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The emergence of stacks as a hardware device in stack 
machines implies the recognition of the importance of using 
stacks in different computer applications and the need to 
make use of them in others. This paper uses stacks to solve 
the sorting problem. Two stack-based sorting algorithms are 
introduced. The first is based upon sorting by the insertion 
technique, whereas the second is based upon sorting by 
the exchange technique. Their analysis and performance 
are derived when stack computers are used to run them. A 
comparison study with other sorting algorithms is pre- 
sented. This study shows that both algorithms have the best 
performance with a wide margin relative to other sorting 
algorithms when stack computers are used. 

1. INTRODUCTION 

The stacks or “last in first out” data structure has been 
widely used in several different ways in a computer [7]. 
In compiling programs, it can be used in parsing. In 
executing assignment statements, it can be used with 
zero-address instructions to manage temporary results. 
In carrying out dynamic storage allocation, it can be 
used to activate and deactivate arrays within one user’s 
program. Furthermore, the operating system can use 
stacks to activate and deactivate different users. 

Stacks can be implemented in any computer by 
software means, but in some machines a good deal of 
special hardware is provided to carry out stack opera- 
tions. Besides the BWOO-B6700 [8, 121 series that can 
be considered as the paradigm of the stack computers 
[ll], hardware stacks are present in the ICL 2900, a 
British entry in the computer market, in a number of 
minicomputers such as the Hewlett Packard HP3000 [2], 
and in a number of microprocessors such as the Intel 
8080, Intel iAPX 432 [9], and National PACE [13]. 

When a computer architecture is altered to include or 
facilitate some software device, it is a sign that the 
device has become generally accepted, far past the 
experimental stage, as an essential feature of the 
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computer system. From this sense, the emergence of 
stacks as a hardware device in stack machines implies 
the recognition of the the important of using stacks in 
different computer applications and the need to make use 
of them in others. In this paper, we expand the computer 
applications that use stacks to include solving the sorting 
problem. 

Internal sorting algorithms have been extensively 
studied [l, 10, 14, 181. Through this study, very 
interesting techniques have been discovered such as 
sorting by insertion, by exchanging, by selection, and by 
merging, Each of these techniques use different ap- 
proaches. As an example, sorting by insertion may use 
straight insertion, binary insertion, two-way insertion, 
and so on. In these approaches, the array and pointer 
data structure are mainly used. Other data structures, 

such as stacks and queues, are used as auxiliaries to keep 
track of the pointer sequences. In this paper, two 
algorithms using a stack data structure are introduced. 
The first is based upon sorting by the insertion tech- 
nique, whereas the second is based upon sorting by the 
exchanging technique. The second algorithm is a modifi- 
cation of the algorithm by Yuen [19]. 

This paper is organized as follows. In the next 
section, we briefly present the methodology used to 
study and compare the performance of the proposed 
algorithms with other algorithms. In Section 3, the stack 
insertion sort algorithm is described, and its perform- 
ance is derived. Section 4 does the same as Section 3 but 
for the stack partition sort algorithm. Finally, Section 5 
will show the importance of using the stack to sort a set 
of elements on a stack machine instead of the traditional 
sorting algorithms. 

2. THE METHODOLOGY USED TO STUDY AN 

ALGORITHM’S PERFORMANCE 

Our methodology consists of constructing the time 
formulas for a given stack algorithm and the ones that 
use the same technique but are implemented by arrays if 
they are run on the same machine. Time formulas are 
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symbolic formulas that express the execution times as 
functions of a set of performance parameters [3]. 

Our time formulas are generated by a performance- 
analysis software tool called “PASS” [4, 151. PASS is 
an analytic tool. It uses an analytic approach to predict 
the performance of a given computation. The input to 
PASS is a computation that is described by a program 
written in a language supported by PASS. PASS first 
constructs the computation structure model [16] of the 
given computation. It then uses the flow-analysis tech- 
nique [ 171 to derive the time formula of the computation. 
Using this technique, the time formula will be function 
in flow counts. Some of the flows are dependent flows 
that can be expressed in terms of a set of independent 
flows. In addition, there may exist some relations among 
the independent flows defined by the information being 
processed, thus the independent flows can often be 
expressed as functions of some externally observable 
parameters [3]. 

It is the user’s responsibility to specify the perform- 
ance parameters and use these parameters to define the 
flow counts for the independent flows in the computa- 
tion. In most cases in this paper, we use an analytical 
approach to derive the relationship between a flow count 
and the performance parameters. In some cases, it is 
difficult to use the analytical approach to derive the 
required relationship. In these cases, an experimental 
approach can be used. 

