

Combinational Logic Circuits Part III -Theoretical Foundations

- Simplifying Boolean Functions
 - Algebraic Manipulation
 - Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables)
- Systematic Approach for Simplifying Functions using K-maps
 - Implicants, Prime Implicants (PIs), and Essential Prime Implicants
 - Simplifying Functions using Essential and Nonessential Pls
- Don't-care Conditions and Simplification using Don't Cares

Fall 2024

Boolean Functions as Equations

- Truth table and K-map of a Boolean function are unique representations
- However, representing a Boolean function as an equation can be done in many different ways
 - Canonical and Standard forms
- Example:

•
$$F1(X,Y,Z) = X' \cdot Y' \cdot Z' + X' \cdot Y \cdot Z' + X \cdot Y \cdot Z'$$

■
$$F2(X,Y,Z) = X' \cdot Y' \cdot Z' + Y \cdot Z'$$

•
$$F3(X,Y,Z) = X' \cdot Z' + X \cdot Y \cdot Z'$$

•
$$F4(X,Y,Z) = X' \cdot Z' + Y \cdot Z'$$

- The corresponding truth tables for F1 to F4 are identical!
- Thus, F1 = F2 = F3 = F4
- However, F2 and F3 are simpler than F1 and F4 is simpler than the others.

Χ	Υ	Z	F1	F2	F3	F4
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0

How do we simplify Boolean functions?

Simplifying a Boolean Function

- Why simplifying Boolean functions?
 - Boolean functions are used to design digital logic circuits
 - Simpler Boolean function can mean cheaper, smaller, faster circuit
- Three main approaches to simplify Boolean functions:
 - Algebraic Manipulations
 - using the Boolean Algebra as a tool for simplifications
 - Karnaugh Map Manipulations
 - very easy graphical method to simplify Boolean functions
 - it works for functions of up to 4 variables!
 - Algorithmic Techniques
 - used to program a computer to do the simplifications

Algebraic Manipulation

- We use basic identities, properties, and theorems of the Boolean Algebra to manipulate and simplify Boolean functions
- Example1: Simplify F = X'YZ + X'YZ' + XZ

$$F = X'YZ + X'YZ' + XZ$$
 -- apply identity 14

$$= X'Y(Z+Z') + XZ$$
 -- apply identity 7

$$= X'Y + XZ$$

Example2: Simplify G = X'Y'Z' + X'YZ' + XYZ'

$$F = X'Y'Z' + X'YZ' + XYZ' -- apply identity 5$$

$$= X'Y'Z' + X'YZ' + X'YZ' + XYZ' -- apply identity 14$$

=
$$X'Z'(Y'+Y) + YZ'(X'+X)$$
 -- apply identity 7

$$= X'Z' + YZ'$$

Fall 2024

Karnaugh Map Manipulations

- We can use a K-map to simplify a Boolean function of 2, 3, or 4 variables as Sum-Of-Products
- Procedure:
 - Enter 1s in the K-map for each minterm (product term) in the function
 - Group adjacent K-map cells containing 1s to obtain a product term with fewer variables
 - The number of cells in a group must be a power of 2 (2, 4, 8, ...)!
 - Try to group as many as possible cells containing 1s in a group
 - Such group corresponds to a simpler product term!
 - Try to make as less as possible groups to cover all cells containing 1s
 - This corresponds to fewer product terms in the simplified function!
 - Do not forget to handle boundary cells for K-maps of 3 or 4 variables when you do the grouping
 - Important: The result after the simplification may not be unique!

Simplifying a Boolean Function using 2-variable K-map (examples)

Given functions:

$$F1(X,Y) = \Sigma m(0,1) =$$

= X'Y' + X'Y

Simplified functions:

