
Stack-Based Sorting Algorithms

Reda A. Ammar
Computer Science and Engineering Department, University of Connecticut, Storrs, Connecticut

The emergence of stacks as a hardware device in stack
machines implies the recognition of the importance of using
stacks in different computer applications and the need to
make use of them in others. This paper uses stacks to solve
the sorting problem. Two stack-based sorting algorithms are
introduced. The first is based upon sorting by the insertion
technique, whereas the second is based upon sorting by
the exchange technique. Their analysis and performance
are derived when stack computers are used to run them. A
comparison study with other sorting algorithms is pre-
sented. This study shows that both algorithms have the best
performance with a wide margin relative to other sorting
algorithms when stack computers are used.

1. INTRODUCTION

The stacks or “last in first out” data structure has been
widely used in several different ways in a computer [7].
In compiling programs, it can be used in parsing. In
executing assignment statements, it can be used with
zero-address instructions to manage temporary results.
In carrying out dynamic storage allocation, it can be
used to activate and deactivate arrays within one user’s
program. Furthermore, the operating system can use
stacks to activate and deactivate different users.

Stacks can be implemented in any computer by
software means, but in some machines a good deal of
special hardware is provided to carry out stack opera-
tions. Besides the BWOO-B6700 [8, 121 series that can
be considered as the paradigm of the stack computers
[ll], hardware stacks are present in the ICL 2900, a
British entry in the computer market, in a number of
minicomputers such as the Hewlett Packard HP3000 [2],
and in a number of microprocessors such as the Intel
8080, Intel iAPX 432 [9], and National PACE [13].

When a computer architecture is altered to include or
facilitate some software device, it is a sign that the
device has become generally accepted, far past the
experimental stage, as an essential feature of the

Address correspondence to Reda A. Ammar, Assistant Profes-
sor, UISS, Computer Science and Engineering Department,
University of Connecticut, Storm, CT 06268.

The humal of Systems and Sotiware 9, 225-239 (1989)
0 1989 Elsevier Science Publishing Co., Inc.

computer system. From this sense, the emergence of
stacks as a hardware device in stack machines implies
the recognition of the the important of using stacks in
different computer applications and the need to make use
of them in others. In this paper, we expand the computer
applications that use stacks to include solving the sorting
problem.

Internal sorting algorithms have been extensively
studied [l, 10, 14, 181. Through this study, very
interesting techniques have been discovered such as
sorting by insertion, by exchanging, by selection, and by
merging, Each of these techniques use different ap-
proaches. As an example, sorting by insertion may use
straight insertion, binary insertion, two-way insertion,
and so on. In these approaches, the array and pointer
data structure are mainly used. Other data structures,

such as stacks and queues, are used as auxiliaries to keep
track of the pointer sequences. In this paper, two
algorithms using a stack data structure are introduced.
The first is based upon sorting by the insertion tech-
nique, whereas the second is based upon sorting by the
exchanging technique. The second algorithm is a modifi-
cation of the algorithm by Yuen [19].

This paper is organized as follows. In the next
section, we briefly present the methodology used to
study and compare the performance of the proposed
algorithms with other algorithms. In Section 3, the stack
insertion sort algorithm is described, and its perform-
ance is derived. Section 4 does the same as Section 3 but
for the stack partition sort algorithm. Finally, Section 5
will show the importance of using the stack to sort a set
of elements on a stack machine instead of the traditional
sorting algorithms.

2. THE METHODOLOGY USED TO STUDY AN

ALGORITHM’S PERFORMANCE

Our methodology consists of constructing the time
formulas for a given stack algorithm and the ones that
use the same technique but are implemented by arrays if
they are run on the same machine. Time formulas are

225

0164-1212/89/$3.50

R. A. Ammar

symbolic formulas that express the execution times as
functions of a set of performance parameters [3].

Our time formulas are generated by a performance-
analysis software tool called “PASS” [4, 151. PASS is
an analytic tool. It uses an analytic approach to predict
the performance of a given computation. The input to
PASS is a computation that is described by a program
written in a language supported by PASS. PASS first
constructs the computation structure model [16] of the
given computation. It then uses the flow-analysis tech-
nique [171 to derive the time formula of the computation.
Using this technique, the time formula will be function
in flow counts. Some of the flows are dependent flows
that can be expressed in terms of a set of independent
flows. In addition, there may exist some relations among
the independent flows defined by the information being
processed, thus the independent flows can often be
expressed as functions of some externally observable
parameters [3].