Not only is the time formula a function of the 
performance parameters, but it is also machine depen- 
dent. PASS assumes that all operations carried in a high- 
level language, such as Pascal, can be implemented 
using the following eight primitive operations: (1) 
dereference, (2) addition, (3) multiplication, (4) rela- 
tion, (5) logic NOT, (6) logic AND, (7) logic OR, (8) 
and assignment. The cost of a high-level operation is 
then represented by a vector that indicates how many 
times a primitive operation is used to accomplish the 
operation. The time cost of each of these primitive 
operations is usually given in the manufacturer’s specifi- 
cation tables [5, 61. These tables, for some interesting 
machines, are stored in a knowledge base accessed by 
the PASS system. Given this vector and specifying the 
target machine, PASS evaluates the cost of each high- 
level operation. On the other hand, if an assembly 
language is used, the time formula is a function of the 
cost of differently used instructions. The cost of an 
instruction depends upon the instruction type and the 
different operands modes. The cost of executing an 
instruction is also given in the manufacturer’s specifica- 
tion tables [5, 61. 

Specifying the machine and the relationships between 
the independent flows and the performance parameters, 
PASS tinally evaluates the time formula to answer the 

user’s questions about performance (e.g., the mean cost 
of the computation, the profile of the computation, etc.). 

To have adequate comparison results for different 
algorithms, they should be designed and run in their 
most matching environment. Since the stack sorting 
algorithms are designed to run on stack computers, the 
target machine should be a stack computer or at least a 
machine that can simulate the activities of a stack 
computer. PDPl 1 is a widely used machine that supports 
the main two stack operations PUSH and POP. At the 
same time, PDPll is a suitable machine to run array 
sorting algorithms. Consequently, PDPll was used as 
the target machine throughout this paper. 

3. STACK-INSERTION SORT ALGORITHM 

3.1 Description of the Algorithm 

The basic idea in sorting by insertion is to insert an 
element ai+ 1 into a sequence of ordered elements al, a2, 
* * *, ai in such a way that the resulting sequence of size 
(i + 1) is also ordered. The process of finding the 
appropriate place for the element ai+ 1 is accomplished 
via searching the ordered list aI, a2, * * * , ai. Typically, a 
linear search or a binary search technique can be used to 
find the element’s proper location. A detailed descrip- 
tion of these two algorithms can be found in Refs. 1, 10, 
14, and 18. Both algorithms make use of an array and 
pointers. 

A stack can also be used to implement sorting by 
insertion. In this case, two stacks called LEFT and 
RIGHT are used. The LEFT stack is used to push items 
in ascending order, whereas the RIGHT stack is used to 
push items in the descending order. The top of each 
stack at step i represents the insert point of element i. As 
a new item is being processed, the two stacks are 
shuffled to being the insert point to the top. After all the 
input elements are exhausted, the two stacks are com- 
bined onto the ascending-order stack. A minimum value 
(say - ao) is used to indicate the end of the LEFT stack, 
and a minimum value (say + a~) is used to indicate the 
end of the RIGHT stack. 

The steps of the latter algorithm are shown in an 
example of seven numbers chosen at random in Figure 
1. Figure 2 shows the algorithm written in PDPll 
assembly language. 

3.2 Analysis of the Algorithm and Its Time Formula 

In this section, we present the asymptotic behavior and 
the detailed analysis of the stack-insertion sort al- 
gorithm. The reader should refer to Refs. 1, 10, 14, and 
18 for the analysis of the straight-insertion sort and the 
binary-insertion sort algorithms. The analysis of these 
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Figure 1. An example of the stack-insertion sort algorithm. 
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Ll: 

L2: 

W: 

L4: 

L5: 

MOV #Nl ,Rl 
MOV #N2,R2 
MOV #FIN, 
MOV #MAX,(R21 
MOV #N,R3 

MOV #LOC,RB 

TST R3 
BEQ LS 
CMP (R4), (Rl) 
BGT L3 
MOV (RI) + ,-(R2) 
JMP L2 

CMP (R4), (R2) 
BGT L4 
MOV (R.2) + ,-(Rl) 
JMP L3 

MOV (R4) + ,-(R2) 
DEC R3 
JMP Ll 
CMP (Rl),#MIN 
BEQ TERM 
MOV (Rl)+ ,-(R2) 
JMP LS 

TERM: HALT 

; 
; 
; 
; 
; 
; 
; 
; 
; 