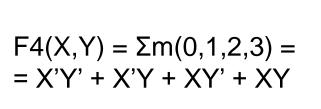
$$F1(X,Y) = X'$$

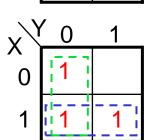
$$F2(X,Y) = \Sigma m(0,3) =$$

= X'Y' + XY

$$F3(X,Y) = \Sigma m(0,2,3) =$$

= X'Y' + XY' + XY



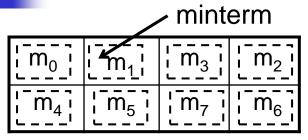


$$F2(X,Y) = X'Y' + XY$$

$$F3(X,Y) = X + Y'$$

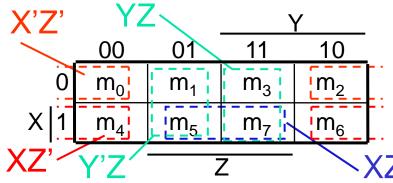
$$F4(X,Y)=1$$

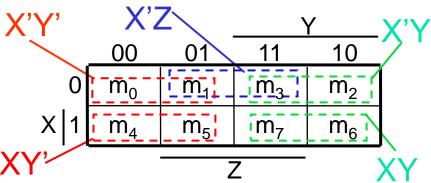
Simplifying a Boolean Function using 3-variable K-map (groupings)



4			Y		
1	00	01	11	10	
0	m_0	m_1	m_3	m_2	
X 1	m_4	m ₅	m ₇	m ₆	

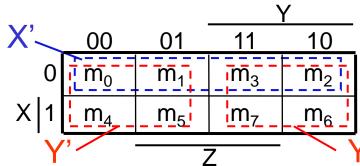
Group of 2 adjacent cells gives product term of two literals.





Group of 4 adjacent cells gives product term of one literal.

Z'	' -	<u> </u>	Y			
	00	01	11	10		
0	m_0	m_1	m_3	m_2		
X 1	m_4	m_5	m ₇	m ₆		
\overline{z}						



Simplifying a Boolean Function using 3-variable K-map (examples)

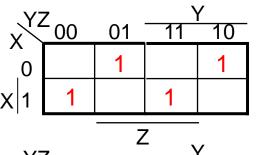
Given functions:

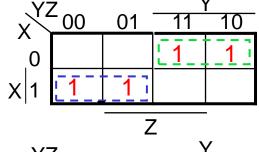
$$F1(X,Y,Z) = \Sigma m(1,2,4,7)$$

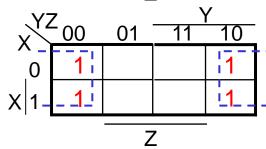
$$F2(X,Y,Z) = \Sigma m(2,3,4,5)$$

$$F3(X,Y,Z) = \Sigma m(0,2,4,6)$$

$$F4(X,Y,Z) = \Sigma m(0,1,2,3,6,7)$$







Simplified functions:

Simplification is not possible

$$F2(X,Y,Z) = XY' + X'Y$$

$$F3(X,Y,Z) = Z'$$

$$F4(X,Y,Z) = X' + Y$$

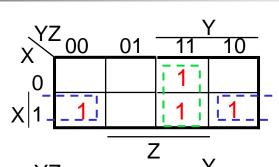
Simplifying a Boolean Function using 3-variable K-map (more examples)

Given functions:

$$F5(X,Y,Z) = \Sigma m(3,4,6,7)$$

$$F6(X,Y,Z) = \Sigma m(0,2,4,5,6)$$

5)



$X = \begin{bmatrix} 1 & 0 & 01 & 11 & 10 \\ 0 & & & & 1 & 1 \\ 0 & & & & & 1 \end{bmatrix}$

Simplified functions:

$$F5(X,Y,Z) = XZ' + YZ$$

$$F6(X,Y,Z) = Z' + XY'$$

$$F7(X,Y,Z) = Z + X'Y$$

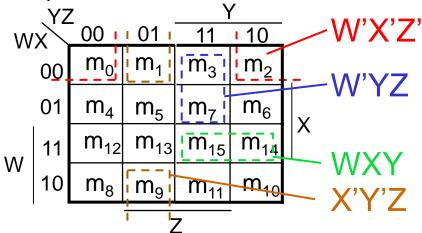
$$F8(X,Y,Z) = XZ'+X'Z + Y'Z$$
or
$$F8(X,Y,Z) = XZ'+X'Z + XY'$$

Not unique solution

 $F7(X,Y,Z) = \Sigma m(1,2,3,5,7)$

Simplifying a Boolean Function using 4-variable K-map (grouping examples)

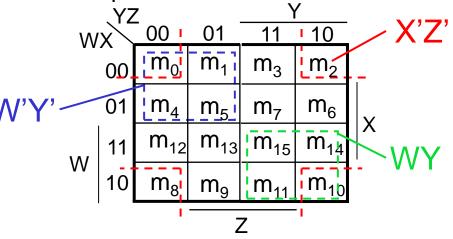
 Group of 2 adjacent cells gives product term of 3 literals.