It is the user’s responsibility to specify the perform-
ance parameters and use these parameters to define the
flow counts for the independent flows in the computa-
tion. In most cases in this paper, we use an analytical
approach to derive the relationship between a flow count
and the performance parameters. In some cases, it is
difficult to use the analytical approach to derive the
required relationship. In these cases, an experimental
approach can be used.

Not only is the time formula a function of the
performance parameters, but it is also machine depen-
dent. PASS assumes that all operations carried in a high-
level language, such as Pascal, can be implemented
using the following eight primitive operations: (1)
dereference, (2) addition, (3) multiplication, (4) rela-
tion, (5) logic NOT, (6) logic AND, (7) logic OR, (8)
and assignment. The cost of a high-level operation is
then represented by a vector that indicates how many
times a primitive operation is used to accomplish the
operation. The time cost of each of these primitive
operations is usually given in the manufacturer’s specifi-
cation tables [5, 61. These tables, for some interesting
machines, are stored in a knowledge base accessed by
the PASS system. Given this vector and specifying the
target machine, PASS evaluates the cost of each high-
level operation. On the other hand, if an assembly
language is used, the time formula is a function of the
cost of differently used instructions. The cost of an
instruction depends upon the instruction type and the
different operands modes. The cost of executing an
instruction is also given in the manufacturer’s specifica-
tion tables [5, 61.

Specifying the machine and the relationships between
the independent flows and the performance parameters,
PASS tinally evaluates the time formula to answer the

user’s questions about performance (e.g., the mean cost
of the computation, the profile of the computation, etc.).

To have adequate comparison results for different
algorithms, they should be designed and run in their
most matching environment. Since the stack sorting
algorithms are designed to run on stack computers, the
target machine should be a stack computer or at least a
machine that can simulate the activities of a stack
computer. PDPl 1 is a widely used machine that supports
the main two stack operations PUSH and POP. At the
same time, PDPll is a suitable machine to run array
sorting algorithms. Consequently, PDPll was used as
the target machine throughout this paper.

3. STACK-INSERTION SORT ALGORITHM

3.1 Description of the Algorithm

The basic idea in sorting by insertion is to insert an
element ai+ 1 into a sequence of ordered elements al, a2,
* * *, ai in such a way that the resulting sequence of size
(i + 1) is also ordered. The process of finding the
appropriate place for the element ai+ 1 is accomplished
via searching the ordered list aI, a2, * * * , ai. Typically, a
linear search or a binary search technique can be used to
find the element’s proper location. A detailed descrip-
tion of these two algorithms can be found in Refs. 1, 10,
14, and 18. Both algorithms make use of an array and
pointers.

A stack can also be used to implement sorting by
insertion. In this case, two stacks called LEFT and
RIGHT are used. The LEFT stack is used to push items
in ascending order, whereas the RIGHT stack is used to
push items in the descending order. The top of each
stack at step i represents the insert point of element i. As
a new item is being processed, the two stacks are
shuffled to being the insert point to the top. After all the
input elements are exhausted, the two stacks are com-
bined onto the ascending-order stack. A minimum value
(say - ao) is used to indicate the end of the LEFT stack,
and a minimum value (say + a~) is used to indicate the
end of the RIGHT stack.

The steps of the latter algorithm are shown in an
example of seven numbers chosen at random in Figure
1. Figure 2 shows the algorithm written in PDPll
assembly language.

3.2 Analysis of the Algorithm and Its Time Formula

In this section, we present the asymptotic behavior and
the detailed analysis of the stack-insertion sort al-
gorithm. The reader should refer to Refs. 1, 10, 14, and
18 for the analysis of the straight-insertion sort and the
binary-insertion sort algorithms. The analysis of these

Stack-Based Sorting Algorithms 227

step1

step2

step3

step4

step5

step6

step7

step8

step9

Initial key :

stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

keys
stack1
stack2

. .

. .

. .
. .
. .

. .
. .
. .

. .

. .

. .

. .
. .
. .