; 
; 
; 
; 
; 
; 
: 

Rl IS THE LEFT STACK POINTER 
R2 IS THE RIGHT STACK POINTER 
MIN IS THE LEFT BOSOM ELEMENT 
MAX IS THE RIGHT BOTTOM ELEMENT 
N IS THE NUMBER OF ELEMENTS TO 

BE SORTED 
R4 POINTS TO THE ELEMENTS TO 

BE SORTED 
IF R3 IS 0, AVIATE 

IF THE CURRENT ELEMENT IS > THE LEFT TOP 
CHECK IT WITH THE RIGHT TOP 

OTHERWISE, MOVE ELEMENTS FROM THE LEFT TO 
THE RIGHT UNTIL THE CURRENT ELEMENT 
BECOMES > THE LEFT TOP 

IF THE CURRENT ELEMENT IS < THE RIGHT TOP 
THEN THIS THE INSERTION POINT 

; OTHERWISE, MOVE ELEMENTS FROM THE RIGHT TO 
; THE LEFT UNTIL THE CURRENT ELEMENT 
; BECOMES < THE RIGHT TOP 
; PUSH THE CURRENT ELEMENT INTO THE LEFT STACK 
; PROCESS NEXT ELEMENT 

; MOVE THE CONTENTS OF THE LEFT TO 
; TO THE RIGHT IF THERE IS ANY 

Figure 2. Stack-insertion sort procedure. 

algorithms provides the performance parameters neces- 
sary to construct their time formulas. 

For the stack-insertion sort algorithm, the best case is 
when the input items are in order. In this case, each item 
is pushed with no movements at all and the algorithm 
best performance is of O(n), where n is the number of 
elements to be sorted. The worst case is when each item 
has to be inserted at the bottom of the stack that contains 
most of the previously inserted elements. In this case, 
the number of comparisons and the number of move- 
ments are about nZ/2 and the algorithm performance 
will be of O(n2). 

To obtain the performance equation of an algorithm, 
the performance parameters of the different steps must 
be expressed as a function of the number of elements. 
For the stack-insertion sort algorithm, the required 
number of iterations to complete the sorting part (loop 
Ll) is equal to the table size n. During this sorting stage, 
elements may be moved from the LEFT to the RIGHT or 
vice versa (loop LZ and loop L3, respectively). Since the 
cost of a movement is the same in both directions (a pop 

+ a push), it is enough to have the total number of 
movements. In the best case, this number 0, whereas in 
the worst case this number if equal to 

O+1+1+3+3+5+5+~~~+(n-2)+(n-2), 

if n is odd 

and 

if n is even 

which is (n - 1)2/2 if n is odd, and (n - 2)2/2 + (n - 
1) if n is even. This can be written as ROUND (n2 - 
2n/2 + 0.5) for all values of n. After sorting is 
completed, the elements of the LEFT are popped and 
pushed into the RIGHT (loop L5). The number of these 
elements in the worst case depends also upon whether n 
is even or odd. It is 1 if n is even and n if n is odd. This 
can be represented as [(n -t 1) mod 2 + n*(n mod 2)], 

These performance parameters were used to find the 
upper and lower bounds using PASS, and assuming that 
the PDPI 1 machine was the target machine. The same 
step was done for the sight-in~~ion sort and the 
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Table 1. Cost Expressions of Upper and Lower Bounds for 
Sorting by Insertion Algorithms* 

Table 2. Average Cost Expressions for Sorting by 
Insertion Algorithms* 

Best case (rsec) Worst case (~sec) Average cost (psec) 

Straight 
insertion 102.1n-49.57 

Binary 
insertion 129.7ni+ 53.3n 

- 100.19 
Stack 
insertion 4 1.65n + 49 

37.385~1~ + 64.72n -49.57 

33. 12n2 + 129.66ni 
+ 149.84n - 229.85 

9.975n2+41.65n+49 

Straight 
insertion 

Binary 
insertion 

Stack 
insertion 

18.69n2+ 158.18n - 124.34 

16.56n2+ 129.66ni+ 101.57n- 165.02 

3.325n2+48.3n+49 

’ i = log* n 

binary-insertion sort algorithms to determine the upper 
and lower bounds of each of them. Table 1 gives the 
performance equations of these boundaries for the three 
algorithms. Figure 3 represents these performance 
equations graphically. 

