
Mahjong Solitaire
Computing the number of unique and solvable

arrangements

J.N. van Rijn
Leiden Institute of Advanced Computer Science

Universiteit Leiden
jvrijn@liacs.nl

March 25, 2011

Abstract

In this paper we will provide definitions on various aspects of the
game Mahjong Solitaire. We will show in how many ways n tiles can
be arranged and provide a recurrence relation on this sequence. We
will also provide a recurrence relation on the number of ways we can
divide these tiles over a various number of sets, and even a closed
formula when we apply the constraint that each set may only contain
two tiles. We will show that the product of these two sequences is
not equal to the number of arrangements that can be created. We will
provide algorithms for generating all arrangements and calculating the
number of arrangements that can be won.

1 Introduction

Mahjong Solitaire is a one player puzzle game mainly played on the computer
in which the player a randomly arranged stack of tiles is presented. An ex-
ample is shown in Figure 1. The goal is to remove all tiles in matching pairs
of two, restricted by the rules that will be described in Section 2. The game
was originally created by Brodie Lockard in 1981 for the PLATO computer

1

Figure 1: An example of the game Mahjong Solitaire, taken from [14].

system, but it gained a great popularity in the late 1980s when it was ported
to other platforms [10].

Despite the great popularity which is still evident nowadays, not much
research has been done on this game [2]. Most noticeable contributions are [1]
and [11], which both examined the complexity of a different variant of the
game. In [13], an algorithm is presented which can determine whether a
game of Mahjong can be won or not, and if so, what strategy should be used,
provided that we have perfect information. In [12] it is proven that if we
don’t have perfect information, no such infallible algorithm exists.

The goal of our research is to gain a greater knowledge about the game
Mahjong, in particular about what the probability is that such a game can be
won. In Section 2 we will provide basic definitions about the variants we will
consider. In Section 3 other basic theory from various websites is presented,
along with one of our contributions, a definition which can be used to find
patterns of an unwinnable game. Section 4 decomposes the game into its
core aspects, and provides some sequences that can be used to predict how
many different arrangements can be created, using a certain number of tiles.
Section 5 provides some brute force algorithms which are able to determine
which and how many instances can be won. In Section 6 these algorithms are
used in order to gain information about the smaller instances of Mahjong.
In Section 7 a conclusion is drawn, and some suggestions for future research
are mentioned. Finally, in de Appendices pseudo code is provided for the
algorithms that are used in this research.

2

2 Mahjong solitaire

For describing the game Mahjong Solitaire, we allow ourselves to use a slightly
more general definition derived from the excellent version provided by [1].

The game uses Mahjong tiles (comparable with cards), that are divided
into m sets Tp of |Tp| = sp matching tiles, where sp is an even number
(p = 1, 2, . . . ,m). The collection of all these sets is called S. Formally
S = {T1, T2, . . . , Tm}. We generalize the standard game simply by assuming
that there is an arbitrarily large, finite number of tiles. Initially, the tiles are
organized in a preset arrangement of rows, and the rows may be stacked on
top of each other. As a result, some tiles are hidden under other tiles; it is
assumed that each possible arrangement is equally likely. A tile that is not
hidden and is at the end of a row is said to be available. In a legal move, any
pair of available matching tiles may be removed, resulting in a new configu-
ration of the tiles in which up to four previously hidden tiles are uncovered.
The player wins the game if all tiles are removed by a sequence of legal moves.

To define the game more formally, we define the set of Mahjong tiles to
be T =

⋃
p Tp where T1, . . . , Tm are disjoint sets of tiles. The size of set Tp

is denoted by sp, where sp is even. We say tiles a and b match, if and only
if for some p it holds that a, b ∈ Tp. A configuration C is a set of positions
(i, j, k), where each of i, j, k is a non-negative integer, satisfying the following
constraints:

1. If (i, j, k) ∈ C and (i, j′, k) ∈ C where j < j′, then for every j′′ in the
range [j, j′], (i, j′′, k) ∈ C.

2. If (i, j, k) ∈ C where k > 0 then (i, j, k − 1) ∈ C.

Intuitively, this captures the fact that tiles are arranged in three dimensions.
Tiles can be stacked on top of each other; all tiles with common k are at
the same height. Tiles at the same height, with common i index, form a
row. The first condition ensures that there cannot be gaps in a row; the
second, that a tile at height k > 0 must have a tile underneath it (in fact,
at position (i, j, k − 1)).

With respect to a given configuration, a position (i, j, k) is hidden if in
the configuration also a position (i, j, k + 1) exists; the other positions are
called visible. An arrangement consists of a set of tiles T , a configuration C

3

of size |T |, and a 1-1 function f from the positions of C to all tiles in T .
Intuitively, this means that f(i, j, k) is the tile at position (i, j, k). If this
function maps position (i, j, k) to tile t we say t is in position (i, j, k). The
elements of T will be mapped to the elements of C in such a way, that every
possible combination is equally likely. With respect to a given arrangement,
we say a position (i, j, k) is available if it is not hidden, and either position
(i, j − 1, k) /∈ C or position (i, j + 1, k) /∈ C or both. An arrangement is
called empty if T is empty.

Let X = (T , C, f) be an arrangement. Each pair {(i1, j1, k1), (i2, j2, k2)}
of available positions at which there are matching tiles
{f(i1, j1, k1), f(i2, j2, k2)} ⊆ Tp for some p defines a match of X. We
say arrangement X ′ is obtainable from X via match {(i1, j1, k1), (i2, j2, k2)}
if X ′ = (T ′, C ′, f ′), where T ′ = T − {f(i1, j1, k1), f(i2, j2, k2)},
C ′ = C − {(i1, j1, k1), (i2, j2, k2)} and finally, f ′ is almost the same
as f , with the only difference that it is not defined on the positions
{(i1, j1, k1), (i2, j2, k2)}, since they are no longer in C. A sequence of moves
from arrangement X leads to a win if it results in the empty arrangement.

