
Fast Algorithm Selection using Learning Curves

Jan N. van Rijn1, Salisu Mamman Abdulrahman2,
Pavel Brazdil2, and Joaquin Vanschoren3

1 Leiden University, Leiden, Netherlands,
j.n.van.rijn@liacs.leidenuniv.nl

2 University of Porto, Porto, Portugal,
{sma,pbrazdil}@inescporto.pt

3 Eindhoven University of Technology, Eindhoven, Netherlands,
j.vanschoren@tue.nl

Abstract. One of the challenges in Machine Learning to find a classifier
and parameter settings that work well on a given dataset. Evaluating
all possible combinations typically takes too much time, hence many
solutions have been proposed that attempt to predict which classifiers
are most promising to try. As the first recommended classifier is not
always the correct choice, multiple recommendations should be made,
making this a ranking problem rather than a classification problem. Even
though this is a well studied problem, there is currently no good way of
evaluating such rankings. We advocate the use of Loss Time Curves, as
used in the optimization literature. These visualize the amount of budget
(time) needed to converge to a acceptable solution. We also investigate
a method that utilizes the measured performances of classifiers on small
samples of data to make such recommendation, and adapt it so that
it works well in Loss Time space. Experimental results show that this
method converges extremely fast to an acceptable solution.

Keywords: Algorithm Selection, Meta-Learning, Subsampling

1 Introduction

When presented with a new classification problem, a key challenge is to identify
a classifier and parameter settings that obtain good predictive performance. This
problem is known as the Algorithm Selection Problem [13]. Since many classifiers
exist, all containing a number of parameters that potentially influence predictive
performance, this is a challenging problem. Performing a cross-validation evalu-
ation procedure on all possible combinations of classifiers and parameters (e.g.,
using a grid search) is typically infeasible, as this would take too much time.
The field of meta-learning attempts to solve this by learning from prior exam-
ples. Typically, a set of classifiers is recommended based on the performance on
similar datasets.

The meta-learning method SAM [8] identifies similar datasets based on the
learning curves of classifiers trained on them, and recommends the classifier that
performs best on these similar datasets. Although the results are convincing,

it does not take into account some important aspects of algorithm selection.
First, it only recommends the single best classifier, rather than a ranking of
candidates. Second, it does not take the training time of the models into account.
Indeed, in practical applications there is typically a budget (e.g., limited time or
a maximum number of cross-validation runs) within which a number of classifiers
can be evaluated. As such, the meta-learning method should be evaluated on how
well it performs within a given budget.

Our contributions are the following. We extend the aforementioned technique
so that it produces a ranking of classifiers and takes into account the run times
of classifiers. Furthermore, we study the performance of this method in Loss
space [9], taking into account both predictive accuracy and spent time. We will
argue that Loss Curves as presented in [9] are biased, and propose the use of Loss
Time Curves, as presented in [6]. Finally, we compare the method against a range
of alternative methods, including a rather strong baseline that recommends the
classifier that performed best on a small sample of the data [4]. Although our
proposed technique dominates the baseline methods, the results suggest that
this ‘Best on Sample’ approach has been mistakenly neglected in the literature.

2 Related Work

Meta-learning aims to learn which learning techniques work well on what data [16].
A common task, known as the Algorithm Selection Problem [13], is to determine
which classifier performs best on a given dataset. We can predict this by training
a meta-model on meta-data comprised of dataset characterizations, i.e., meta-

features [2], and the performances of different classifiers on these datasets. The
same meta-features can be computed on each new dataset and fed to the meta-
model to predict which classifiers will perform well.

Hence, the Algorithm Selection Problem is reduced to a Machine Learning
problem. Meta-features are often categorized as either simple (number of exam-
ples, number of attributes), statistical (mean standard deviation of attributes,
mean skewness of attributes), information theoretic (class entropy, mean mutual
information) or landmarkers [11] (performance evaluations of simple classifiers).
Many meta-learning studies follow this approach [14, 15, 17, 20, 21].