. .
. .
. .

. .
. .
. .

. .
. .
. .

. *

. .

. .

. .

. .

. .

20 67 07 31 53 11 6 55
0
100

67 07 31 53 11 6 55
0
100 20

07 31 53 11 6 55
0 20
100 67

31 53 11 6 55
0 07
100 67 20

53 11 6 55
0 07 20
100 67 31

11 06 55
0 07 20 31
100 67 53

06 55
0 07 11
100 67 53 3i 20

55
0 06
100 67 53 31 20 11 07

_-

0 06 07 11 20 31 53
100 67 55

0 06 07 11 20 31 53 55 67
100

Figure 1. An example of the stack-insertion sort algorithm.

R. A. Ammar 228

Ll:

L2:

W:

L4:

L5:

MOV #Nl ,Rl
MOV #N2,R2
MOV #FIN,
MOV #MAX,(R21
MOV #N,R3

MOV #LOC,RB

TST R3
BEQ LS
CMP (R4), (Rl)
BGT L3
MOV (RI) + ,-(R2)
JMP L2

CMP (R4), (R2)
BGT L4
MOV (R.2) + ,-(Rl)
JMP L3

MOV (R4) + ,-(R2)
DEC R3
JMP Ll
CMP (Rl),#MIN
BEQ TERM
MOV (Rl)+ ,-(R2)
JMP LS

TERM: HALT

;
;
;
;
;
;
;
;
;

;
;
;
;
;
;
:

Rl IS THE LEFT STACK POINTER
R2 IS THE RIGHT STACK POINTER
MIN IS THE LEFT BOSOM ELEMENT
MAX IS THE RIGHT BOTTOM ELEMENT
N IS THE NUMBER OF ELEMENTS TO

BE SORTED
R4 POINTS TO THE ELEMENTS TO

BE SORTED
IF R3 IS 0, AVIATE

IF THE CURRENT ELEMENT IS > THE LEFT TOP
CHECK IT WITH THE RIGHT TOP

OTHERWISE, MOVE ELEMENTS FROM THE LEFT TO
THE RIGHT UNTIL THE CURRENT ELEMENT
BECOMES > THE LEFT TOP

IF THE CURRENT ELEMENT IS < THE RIGHT TOP
THEN THIS THE INSERTION POINT

; OTHERWISE, MOVE ELEMENTS FROM THE RIGHT TO
; THE LEFT UNTIL THE CURRENT ELEMENT
; BECOMES < THE RIGHT TOP
; PUSH THE CURRENT ELEMENT INTO THE LEFT STACK
; PROCESS NEXT ELEMENT

; MOVE THE CONTENTS OF THE LEFT TO
; TO THE RIGHT IF THERE IS ANY

Figure 2. Stack-insertion sort procedure.

algorithms provides the performance parameters neces-
sary to construct their time formulas.

For the stack-insertion sort algorithm, the best case is
when the input items are in order. In this case, each item
is pushed with no movements at all and the algorithm
best performance is of O(n), where n is the number of
elements to be sorted. The worst case is when each item
has to be inserted at the bottom of the stack that contains
most of the previously inserted elements. In this case,
the number of comparisons and the number of move-
ments are about nZ/2 and the algorithm performance
will be of O(n2).

To obtain the performance equation of an algorithm,
the performance parameters of the different steps must
be expressed as a function of the number of elements.
For the stack-insertion sort algorithm, the required
number of iterations to complete the sorting part (loop
Ll) is equal to the table size n. During this sorting stage,
elements may be moved from the LEFT to the RIGHT or
vice versa (loop LZ and loop L3, respectively). Since the
cost of a movement is the same in both directions (a pop

+ a push), it is enough to have the total number of
movements. In the best case, this number 0, whereas in
the worst case this number if equal to

O+1+1+3+3+5+5+~~~+(n-2)+(n-2),

if n is odd

and

if n is even

which is (n - 1)2/2 if n is odd, and (n - 2)2/2 + (n -
1) if n is even. This can be written as ROUND (n2 -
2n/2 + 0.5) for all values of n. After sorting is
completed, the elements of the LEFT are popped and
pushed into the RIGHT (loop L5). The number of these
elements in the worst case depends also upon whether n
is even or odd. It is 1 if n is even and n if n is odd. This
can be represented as [(n -t 1) mod 2 + n*(n mod 2)],