2.1 Game variations

In the definition of the game given in the section above, there is a strict
separation between the tiles that are hidden, and the tiles that are visible. We
want to emphasize the fact that when a tile is visible, this doesn’t necessarily
have to be available. I.e., all tiles on the top row are visible, but only those
on the sides (where (i, j− 1, k) or (i, j + 1, k) is not in the configuration) are
also available and can be played, if a match is found.

For computational and optimization issues, it can in some cases be inter-
esting to have the possibility to know what the values of the hidden tiles are.
A situation were we allow the player to peak into the hidden tiles, is called
an open instance of Mahjong. Whenever this is not allowed, this is just a
regular instance of Mahjong. We also refer to this as a closed instance.

2.2 Definitions

Here we will provide an overview of definitions we use in this report. Some
of these definitions might have already been mentioned, but will be further
explored here.

4

• A position (typically denoted as (i, j, k)) is an element of the configu-
ration C.

• A configuration C is a collection of positions, respecting the conditions
given in Section 2.

• A row (R ⊆ C) (for given i, k) consists of all positions (i, j, k) ∈ C,
that share the same value on i, k.

• A cross section (CS ⊆ C) (for given i) consists of all positions (i, j, k) ∈
C, that share the same value on i.

• Every tile t ∈ T has a certain value, which has no numerical or hier-
archical meaning. This value is just to determine which tiles belong to
the same group of matching tiles, that are denoted by Tp.

• A candidate pair is a set of two tiles a, b ∈ Tp for some p. The number

of candidate pairs of a certain Tp is
(
|Tp|
2

)
.

• A move sequence of length n is a chronological series of n moves
performed over an arrangement X such that X(n) is obtained. Here,
X = X(0) → X(1) → X(2) → . . . → X(n), where each arrow denotes
a move. This move sequence is called a winning move sequence, if as
a result of these moves X(n) is empty. If there exists at least one win-
ning move sequence, we call the arrangement solvable. Otherwise we
call the original arrangement blocked. A move sequence is called an
optimal move sequence if the number of tiles in X(n) is minimized, or
equivalently: if n is maximal. Note that a winning move sequence is
always an optimal move sequence. When a sequence is blocked, a move
sequence that results in the least remaining tiles is called the optimal
move sequence.

3 Theory

This section will provide basic theory, gathered from various sources.

3.1 Complexity

In [1] it is proven that in the closed version it is PSPACE-hard to approxi-
mate the maximum probability of removing all tiles within a certain factor,

5

Figure 2: An instance of Mahjong, with one winning move sequence. Image
is taken from [12].

assuming that there are arbitrarily many quadruples of matching tiles and
that the hidden tiles are uniformly distributed. In [11] it is proven that in
the perfect-information version of this puzzle, in which all tile positions are
known, it is NP-complete to decide whether all tiles can be removed.

3.2 Closed instance

In [12] it is mentioned, that it is impossible to come up with an algorithm that
could solve any closed instance of Mahjong, even when one or more winning
move sequences actually exist. Without further analysis, it is immediately
clear that the only way to win the game from Figure 2 is to start by taking
out the 1-tiles on top of the stack and one of the two on the left. There
is, however, no way to know which of the left-hand side 1-tiles to pick first
without peeking into the tall stack. Therefore, the statement made in [12] is
correct.

3.3 Game blockings

Intuitively, it is not very hard to come up with an example that there will not
always exist a winning move sequence. The most trivial case, for example, is
when all tiles are stacked on positions on top of one another. In this situation
all tiles in T share the same i and j coordinate, but have a different value for
k. Since there is only one tile that is available, no pairs can be made, hence
there is no winning sequence for this arrangement, so this game blocked.

6

We have analyzed all possible ways in which an arrangement with size
smaller than 12 can be blocked, and all of them can be categorized by means
of the same definition, after a certain number of moves is done.

Let B ⊆ C be a non-empty set of positions, where all corresponding
tiles are different. I.e., if (i, j, k), (i′, j′, k′) ∈ B with (i, j, k) 6= (i′, j′, k′) then
f(i, j, k) and f(i′, j′, k′) are not in the same Tp (for some p ∈ {1, . . . , n}).
If we can find a set of positions such that the following so-called blocking
property holds, the game is blocked. Hence there is no winning move sequence.
In this case, B is called the blocking set. The property is the following: If
r = f(i, j, k) with (i, j, k) ∈ B and for some (i′, j′, k′) 6= (i, j, k) in C we also
have f(i′, j′, k′) = r, then

• ∃(i′, j′, k′′) ∈ B with k′′ > k′, or

• ∃(i′′, j′, k′′) ∈ B and ∃(i′′′, j′, k′′′) ∈ B with i′′ < i′ < i′′′ and k′′, k′′′ ≥ k′

Note that the first one is a special case of the second one, if we allow i′′ ≤
i′ ≤ i′′′. Informally, we intend to select a set of positions (which we previously
defined as B), from which we know that we can never play one of the tiles
at those positions, because all the tiles that have the same value as the
tiles on one of these positions, are already blocked by one or more of the
other tiles, with a position in B. If such a set exists, the game can never
be won. The most trivial case, obviously, is when tiles with the same value
are stacked on top of each other (as shown in Figure 3(a)), but also more
complex blocking situations can emerge from this. In Figure 3(b), an example
is shown where a blocking set consisting of two tiles a and b is found. Note
that this arrangement is blocked because all tiles that are element of the
same Tp as a or b, are in the area that is colored gray.

In order to know whether a game is blocked, in a worse case situation one
has to test for a number of at most∑

A⊆{1,...,m}

(∏
a∈A

sa

)

different subsets of C whether the blocking property holds. If so, this subset
is a valid blocking set, hence there is no winning move sequence. If this is
not the case, we don’t know whether the arrangement is blocked, unless the
condition |Tp| = 2 for each p holds true.