Before dealing with the average cost expression of an 
algorithm, it is necessary to have the probability 
distribution of the inputs. From this distribution, the 
probabilistic properties of different performance param- 
eters can be derived and used to find the average cost. 
For sorting, a natural assumption is that every permuta- 
tion of the sequence to be sorted is equally likely to 
appear as an input. 

We will use this assumption henceforth. This does not 
mean that it is the only assumption we can make. In 
some situations, the inputs may have other properties as 
being partly sorted or in reverse order. Such properties 
will heavily influence the expected performance of an 
algorithm and the designer’s decision. 

For the stack-insertion sort algorithm, only two 
performance parameters are influenced by the input 
distribution; namely, the number of movements between 
the LEFT and the RIGHT stacks during the sorting step 
(loop L2 and loop L3) and the number of elements in the 
LEFT stack after the sorting is completed (loop L5). To 
find the probability distribution of these two random 
numbers, an experimental study was used to measure 
them. It was found that the total number of movements 
between the two stacks during the sorting process is a 
positively skewed binomial distribution with p close to 
0.5. This is expected since in every step the new element 
is pushed into the LEFT stack. The distribution will be 
symmetric if the element is pushed one time into the 
LEFT stack and another time into the RIGHT stack. The 
average number of movements is modeled as (n2 - l)/ 
6. It is also found that the number of elements left in the 
LEFT stack after the sorting is completed is uniformly 
distributed between 1 and n. 

Using these results, the average performance equation 
for the stack-insertion sort algorithm is as shown in 

a i = log, n. 

Table 2. Similar studies for the straight-insertion sort 
algorithm and binary-insertion sort algorithm produce 
the average performance equations shown in Table 2. 
Figure 4 represents these performance equations graphi- 
cally. Needless to say, the stack-insertion sort algorithm 
has the best performance among the sorting-by-insertion 
algorithms for the three working conditions; namely, the 
best, the worst, and the average cases. 

4. STACK-PARTITION SORT ALGORITHM 

4.1 Description of the Algorithm 

In this class of sorting algorithms, out-of-order pairs of 
elements interchange their positions until no more such 
pairs exist. The most popular algorithm using this 
technique is Hoare’s Quicksort that selects an element as 
a reference (pivot) and partitions the elements into two 
sections, such that all elements smaller than the pivot are 
in the first section and all elements larger than the pivot 
are in the second section with the pivot itself between the 
two . This ensures that the pivot is in its correct location. 
The same process is applied recursively to both sections 
until all elements are in their correct locations. A 
detailed description of the quick sort algorithm can be 
found in Refs. 1, 10, 14, and 18. 

The quick sort algorithm is implemented using an 
array to store the input, pointers to keep track of the start 
and the end of each partition, and an auxiliary stack to 
implement recursion. Another implementation, using 
stacks only, is due to Yuen [19]. In Yuen’s version, 
three stacks called SOURCE, FIELD, and BASE are 
used to implement the quick sort algorithm. In the 
beginning, the whole vector is in the SOURCE stack. 
The top element is read out and used as a PIVOT and the 
rest of the elements are then divided between BASE and 
FIELD according to their value relative to the PIVOT 
(e.g., larger elements go to BASE and smaller ones to to 
FIELD). When SOURCE is empty, the PIVOT is then 
pushed on BASE and it is tagged to indicate that it is in 
its correction location. 
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Figure 4. Average performance of sorting by insertion al- 
gorithms. 
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The SOURCE stack is exchanged with the FIELD 
stack and the same process is repeated until both the 
SOURCE stack and the FIELD stack become empty. At 
this moment, we exchange the SOURCE with the BASE 
and repeat the process again. Two things, however, are 
now different. First, the SOURCE stack has a number of 
sections separated by tagged elements. These elements 
cannot be selected as PIVOT again. Whenever a tagged 
element is at the top of the SOURCE, it is poped and 
pushed into the BASE until an untagged element is at the 
top. This latter element is used as a PIVOT and the 
partitioning process is repeated until a tagged element is 
met again. Second, because stacking a vector reverse the 
direction, we have to change the rule of allocating 
elements to BASE or FIELD (i.e., smaller elements go 
the BASE and larger ones go the FIELD). In other 
words, every time we exchange the SOURCE and the 
BASE, we have to change the direction of flow. This is 
controlled by a variable PITCH whose value may be 
either 0 or 1. 

Two modifications are added to Yuen’s algorithm. A 
test is added to see if the SOURCE is empty or not 
before trying to pop an element as a PIVOT. This is 
because the SOURCE sometimes contains only tagged 
elements and no more unsorted sections. After the 
algorithm is completed, the elements are in the BASE in 
order or in the reverse order. This depends upon table 
size and elements permutation. The user has to check the 
variable PITCH to decide about this before loading the 
elements back to the given array. 