These performance parameters were used to find the
upper and lower bounds using PASS, and assuming that
the PDPI 1 machine was the target machine. The same
step was done for the sight-in~~ion sort and the

Stack-Based Sorting Algorithms 229

Table 1. Cost Expressions of Upper and Lower Bounds for
Sorting by Insertion Algorithms*

Table 2. Average Cost Expressions for Sorting by
Insertion Algorithms*

Best case (rsec) Worst case (~sec) Average cost (psec)

Straight
insertion 102.1n-49.57

Binary
insertion 129.7ni+ 53.3n

- 100.19
Stack
insertion 4 1.65n + 49

37.385~1~ + 64.72n -49.57

33. 12n2 + 129.66ni
+ 149.84n - 229.85

9.975n2+41.65n+49

Straight
insertion

Binary
insertion

Stack
insertion

18.69n2+ 158.18n - 124.34

16.56n2+ 129.66ni+ 101.57n- 165.02

3.325n2+48.3n+49

’ i = log* n

binary-insertion sort algorithms to determine the upper
and lower bounds of each of them. Table 1 gives the
performance equations of these boundaries for the three
algorithms. Figure 3 represents these performance
equations graphically.

Before dealing with the average cost expression of an
algorithm, it is necessary to have the probability
distribution of the inputs. From this distribution, the
probabilistic properties of different performance param-
eters can be derived and used to find the average cost.
For sorting, a natural assumption is that every permuta-
tion of the sequence to be sorted is equally likely to
appear as an input.

We will use this assumption henceforth. This does not
mean that it is the only assumption we can make. In
some situations, the inputs may have other properties as
being partly sorted or in reverse order. Such properties
will heavily influence the expected performance of an
algorithm and the designer’s decision.

For the stack-insertion sort algorithm, only two
performance parameters are influenced by the input
distribution; namely, the number of movements between
the LEFT and the RIGHT stacks during the sorting step
(loop L2 and loop L3) and the number of elements in the
LEFT stack after the sorting is completed (loop L5). To
find the probability distribution of these two random
numbers, an experimental study was used to measure
them. It was found that the total number of movements
between the two stacks during the sorting process is a
positively skewed binomial distribution with p close to
0.5. This is expected since in every step the new element
is pushed into the LEFT stack. The distribution will be
symmetric if the element is pushed one time into the
LEFT stack and another time into the RIGHT stack. The
average number of movements is modeled as (n2 - l)/
6. It is also found that the number of elements left in the
LEFT stack after the sorting is completed is uniformly
distributed between 1 and n.

Using these results, the average performance equation
for the stack-insertion sort algorithm is as shown in

a i = log, n.

Table 2. Similar studies for the straight-insertion sort
algorithm and binary-insertion sort algorithm produce
the average performance equations shown in Table 2.
Figure 4 represents these performance equations graphi-
cally. Needless to say, the stack-insertion sort algorithm
has the best performance among the sorting-by-insertion
algorithms for the three working conditions; namely, the
best, the worst, and the average cases.

4. STACK-PARTITION SORT ALGORITHM

4.1 Description of the Algorithm

In this class of sorting algorithms, out-of-order pairs of
elements interchange their positions until no more such
pairs exist. The most popular algorithm using this
technique is Hoare’s Quicksort that selects an element as
a reference (pivot) and partitions the elements into two
sections, such that all elements smaller than the pivot are
in the first section and all elements larger than the pivot
are in the second section with the pivot itself between the
two . This ensures that the pivot is in its correct location.
The same process is applied recursively to both sections
until all elements are in their correct locations. A
detailed description of the quick sort algorithm can be
found in Refs. 1, 10, 14, and 18.

The quick sort algorithm is implemented using an
array to store the input, pointers to keep track of the start
and the end of each partition, and an auxiliary stack to
implement recursion. Another implementation, using
stacks only, is due to Yuen [19]. In Yuen’s version,
three stacks called SOURCE, FIELD, and BASE are
used to implement the quick sort algorithm. In the
beginning, the whole vector is in the SOURCE stack.
The top element is read out and used as a PIVOT and the
rest of the elements are then divided between BASE and
FIELD according to their value relative to the PIVOT
(e.g., larger elements go to BASE and smaller ones to to
FIELD). When SOURCE is empty, the PIVOT is then
pushed on BASE and it is tagged to indicate that it is in
its correction location.