However, meta-feature based approaches have some intrinsic limitations. First,
it is hard to construct a meta-feature set that adequately characterizes the prob-
lem space [7]. Second, the most successful meta-features, landmarkers, can be
computationally expensive, limiting the options [11]. Finally, because not all clas-
sifiers run on all datasets, or take prohibitively long to do so, the meta-dataset
usually contains many missing values, complicating the classification task.

In order to overcome these problems, Leite and Brazdil [7, 8] identify similar
data sets based on partial learning curves. A learning curve is an ordered set of
performance scores of a classifier on data samples of increasing size [12]. In this
particular method, a partial learning curve is computed, using small samples,
to measure how similarly algorithms behave on two data sets. As such, running
classifiers on these samples is rather cheap.

Alternatively, the Best on Sample method uses the performance estimates
of classifiers on a small sample and recommends the classifiers which perform
best on this sample, in descending order [10]. Prior work is inconclusive about
its performance. The authors of [10] suggest that this technique should be used
as a baseline method in meta-learning research. The authors of [4] show that
this information is not useful as a landmarker. Indeed, it has been correctly
observed that learning curves sometimes cross, i.e., one classifier can outperform
another on a small data sample, but can be surpassed when trained on the whole
dataset [7]. However, this happens less often as the sample size increases, making
this method quite reliable when using the right sample size, as we will show in
Section 4.

The datasets, learning curves and all results of our experiments are made pub-
licly available on OpenML [19], for the purposes of verifiability, reproducibility
and generalizability. OpenML is an experiment database [18] that enables the
reproduction of earlier results for verification and reuse, and makes much larger
studies (covering more classifiers and parameter settings) feasible. Moreover,
experiment databases allow a variety of studies to be executed by a database
look-up, rather than setting up new experiments.

3 Methods

The method we propose extends the method as defined by [8] in two ways. First,
it recommends a ranking of classifiers, rather than just a single best classifier.
Second, it can take arbitrary evaluation measures into account, such as run time.
It attempts to rank classifiers in order of performance on a given dataset dnew .

We consider a set A of classifiers, am (m = 1, 2, 3, . . . ,M). We also consider
a set D of datasets, dn (n = 1, 2, 3, . . . , N), on which we have information on the
performance of the classifiers in A (dnew is not in D). The size of dataset dn is
denoted as |dn|. Let Pm,n,s and P ′

m,n,s denote the performance of classifier am
on dataset dn, for a given evaluation measure (e.g., predictive accuracy), using
a sample size of s; Pm,n,Ω denotes the performance of classifier am on the full
dataset dn.

Let S be the set of data samples, of increasing size st = 25.5+0.5×t with
t = (1, 2, 3, . . . , T), and T being a parameter set by the user such that 1 ≤ T ≤
⌊log2 |dn|⌋. The samples follow a geometric increase, as suggested in [12]. When
using a higher value for T , larger samples are calculated, presumably yielding
more accurate estimates at the expense of higher run times.

The distance between two datasets di and dj can be determined using the
following function [7]:

dist(di, dj , ap, aq, T) =

T
∑

t=1

(Pp,i,st − Pp,j,st)
2 +

T
∑

t=1

(Pq,i,st − Pq,j,st)
2 (1)

This distance function is related to the Euclidean distance. It gives a measure
of how similar two datasets are, based on the learning curves of the two clas-
sifiers. Other work suggests a distance function that measures the Manhattan

distance between learning curves, but experiments show that the difference in
performance between these variants is minuscule [8].

Using either of these distance functions, k nearest datasets can be identified,
and from the performance of both classifiers on these datasets we can predict
which of the two will perform better on the new dataset. Controversially, it has
been remarked that as the number of used samples increases, the performance
of this technique decreases [7]. The authors of [7] speculate that the learning
curves on the nearest datasets are still not similar enough, and propose Curve

Adaptation, a technique that can adapt retrieved curves to the learning curves on
the new dataset. In order to adapt a learning curve of classifier ap on dataset dr
to dataset di, all points of the prior learning curve are multiplied by a coefficient:

f(di, dr, ap, T) =

∑T

t=1
(Pp,i,st × Pp,r,st × s2t)

∑T

t=1
((Pp,r,st)

2 × s2t)
(2)

Another optimization that could potentially improve performance is the
Smaller Sample technique. As not all datasets are of the same size, it is possible
that a retrieved dataset has a bigger size than the new dataset, which might give
an unfair advantage for slow learners. In that case it might be beneficial to use
the performance of the classifier at a sample size close to the full size of the new
dataset.