The above algorithm is illustrated by an example 
shown in Figure 5, whereas the algorithm written in 
PDPll assembly language is shown in Figure 6. 

4.2 Analysis of the Algorithm and Its Time Formula 

No analysis is reported in Yuen’s technical report for the 
stack-partition sort algorithm. Yuen, however, mentions 
that this algorithm shares the advantages and the 
disadvantages of the Quicksort algorithm. In order to 
verify Yuen’s statement, the analysis of the algorithm is 
done by first investigating the behavior of the partition- 
ing process. From this investigation, we can determine 
the input permutation that causes the best and the worst 
cases. 

The best case occurs when the pivot is correctly 
positioned every time such that the number of the 
elements that are smaller than the pivot is equal to the 
number of elements that are larger than it (i.e., half of a 
partition goes to the stack BASE and the other half goes 
to the stack FIELD). Table 3 shows such sequences for n 
= 3, 7, 15, and 3 1. Such behavior is exactly similar to 
the best case for the Quicksort algorithm [ 181. This leads 
to O(n log2 n) as the best performance of the stack- 
partition sort algorithm. 
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The worst performance occurs when the pivot is 
greater than (or smaller than) all of the other elements of 
a partition. This happens when the input elements are 
either in the reverse order or in order. In this case, the 
algorithm is acting as the worst case of the straight- 
insertion sort algorithm and the worst case of the 
Quicksort algorithm. This means that its worst perform- 
ance is of 0(n2). Thus, the asymptotic boundaries of the 
stack-partition sort algorithm are identical to those of the 
Quicksort algorithm. Therefore, to compare the two 
algorithms, we must derive the performance equations 
for both. The analysis of the Quicksort algorithm is 
covered by different authors [ 1, 10, 14, 181. For the 
stack-partition sort algorithm, it is necessary to model 
the performance parameters as a function of the array 
size n. 

In the worst case, each iteration starts by selecting a 
pivot, sends all of the other elements to the BASE, and 
then exchanges the BASE with the SOURCE. There- 
fore, the number of times in which the FIELD is used is 
zero (loop Ll), and the number of times in which the 
BASE and the SOURCE are exchanged is n (loop LO). 
After a pivot has been pushed into its proper location, 
loop Ll is executed one more time to pop all of the 
tagged elements left in the SOURCE and push them into 
the BASE. This occurs for all times except in the first 
two iterations where loop Ll is executed only once. This 
causes loop Ll to be executed. 

2(n - 2) + 2 = 2(n - 1) times 

It is also easy to observe that the number of tagged 
elements after the ith iteration is i and half of them are at 
the top of the SOURCE and the other half are at the 
bottom. From this observation, loop L2 is activated 
twice per iteration and it is executed i times in both 
activations. Hence, loop L2 is executed. 

n(n - 1) times 1+2+3+...+(n-1)=2 

Similarly, the number of untagged elements after the ith 
iteration is (n - i). The top of these elements is to be 
selected as pivot and the other (n - i - 1) elements will 
be pushed into the BASE via loop L4. Therefore, loop 
L4 will be executed. 

Table 3. Examples of Best Case Sequences 

n Elements 

3 312 

7 6572134 

15 121191015131443127568 
31 24 22 21 23 18 17 19 20 30 29 31 26 27 28 8 6 5 

7 2 1 3 4 14 13 15 10 9 11 12 16 



Stack-Based Sorting Algorithms 233 

PITCH = 1 S 4913728 
F 

PIVOT = 4 B 
____________________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = I F 
S 231 

PIVOT = 2 B 4*8 7 9 
__________________~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 1 s 1 
F 

PIVOT = 1 B 2* 3 4* 8 7 9 
~~___~_____________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 1 S 
F 

PIVOT = -- B 1*2*3 4*8 7 9 
_~___~_~__~_~______~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 0 B 2* 1* 
F 

Figure 5. An example of the stack-partition PIVOT = 3 S 3 4*!3 7 9 
sort algorithm. _~___~___~_~______~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 0 B 4* 3* 2% 1* 
F 

PIVOT = 8 S 879 
______________~_____~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 0 B 8*7 4*3*2* I* 
s 9 

PIVOT = 9 F 
_~_~________________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 1 S 9* 8* 7 4* 3* 2* 1* 
B 