R. A. Ammar

Stack-Based Sorting Algorithms 231

0 100 200 300 400 so0 600 700 800 900 1000 1100

TABLE SlZE

straight ________ binary - - - - - stack

Figure 4. Average performance of sorting by insertion al-
gorithms.

232

The SOURCE stack is exchanged with the FIELD
stack and the same process is repeated until both the
SOURCE stack and the FIELD stack become empty. At
this moment, we exchange the SOURCE with the BASE
and repeat the process again. Two things, however, are
now different. First, the SOURCE stack has a number of
sections separated by tagged elements. These elements
cannot be selected as PIVOT again. Whenever a tagged
element is at the top of the SOURCE, it is poped and
pushed into the BASE until an untagged element is at the
top. This latter element is used as a PIVOT and the
partitioning process is repeated until a tagged element is
met again. Second, because stacking a vector reverse the
direction, we have to change the rule of allocating
elements to BASE or FIELD (i.e., smaller elements go
the BASE and larger ones go the FIELD). In other
words, every time we exchange the SOURCE and the
BASE, we have to change the direction of flow. This is
controlled by a variable PITCH whose value may be
either 0 or 1.

Two modifications are added to Yuen’s algorithm. A
test is added to see if the SOURCE is empty or not
before trying to pop an element as a PIVOT. This is
because the SOURCE sometimes contains only tagged
elements and no more unsorted sections. After the
algorithm is completed, the elements are in the BASE in
order or in the reverse order. This depends upon table
size and elements permutation. The user has to check the
variable PITCH to decide about this before loading the
elements back to the given array.

The above algorithm is illustrated by an example
shown in Figure 5, whereas the algorithm written in
PDPll assembly language is shown in Figure 6.

4.2 Analysis of the Algorithm and Its Time Formula

No analysis is reported in Yuen’s technical report for the
stack-partition sort algorithm. Yuen, however, mentions
that this algorithm shares the advantages and the
disadvantages of the Quicksort algorithm. In order to
verify Yuen’s statement, the analysis of the algorithm is
done by first investigating the behavior of the partition-
ing process. From this investigation, we can determine
the input permutation that causes the best and the worst
cases.

The best case occurs when the pivot is correctly
positioned every time such that the number of the
elements that are smaller than the pivot is equal to the
number of elements that are larger than it (i.e., half of a
partition goes to the stack BASE and the other half goes
to the stack FIELD). Table 3 shows such sequences for n
= 3, 7, 15, and 3 1. Such behavior is exactly similar to
the best case for the Quicksort algorithm [181. This leads
to O(n log2 n) as the best performance of the stack-
partition sort algorithm.

R. A. Ammar

The worst performance occurs when the pivot is
greater than (or smaller than) all of the other elements of
a partition. This happens when the input elements are
either in the reverse order or in order. In this case, the
algorithm is acting as the worst case of the straight-
insertion sort algorithm and the worst case of the
Quicksort algorithm. This means that its worst perform-
ance is of 0(n2). Thus, the asymptotic boundaries of the
stack-partition sort algorithm are identical to those of the
Quicksort algorithm. Therefore, to compare the two
algorithms, we must derive the performance equations
for both. The analysis of the Quicksort algorithm is
covered by different authors [1, 10, 14, 181. For the
stack-partition sort algorithm, it is necessary to model
the performance parameters as a function of the array
size n.

In the worst case, each iteration starts by selecting a
pivot, sends all of the other elements to the BASE, and
then exchanges the BASE with the SOURCE. There-
fore, the number of times in which the FIELD is used is
zero (loop Ll), and the number of times in which the
BASE and the SOURCE are exchanged is n (loop LO).
After a pivot has been pushed into its proper location,
loop Ll is executed one more time to pop all of the
tagged elements left in the SOURCE and push them into
the BASE. This occurs for all times except in the first
two iterations where loop Ll is executed only once. This
causes loop Ll to be executed.

