Ben Ruijl
Nikhef Amsterdam and Leiden University

November 1, 2016



@ Sometimes it is useful for a function to call itself with different arguments

@ We call this recursion

@ In maths it is common to express functions in terms of previous functions:

F(1)=1
F(n)=n-F(n—1)

What is F(4)?



The previous function is called a factorial:

x!EHi:x-(x—l)-(x—2)---1
i=1

In code:

1 int factorial(int x) {

2 int result = 1;

3 for (int i = 1; i <= x; i++) {
4 result *= ij;

5 }

6 return result;

7 X




F(1)=1
F(n)=n-F(n—1)

In code:

int factorial(int x) {
if (x == 1) return 1;
return x * factorial(x - 1);

W N =




o Walking down, find path with highest score:



o Walking down, find path with highest score:




The problem repeats itself! J




The problem repeats itself! J

Recursive strategy:
o Value at 37
@ Calculate value at 7

@ Calculate value at 4

@ Take the maximum




The euro has the following coins: 1, 2, 5, 10, 20, and 50 cents and 1 euro and 2
euro

In how many ways can you make 2 euros?
Some examples:

2-100

3-50+2-20+2-5



Recursion Recursion
Classes Fractals

Coin problem

@ Say we pick a 50 cent coin

@ We now have a similar problem of finding the number of ways to make 1.50
@ We can solve this recursion:

e Start with the largest coins first
o We go through all the possible coins we can take
o Take the coin and solve the subproblem of 2 minus the coin

@ If mis the amount to obtain, and we use coins k or less, we have:

count(m,1) =1

count(m, k or less) = Z count(m — ¢, c)
c<k

Ben Ruijl Introduction to Programming



Recursion
Fractals

1 int[] coins = {200, 100, 50, 20, 10, 5, 2, 1};

3 int count(int money, int maxcoin) {

4 int sum = 0;

5 for(int i = maxcoin; i < coimns.length; i++) {
6 if (money == coins[i]) sum++;

7 if (money - coins[i] > 0)

8 sum += count(money - coins[i], 1i);

9 }

10 return sum;

11 F

12

13 void setup() { println(count(200, 0)); 7




Recursion Recursion
Classes Fractals

Fractals

A fractal is a pattern that repeats itself indefinitely:

Figure: Fractal broccoli

Ben Ruijl Introduction to Programming



(a) n=1

[l dns ‘nG
sl
ST







(e) n=5



Figure: A fractal tree



Recursion Recursion
Classes Fractals

Tree fractal

What is the component that is repeated?

Y

Figure: A fractal tree

Drawing
For every branch we draw, we draw two more: one to the left and one to the right

Ben Ruijl Introduction to Programming




Recursion Recursion
Classes Fractals

Tree fractal

@ This is recursion, we keep drawing the same figure!
@ The position and the angle differ each time

@ Pseudo-code:

1 // draw a single branch

> function drawTree(x, y, angle) {
3 newx = x + cos(angle) * 10;

4 newy =y + sin(angle) * 10;

5 line (x, y, newx, newy);

6 }

Ben Ruijl Introduction to Programming



Recursion
Classes

Adding recursion

Recursion
Fractals

Keep making new branches:

1 function drawTree(x, y, angle) {
> newx = x + cos(angle) * 10;

s newy = y + sin(angle) * 10;

4 line (x, y, newx, newy);

5 drawTree(newx, newy, angle - 25); // to the left
6 drawTree(newx, newy, angle + 25); // to the right

This code will never stop!

Ben Ruijl

Introduction to Programming



Recursion Recursion
Classes Fractals

Maximum depth

Add a maximum depth

1 function drawTree(x, y, angle, depth) {

2 if (depth == 0) return; // stop

s newx = x + cos(angle) * 10;

4 newy =y + sin(angle) * 10;

5 line (x, y, newx, newy);

6 drawTree (newx, newy, angle - 25, depth - 1);
7 drawTree(newx, newy, angle + 25, depth - 1);

Ben Ruijl Introduction to Programming



Recursion
Fractals

Tree impleme

1 void drawTree(float x, float y, float a, int d) {
2 if (d == 0) return;

3 float x2 = x + cos(a) * 10.0;

4 float y2 = y + sin(a) * 10.0;

5 line(x, y, x2, y2);

6 drawTree(x2, y2, a - 20%«PI/180, d - 1);

7 drawTree(x2, y2, a + 20%PI/180, d - 1);

10 void draw() {
11 background(255) ;
12 drawTree (320, 600, -PI/2, 9);




Recursion Classes
Classes Arrays

Classes

@ Say you want to make 20 spaceships with a position, health, and velocity

@ We have to keep track of all these variables in arrays:

1 float[] x = new float[20];

2 float[] y = new float[20];

3 float[] health = new float[20];
4 float[] vx = new float[20];

5 float[] vy = new float[20];

@ This is really cumbersome

@ You can group together code that belongs together in a class

Ben Ruijl Introduction to Programming



Create a class that has all the information:

1 class Spaceship {

2 float x, y, health, vx, vy;

3}

4

5 void setup() {

6 Spaceship player = new Spaceship();
7 player.health = 100;

s player.x = 40;

o}

Access elements with a dot



1 class Spaceship {
2 float health;

4 void takeDamage(float damage) {
5 health -= damage;
6 F

o void setup() {

10 Spaceship a = new Spaceship;
11 a.takeDamage(10);

12 println(a.health);




A constructor sets initial values for a class instance:

1 class Spaceship {
2 float x, y, health;

1+ Spaceship(float x, float y) {

5 this.x = x;

6 this.y = y;

7 health = 100;
s

0 F

10 void setup() {
11 Spaceship a = new Spaceship(100, 100);
12 }




1 class Spaceship {

2 Spaceship(float x, float y) {
3 /..

.}

5 F

7 void setup() {
s Spaceship[] a = new Spaceship[100];

10 for(int i = 0; i < 100; i++) {
11 al[i] = new Spaceship(i * 100, 100);




Recursion Classes
Classes Arrays

Dynamic arrays

ArrayList<yourtype> is a class for dynamic arrays:

1 class Spaceship {
2 Spaceship(int x, int y) {
s

¢ void setup() {

7 ArrayList<Spaceship> a = new ArrayList<Spaceship>();
s a.add(new Spaceship(30, 20));

9 a.add(new Spaceship(30, 40));

1o println(a.size());

Ben Ruijl Introduction to Programming



@ You can read more about built-in classes in the manual

o For example: String, PImage, ArrayList
@ More on building classes: http://processing.org/tutorials/objects/


http://processing.org/tutorials/objects/

	Recursion
	Recursion
	Fractals

	Classes
	Classes
	Arrays