PIVOT = -- F 
____~____~_____~____~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 1 S 7 4* 3* 2* 1* 
B 8* 9* 

PIVOT = 7 F 
_________~_~________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PITCH = 1 S 
B 1* 2* 3* 4* 7* w 9* 

PIVOT = --- F 

(tt-l)+(n-2)+.**+l=!!@$tima 

Loop L3 is executed n times since there are n pivots 
selected. Test L12 is executed only once when we end 
with the PITCH equaling 0. This occurs if the table size 

is even. The mod function can be used to represent such 
a relation as [(n + 1) mod 21. Finally, loop L15 will be 
executed n times if test L12 is true. Therefore, loop L15 
will be executed n*[(n + 1) mod 21 times. 

It is not important to model the number of execution 
times of other branches since they do not appear in the 
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LO: 

Ll: 

L2: 

W: 

L4: 

L5: 

L6: 

L7: 

L& 

L9: 
Llo: 

Lll: 

L12: 

Lls: 

L14: 

L13: 

MOV #NS,RO ; RO IS THE SOURCE STACK POINTER 
MOV #NB,RI ; R2 IS THE BASE STACK POINTER 
MOV #NF,R2 ; R2 IS THE FIELD STACK POINTER 
MOV #N,R3 ; N IS THE NUMBER OF ELEMENTS TO 

; BE SORTED 
MOV #l,RS ; SET THE PITCH 
MOV #FLAG,(RI) ; FLAG INDICATES THE BASE BOTTOM 
MOV #FLAG,@21 ; FLAG INDICATES THE FIELD BOTTOM 

TST R3 
BEQ L12 
CMP (RO),#FLAG 
BEQ LlO 
BIT (RO),#O40000 
BEQU 
MOV (RO) + ,-(Rl) 
JMPL2 
CMP (RO),#FLAG 
BEQ L9 
MOV (RO) + ,R4 
CMP (RO),#FLAG 
BEQU) 
BIT (R0),#040000 
BEQ LS 
TST RS 
BEQL6 
CMP (RO),R4 
BLT LS 
MOV (RO) + ,-(Rl) 
JMP L4 
MOV (RO) + ,-(R2) 
JMP LA 
CMP (RO),R4 
BGT L7 
MOV (RO) + ,-(Rl) 
JMP L4 
MOV (RO) + ,-(R2) 
JMP L4 
BIS #04OOOO,R4 
MOV R4,-(RI) 
DECR3 
CMP (R21, #FLAG 
BEQ L9 
MOV RO,R4 
MOV R2,RO 
MOV R4,R2 
JMP Ll 
MOV RO,R4 
MOV RI,RO 
MOV R4,RI 
TST R5 
BEQ Lll 
CLR RS 
JMP LO 
INCRS 
JMPU) 
TST R5 
BNE L13 
CMP (RO),#FLAG 
BEQ L14 
MOV (RO)+ ,-(RI) 
JMP 15 
MOV RO,R4 
MOV Rl,RO 
MOV R4,Rl 
HALT 

; ARE ALL ELEMENTS PROCESSED? 
; IF YES, EXIT 
; IS THE SOURCE EMPTY? 
; IF YES, LOOK AT THE BASE STACK 
; IS THE SOURCE TOP TAGGED? 
; IF NO, SELECT THE PIVOT 
; PUSH THE SOURCE TOP INTO THE BASE 
; TEST NEXT SOURCE ELEMENT 
; IS THERE MORE ELEMENTS IN THE SOURCE? 
; IF NO, EXCHANGE THE SOURCE AND THE BASE 
; GET THE PIVOT 
; IS THERE MORE ELEMENTS IN THE THE SOURCE? 
; IF NO, PUSH THE PIVOT INTO THE BASE 
; IF YES, IS THE SOURCE TOP TAGGED? 
; IF YES, PUSH THE PIVOT INTO THE BASE 
; TEST THE PITCH’S VALUE 
;IFOGOTOL6 
; IF THE SOURCE TOP LESS THAN 
; THE PIVOT, SEND IT INTO 
; THE BASE 
; BACK TO PROCESS NEXT ONE 
; OTHERWISE SEND IT INTO THE FIELD 
; BACK TO PROCESS NEXT ONE 
; IF THE SOURCE TOP GREATER THAN 
; THE PIVOT, SEND IT INTO 
;THEBASE 
; BACK TO PROCESS NEXT ONE 
; OTHERWISE SEND IT INTO THE FIELD 
; BACK TO PROCESS NEXT ONE 
; TAG THE PIVOT 
; PUSH THE PIVOT INTO THE BASE 
; DECREMENT THE COUNTER 
; IS THE FIELD EMPTY? 
; YES, BACK TO TEST IF THE SOURCE CONDITION 
; NO, EXCHANGE THE SOURCE 
; WITH THE FIELD 

Figure 6. Stack-partition sort procedure. 

