC PC + 0x003

 (always go to address 0x001B).

0x0019: INC R2, R2 // R2 R2 + 1

0x001A: ST (R1),R2 // Mem[0x5a38] R2

0x001B: ...

if Mem[0x5a38] ≥ R2 then

 Mem[0x5a38] = Mem[0x5a38] + 1;

else

 Mem[0x5a38] = R2 + 1;

end if;

22

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ So far, we have discussed two major components
of an Instruction Set Architecture, namely
Programming Model and Instruction Specifications.

◼ The last major component we have to discuss here
is the Instruction Formats.

◼ Recall, an instruction is a collection of bits that
instructs the processor to perform a specific
operation.

◼ Thus, each instruction has to be encoded uniquely
using bits (we will discuss this in another lecture!).

◼ The bits encoding an instruction have a meaning
given by the Instruction Formats.

Instruction Formats

23

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We have 3 instruction formats because the instructions of our processor
can be divided into 3 groups:
◼ Instructions that require two registers (Rj and Ri) from the register file to be

specified. See Format1 below.

◼ Instructions that require one register (Rj) from the register file and one 8-bit
constant (const) to be specified. See Format2 below.

◼ Instructions that require one 11-bit constant (offset) to be specified. See
Format3 below.

◼ Format1: for Arithmetic&Logic, Shift, Memory, and Jump instructions:

◼ Format2: for Immediate Transfer instructions:

◼ Format3: for Branch instructions:

15 11 10 9 8 2 1 0

Instruction Formats for our Processor

Opcode
Source and/or

Destination (Rj)
Source(Ri)

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

Opcode Immediate Operand (offset11)

15 11 10 0

X

X X X X X X X

24

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Instruction Type Operation Mnemonic Operation Status Bits Description
LDR Rj, Ri Rj Ri Z, N

INC Rj, Ri Rj Ri + 1 Z, N

DEC Rj, Ri Rj Ri - 1 Z, N

ADD Rj, Ri Rj Rj + Ri C, V, Z, N

ADDC Rj, Ri Rj Rj + Ri + C C, V, Z, N

SUB Rj, Ri Rj Rj + Ri’ + 1 C, V, Z, N

AND Rj, Ri Rj Rj Ri Z, N

OR Rj, Ri Rj Rj Ri Z, N

XOR Rj,Ri Rj Rj Ri Z, N

Register-format
Arithmetic &

Logic
Operations

NOT Rj, Ri Rj Ri’ Z, N

SHL Rj, Ri Rj Ri << 1 NO effect

Data Manipulation
Instructions

Register-format
Shift Operations SHR Rj, Ri Rj Ri >> 1 NO effect

Memory write
(from registers)

ST (Rj), Ri Mem[R0|Rj] Ri NO effect

Memory read

 (to registers)
LD Rj, (Ri) Rj Mem[R0|Ri] NO effect

LDI Rj, #const8 Rj const8 NO effect

Data Movement
Instructions

 Immediate
transfer

operations
STI (Rj), #const8 Mem[R0|Ri] const8 NO effect

BZ #offset11 PC PC + offset11 NO effect

BNZ #offset11 PC PC + offset11 NO effect

BC #offset11 PC PC + offset11 NO effect

BNC #offset11 PC PC + offset11 NO effect

BV #offset11 PC PC + offset11 NO effect

BNV #offset11 PC PC + offset11 NO effect

BN #offset11 PC PC + offset11 NO effect

 Branches

BNN #offset11 PC PC + offset11 NO effect

Control Flow
Instructions

Jump JMP Rj, Ri PC Rj|Ri NO effect

Recall the Instruction Specifications …

25

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Each instruction format contains 16 bits because our program memory is
16-bit wide and each program memory cell stores one instruction.

◼ The 5-bit Opcode (bits 15 to 11) encodes the operation performed by each
instruction:
◼ We have 25 instructions, i.e., 25 distinct operations, therefore we need at least

5-bit Opcode in order to have a unique code for each operation.

◼ The rest of the bits (10 to 0) specify registers and/or immediate operand.
◼ Each Opcode determines the exact meaning of the rest of the bits in the

instruction.

◼ Thus, the processor first “looks” at the Opcode to identify the instruction format
and the operation to be performed.

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

Opcode Immediate Operand (offset11)

15 11 10 0

X

X X X X X X X

Instruction Formats for our Processor (cont.)