The reason for this is as follows: The blocking definition looks for a pattern
in the arrangement, where a group of tiles from different sets are positioned

7

(a) (b)

Figure 3: In both (a) and (b) an arrangement is shown which is blocked. Here,
T1 consists of two a-tiles, T2 consists of two b-tiles and so on. The blocking
set is colored brown, the tiles that are impossible to play by means of the
blocking set are colored gray.

in such a way, that all other tiles from these sets are blocked by this group of
tiles. Having more than two tiles in a certain set, can disturb these patterns.
We can think of a situation where an arrangement is not covered by the
definition, but after any legal move sequence resulting in an arrangement
where for all p : |Tp| = 2 any of these arrangements will be covered by this
definition. In Figure 4 such an example is shown. Here an arrangement is
displayed which is clearly blocked, however it is not covered by the blocking
definition because two of the three free a-tiles disturb the pattern. Doing an
arbitrary move will result in having an arrangement consisting of sets with
size two, all covered by the blocking definition. Since this is the case we can
conclude that the initial arrangement was blocked, despite it was not covered
by the blocking definition. From this we can conclude that when we have a
blocking set where the condition |Tp| = 2 for all p does not hold true and
where no blocking set exists, we do not know whether this arrangement is
solvable. In order to find out whether this arrangement is really solvable,
we will have to look further in the game tree. In the game tree every edge
represents a legal move, every vertex represents an arrangement and a vertex
is considered a leaf whenever a blocking set is found, or the arrangement
obeys the condition that for all p it holds that |Tp| = 2. If there exists at least
one leaf where there does not exist a blocking set in the arrangements, we can
consider the initial arrangement solvable. Otherwise the initial arrangement
is blocked.

The blocking definition as it is now seems pretty useless because it seems
only feasible to use it on arrangements where for all p it holds that |Tp| = 2.
If one were to expand it in such a way that it would work on any arrangement
without looking into the game tree, it would be a great result. In Section 6.2

8

(a) (b)

(c) (d)

Figure 4: In (a) an arrangement consisting of four a-tiles and two b-tiles
is shown. Initially, there are three moves possible. Playing a1 with a3 will
result in the arrangement shown in (b), playing a3 with a4 will result in the
arrangement shown in (c) and finally playing a1 with a4 will result in the
arrangement shown in (d). The blocking set, if it exists, is colored brown,
the tiles that are impossible to play by means of the blocking set are colored
gray.

we will report on the percentage of blocked arrangements that can be classi-
fied by means of the current blocking definition.

4 Data representation

In this section we will give definitions, propose conventions and present al-
gorithms on various aspects of Mahjong.

4.1 Configuration

Section 2 already provided a solid definition for configurations; in this section
we will elaborate on how to generate all configurations of a certain size.
We will only consider configurations consisting of one cross section. One
important property of the algorithm we are going to present is that it filters
out all duplicates by reflection. The pseudo code for the presented algorithm
is available in Appendix A. We propose to represent a configuration consisting
of one cross section as an array of integers C, where an element of C (with
index j) denotes the number of tiles that are stacked op top of each other at
column j. We want to emphasize once more that by means of the definition
provided in Section 2, a configuration is only valid when none of the cross

9

sections contain any gaps.
We are using a recursive solution, as we are first going to generate the

small configurations (starting with size 0) and from these we are generating
all bigger configurations. The first thing we need to define is which size the
configurations are that we are interested in. After this a call will be made
to the recursive function, allConfigurations. The parameters this function ac-
cepts are the array currentConfig, which is the array representing the current
configuration we are trying to expand, the integer last, which contains the
last element of currentConfig, and finally the boolean desc, which keeps track
of the question whether we already had a column with a strictly smaller value
than the column before. This is for preventing that any gaps will occur in
the configuration.

The first thing the algorithm checks, is whether currentConfig already
reached the required size. If not, the algorithm will try to expand a copy of
currentConfig in the next loop, otherwise we will check whether currentConfig
is lexicographically smaller than or equal to its reversed version, so we can
add it to our found solutions. Whether this is the case or not, we will return
from the function. The last part of the algorithm is where we expand all
solutions that were smaller than the requested size. We will only do this in
such a way that gaps will be prevented. Some sort of pyramid form will arise:
every column will be larger than or equal to its previous column, until a
certain column t. Note that t can be every arbitrary column, also the first or
the last column. From t on every column should be smaller than or equal to
its previous column. We’ll keep track on whether we already have made our
first descending move by the boolean desc. When desc is true, no columns
greater than its previous column will be added to the configuration, otherwise
a gap would arise and the configuration would not be valid.

The number of valid configurations with size n is presented in the next
table. Here, Ctot is the number of configurations the algorithm generated,
Crefl is the number of configurations, when we don’t mind having configu-
rations double because of reflections, and Csym is the number of generated
configurations that are symmetric.

10

n Ctot Crefl Csym

0 1 1 1
1 1 1 1
2 2 2 2
3 3 4 2
4 6 8 4
5 9 15 3
6 17 27 7
7 26 47 5
8 45 79 11
9 69 130 8

10 113 209 17
20 5673 11240 106
30 135938 271404 472
40 2104752 4207764 1740
50 24323418 48641220 5616

100 317880216 635111413 649019

There is no sequence reported in [3] that corresponds with the Ctot se-
quence. However, in [4, 8] a sequence is reported that corresponds with
our Crefl sequence, called “the number of stacks, or planar partitions of n”.
In [5, 9] also a sequence is reported that corresponds with our Csym sequence,
“the number of palindromic and unimodal compositions of n”. From these
two, we can derive the number of valid configurations. Note that in Crefl , all
configurations are counted twice, except those that are symmetric. It is not
hard to see that we can compute the Ctot sequence by

Ctot =
Crefl − Csym

2
+ Csym

which is equal to

Ctot =
Crefl + Csym

2

Another nice thing to notice, is that every element with an odd index
in the Csym sequence, is smaller than or equal to the previous element in
the sequence. We don’t have a formal proof that this will always hold, but
intuitively speaking it is correct. When having a configuration of size n with
n being an odd number, we can only make symmetric configurations with an
odd number of columns. Suppose the number of columns of a configuration

11

is c. When for a configuration with an odd size c is even, in order for the
configuration to be symmetric, the columns with indexes 1, . . . , c/2 should be
the same as the columns with indexes c/2 + 1, . . . , c reversed. This can only
be the case when both of these subsets have the same size, which can never
be the case when the total size is an odd number. This constraint does not
apply when having a configuration of size n with n being an even number,
since now we can make symmetric configurations with both an even number
of columns and an odd number of columns.