Algorithm 1 shows the method in detail. It requires the new dataset as in-
put, and values for parameters k (number of similar datasets to retrieve) and
T (number of samples to use to build the partial learning curve), and boolean
parameters indicating whether to use the Curve Adaptation and Smaller Sample
technique. The while-loop starting on line 3 identifies the most promising classi-
fier left in A (lines 4–29), appends this classifier to the final ranking R (line 30)
and removes it from the pool of remaining classifiers to rank.

To find the most promising classifier, we set abest first to a random classifier
left in A. We will compare it against all acomp (competing) classifiers left in A

(for-loop on line 5). On line 6 we retrieve a set D of datasets on which we have
recorded performance results for both classifiers (recall that dnew is not amongst
those). Line 9 uses Equation 1 to retrieve the nearest dataset. Lines 12–15 show
how Curve Adaptation shifts the retrieved learning curve to the partial learning
curve, using Equation 2. Lines 16–18 show how the Smaller Sample option utilizes
learning curves of a size close to the size of the new dataset. The classifier that
performed best on the retrieved dataset (line 19) gets a vote, and the dataset is
removed from the pool of available datasets. This is repeated k times, for the k

nearest datasets. The classifier that has most votes is marked as abest, and will be
compared against the next competitor acomp in the following loop iteration. Note
that the algorithm potentially utilizes two different evaluation scores, denoted by
P and P ′, but these can also be the same. The scores of one evaluation measure
are used for identifying similar datasets and Curve Adaptation (i.e., the one
denoted by P); the scores of the other evaluation measure are used for selecting
an appropriate classifier (i.e., the one denoted by P ′). This is useful because not
all evaluation measures are suitable for both tasks.

Algorithm 1 Pairwise Curve Comparison (PCC)

Require: dnew , k ∈ N
+, T ∈ N

+ , CurveAdaptation ∈ {0, 1}, SmallerSample ∈ {0, 1}
1: Initialize A as a set of all classifiers
2: Initialize R as empty list
3: while |A| > 0 do

4: abest ← Arbitrary element from A

5: for all acomp ∈ A : acomp 6= abest do

6: Initialize D as the set of all datasets on which abest and acomp were ran
7: votesBest = votesComp = 0
8: while votesBest + votesComp < k do

9: dsim ← argmin
di∈D

dist(dnew , di, abest, acomp, T)

10: coeff best = coeff comp = 1
11: samp ← Ω

12: if CurveAdaptation = 1 then

13: coeff best ← f(dnew , dsim , abest, T)
14: coeff comp ← f(dnew , dsim , acomp, T)
15: end if

16: if SmallerSample = 1 and ⌊log2 |dnew |⌋ < ⌊log2 |dsim |⌋ then
17: samp = ⌊log2 |dnew |⌋
18: end if

19: if coeff best × P ′

best,dsim ,samp > coeff comp × P ′

comp,dsim ,samp then

20: votesBest ← votesBest + 1
21: else

22: votesComp ← votesComp + 1
23: end if

24: D← D−−− dsim
25: end while

26: if votesBest < votesComp then

27: abest ← acomp

28: end if

29: end for

30: R← R+++ abest

31: A← A−−− abest

32: end while

33: return R {Ranking of classifiers in decreasing order}

Because we arbitrarily select the order in which classifiers are considered, the
ranking will not always be the same (the meta-algorithm is unstable). However,
classifiers that perform consistently better on similar datasets will always be
ranked above their inferior competitors. Furthermore, the meta-algorithm has a
start up time, as it needs to build the partial learning curves. In Section 4 we
will see that this is only a fraction of the run time of large datasets.