26

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Format1: for Arithmetic & Logic, Shift,

Memory, and Jump Instructions

15 11 10 9 8 2 1 0

Opcode
Source and/or

Destination (Rj)
Source (Ri)X X X X X X X

Instructions Operation Source/Destination
Register

Source
Register

LDR Rj Ri

INC Rj Ri

DEC Rj Ri

ADD Rj Ri

ADDC Rj Ri

SUB Rj Ri

AND Rj Ri

OR Rj Ri

XOR Rj Ri

Arithmetic
&

 Logic
Instructions

NOT Rj Ri

SHL Rj Ri Register-format
Shift Operations SHR Rj, Ri

Memory write
(from registers)

ST (Rj) Ri

Memory read

 (to registers)

LD Rj (Ri)

Jump JMP Rj Ri

NOTE: We encode the

registers with 2 bits

because we have only 4

registers (R0 to R3) in our

processor’s register file.

Encoded

with 5 bits

Encoded

with 2 bits
Encoded

with 2 bits

These bits are not used

for these instructions!

27

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Format2: for Immediate Transfer

Instructions

Instructions Operation Source/Destination
Register

Constant
Value

LDI Rj const8 Immediate
Transfer

Instructions STI (Rj) const8

NOTE: We have to use only 8-bit constants because the 4 registers (R0 to R3) in

our processor’s register file and the data memory are 8-bit wide, i.e., they can

store only 8-bit values.

Encoded

with 5 bits

Encoded

with 2 bits
8-bit constant value

is placed here

This bit are not used

for these instructions!

Opcode Destination (Rj) Immediate Operand (const8)

15 11 10 9 8 7 0

X

28

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Format3: for Branch Instructions

Instructions Operation Constant
Value

BZ offset11

BNZ offset11

BC offset11

BNC offset11

BV offset11

BNV offset11

BN offset11

Branch
Instructions

BNN offset11

Encoded

with 5 bits

Opcode Immediate Operand (offset11)

15 11 10 0

11-bit constant value

is placed here

29

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

How to Program our Processor

◼ Programs written in a high-level
languages like C/C++ must be
compiled to produce an executable
program.

◼ The result is a processor-specific
machine language program.
◼ This can be loaded into the program

memory and executed by the
processor.

◼ The machine language serves as an
interface between hardware and
software.

◼ In this course we focus on stuff below
the dotted blue line.

◼ Therefore, we will not build a compiler
for our processor.

◼ So, we will use directly the machine
language (instruction set) of our
processor to program it.

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software

30

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

High-level Languages

◼ High-level languages like C/C++, Java, Basic, Pascal,
Fortran, Modula-2, Ada provide many useful programming
constructs.
◼ For, while, and do loops

◼ If-then-else statements

◼ Functions and procedures for code abstraction

◼ Variables and arrays for storage

◼ Many languages provide safety features as well.
◼ Static and dynamic type checking

◼ Garbage collection

◼ High-level languages are also relatively portable.
◼ Theoretically, you can write one program and compile it on many

different processors.

◼ It may be hard to understand what is so “high-level” here,
until you compare these languages with...

31

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Low-level Languages

◼ Each processor has its own low-level instruction set, or

machine language, which closely reflects the processors’

design.

◼ Unfortunately, this means instruction sets are not easy for

humans to work with!

◼ Control flow is limited to “jump” and “branch” instructions, which you

must use to make your own loops and conditionals.

◼ Support for functions and procedures may be limited.

◼ Memory addresses must be explicitly specified. You can not just

declare new variables and use them!

◼ Very little error checking is provided.

◼ It is difficult to convert machine language programs to different

processors.

◼ Later we will look at some rough translations from C to our

simple processor’s low-level language.
32

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Assembly and Machine Languages

◼ Machine language instructions are sequences of bits in a
specific order.

◼ To make things simpler, people typically use assembly
language (as we have done so far in this lecture).
◼ We assign “mnemonic” names to instructions and operands (see the

instruction specifications of our processor!).

◼ There is (almost) a one-to-one correspondence between these
mnemonics and machine instructions, so it is very easy to convert
assembly programs to machine language.

◼ In this lecture we have used assembly code for our
processor to introduce the basic ideas. In your design project
you will learn how to switch to machine language!

33

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Compiling

◼ Processors cannot execute programs written in
high-level languages directly,
◼ a special program called a compiler is needed to translate

high-level programs into low-level machine code.

◼ In the “good” old days, people often wrote machine
language programs by hand
◼ to make their programs faster, smaller, or both.

◼ Now, compilers almost always do a better job than
people
◼ Programs are becoming more complex

◼ hard for humans to write and maintain large, efficient machine
language code

◼ Processors are becoming more complex
◼ difficult to write code that takes full advantage of a processor’s

features 34

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ Consider the following simple C programs:

◼ Program1: It contains a statement which executes only if

some condition is true.

◼ Program2: It contains a loop that causes a statement to

be executed many times.