4.2 Deck configuration

A deck configuration describes for each value of p, the size of Tp, respecting
the rule that |Tp| > 0 and |Tp| is even. We represent a deck configuration
as a set of integers, where the value of element p represents the size of Tp.
In the following table, we will show the number of deck configurations for
every n < 12. Here n is the total number of tiles, DC is the total number of
deck configurations with n tiles, and in the column Deck Configurations we
show some of them.

n DC Deck Configurations
2 1 {2}
4 2 {4}, {2, 2}
6 3 {6}, {4, 2}, {2, 2, 2}
8 5 {8}, {6, 2}, {4, 4}, {4, 2, 2}, {2, 2, 2, 2}

10 7 {10}, {8, 2}, {6, 4}, {6, 2, 2}, {4, 4, 2}, {4, 2, 2, 2}, {2, 2, 2, 2, 2}
12 11 {12}, {10, 2}, {8, 4}, . . . , {2, 2, 2, 2, 2, 2}

In [6], this sequence is recognized as the partition numbers. This makes
sense since this is actually the same as what we are doing: dividing the n
stones into all possible partitions. The formula is as follows: A sequence of
positive integers q = q1 . . . qk is a descending partition of the positive integer
n if q1 + . . .+qk = n and q1 ≥ . . . ≥ qk. If formally needed, qj = 0 is appended
to q for j > k. Let Qn denote the set of these partitions for n ≥ 1. Then

DC (n) = 1 +
∑

q∈Qn

b(q1 − 1)/(q2 + 1)c

12

4.3 Tile layout

A tile layout describes the way how the positions in C are mapped to the
various sets Tp. Here we distinguish two cases. In the first case we apply the
constraint that for each p, it holds that |Tp| = 2. This simplifies our problem,
since we can evaluate each arrangement now in quadratic time, as will be
shown in Section 5.1. We call this the easy case. In the other case we drop
this constraint, which results in the fact that the number of arrangements
grows, and computational time for most arrangements grows as |Tp| grows
for some p. We call this the hard case.

We represent a tile layout as a set of subsets, where each subset contains
all positions that are occupied by all tiles from a certain Tp. Because every
single tile layout should be compatible with every existing configuration, in
this context we prefer to represent each position not as a set of coordinates,
but as the index of the position in Co, which is an ordered set with all
elements of C sorted respectively on their i, j and k value. Informally, in an
arrangement, we assign the tile with index 1 always to the lowest position in
the leftmost column, the tile with index 2 will be assigned to the position on
top of the previous tile, if that position exists according to the configuration.
Otherwise it will be assigned at the bottom of the next column. This process
is repeated, until at last tile with index n will be the assigned to the top-
most position in the rightmost column. In Figure 5(a) and 5(d) examples are
given, showing how these numbers are assigned.

An important thing to notice is that two tile layouts are considered the
same, if we can translate the elements of one of these tile layouts into the
other. For example, Figure 5(b) shows an arrangement where T1 consists of
the four a-tiles (at position 0, 2, 5 and 7), T2 consists of the four b-tiles (at
position 1, 3, 9 and 9) and finally T3 consists of the two c-tiles (at position
4 and 8). Figure 5(c) shows a similar arrangement where T1 consists of two
a-tiles (at position 4 and 8), T2 consists of four b-tiles (at position 0, 2, 5
and 7) and T3 consists of four c-tiles (at position 1, 3, 6 and 9). If we were
to translate all a-tiles in 5(c) to b-tiles, all b-tiles to c-tiles and all c-tiles to
a-tiles, the same arrangement as in 5(b) would arise. Hence we say that these
tile layouts are simular.

Just like the configurations we want to know, given a number of tiles,
how many tile layouts we can generate. In Appendix B, pseudo code of a
recursive algorithm is provided, which works as follows.

First we need to determine the number of tiles we want to consider.

13

(a) (b) (c)

(d) (e)

Figure 5: Both (a) and (d) show for every position in a certain configuration,
what number will be assigned to the tile at that position in the tile layout. In
(b), (c) and (e) it is shown how the tile layout {{0, 2, 5, 7}, {1, 3, 6, 9}, {4, 8}}
can be implemented in various arrangements.

The recursive function recCreateAll needs two parameters, current layout,
which is a two dimensional array, representing the tile layout we are creating
at this moment, and tiles left over, which is an array consisting of all tile
numbers that are not used yet. We call the recursive function with an empty
element provided for current layout, and the array [1, . . . , n] for tiles left over.
As we go deeper, the array that we provide for current layout will grow,
and the one for tiles left over will shrink. The first thing we are going to
check in recCreateAll, is whether we already used all tiles. If the size of
tiles left over = 0, this is the case. The algorithm adds current layout to the
collection of results, and returns from the function. If this is not the case, the
algorithm iterates over all possible subsets of tiles left over, which obey the
following rules: i) it includes the first element and ii) it consists of an even
number of elements. (The first condition is important, because otherwise we
would get the exact same tile layout more than once. The second condition
is important, because these subsets are going to represent a Tp. These should
always have an even number of elements.)

For every one of these subsets, we make a call to the function recCreateAll,
but now with the following parameters. For current layout, we will use the
same value as the one we already had, but we will add the current subset

14

as an element to this array. For tiles left over, we also use the same value as
we already had, but now without the elements that are in the current subset
comb.