The original method as proposed in [8] selects classifiers based on their pre-
dictive accuracy on similar datasets, but instead of predictive accuracy any mea-
sure can be used for this selection. Because we want to include run times in our
experiments, we propose to use A3R, which combines predictive accuracy and

run time [1]. A3R compares the run times and accuracy of two classifiers on
a dataset, so it could be used directly into methods that work based on pair-
wise comparisons. However, in order to make it useful for methods that do not
compare classifiers pairwise, and allow a fair comparison in our experiments, we
define a slightly adapted version of the measure:

A3R′di

ap
=

SRdi

ap

r

√

T di
ap

(3)

where SRdi

ap
is the predictive accuracy (success rate) of classifier ap on dataset di,

T di
ap

is the run time of classifier ap on dataset di and r is a parameter controlled
by the user, influencing the importance of time. Indeed, a lower value results in
a higher emphasize on time. The higher the A3R′ score, the more suitable the
classifier is on the combination of accuracy and run time.

4 Experiments

To evaluate the meta-algorithm, we selected 53 classifiers and 39 data sets from
OpenML [19]1. The classifiers come from Weka 3.7.12 [5], and include (but are
not limited to) Decision Trees, Bayesian Networks, Support Vector Machines,
Bagging, and Boosting. The data sets have between 540 and 48,842 observations,
and between 5 and 241 attributes. All classifiers are run on all data sets.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

64 90 128
181

256
362

512
724

1024
1448

2048
2896

4096
5792

8192
11585

16384

23170

32768

A
ve

ra
ge

 R
un

tim
e

pe
r

T
as

k
(s

ec
)

Sample size

Fig. 1. Average training time of all classi-
fiers per task per sample

Figure 1 shows how the average
training time of all classifiers increases
as the sample size increases. There
seems to be a linear relation between
the run time and sample size. The
drop can be explained by a subset
of high-dimensional data sets, which
take longer to train but contain only
2,000 observations.

We will use two strong baseline
methods to compare our method to.
Best on Sample runs all classifiers
using a given sample size, and ranks
the classifiers in the order of per-
formance on that sample [10]. The
Average Rank ranks the classifiers in
the order of their average rank on pre-
viously seen datasets, and has proven
to be quite accurate [3, 9]. Although
comparing the methods also against a meta-feature based approach seems inter-
esting, configuring the latter takes much time, giving an unfair advantage to the
sample based approaches.

1 Full details on http://www.openml.org/project/tag/LearningCurves/user/1

Section 4.1 describes an experiment that focuses solely on predicting the
best classifier; here we attempt to reproduce the results obtained by [8] using a
larger meta-dataset. In Section 4.2 we show how the meta-algorithm performs
when predicting a ranking of classifiers. Section 4.3 describes our main contri-
bution, novel experiments incorporating both accuracy and run times, yielding
significant improvements over the baseline methods.

4.1 Predicting the Best Classifier

In the first experiment we aim to establish how well the meta-algorithm performs
when the task is to recommend the best available classifier. A recommendation
is considered correct if there was no statistically significant difference between
the absolute best classifier and the recommended classifier, as is done in, e.g., [8].
It uses predictive accuracy as the evaluation measure to identify similar datasets
and select the best classifier. Our proposed method has several parameters. Most
importantly, T (number of samples used) and k (number of nearest data sets to
be identified). Furthermore, we seek to explore the effect of Curve Adaptation
(CA) and the newly proposed Smaller Sample technique (SS) by comparing
instances having this option enabled against instances without.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

1 2 3 4 5 6

A
cc

ur
ac

y

Samples

Best on Sample
Average Rank
PCC (CA, SS)

PCC (CA, no SS)
PCC (no CA, SS)

PCC (no CA, no SS)

(a) Varied value T , fixed k = 9

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

A
cc

ur
ac

y

Nearest Datasets

Best on Sample
Average Rank
PCC (CA, SS)

PCC (CA, no SS)
PCC (no CA, SS)

PCC (no CA, no SS)

(b) Varied value k, fixed T = 5

Fig. 2. Performance on predicting the best classifier.

Figure 2(a) shows the effect of varying the number of (increasingly large)
samples when computing the partial learning curve. It can be seen that using
more samples results almost consistently in better performance, as was expected.
There are some drops in performance, which can probably be attributed to
characteristics of the specific data sets used (e.g., dimensionality). Figure 2(b)
shows the effect of varying the number of nearest neighbours, using odd numbers.
Average Rank remains constant, as it does not use samples nor identify nearest
datasets. Setting k around 9 seem very suitable in this case, but presumably this
depends on the size of the meta-dataset. Setting this value too low might lead to

instable behaviour, whereas setting it too high might result in including many
data sets which are not similar enough.