 Group of 8 adjacent cells gives product term of 1 literal.

product term of rificial.								
W	YZ X	00	01	11	10			
• •	00	$m_{\scriptscriptstyle{0}}$	m_1	m_3	m_2	_		
	01	m_4	m_5	m ₇	m_6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
۱۸/	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	^ W		
W	10	m ₈	m ₉	m ₁₅	m_{10}			
		_				•		

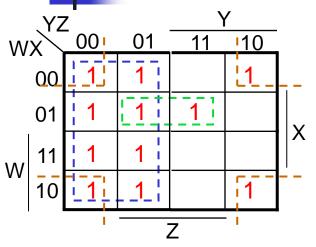
 Group of 4 adjacent cells gives product term of 2 literals.



 Group of all cells gives constant one.

YZ Y									
W	_	00	01	11	10				
	00	\bar{m}_0	m_1	\overline{m}_3	m_2	1			
	01	m_4	m_5	m ₇	m_6	_			
W	11	¦m ₁₂	m ₁₃	m ₁₅	m ₁ 4	X			
	10	m ₈	_ m ₉ _	_m ₄₁	_m ₄₀				

Simplifying a Boolean Function using 4-variable K-map (examples)

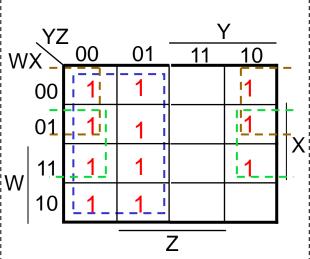


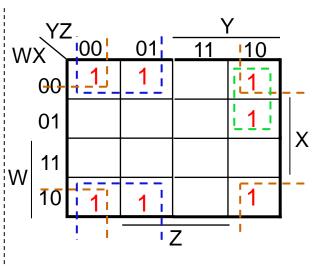
Given function:

F2(W,X,Y,Z) =
=
$$\Sigma$$
m(0,1,2,4,5,6,8,
9,12,13,14)

Simplified function:

$$F2(W,X,Y,Z) = Y' + W'Z' + XZ'$$





Given function:

Simplified function:

$$F3(W,X,Y,Z) =$$

$$= X'Y' + X'Z' + W'YZ'$$

Given function:

F1(W,X,Y,Z) =
$$\Sigma$$
m(0,1,2,4,5,7,8,9,10,12,13)

Simplified function:

$$F1(W,X,Y,Z) =$$

$$= Y' + X'Z' + W'XZ$$

Simplifying with K-maps Systematically

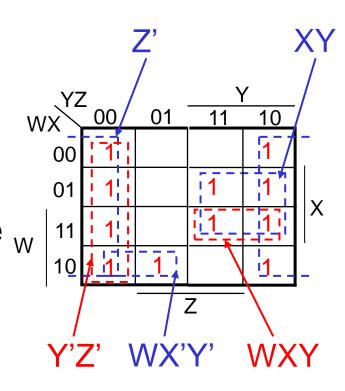
- You have seen intuitive procedure on how to group cells and simplify Boolean functions!
- Can we have more systematic procedure?
- YES, if we introduce the terms:
 - implicant
 - prime implicant
 - essential prime implicant
- An Implicant I of a function F() is a product term which implies F(), i.e., F() = 1 whenever I = 1
 - All minterms of a function F are implicants of F
 - All rectangles in a K-map made up of cells containing 1s correspond to implicants

Prime Implicant (PI)