The number of stone layouts with size n are presented in the next table.
Here, n is the number of tiles used and TLeasy and TLhard are the number of
tile layouts generated respectively in the easy case and the hard case. Note
that only the number of tile layouts with an even number of tiles are counted,
otherwise the arrangement can never be solvable at all.

n TLeasy TLhard

0 1 1
2 1 1
4 3 4
6 15 31
8 105 379

10 945 6556
12 10395 150349
14 135135 4373461
16 2027025 156297964
18 34459425 6698486371
20 654729075 337789490599
22 13749310575 19738202807236
24 316234143225 1319703681935929
26 7905853580625 99896787342523081
28 213458046676875 8484301665702298804
30 6190283353629375 802221679220975886631

One thing that draws the attention is that both sequences follow a clear
pattern. The sequence emerging from the easy case can be recognized as

(n− 1)!!

Note that this is a double factorial formula, which means that we only multi-
ply all the odd numbers. The proof that this formula is correct, relies on the
fact that we will not count tile layouts that can be translated to another tile
layout double. We can also represent the tile layout as a string, where each
set of tiles is represented by a certain character, and where the positions of
that character indicate at what positions the tiles from that set occur in the
arrangement. For example the tile layout {{0, 5}, {1, 2}, {3, 4}} can also be

15

(a) (b) (c)

Figure 6: The three arrangements that can be created from configuration
[1, 2, 1].

represented as abbcca. We can assume that there will always be an a-tile
before the first b-tile and the first c-tile, and there will always be a b-tile
before the first c-tile, otherwise we can translate the sets in such a way that
this will be the case. The first a-tile can only be placed at one position, in fact
position 0. For the second a-tile there are (n−1) possible positions. The first
b-tile can also be positioned at only one position, the first position that is not
occupied yet by the a-tiles. For the second b-tile there are (n − 3) possible
positions, and so on. This way there are (n− 1) ∗ (n− 3) ∗ . . . ∗ (n− (n− 1))
possible tile layouts, hence (n− 1)!!.

The hard case can be recognized as the number of partitions of an n-set
into even blocks, this is also shown in [7].

4.4 Arrangement

Having both a configuration and a tile layout, an arrangement can be cre-
ated. An interesting question is, given all possible configurations consisting
of n positions and all tile layouts consisting of n tiles, how many unique ar-
rangements can be created. Given the fact that all configurations and deck
tile layouts are unique, a tempting assumption would be that the number
of unique arrangements is the multiple of the number of configurations and
the number of tile layouts. This however is not the case. Consider all ar-
rangements consisting of 4 stones, with the following configuration: [1, 2, 1].
The tile layouts would be {{0, 1}, {2, 3}},{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}.
These are shown in Figure 6. By mirroring the arrangement in Figure 6(a),
the same arrangement as in Figure 6(b) would arise. Therefore, the assump-
tion that the number of unique arrangements is equal to the multiple of the
number of configurations and the number of tile layouts is incorrect.

In order to know how many unique arrangements there exist, given a spe-
cific number of positions and tiles, one should iterate over all arrangements.
If a certain arrangement has a configuration that is not symmetric, there is

16

(a) (b)

Figure 7: Figure (a) shows the pattern in which a number is assigned to a
tile in the tile layout, for configuration [2, 4, 2]. In (b) is shown what number
is assigned to each tile in the complement tile layout.

no possibility that under the current constraints that are applied to the tile
layouts this arrangement can be a duplicate. However, when the configura-
tion is symmetric, we need to determine whether the complement tile layout
also exists in the collection of all possible tile layouts. If so, this arrangement
would be the same as another arrangement, hence we should count it only
once. We will now describe how to compute the complement tile layout.

In Section 4.3 it is described in which position a tile would get in a
certain arrangement. The pattern is that we start by assigning tiles to the
lowest position in the leftmost column and put the next tile on top op the
previous tile, until none of the positions in that column are vacant. Then
we shift one column to the right and repeat this process. Here both the tiles
with index 1 and 2 are element of Tp for some p, and both tiles 3 and 4
are element of Tp for some different value of p. The complement tile layout
is what you get when having a configuration and a normal tile layout, and
translate every tile number in the tile layout to the number that it would
have got when the assigning pattern would be from right to left. In Figure 7
it is shown how the numbers from the tile layout can be translated to the
complement tile layout. In this example we have configuration [2, 4, 2] and tile
layout {{0, 5}, {1, 7}, {2, 6}, {3, 4}}, here the complement tile layout would
be {{0, 2}, {1, 7}, {3, 4}, {5, 6}}. Since the tile layout and the complement tile
layout are both different from each other and both legal, this arrangement will
be counted double, if we were to pair all configurations with all tile layouts.
We need to filter these out. The number of arrangements that remain after
this filter operation, is shown in the following tables. Here we distinguish once
again the easy case from the hard case. In these tables, n is the number of
tiles considered, Ctot is the number of configurations that can be created with

17

this number of tiles and TL is the number of tile layouts that can be created
from this number of tiles. The product of Ctot and TL is represented by Aexp,
which stands for expected arrangements. The actual number of arrangements
is represented by A, and finally the number of arrangements that are counted
double in Aexp, is represented by Adouble. Note that A + Adouble = Aexp.

Easy case

n Ctot TL Aexp A Adouble

4 6 3 18 17 1
6 17 15 255 225 30
8 45 105 4725 4286 439

10 113 945 106785 99675 7110
12 269 10395 2796255 2669392 126863

Hard case

n Ctot TL Aexp A Adouble

4 6 4 24 23 1
6 17 31 527 463 64
8 45 379 17055 15431 1624

10 113 6556 740828 690998 49830

We were not yet able to find a pattern or well-known sequence for the
numbers of A and Adouble.

5 Brute force strategies

An interesting question that would arise when having an open instance of
Mahjong is whether a winning move sequence exists or not. We will report
on two ways to check whether this winning move sequence exists or not.