2(n - 2) + 2 = 2(n - 1) times

It is also easy to observe that the number of tagged
elements after the ith iteration is i and half of them are at
the top of the SOURCE and the other half are at the
bottom. From this observation, loop L2 is activated
twice per iteration and it is executed i times in both
activations. Hence, loop L2 is executed.

n(n - 1) times 1+2+3+...+(n-1)=2

Similarly, the number of untagged elements after the ith
iteration is (n - i). The top of these elements is to be
selected as pivot and the other (n - i - 1) elements will
be pushed into the BASE via loop L4. Therefore, loop
L4 will be executed.

Table 3. Examples of Best Case Sequences

n Elements

3 312

7 6572134

15 121191015131443127568
31 24 22 21 23 18 17 19 20 30 29 31 26 27 28 8 6 5

7 2 1 3 4 14 13 15 10 9 11 12 16

Stack-Based Sorting Algorithms 233

PITCH = 1 S 4913728
F

PIVOT = 4 B
____________________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = I F
S 231

PIVOT = 2 B 4*8 7 9
__________________~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 1 s 1
F

PIVOT = 1 B 2* 3 4* 8 7 9
~~___~_____________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 1 S
F

PIVOT = -- B 1*2*3 4*8 7 9
_~___~_~__~_~______~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 0 B 2* 1*
F

Figure 5. An example of the stack-partition PIVOT = 3 S 3 4*!3 7 9
sort algorithm. _~___~___~_~______~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 0 B 4* 3* 2% 1*
F

PIVOT = 8 S 879
______________~_____~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 0 B 8*7 4*3*2* I*
s 9

PIVOT = 9 F
~~________________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 1 S 9* 8* 7 4* 3* 2* 1*
B

PIVOT = -- F
____~____~_____~____~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 1 S 7 4* 3* 2* 1*
B 8* 9*

PIVOT = 7 F
_________~_~________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PITCH = 1 S
B 1* 2* 3* 4* 7* w 9*

PIVOT = --- F

(tt-l)+(n-2)+.**+l=!!@$tima

Loop L3 is executed n times since there are n pivots
selected. Test L12 is executed only once when we end
with the PITCH equaling 0. This occurs if the table size

is even. The mod function can be used to represent such
a relation as [(n + 1) mod 21. Finally, loop L15 will be
executed n times if test L12 is true. Therefore, loop L15
will be executed n*[(n + 1) mod 21 times.

It is not important to model the number of execution
times of other branches since they do not appear in the

234 R. A. Ammar

LO:

Ll:

L2:

W:

L4:

L5:

L6:

L7:

L&

L9:
Llo:

Lll:

L12:

Lls:

L14:

L13:

MOV #NS,RO ; RO IS THE SOURCE STACK POINTER
MOV #NB,RI ; R2 IS THE BASE STACK POINTER
MOV #NF,R2 ; R2 IS THE FIELD STACK POINTER
MOV #N,R3 ; N IS THE NUMBER OF ELEMENTS TO

; BE SORTED
MOV #l,RS ; SET THE PITCH
MOV #FLAG,(RI) ; FLAG INDICATES THE BASE BOTTOM
MOV #FLAG,@21 ; FLAG INDICATES THE FIELD BOTTOM

TST R3
BEQ L12
CMP (RO),#FLAG
BEQ LlO
BIT (RO),#O40000
BEQU
MOV (RO) + ,-(Rl)
JMPL2
CMP (RO),#FLAG
BEQ L9
MOV (RO) + ,R4
CMP (RO),#FLAG
BEQU)
BIT (R0),#040000
BEQ LS
TST RS
BEQL6
CMP (RO),R4
BLT LS
MOV (RO) + ,-(Rl)
JMP L4
MOV (RO) + ,-(R2)
JMP LA
CMP (RO),R4
BGT L7
MOV (RO) + ,-(Rl)
JMP L4
MOV (RO) + ,-(R2)
JMP L4
BIS #04OOOO,R4
MOV R4,-(RI)
DECR3
CMP (R21, #FLAG
BEQ L9
MOV RO,R4
MOV R2,RO
MOV R4,R2
JMP Ll
MOV RO,R4
MOV RI,RO
MOV R4,RI
TST R5
BEQ Lll
CLR RS
JMP LO
INCRS
JMPU)
TST R5
BNE L13
CMP (RO),#FLAG
BEQ L14
MOV (RO)+ ,-(RI)
JMP 15
MOV RO,R4
MOV Rl,RO
MOV R4,Rl
HALT