- An implicant I of F is called a <u>Prime Implicant</u> (PI) if the removal of any literal from I results in a product term that is <u>NOT</u> an implicant of F
 - The above should hold for all literals in I
- Thus, a prime implicant is not contained in any simpler implicant
- The set of prime implicants corresponds to
 - all rectangles, in a K-map, made up of cells containing 1s that satisfy the following condition:
 - each rectangle is not contained in a larger rectangle

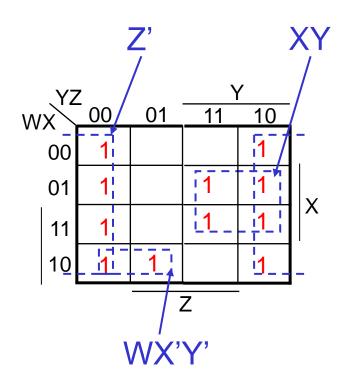
Example of Prime Implicants (PIs)

- Consider function F(W,X,Y,Z) whose K-map is shown at right
- Y'Z' is not a prime implicant because it is contained in Z'
- WXY is not a prime implicant because it is contained in XY
- Product terms Z', XY, WX'Y' are w prime implicants. Why?
 - Consider the term XY and obtain terms by deleting any literal:
 - We get two terms: term X and term Y
 - Both terms are NOT implicants of F
 - Thus, the term XY is prime implicant



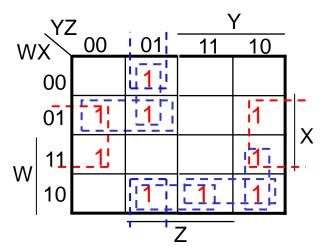
Essential Prime Implicants (EPIs)

- If a minterm of function F is included in ONLY one prime implicant pi, then pi is an <u>Essential Prime Implicant</u> of F
- An essential prime implicant MUST appear in all possible SOP expressions of function F
- To find essential prime implicants:
 - Generate all prime implicants of a function
 - Select those prime implicants that contain at least one 1 that is not covered by any other prime implicant
- For the previous example, the PIs are Z', XY, and WX'Y'; all of these are essential.

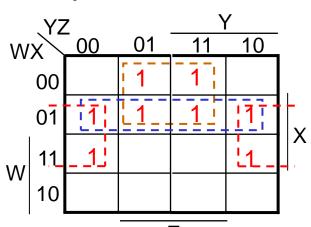


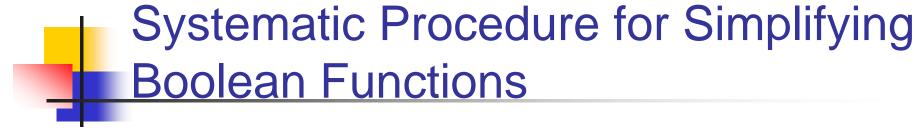
Essential Prime Implicants (examples)

- Consider function F1(W,X,Y,Z) whose K-map is shown below:
 - All Prime Implicants are:
 XZ', W'XY', W'Y'Z, X'Y'Z,
 WX'Z, WX'Y, WYZ'
 - Essential Prime Implicants are: XZ'



- Consider function F2(W,X,Y,Z) whose K-map is shown below:
 - All Prime Implicants are:
 XZ', W'Z, W'X
 - Essential Prime Implicants are: XZ' and W'Z





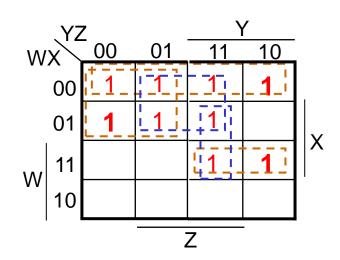
Given: The K-map of a Boolean function

Obtain: The simplest SOP expression for the function

- Find all prime implicants (PIs) of the function
- Select all essential Pls
- For remaining minterms not included in the essential Pls, select a set of other Pls to cover them, with minimal overlap in the set
- The resulting simplified function is the logical OR of the product terms selected above

Example

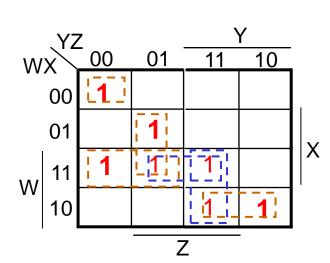
- $F(W,X,Y,Z) = \sum m(0,1,2,3,4,5,7,14,15).$
- All prime implicants (PI) are:
 W'X', W'Y', W'Z, XYZ, WXY
- Select all essential Pls: W'X', W'Y', WXY