5.1 Tile pairing

An interesting observation reported by [13] is that for an open instance it is
not important in what order the tiles are removed, but rather the choice of
pairings. (Pairing is when we have a group of tiles, Tp, and we make a move
by removing two of these tiles; these tiles are said to be paired. We can also
decide to pair two tiles, before we make the actual move.)

18

The proof of this relies on the obvious fact that removing a pair of tiles
does never cause any previously free tile to become blocked. When we have a
group of tiles, and we have already decided which tiles will be paired with each
other, it does not matter in which order we remove the pairs. For example, if
we can choose between removing pair i and pair j, removing pair i will never
result in the fact that pair j can not be removed any more and vice versa.

In [13] it is also reported that if we have an arrangement consisting of n
tiles, and for all p it holds that |Tp| = 2, it is possible to determine in quadratic
time whether a winning move sequence exists or not. An algorithm which can
do this is shown in Appendix C.

Based on this information, the author of [13] constructed an algorithm
that could answer the boolean question whether a winning move sequence
exists for any arbitrary arrangement. This is done by generating all possible
tile pairings in advance, and checking whether there exists at least one way
to pair these tiles in such a way that the algorithm of Appendix C results in
the empty arrangement. In that situation, a winning move sequence exists.
There are

m∏
i=1

(
|Ti|
2

)
possible ways to pair all tiles. The pseudo code for this algorithm is shown
in Appendix D.

5.2 Dynamic programming

Another way to check whether an instance of Mahjong is solvable or not, is to
use a dynamic programming algorithm. The idea behind this approach is as
follows. In case we want know whether an arrangement of size n is solvable, we
check all possible moves that can be performed on this arrangement, and for
each of these moves, we play it from the start position. If we have m moves,
we now would get m arrangements of size n− 2. For all these arrangements,
we will check whether this one is solvable in the same way.

With a little optimization, this approach could be a very strong tool for
generating all possible arrangements, that can be solved. If we start with all
arrangements of size 2, and we store the ones that are solvable (which is in
fact just one) than for every arrangement of size 4 we are able to check in
quadratic time whether this arrangement is solvable or not. After we have
stored all the solvable arrangements of size 4, we could do the same for every
solution of size 6, and so on.

19

The pseudo code for this algorithm is provided in Appendix E. It starts
by initiating an associative array in which all arrangements that are solvable
can be stored. After that the only arrangement of size 2 that is solvable is
stored in this array and the variable n done, which keeps track of the size of
the arrangements we’ve already computed, is initiated and set to 2. We have
computed manually all arrangements of size 2, so this is true. After we have
computed all arrangements of size 4, this value will be set to 4, and so on.
From here on, we can make calls to the function calculate.

The first thing this function does, is checking whether arrangements of
this size are already calculated. This may seem very trivial, but otherwise
the function would not be able to handle a call with n = 2. Another reason
for this check is when we were to implement this function in such a way that
this function could be called multiple times, this small line of code could save
us lots of computational power, when we already calculated up to a certain
size, and the requested n would be lower than this.

When this is not the case, we start a loop which will first compute all
possible arrangements of size n done + 2, then increments n done with two,
and repeats this process as long as n done is smaller than the requested size.
Note that we will always increment with two, all arrangements have an even
size. Because we will always remove two tiles, this will always be the case.

In this loop, we would like to evaluate all possible arrangements, which
are all possible combinations of configurations and tile layouts. As stated in
Section 4.4, some duplicates should be left out. In order to keep the pseudo
code as clean and clear as possible, this process is not described in detail.
For each arrangement a we will check which are the legal moves. Then, for
each of these moves we will perform it on a copy of a, and check whether the
result was already classified as solvable during the previous iteration. Note
that due to the fact that we leave out many arrangements because they are
the same by means of reflection, we will also have to check on this. If the
arrangement or the reflected arrangement is found, this means we can also
solve this arrangement, hence we add it to solutions. We do not have to
check any further on this arrangement, so we can also break the most inner
loop. When the function is done running, all solvable arrangements of size n
can be obtained from solutions.

20

6 Experiments

In this section we show the results of our experiments.

6.1 Computing all arrangements

An interesting question is, given all possible arrangements of size n consisting
of one cross section, how many of these contain a winning move sequence?
We will provide the results of experiments covering arrangements with a
small number of tiles. In order to get these results we used the dynamic
programming algorithm presented in Section 5.2, and afterwards the tile
pairing algorithm reported on in Section 5.1 for validation purposes (up to
n = 10).

We distinguish the hard case from the easy case. In the results we show
the following data. First the number n of tiles we used. In Ctot we show
the number of configurations consisting of one cross section that exists. In
the column DC we show the number of deck configurations consisting of n
tiles that exists. Note that in the easy case, this value is by means of the
additional constraint always 1. In the column TL we show the number of tile
layouts that consist of n tiles.

The column A shows the total number of possible arrangements that can
be generated. In the column As, we show the number of arrangements for
which there is at least one winning move sequence, the column Ab shows the
number of arrangements for which no such sequence exists. Note that the
sum of the value in solvable and the value in blocked is always the same as
the number of arrangements.

Easy case

n Ctot TL A As Ab

2 2 1 2 1 1
4 6 3 17 4 13
6 17 15 225 26 199
8 45 105 4286 224 4062

10 113 945 99675 2335 97340
12 269 10395 2669392 27510 2641882

21

Hard case

n Ctot DC TL A As Ab

2 2 1 1 2 1 1
4 6 2 4 23 8 15
6 17 4 31 463 101 362
8 45 8 379 15431 2174 13257

10 113 16 6556 690998 64771 626227

6.2 Classified arrangements

In Section 3.3, a definition was proposed to classify whether an arrangement
would be blocked or solvable. As was stated there, this definition is only solid
when handling an arrangement where for all p it holds that |Tp| = 2, in all
other cases we would have to go deeper into the game tree before we would be
able to determine whether an arrangement is blocked or not. As this could be
very time consuming, an interesting question could be in what percentage of
the cases that are blocked is covered by this definition without going deeper
in the game tree.