; ARE ALL ELEMENTS PROCESSED?
; IF YES, EXIT
; IS THE SOURCE EMPTY?
; IF YES, LOOK AT THE BASE STACK
; IS THE SOURCE TOP TAGGED?
; IF NO, SELECT THE PIVOT
; PUSH THE SOURCE TOP INTO THE BASE
; TEST NEXT SOURCE ELEMENT
; IS THERE MORE ELEMENTS IN THE SOURCE?
; IF NO, EXCHANGE THE SOURCE AND THE BASE
; GET THE PIVOT
; IS THERE MORE ELEMENTS IN THE THE SOURCE?
; IF NO, PUSH THE PIVOT INTO THE BASE
; IF YES, IS THE SOURCE TOP TAGGED?
; IF YES, PUSH THE PIVOT INTO THE BASE
; TEST THE PITCH’S VALUE
;IFOGOTOL6
; IF THE SOURCE TOP LESS THAN
; THE PIVOT, SEND IT INTO
; THE BASE
; BACK TO PROCESS NEXT ONE
; OTHERWISE SEND IT INTO THE FIELD
; BACK TO PROCESS NEXT ONE
; IF THE SOURCE TOP GREATER THAN
; THE PIVOT, SEND IT INTO
;THEBASE
; BACK TO PROCESS NEXT ONE
; OTHERWISE SEND IT INTO THE FIELD
; BACK TO PROCESS NEXT ONE
; TAG THE PIVOT
; PUSH THE PIVOT INTO THE BASE
; DECREMENT THE COUNTER
; IS THE FIELD EMPTY?
; YES, BACK TO TEST IF THE SOURCE CONDITION
; NO, EXCHANGE THE SOURCE
; WITH THE FIELD

Figure 6. Stack-partition sort procedure.

; EXCHANGE THE SOURCE
; WITH THE BASE

; CHANGE THE PITCH’S VALUE

; AND GO BACK FOR NEXT PASS

; IS PITCH = O?
; NO, HALT
; VES, MOVE ALL ELEMENTS FROM
; THE SOURCE TO THE BASE

; THEN EXCHANGE THE SOURCE
;WITHTHEBASE

; STOP

Stack-Based Sorting Algorithms 235

algorithm’s performance equation. However, it is
straightforward to model them as a function of the table
size n.

In the best case, each iteration starts by popping the
untagged top element of an unsorted section of the
SOURCE as a pivot whose value is such that exactly half
of the section elements are larger than it and half are
smaller. After this splitting process, half of the section
under consideration is in the FIELD and the other half is
in the BASE separated from other sections (if any) by
one or more tagged elements. FIELD and SOURCE are
exchanged if FIELD is not empty, and the splitting
process continues until SOURCE become empty. In this
case, BASE and SOURCE are exchanged and a new
iteration starts.

Following the above procedure, if n is equal to (2k -
l), where k = 1,2,3, - * a, SOURCE will have (k - 1)
sections a&r the first iteration whose lengths are (2k-’
- l), (2k-2 - l), * - -, 1. During each iteration,
SOURCE’s unsorted sections are partitioned in a similar
fashion into a number of unsorted sections. If a section
length is 1, the partition process for this section
termmates and the element is in its proper location. This
sorting process terminates when all unsorted sections
terminates. Based upon this partitioning process, the
number of execution times of different algorithm steps in
the best case are evaluated. We will now consider,
without loss of generality, that n is equal to (2’ - l),
where i = 1, 2, 3, ***.

The number of iterations required for a given size n is
equal to the number of times necessary for all sections to
be reduced to length 1, which is log;! n.

The algorithm goes through the loop Ll whenever the
SOURCE is not empty. In this case, Ll will be executed
a number of times equaling the number of the selected
pivots during the iteration plus one. Therefore, the total
number of times loop Ll is executed, is (n + log n - 2)
times.