Both figures show similar trends. Best on Sample dominates the other tech-
niques in most of the cases, even though this method is rather simple. Fur-
thermore, both Pairwise Curve Comparison instances using Curve Adapta-
tion (CA) outperform the instances without Curve Adaptation. Smaller Sample
(SS) also seems to improve the prediction quality, although the difference is less
prominent. In all, both Best on Sample and Pairwise Curve Comparison ob-
tain very reasonable performance, advising a (statistically) best or equally good
classifier in more than 85% of the cases.

4.2 Ranking of Classifiers

In many meta-learning applications it is not enough to simply predict the single
best classifier. When the recommended classifier does not perform well enough,
an alternative should be at hand. Rather than recommending a single classi-
fier, a ranking should be created, ordering the classifiers on their likelihood of
performing well on the dataset. This way, the user can make an informed deci-
sion about which models to try based on the available time and resources. The
standard approach to evaluate such a ranking is to compute the Spearman Cor-
relation Coefficient [17]. However, it has a drawback: it penalizes every wrongly
ranked classifier equally, whereas we typically do not care about incorrect ranked
classifiers after the best one has been identified.

An alternative approach is to use Loss Curves as done in, e.g., [9]. The authors
define loss as the difference in accuracy between the current best classifier and
the global best classifier. In order to find the global best classifier on a dataset,
we evaluate all classifiers on this dataset in a certain order, for example by going
down a ranking. A Loss Curve plots the obtained loss against the number of
classifiers that have been tested. The goal is to find a classifier that has a low
loss in relatively few tests. Usually, this is repeated over many data sets and the
average Loss Curve is reported. Similarly to ROC Curves for which commonly an
Area Under the ROC Curve is calculated, we also can calculate the Area Under

the Loss Curve, in which low values are preferred over high values. Although this
measure is less informative than the Loss Curve itself, it can be used to show
certain trends, e.g. the effect of an algorithm parameter.

Figure 3(a) plots the Area Under the Loss Curve against the number of sam-
ples. Using more (larger) samples typically results in an improved Area Under
the Loss Curve score for Best on Sample and Pairwise Curve Comparison in-
stances using Curve Adaptation. Again, Average Rank remains constant, and
there seems to be no improvement for Pairwise Curve Comparison instances
without Curve Adaptation. Figure 3(b) shows the Loss Curves. In order not
to overload the figure, we only include the baselines and the Pairwise Curve

Comparison instance using both Curve Adaptation and the Smaller Sample op-
tion. The Best on Sample technique again dominates the other techniques.

Loss Curves assume that every test will take the same amount of time, which
is not realistic. For example, Multilayer Perceptrons take longer to train than

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 3 4 5 6

A
re

a
U

nd
er

 th
e

Lo
ss

 C
ur

ve

Samples

Best on Sample
Average Rank
PCC (CA, SS)

PCC (CA, no SS)
PCC (no CA, SS)

PCC (no CA, no SS)

(a) Area under Loss Curve, k = 9

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 1 2 4 8 16 32 64

A
cc

ur
ac

y
Lo

ss

Number of Tests

Best on Sample
Average Rank

PCC

(b) Loss Curve, T = 5, k = 9

Fig. 3. Performance of ranking of classifiers in Loss space.

Naive Bayes classifiers. Therefore, it is better to use Loss Time Curves, which
plot the average loss against the time needed to obtain this loss. It describes how
much time is needed on average to converge to a certain loss (lower is better).
The faster such curve goes to a loss of zero, the better the technique is. They
have been used before in the Optimization literature [6].

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

1 2 3 4 5 6

A
re

a
U

nd
er

 th
e

Lo
ss

 T
im

e
C

ur
ve

Samples

Best on Sample
Average Rank
PCC (CA, SS)

PCC (CA, no SS)
PCC (no CA, SS)

PCC (no CA, no SS)

(a) Area under Loss Time Curve, k = 9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 64 128 256 512 1024 2048 4096 8192 16384 32768

A
cc

ur
ac

y
Lo

ss

Time (seconds)

Best on Sample
Average Rank

PCC

(b) Loss Time Curve, T = 5, k = 9

Fig. 4. Performance of ranking of classifiers in Loss Time space.