We obtained these results by checking from all blocked instances whether
they also adhere to the blocking definition. The results are presented in the
next table. Here, n is the number of tiles in the arrangements, A is the
number of arrangements that can be created using n tiles, Ab is the number
of blocked arrangements, and Ac is the number of blocked arrangements that
are also classified by means of the definition.

n A Ab Ac

4 23 15 15
6 463 362 330
8 15431 13257 11753

The results show clearly that the more tiles are used, the higher the percent-
age of arrangements that are not correctly classified becomes.

7 Conclusion and future work

The main purpose of this research was to gain information about what per-
centage of arrangements are solvable. We have provided definitions of several

22

aspects of the game Mahjong Solitaire, and most of them along with an al-
ready known number sequence such that it is easy to calculate for a certain
number of tiles, how many different arrangements there actually exist.

Getting information about what percentage of these arrangements are
solvable, is a bit harder. We provided a dynamic programming algorithm that
can do so relatively fast, at the cost of a high number of space resources. We
also have reported on the algorithm that was proposed by [13], which can be
used for this purpose by evaluating every arrangement individually.

The results that we obtained regarding the percentage of solvable ar-
rangements are at first sight not very significant. The dynamic programming
algorithm however, is perfectly usable for arrangements consisting of an arbi-
trary number of tiles and cross sections, provided that enough computation
power is available.

As a recommendation for future work, one issue that seems very promising
is the blocking definition. At the moment we can only be sure of its correct
working if we are dealing with the case that for all p it holds that |Tp| =
2, otherwise we will have to go deeper into the game tree as described in
Section 3.3. If the blocking definition would be extended in such a way that
more (or eventually all) patterns of blocked arrangements could be detected,
without the mentioned restriction, it would give rise to various possibilities
for answering the solvable arrangements question.

If someone were to find a recurrence relation for the number of arrange-
ments given n tiles, or even the number of solvable arrangements, this would
be a mayor achievement.

Acknowledgements

I would like to thank W.A. Kosters, J. de Ruiter, M.A. Swenne and L. van
Rijn-Parlevliet for their useful comments, the interesting discussions and
other comments they provided.

A Generating configurations

This appendix provides the pseudo code for implementing an algorithm that
can generate all configurations until a certain number.

1 // maximum size of configurations we want to compute.

23

2 int n = 14 ;
3 // array containing all configurations as a array<int>
4 array<array<int>> allConfigs ;
5 // initial call to function
6 allConfigurations (new array<int >, 0 , fa l se) ;
7

8 void allConfigurations (array<int> currentConfig , int last , bool
desc) {

9 i f (sum (currentConfig)==n) {
10 // ignore potential reflections:
11 array<int> reversed = reverseArray (currentConfig) ;
12 i f (currentConfig<=reversed) {
13 allConfigs . add (currentConfig) ;}
14

15 // exit loop when target size is reached
16 return ;
17 }
18

19 // generate versions with an extra column
20 for (int i=1;sum (currentConfig)+i<=n ; i++){
21 i f (desc&&i>last)break ;
22 array<int> copyOfConfig = config ;
23 copyOfConfig . add (i) ;
24 bool direction=desc ;
25 i f (i<last) direction=true ;
26 allConfigurations (copyOfConfig , i , direction) ;
27 }
28 }

B Generating tile layouts

This appendix provides the pseudo code for implementing an algorithm that
can generate all tile layouts until a certain number.

1 int n = 12 ;
2 array results = new array () ;
3 array tiles = { 1 , . . . , n } ;
4 recCreateAll ({∅} , tiles) ;
5

6 void recCreateAll (int [] [] currentLayout , int [] tiles_left_over
) {

7 i f (| tiles_left_over | > 0) {
8 foreach (comb ⊆ tiles_left_over) {
9 i f (| comb |%2 == 0 && tiles_left_over [0] ∈ comb) {

24

10 currentLayout [] = comb ;
11 recCreateAll (currentLayout , leftOverCopy−comb) ;
12 }
13 }
14 } else {
15 results [] = current ;
16 }
17 }

C Easy case solve algorithm

This appendix provides the pseudo code for implementing an algorithm that
solves any instance of Mahjong where holds that for all p it holds that |Tp| =
2.

1 function solvableEasy (array<int> configuration , array<array<int
>> tile_layout) {

2 array<Tile> tiles ;
3 array<array<Tile>> tilesPerType ;
4 int done = 0 ;
5

6 // initialize the tiles
7 for (i = 1 until i = configuration . length) {
8 for (j = 1 until j = configuration . get (i)) {
9 type = determine type of tile #done ;

10 Tile current = new Tile (i , j , type ,
11 (configuration . get (i)−1==j) ,
12 (i==1||configuration . get (i−1)<=j) ,
13 (i==configuration . size () | |
14 configuration . get (i+1)<=j)
15) ;
16 tiles . add (current) ;
17 tilesPerType . get (type) . add (current) ;
18 done++;
19 }
20 }
21

22 int tilesLeft = tiles . size () ;
23 while (removeTiles ()) { }
24 return (tilesLeft == 0) ? true : fa l se ;
25 }
26

27 bool removeTiles () {
28 bool removedTiles = fa l se ;

25

29 foreach (tilePair in tilesPerType) {
30 i f (tilePair [0] . playable == true &&
31 tilePair [1] . playable == true) {
32 foreach (currentTile in tilePair) {
33 i f (∃tile in tiles with x = currentTile . x and y =

currentTile . y−1) tile . topFree = true ;
34 i f (∃tile in tiles with x = currentTile . x+1 and y =

currentTile . y) tile . leftFree = true ;
35 i f (∃tile in tiles with x = currentTile . x−1 and y =

currentTile . y) tile . rightFree = true ;
36 tilesLeft−−;
37 }
38 removedTiles = true ;
39 }
40 }
41 return removedTiles ;
42 }
43

44 class Tile {
45 int x , y , type ;
46 bool leftFree , rightFree , topFree ;
47 constr Tile (x , y , type , topFree , leftFree , rightFree) {
48 set global . x = x , global . y = y ;
49 set global . topFree = topFree ;
50 set global . leftFree = leftFree ;
51 set global . rightFree = rightFree ;
52 }
53 bool playable () {
54 return (topFree&&(leftFree | | rightFree)) ;
55 }
56 }

D Tile pairing algorithm

This appendix provides the pseudo code for implementing an algorithm that
solves an open instance of Mahjong using the tile pairing algorithm, provided
by [13]. This algorithm relies on the function described in Appendix C.