; EXCHANGE THE SOURCE 
; WITH THE BASE 

; CHANGE THE PITCH’S VALUE 

; AND GO BACK FOR NEXT PASS 

; IS PITCH = O? 
; NO, HALT 
; VES, MOVE ALL ELEMENTS FROM 
; THE SOURCE TO THE BASE 

; THEN EXCHANGE THE SOURCE 
;WITHTHEBASE 

; STOP 
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algorithm’s performance equation. However, it is 
straightforward to model them as a function of the table 
size n. 

In the best case, each iteration starts by popping the 
untagged top element of an unsorted section of the 
SOURCE as a pivot whose value is such that exactly half 
of the section elements are larger than it and half are 
smaller. After this splitting process, half of the section 
under consideration is in the FIELD and the other half is 
in the BASE separated from other sections (if any) by 
one or more tagged elements. FIELD and SOURCE are 
exchanged if FIELD is not empty, and the splitting 
process continues until SOURCE become empty. In this 
case, BASE and SOURCE are exchanged and a new 
iteration starts. 

Following the above procedure, if n is equal to (2k - 
l), where k = 1,2,3, - * a, SOURCE will have (k - 1) 
sections a&r the first iteration whose lengths are (2k-’ 
- l), (2k-2 - l), * - -, 1. During each iteration, 
SOURCE’s unsorted sections are partitioned in a similar 
fashion into a number of unsorted sections. If a section 
length is 1, the partition process for this section 
termmates and the element is in its proper location. This 
sorting process terminates when all unsorted sections 
terminates. Based upon this partitioning process, the 
number of execution times of different algorithm steps in 
the best case are evaluated. We will now consider, 
without loss of generality, that n is equal to (2’ - l), 
where i = 1, 2, 3, ***. 

The number of iterations required for a given size n is 
equal to the number of times necessary for all sections to 
be reduced to length 1, which is log;! n. 

The algorithm goes through the loop Ll whenever the 
SOURCE is not empty. In this case, Ll will be executed 
a number of times equaling the number of the selected 
pivots during the iteration plus one. Therefore, the total 
number of times loop Ll is executed, is (n + log n - 2) 
times. 

In each iteration of Ll, loop L2 will be executed a 
number of times equaling to the number of the tagged 
elements produced after the previous iteration. This 
number is 0 for the first iteration, log n for the second, 
[log* n + log n/2 + ’ - - + l] for the third and so on. 
This can be expressed in the following recurrence 
equation: 

T2(i)=T2(i-l)+Tz(i-2)+***+T2(1)+i(i-1) 

+i (i-j)(2j-l-l), T*(l)=0 
j=l 

whose solution is n(k - 1)/2, where k = log* n . 
The number of pivots used for a section of length m is 

an iteration is log2 m. Therefore, loop L3 is executed a 
number of times described by the following recurrence 

equation: 

Tj(i)=TS(i-l)+Ts(i-2)+***+Ts(l)+i, 

T&) = 1 

whose solution is T3 = n. 
The algorithm goes through the loop L4 (m - 1) 

times for a given section of length m. This leads to the 
following recurrence equation: 

T,(l)=0 

whose solution is (k - 2)(n + 1)/2, where k = log* n. 
The number of exchanges between FIELD and 

SOURCE during processing of a given section depends 
not only upon the section length but also upon the section 
location in the SOURCE. This number, which is equal to 
the log2 m for the sections whose length m, is such that 
log2 m is odd wherever they are. However, when log2 m 
is even, this number becomes equal to log2 m if the 
section is the last unsorted section in the SOURCE, and 
log* m otherwise. This proposes to have two cases for 
the analysis: one when k = log, n is even, and one when 
it is odd. By considering different section sixes for a 
given n, and using the above observation, each of the 
two cases can be represented by a recurrence equation as 

follows: 
Even case: 

T8(i)=TB(i-2)+2(i-L) , 

Odd case 

TS(2) = 1 

TS(i)=Te(i-2)+2(‘-‘1, T8(3)=3 

Both relations are solved, and the two solutions are 
combined together into TRUNC (2n - 3/3). 

