
Extra exercises

1 Week 1

1.1 The dark side of the moon

Write a program that draws a moon orbiting the earth.

1. Draw an earth in the middle of the screen.

2. Draw a moon that revolves around the earth.

3. Make half of the moon black (the dark side). Tip: draw two half-circles
with arcs.

4. Now make sure that the dark side of the moon is always facing away
from the earth.

2 Week 2

2.1 Parametric curves (I)

It is possible to draw a circle by just using lines. The idea is that if you
draw a line that is small enough, you won’t see that it is not curved.

1. To practice, first draw a dotted line. Use a for-loop for this.

2. Now draw a line made of smaller lines (connect the dots).

3. Draw a line made of smaller lines that goes through the diagonal.

4. To draw a circle, draw many small lines from position (radius,angle)
to (radius, angle + small difference). Draw a circle without using the
circle function, using a for loop.

1



2.2 Parametric curves (II)

Download the following source code: http://liacs.leidenuniv.nl/ ruijlbjg/psy.pde.

1. Explain what the functions step and sign do.

2. The complicated functions getx and gety describe a curve, by giving
the x and y coordinate for a given parameter t. You can imagine
walking on the curve, starting at t = 0 all the way to the end, which
is t = 72 · π. Draw the curve.

2.3 Loading animation

1. Build a loading animation that adds 12 circles on a line, one by one.
The colours should transition from red to green.

2. Do the same, only draw the circles in a circle now. Make sure the first
circle is almost transparent, and the last opaque.

3 Week 3

3.1 Blurring

Write a program that blurs an image by averaging the colours of a pixel
with its surrounding pixels. Make the level of blending, i.e., how much the
colours of the surrounding pixels contribute, a variable.

3.2 Noise

Write a program that creates dynamic noise on an image, just like an analog
tv with a bad connection. Every few frames, change the colours of the pixels
by a small random amount. Make sure you apply the noise to the original
image every time. If you don’t do this, the image colours will drift so far
from the original, that you will not be able to recognize it anymore.

3.3 Masses on a spring

Build a system of circles connected with lines to other circles. These lines are
springs: if they become longer, they apply a force in the opposite direction.
So, if you move one of the masses, the system should start to vibrate.

2



1. Build an array of 10 floats to keep track of the position of 10 circles.
Initialize the positions to be in a horizontal line with equal distance
between them. Draw the circles and draw lines connecting them.

2. Since we are going to apply forces of the spring, we need 2 more arrays:
one for the velocity and one for the acceleration. Every frame, we are
going to update the position, acceleration and velocity. Let us first
consider the force. For a simple spring, we say the force is equal to the
length of the string. Since each circle i is connected to two strings, we
find the following:

ai = (pi+1 − pi) + (pi−1 − pi) = pi+1 + pi−1 − 2pi

where ai is the acceleration of the ith circle in the current frame and
pi is the position of the ith circle. Every frame we have to update the
three parameters:

pnewi = poldi + voldi ∆t (1)

vnewi = voldi + aoldi ∆t (2)

anewi = pi+1 + pi−1 − 2pi (3)

where we assume that every frame lasts ∆t seconds (say ∆t=0.1) and
where old means the values from the last frame.

3. Implement the above rules. Make sure the loop goes from 1 to 9, so
the outer two circles are fixed. You will need 3 separate for loops.

4. When you press the mouse, move one of the masses, so that the system
starts moving. It could be that the movement is so large that one of
the masses crosses another one and the system goes crazy. You can
combat this by adding friction: Make sure that vnewi is multiplied by
a factor less than one, for example 0.95.

4 Week 4

4.1 Binary search

1. Create a list of 20 random numbers and sort it using the sort function.

2. Create a function that returns true if a number is in the list and false
if it is not.

3



3. Implement a binary search: test the element in the middle of the array.
If it is smaller, check the top half, otherwise the bottom half. Keep
on doing this until the number is found or it is concluded that the
number is not in the list.

4. Write a recursive implementation.

4.2 Path in tree

1. Use a 2 dimensional array to represent the following triangle:

3

7 4

2 4 6

8 5 9 4

2. Write a recursive function that finds the path from top to bottom with
the highest value. This is defined as the sum of all visited nodes. In
this case the past with highest value is 3 + 7 + 4 + 9.

5 Week 5

5.1 Health and armour packs

1. Create a player class that keeps track of the health and armour score
(both in range 0 to 100). Print the values of health and armour on
the screen (not the console).

2. We are going to create a class for health and armour kits that can be
picked up when you click on them. Since most of the functionality
is the same, first create a base class called Kit. A Kit has variables
for the position on the screen, a draw function, and an onClicked

function. Implement a default draw function that draws a rectangle.

3. Randomly generate 20 Kits in a ArrayList and make sure to draw
them all.

4. Now create a HealthKit and an ArmourKit. Override the onClicked

so that the HealthKit restores health and the ArmourKit restores
armour. Also give them a different draw function.

4



5. Instead of generating 20 random Kits, generate random ArmourKits
and HealthKits. Make sure they end up in the same ArrayList of
Kits.

5


	Week 1
	The dark side of the moon

	Week 2
	Parametric curves (I)
	Parametric curves (II)
	Loading animation

	Week 3
	Blurring
	Noise
	Masses on a spring

	Week 4
	Binary search
	Path in tree

	Week 5
	Health and armour packs