1 array<array<array<int>>> paired_tile_layouts ;
2

3 function solvable (array<int> configuration , array<array<int>>
tile_layout) {

4 generate (tile_layout , 0) ;
5

26

6 foreach (paired_tile_layout in paired_tile_layouts) {
7 i f (solvableEasy (configuration , paired_tile_layout) ==

true) {
8 return true ;
9 }

10 }
11 return fa l se ;
12 }
13

14 private void make (array<array<int>> tileLayoutRest , array<array
<int>> created) {

15 i f (tileLayoutRest . size () == 0) {
16 i f (paired_tile_layouts . contains (created) == fa l se)
17 paired_tile_layouts . add (created) ;
18 } else {
19 for (int i = 0 ; i < tileLayoutRest . get (0) . size () −1; i++) {
20 for (int j = i+1; j < tileLayoutRest . get (0) . size () ; j++) {
21 created . add (tileLayoutRest . get (0) . get (i)) ;
22 created . add (tileLayoutRest . get (0) . get (j)) ;
23

24 tileLayoutRest . get (0) . remove (j) ;
25 tileLayoutRest . get (0) . remove (i) ;
26

27 make (tileLayoutRest , created) ;
28 }
29 }
30 }
31 }

E Dynamic programming algorithm

This appendix provides the pseudo code for implementing an algorithm that
generates all arrangements of size n that are solvable, using dynamic pro-
gramming. The class Arrangement is initiated using a constructor consisting
of a configuration as first parameter and a tile layout as second parameter.

1 // create storage for all solvable solutions , any size
2 hashmap<integer , array<Arrangement>> solutions ;
3 // add all possible solutions for n = 2
4 solutions . get (2) . add (new Arrangement ([1 , 1] , {{0 ,1}})) ;
5 // keep track on which n we solved last
6 int n_done = 2 ;
7

27

8 calculate (20) ;
9

10 function calculate (int n) : void{
11 i f (n >= n_done) return ;
12 for (; n_done < n ; n_done+=2){
13 array<array<int>> configurations = allConfigurations (n_done

+2, 0 , fa l se) ;
14 array<array<array<int>>> tile_layouts = recCreateAll ({ 1 , . . . ,

n_done+2 } , ∅) ;
15 array<Arrangement> smaller_solutions = solutions . get (n_done

) ;
16 iterate over all unique combinations of (configurations ,

tile_layouts) {
17 array legalMoves = all legal moves on this arrangement
18 foreach (legalMove as move) {
19 Arrangement current = new arrangement (configuraion ,

tile_layout) ;
20 current . doMove (move) ;
21 i f (solution . get (n_done) . contains (current)) {
22 solutions . get (n_done+2) . add (new arrangement (

configuraion , tile_layout)) ;
23 break ;
24 }
25 }
26 }
27 }
28 }

References

[1] A. Condon, J. Feigenbaum, C. Lund and P. Shor,
Random debaters and the hardness of approximating stochastic func-
tions,
SIAM Journal on Computing, Vol. 26, No. 2, 1997, pages 369–400

[2] G. Kendall, A. Parkes and K. Spoerer,
A Survey of NP-complete Puzzles,
International Computer Games Association Journal (ICGA), 2008,
31(1), 13–34

[3] The OEIS Foundation,
The On-Line Encyclopedia of Integer Sequences

28

http://oeis.org/

[retrieved March 4, 2011]

[4] The OEIS Foundation,
Number of stacks, or planar partitions of n
http://oeis.org/A001523

[retrieved March 4, 2011]

[5] The OEIS Foundation,
Number of palindromic and unimodal compositions of n
http://oeis.org/A096441

[retrieved March 4, 2011]

[6] The OEIS Foundation,
The Partition Numbers
http://oeis.org/A000041

[retrieved March 4, 2011]

[7] The OEIS Foundation,
Number of partitions of an n-set into even blocks
http://oeis.org/A005046

[retrieved March 4, 2011]

[8] F. C. Auluck,
On some new types of partitions associated with generalized Ferrers
graphs,
Proc. Cambridge Philos. Soc. 47, (1951), 679–686

[9] K. Baur and N. Wallach,
Nice parabolic subalgebras of reductive Lie algebras,
Represent. Theory 9 (2005), 1–29.

[10] The Wikimedia Foundation,
Mahjong solitaire,
http://en.wikipedia.org/wiki/Mahjong_solitaire

[retrieved February 28, 2011]

[11] D. Eppstein,
Computational Complexity of Games and Puzzles,
http://www.ics.uci.edu/~eppstein/cgt/hard.html#shang

[retrieved February 28, 2011]

29

[12] J. Elonen,
There is no deterministic way to solve a mahjongg solitaire game,
http://elonen.iki.fi/code/misc-notes/no-alg-mahj-solit/

[retrieved February 28, 2011]

[13] P. Gimeno,
Mahjongg Solitaire Solver,
http://www.formauri.es/personal/pgimeno/mj/mjsol.html

[retrieved February 28, 2011]

[14] Rubl.com Games,
Mahjong Solitaire online,
http://www.rubl.com/games/mahjong/

[retrieved February 28, 2011]

30