Figure 4 shows the results of the same experiment in Loss Time space. Fig-
ure 4(b) shows the Loss Time Curve, scaled to the part where the average loss is
lower than 10%. Compared to Figure 3(b), it shows that while Pairwise Curve

Comparison needs more tests to converge to an acceptable loss, it does so in
less time. However, the results for other values of T (number of tests), shown in
Figure 4(a), are less conclusive. Controversially, adding samples does not lead to
better results in Loss Time space. The reason for this is that none of the involved
methods are taking training times into account when building a ranking.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 4 16 64 256 1024 4096 16384 65536

A
cc

ur
ac

y
Lo

ss

Time (seconds)

Best on Sample
Average Rank

PCC
PCC (A3R’, r = 1)

(a) Loss Time Curves, T = 5, k = 9

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 4 16 64 256 1024 4096 16384

A
cc

ur
ac

y
Lo

ss

Time (seconds)

Best on Sample (A3R’)
Average Rank (A3R’)

PCC (A3R’)

(b) Loss Time Curves, T = 5, k = 9, A3R′

Fig. 5. Classifier ranking performance in Loss Time space using the A3R′ criterion.

4.3 Incorporating Run Times

Next, our aim is to involve run times in the classifier selection process and
establish that this improves the performance of the meta-algorithm in Loss Time
space. One way of doing so can be trading off accuracy and speed. Naively
ranking the classifiers in the order of run times yields bad results. Therefore, we
adjust Pairwise Curve Comparison to compare and select classifiers based on
their A3R′ scores, as introduced in Section 3. Both baseline methods are adjusted
in a similar way. Similar datasets are still identified using learning curves based
on predictive accuracy scores (recall that the meta-algorithm potentially uses
different evaluation measures to identify similar datasets and select classifiers).

Figure 5(a) compares the ranking obtained by Pairwise Curve Comparison

using A3R′ against all methods building the ranking based solely on accuracy.
As expected, the gain in performance is eminent. Pairwise Curve Comparison

using A3R′ converges to an acceptable loss level orders of magnitude faster than
the baselines, because it is the only technique that takes run times into account.

In order to make a more fair comparison, we also adjust the baseline tech-
niques in a straightforward way, such that these also rank the classifiers based on
A3R′ rather than accuracy. Figure 5(b) shows the results of the same experiment
run with the baselines incorporating A3R′. Indeed, the A3R′ criterion is useful
in these methods as well, all reducing the accuracy loss drastically faster than
before. However, the Pairwise Curve Comparison method still dominates the
other techniques, though the differences are smaller.

Finally, A3R′ has a parameter r that allows users to control the importance
of accuracy and run times. Increasing the value of r decreases the importance of
run times when selecting classifiers. We track the effect of this parameter in Loss
space and Loss Time space. Figure 6(a) shows that the methods emphasizing
accuracy converge to a low loss in few tests, since they focus on classifiers that
are probably good, but potentially slow. However, Figure 6(b) shows that they
do not converge faster in Loss Time space. Evaluating faster methods earlier
clearly pays of, especially if there is limited time to select a classifier.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 2 4 8 16 32 64

A
cc

ur
ac

y
Lo

ss

Tests

PCC (A3R’, r = 1.0)
PCC (A3R’, r = 4.0)

PCC (A3R’, r = 16.0)
PCC (A3R’, r = 64.0)

(a) Loss Curves, T = 5, k = 9

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 4 16 64 256 1024 4096 16384

A
cc

ur
ac

y
Lo

ss

Time (seconds)

PCC (A3R’, r = 1.0)
PCC (A3R’, r = 4.0)

PCC (A3R’, r = 16.0)
PCC (A3R’, r = 64.0)

(b) Loss Time Curves, T = 5, k = 9

Fig. 6. Performance of Pairwise Curve Comparison, varying values for r.

5 Conclusion

This paper addresses the problem of algorithm selection under a budget, where
multiple algorithms can be run on the full data set until the budget expires.