- Select other PIs to cover all 1s with minimal overlap:
 - Possibilities: W'Z or XYZ
 - We select W'Z because it is simpler.
- F(W,X,Y,Z) = W'X'+W'Y'+WXY+W'Z

Other Examples

- Consider function F(W,X,Y,Z) whose K-map is shown at right.
- All prime implicants are:
 - W'X'Y'Z', WXY', WXY, WXZ, WYZ, XY'Z
- Essential prime implicants are:
 - W'X'Y'Z', WXY', WX'Y, XY'Z
- Nonessential prime implicants are:
 - WXZ, WYZ
- Simplified function (solution not unique):
 - F = W'X'Y'Z'+WXY'+WX'Y+XY'Z + WXZ
 - F = W'X'Y'Z'+WXY'+WX'Y+XY'Z + WYZ



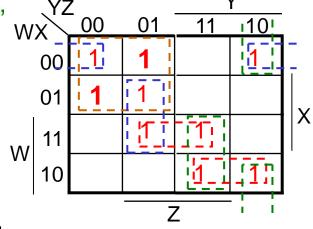
4

Other Examples (cont.)

- Consider function $F(W,X,Y,Z) = \sum m(0,1,2,4,5,10,11,13,15)$ whose K-map is shown at right.
- All prime implicants are:

- Essential prime implicants are:
 - W'Y'
- Nonessential prime implicants are:
 - XY'Z, WXZ, WYZ, WX'Y, W'X'Z', X'YZ'

$$\mathbf{F} = \mathbf{W'Y'} + \mathbf{WYZ} + \mathbf{X'YZ'} + \mathbf{XY'Z}$$



WXZ and WX'Y are NON-overlapping Pls.

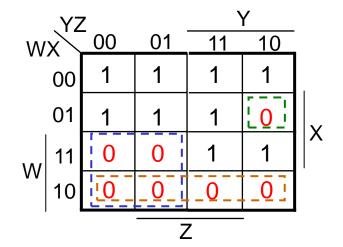
WYZ and X'YZ' are *NON-overlapping* Pls.

Product-Of-Sums (POS) Simplification

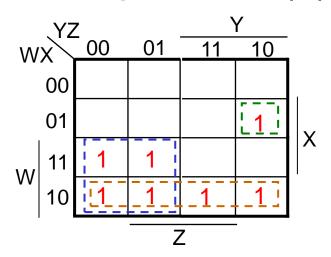
- So far, we have considered simplification of a Boolean function expressed in Sum-Of-Products (SOP) form using a K-map.
- Sometimes the Product-Of-Sums form of a function is simpler than the SOP form.
- Can we use K-maps to simplify a Boolean function in Product-Of-Sums form?
- Procedure:
 - Use sum-of-products simplification on the zeros of function F in the K-map. In this way you will get the simplified complement of F (F').
 - Find the complement of F' which is F, i.e., (F')' = F
 - Recall that the complement of a Boolean function can be obtained by (1) taking the dual and (2) complementing each literal.
 - OR, using DeMorgan's Theorem.

POS Simplification Example

$$F = \sum m(0,1,2,3,4,5,7,14,15)$$



The complement of F (F')



- Simplify using <u>zeros</u>: F' = WX' + WY'+ W'XYZ'
- Complement F' to find F, i.e., F = (F')'
 - First get the dual of F':
 dual(F') = (W+X') (W+Y') (W'+X+Y+Z')
 - Complement each literal in dual(F') to get F as POS
 F = (W'+X) (W'+Y) (W+X'+Y'+Z)

Don't-Care Conditions

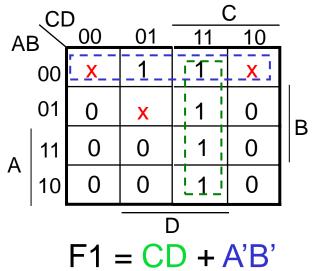
- Sometimes a Boolean function is not specified for some combinations of input values. Why?
 - There may be a combination of input values which will never occur
 - If they do occur, the value of the function is of no concern
- Such combinations is called don't-care condition
- The function value for such combinations is called a don't-care
- The don't-care function values are usually denoted with x
 - x may be arbitrarily set to 0 or 1 in an implementation
- Don't-cares can be used to further simplify a function

