
Classes
Processing

Introduction to Programming
Lecture 5: inheritance

Ben Ruijl

Nikhef Amsterdam and Leiden University

November 8, 2016

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Printing class
Say you want to print a class to the console:

1 class Vector {
2 float x, y;
3 Vector(float x, float y) {
4 this.x = x;
5 this.y = y;
6 }
7 }
8

9 Vector a = new Vector(200, 300);
10 println(a);

sketch_141012a$1Vector@7931a5af

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Printing class

The default string representation is the location in memory
To change this, we have to override the toString() function:

1 class Vector {
2 @Override
3 String toString() {
4 return "(" + x + "," + y + ")";
5 }
6 }
7

8 Vector a = new Vector(200, 300);
9 println(a);

(200.0,300.0)
Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Comparing classes

We have to be careful with comparing classes
== compares the memory addresses

1 void setup() {
2 String a = "HI";
3 String b = "hi".toUpperCase();
4

5 println(a == b);
6 }

false

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Comparing classes

We should use equals:

1 void setup() {
2 String a = "HI";
3 String b = "hi".toUpperCase();
4

5 println(a.equals(b));
6 }

true

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Comparing classes

For custom classes we should override the default equals
You should compare Vector to any Object

1 class Vector {
2 @Override
3 boolean equals(Object o) {
4 if (!(o instanceof Vector)) return false;
5 Vector b = (Vector)o; // cast to Vector
6 return x == b.x && y == b.y;
7 }
8 }
9 Vector a = new Vector(2, 3), b = new Vector(2, 3);

10 println(a == b);
11 println(a.equals(b));

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Inheritance

Every class is derived from the base class Object

We can override functions from the base class: toString, equals, etc.
We could also build our own class and let other classes be derived from it
This is called inheritance

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

A base class for cars

Say we write a class for a car:

1 class Car {
2 color colour;
3

4 void start() { }
5 void accelerate() { }
6 void break() { }
7 String toString() { return "Car"; }
8 }

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Inheritance

We want to distinguish between family cars and race cars
Race cars have a turbo feature
Do we have to copy the Car class?
We can extend a Car to form a RaceCar:

1 class RaceCar extends Car {
2 void turbo() { println("Doing turbo!") }
3 @Override
4 void accelerate() { turbo(); }
5 @Override
6 String toString() { return "Race car!"; }
7 }

All functions and class variables are inherited
Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Example

We have overridden accelerate() and toString():

1 Car familyCar = new Car();
2 familyCar.accelerate();
3 println(familyCar);
4 RaceCar raceCar = new raceCar();
5 raceCar.accelerate();
6 println(raceCar);

Car
Doing turbo!
Race car!

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Abstraction

Since RaceCar is a Car, we could also say:

1 Car raceCar = new RaceCar();
2 println(raceCar);

Race car!

Abstraction
It still ‘knows’ it is a RaceCar even though the type is now Car!

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Arrays of derived classes
We can treat all cars the same, but different things happen:

1 Car[] cars = new Cars[3];
2 cars[0] = new Car();
3 cars[1] = new RaceCar();
4 cars[2] = new Car();
5

6 for (int i = 0; i < cars.length; i++) {
7 println(cars[i]);
8 }

Car
Race car!
Car

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Example in games
For games this may be useful:

1 class GameObject {
2 int x, y;
3 color fillColour;
4

5 void draw() { };
6 }
7

8 List<GameObject> objects = new ArrayList<GameObject>();
9

10 for (GameObject e : objects) {
11 e.draw();
12 }

Ben Ruijl Introduction to Programming



Classes
Processing

Standard functions
Inheritance

Constructors

If the base class has a constructor, call it with super:

1 class Base {
2 Base(int x) { };
3 }
4

5 class Derived extends Base {
6 Derived() {
7 super(10);
8 }
9 }

Ben Ruijl Introduction to Programming



Classes
Processing

Tabs
Writing text

Tabs

Some tips:
For your game, you are going to write quite some code
Make tabs to split code into multiple files
If you have large classes, put them in seperate files

Ben Ruijl Introduction to Programming



Classes
Processing

Tabs
Writing text

Writing text

1 PFont f;
2

3 void setup() {
4 size(640,640);
5 f = createFont("Arial",40,true);
6 textFont(f,40);
7 fill(0); // text colour
8 }
9

10 void draw() {
11 textAlign(CENTER);
12 text("Hello world!",320,320);
13 }

Ben Ruijl Introduction to Programming


	Classes
	Standard functions
	Inheritance

	Processing
	Tabs
	Writing text