We have extended the method presented in [8] such that it generates a ranking
of classifiers, rather than just predicting the single best classifier, and evaluated
it using a much larger amount of classifiers. Interestingly, a simple and elegant
baseline method called Best on Sample outperformed this method in our exper-
iments, selecting good classifiers in fewer tests. However, when tested in a more
realistic setting where the budget is time, rather than a number of tests, and
using a novel selection criterion, A3R′ (which trades off accuracy and run time),
the newly proposed method outperformed all baselines. This suggests that it is
very suitable for algorithm selection applications with a limited time budget.

Another contribution of this work is the use of Loss Time Curves to study
meta-learning algorithms which, to the best of our knowledge, have not been
previously used in the meta-learning literature. Future work will focus on adapt-
ing other meta-learning techniques with the A3R′ criterion and/or evaluating
them in Loss Time space, as this might lead to even more valuable insight.

Acknowledgments This work is supported by grant 600.065.120.12N150 from
the Dutch Fund for Scientific Research (NWO).

References

1. Abdulrahman, S.M., Brazdil, P.: Measures for Combining Accuracy and Time for
Meta-learning. In: Meta-Learning and Algorithm Selection Workshop at ECAI
2014. pp. 49–50 (2014)

2. Brazdil, P., Gama, J., Henery, B.: Characterizing the Applicability of Classification
Algorithms Using Meta-Level Learning. In: Bergadano, F., De Raedt, L. (eds.)
Machine Learning: ECML-94, Lecture Notes in Computer Science, vol. 784, pp.
83–102. Springer (1994)

3. Brazdil, P., Soares, C.: A Comparison of Ranking Methods for Classification Al-
gorithm Selection. In: Machine Learning: ECML 2000, pp. 63–75. Springer (2000)

4. Fürnkranz, J., Petrak, J.: An Evaluation of Landmarking Variants. In: Working
Notes of the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining,
Decision Support and Meta-Learning. pp. 57–68 (2001)

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

6. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Time-Bounded Sequential
Parameter Optimization. In: Learning and intelligent optimization, pp. 281–298.
Springer (2010)

7. Leite, R., Brazdil, P.: Predicting Relative Performance of Classifiers from Samples.
In: Proceedings of the 22nd international conference on Machine learning. pp. 497–
503. ACM (2005)

8. Leite, R., Brazdil, P.: Active Testing Strategy to Predict the Best Classification
Algorithm via Sampling and Metalearning. In: ECAI. pp. 309–314 (2010)

9. Leite, R., Brazdil, P., Vanschoren, J.: Selecting Classification Algorithms with Ac-
tive Testing. In: Machine Learning and Data Mining in Pattern Recognition, pp.
117–131. Springer (2012)

10. Petrak, J.: Fast Subsampling Performance Estimates for Classification Algorithm
Selection. In: Proceedings of the ECML-00 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination. pp.
3–14 (2000)

11. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and i
can tell you who you are: Landmarking various learning algorithms. In: Proceedings
of the 17th international conference on machine learning. pp. 743–750 (2000)

12. Provost, F., Jensen, D., Oates, T.: Efficient Progressive Sampling. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 23–32. ACM (1999)

13. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers 15, 65118
(1976)

14. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm Selection on
Data Streams. In: Discovery Science. pp. 325–336. Springer (2014)

15. Rossi, A.L.D., de Leon Ferreira, A.C.P., Soares, C., De Souza, B.F.: MetaStream:
A meta-learning based method for periodic algorithm selection in time-changing
data. Neurocomputing 127, 52–64 (2014)

16. Smith-Miles, K.A.: Cross-disciplinary Perspectives on Meta-Learning for Algo-
rithm Selection. ACM Computing Surveys (CSUR) 41(1), 6 (2008)

17. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algo-
rithm ranking. Machine learning 93(1), 141–161 (2013)

18. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases.
Machine Learning 87(2), 127–158 (2012)

19. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

20. Vilalta, R., Drissi, Y.: A Perspective View and Survey of Meta-Learning. Artificial
Intelligence Review 18(2), 77–95 (2002)

21. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241–259 (1992)