Simplification using Don't-Cares

- Treat don't-cares as if they are 1s to generate prime implicants in order to produce simple expressions
- Delete prime implicants that cover only don'tcare minterms
- Treat the covering of remaining don't care minterms as optional in the selection process
 - they may be covered
 - but it is not necessary

Example with Don't-Care Conditions

- Consider the following incompletely specified function **F** that has three don't-care minterms **d**:
 - $F(A,B,C,D) = \sum m(1,3,7,11,15)$
 - $d(A,B,C,D) = \sum m(0,2,5)$

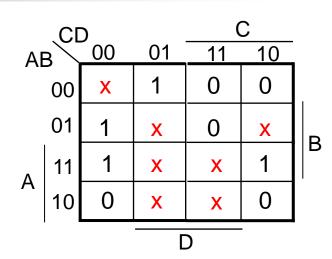


(CD			С					
Αl	_	00	01	11	10	ı		
	00	X	1	<u>-</u> 7 -	X	,		
	01	0	LX_	1	0			
Α	11	0	0	1	0	B		
	10	0	0	1.	0			
F2 = CD + A'D								

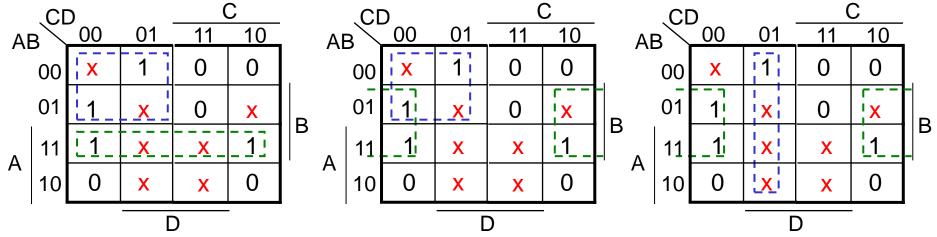
Notice: F1 and **F2** are algebraically **not equal**. Both include the specified minterms of **F**, but each includes different *don't-care* minterms.

Other Examples with Don't-Cares (1)

 Simplify the function G(A,B,C,D) whose K-map is shown at right.

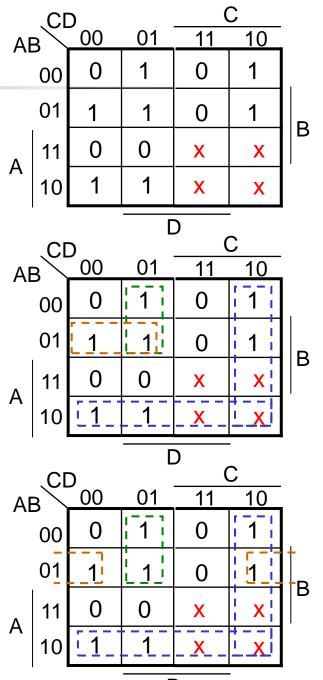


$$G = A'C' + AB$$
 or $G = A'C' + BD'$ or $G = BD' + C'D$



Other Examples with Don't-Cares (2)

- Simplify the function F(A,B,C,D) whose K-map is shown at the top-right.
- F = A'BC'+AB'+CD'+A'C'D or
- F = A'BD' + AB' + CD' + A'C'D
- The middle two terms are EPIs, while the first and last terms are selected to cover the minterms m₁, m₄, and m₅.
- There's a third solution! Can you find it?



Algorithmic Techniques for Simplification

- Simplification of Boolean functions using K-maps works for functions of up to 4 variables
- What do we do for functions with more than 4 variables?
- You can "code up" a minimizer program
 - Use the Quine-McCluskey algorithm
 - Base on (essential) prime implicants
- We won't discuss these techniques here
- Search on Internet to find more information about the Quine-McCluskey algorithm