Simple High-level C Programs

// Find the absolute value of X and increment it

int X;

...

if (X < 0) {

 X = -X; // This statement is not executed if X ≥ 0

}

X++;

// Sum the integers from 1 to 20 and store the result in X

int X = 0;

for (char i = 1; i <= 20; i++) {

 X = X + i; // This statement is executed 20 times

}

35

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

◼ We can use branch instructions to translate high-level conditional
statements into assembly code for our simple processor.

Translating Program 1

0x0010: LDI R0, #0x00

0x0011: LDI R1, #0xff

0x0012: LD R3, (R1) // load the value of X in register R3

0x0013: ADD R3, R0 // X = X + 0

0x0014: BNN #0x003 // if X ≥ 0 then go to address 0x0017

0x0015: NOT R3, R3

0x0016: INC R3, R3

0x0017: INC R3, R3

0x0018: ST (R1), R3

// Find the absolute value of X and increment it

int X;

...

if (X < 0) {

 X = -X; // This statement is not executed if X ≥ 0

}

X++;

Load the address where X is stored in the

memory (we assume the address is 0x00ff)

X = -X

X++

36

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Translating Program 2

◼ Here is a translation of the for loop, using branch and jump instructions.

0x0010: LDI R1, #0x00 // X = 0

0x0011: LDI R2, #0x01 // R2 stores the loop index i

0x0012: LDI R3, #0x14 // R3 stores the upper loop bound 20

0x0013: SUB R3, R2

0x0014: BNC #0x006

0x0015: ADD R1, R2 // X = X + i

0x0016: INC R2 // i++

0x0017: LDI R0, #0x00

0x0018: LDI R3, #0x12

0x0019: JMP R0, R3 // Go back to loop test (address 0x0012)

0x001A: LDI R0, #0x3c

0x001B: LDI R3, #0xff

0x001C: ST (R3), R1 // Store X in data memory at address 0x3cff

// Sum the integers from 1 to 20 and store the result in X

int X = 0;

for (char i = 1; i <= 20; i++) {

 X = X + i; // This statement is executed 20 times

}

if i > 20 then go to address 0x001A

37

Fall 2024 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University

Summary

◼ The machine language is the interface between software and

the processors (hardware).

◼ High-level programs must be translated into machine

language before they can be run.

◼ There are three main categories of instructions.

◼ Data manipulation instructions, such as adding or shifting.

◼ Data movement instructions to copy data between registers and RAM.

◼ Control flow instructions to change the execution order.

◼ Specifying Instruction Set Architecture is the first step in the

design of a processor.

◼ Datapath and Control Unit of a processor must be designed according

to the processor’s instruction set architecture.

◼ The complexity of the instruction set architecture determines the

complexity of the hardware needed to implement a processor.

38

	Slide 1: Processor Design Basics: Instruction Set Architecture
	Slide 2: Overview
	Slide 3: Block Diagram of a Generic Processor
	Slide 4: Von Neumann vs. Harvard Architecture
	Slide 5: Example of a Simple 8-bit Processor
	Slide 6: Example of a Simple 8-bit Processor (cont.)
	Slide 7: Example of a Simple 8-bit Processor (cont.)
	Slide 8: Example of a Simple 8-bit Processor (cont.)
	Slide 9: Some Basic Terminology
	Slide 10: Instruction Set Architecture (ISA)
	Slide 11: Programming Model for our Processor
	Slide 12: Instruction Specifications for our Processor
	Slide 13: Data Manipulation Instructions
	Slide 14: Data Manipulation Instructions (cont.)
	Slide 15: Data Movement Instructions
	Slide 16: Data Movement Instructions (cont.)
	Slide 17: Addressing Modes
	Slide 18: Control Flow Instructions
	Slide 19: Control Flow Instructions (cont.)
	Slide 20: Jump Instructions
	Slide 21: Branch Instructions
	Slide 22: Branch Instructions Example
	Slide 23: Instruction Formats
	Slide 24: Instruction Formats for our Processor
	Slide 25: Recall the Instruction Specifications …
	Slide 26: Instruction Formats for our Processor (cont.)
	Slide 27: Format1: for Arithmetic & Logic, Shift, Memory, and Jump Instructions
	Slide 28: Format2: for Immediate Transfer Instructions
	Slide 29: Format3: for Branch Instructions
	Slide 30: How to Program our Processor
	Slide 31: High-level Languages
	Slide 32: Low-level Languages
	Slide 33: Assembly and Machine Languages
	Slide 34: Compiling
	Slide 35: Simple High-level C Programs
	Slide 36: Translating Program 1
	Slide 37: Translating Program 2
	Slide 38: Summary