Finally, test L12 is executed only once when we end 
with the PITCH equaling 0. This occurs when log, n is 
odd. Loop L15 is executed n times if test L12 is true. 
Therefore, loop L15 is executed n*[(logz n) mod 21. 

As mentioned in the analysis of the worst case, the 
number of times for executing the other branches are not 
important since they do not appear in the performance 
equation. 

The performance parameters modeled above, in both 
the worst case and the best case, were used to find the 
upper and the lower bounds of the algorithm using 
PASS, and assuming that the PDPll machine was the 
target machine. The same step was done for the 
Quicksort algorithm. Table 4 gives the performance 
equations of these boundaries for both algorithms. The 
same results are represented graphically in Figure 7. 

Considering the average case, we will assume again 
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Figure 7. Upper and lower bounds of sorting by exchange 
algorithms. 
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Figure 8. Average performance of sorting by exchange 
algorithms. 



Table 4. Cost Expressions of Upper and Lower Bounds for Table 5. Average Cost Expressions of Sorting by Exchange 
Sorting by Exchange AlgoritbmP Algorithms’ 

Best case (psec) Worst case (j~sec) Average case (rsec) 

Stack 23.X- 13.6% + 
121.li+ 10.5y+ 
20.65x-56.7 

Quick 126.48ni- 35.04 + 
47.02 

33.25n2+77n+ 
20.65x - 10.5 

63.24n2+ 16.22n- 
67.48 

Stack 102.55ni+92.43+210.525n+233.05 
Quick 252.%ni+252.%i+298.6n+472.18 

’ i = log2 n. 

ai = logs n.x = (n+l)md 2. z = imod 2.y = tnmc (2n/3- I). 

that all of the input permutations are equally likely. 
Instead of modeling all of the performance variables, we 
will use the recursion nature of the algorithm to get rid 
of most of them [l] and model the necessary ones only 
using measured values of the performance variables. 

Initially, let us ignore the cost of deleting the tagged 
elements whenever they are found in the SOURCE (loop 
L2) and the cost of reversing the direction of the sorted 
elements when necessary (test L12 and loop L15). The 
average cost of these two parts will be added after 
finding the average cost of the remaining algorithm 
steps. Let T(n) be the expected time required by the 
stack-partition algorithm to sort a sequence of n ele- 
ments. Suppose that the element chosen as a pivot is the 
jth smallest element of the n elements. Then the other 
elements are partitioned between the FIELD and the 
BASE. This partition process has the cost (a + bn), 
where a and b are constants. We can imagine the 
exchange operation between the SOURCE and the 
FIELD and between the SOURCE and the BASE as two 
recursive calls of the sorting algorithm. The first call is 
with an array of size ( j - l), and the second call is with 
an array of size (n - j ). The cost of the first call is T( j 
- 1) whereas, the cost of the second call is T(n - j). 
Since j is equally likely to take on any value between 1 
and n, we have the following relationship: 

T(n)=@+bn)+b $ [T(j-l)+T(n-j)l 
J=l 

=(u+tm)+i “s T(j) 
J=o 

The next step is to find the average cost of the two 
ignored parts under the assumption that all of the 
permutation are equally likely. This step requires 
measuring the behavior of the two performance parame- 
ters; loop L2 and test L12. From this measurement 
phase, the average number of iterations in loop L2 is 
approximated by [0.5n(logz n) - 11, whereas the 
average number of times we need to change the order of 
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the sorted elements is almost a constant for n > 6(0.43) 
and close to 0.5 for n Q 6. 

Using these results, the average performance equation 
is as shown in Table 5. A similar study for the Quicksort 
algorithm produces the average cost shown in the same 
table. Figure 8 represents the same results graphically. 
Again, it is straightforward to notice that the stack- 
partition sort algorithm has better performance than the 
quicksort algorithm for the three working conditions; 
namely, the best, the worst, and the average cases. 

5. CONCLUSIONS 

Computer architects design a high-performance system 
out of the same components that the rest of us would use 
to build a common one. They do it through an 
understanding of how the system will actually be 
programmed. One result of this insight is stack com- 
puters. Our job is to use these architectures efftciently in 
different computer applications. 

Having this motivation, this paper has introduced two 
sorting algorithms that are most suitable for stack 
computers than the traditional sorting algorithms. The 
first is based upon sorting by the insertion technique, 
whereas the second is based upon sorting by the 
exchange technique. The analysis of both algorithms 
shows that they score the best performance when run on 
stack computers as compared with other array sorting 
algorithms. 
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