In each iteration of Ll, loop L2 will be executed a
number of times equaling to the number of the tagged
elements produced after the previous iteration. This
number is 0 for the first iteration, log n for the second,
[log* n + log n/2 + ’ - - + l] for the third and so on.
This can be expressed in the following recurrence
equation:

T2(i)=T2(i-l)+Tz(i-2)+***+T2(1)+i(i-1)

+i (i-j)(2j-l-l), T*(l)=0
j=l

whose solution is n(k - 1)/2, where k = log* n .
The number of pivots used for a section of length m is

an iteration is log2 m. Therefore, loop L3 is executed a
number of times described by the following recurrence

equation:

Tj(i)=TS(i-l)+Ts(i-2)+***+Ts(l)+i,

T&) = 1

whose solution is T3 = n.
The algorithm goes through the loop L4 (m - 1)

times for a given section of length m. This leads to the
following recurrence equation:

T,(l)=0

whose solution is (k - 2)(n + 1)/2, where k = log* n.
The number of exchanges between FIELD and

SOURCE during processing of a given section depends
not only upon the section length but also upon the section
location in the SOURCE. This number, which is equal to
the log2 m for the sections whose length m, is such that
log2 m is odd wherever they are. However, when log2 m
is even, this number becomes equal to log2 m if the
section is the last unsorted section in the SOURCE, and
log* m otherwise. This proposes to have two cases for
the analysis: one when k = log, n is even, and one when
it is odd. By considering different section sixes for a
given n, and using the above observation, each of the
two cases can be represented by a recurrence equation as

follows:
Even case:

T8(i)=TB(i-2)+2(i-L) ,

Odd case

TS(2) = 1

TS(i)=Te(i-2)+2(‘-‘1, T8(3)=3

Both relations are solved, and the two solutions are
combined together into TRUNC (2n - 3/3).

Finally, test L12 is executed only once when we end
with the PITCH equaling 0. This occurs when log, n is
odd. Loop L15 is executed n times if test L12 is true.
Therefore, loop L15 is executed n*[(logz n) mod 21.

As mentioned in the analysis of the worst case, the
number of times for executing the other branches are not
important since they do not appear in the performance
equation.

The performance parameters modeled above, in both
the worst case and the best case, were used to find the
upper and the lower bounds of the algorithm using
PASS, and assuming that the PDPll machine was the
target machine. The same step was done for the
Quicksort algorithm. Table 4 gives the performance
equations of these boundaries for both algorithms. The
same results are represented graphically in Figure 7.

Considering the average case, we will assume again

R. A. Ammar

60000

50000

T

r:

c

8
1 40000

,:

:

::
I 30000

z
c

p1

D
20000

~0000

0

0 100 200 300 400 500 600 700 600 900 1000 1100

TABLE SIZE

quick _=.~_m.~m. stack

Figure 7. Upper and lower bounds of sorting by exchange
algorithms.

Stack-Based Sorting Algorithms

200 300 400 500 600 700 800 900 1000 1100

TAKE S1ZE

237

quick -- - -- - stack

Figure 8. Average performance of sorting by exchange
algorithms.

Table 4. Cost Expressions of Upper and Lower Bounds for Table 5. Average Cost Expressions of Sorting by Exchange
Sorting by Exchange AlgoritbmP Algorithms’

Best case (psec) Worst case (j~sec) Average case (rsec)

Stack 23.X- 13.6% +
121.li+ 10.5y+
20.65x-56.7

Quick 126.48ni- 35.04 +
47.02

33.25n2+77n+
20.65x - 10.5

63.24n2+ 16.22n-
67.48

Stack 102.55ni+92.43+210.525n+233.05
Quick 252.%ni+252.%i+298.6n+472.18

’ i = log2 n.

ai = logs n.x = (n+l)md 2. z = imod 2.y = tnmc (2n/3- I).

that all of the input permutations are equally likely.
Instead of modeling all of the performance variables, we
will use the recursion nature of the algorithm to get rid
of most of them [l] and model the necessary ones only
using measured values of the performance variables.

Initially, let us ignore the cost of deleting the tagged
elements whenever they are found in the SOURCE (loop
L2) and the cost of reversing the direction of the sorted
elements when necessary (test L12 and loop L15). The
average cost of these two parts will be added after
finding the average cost of the remaining algorithm
steps. Let T(n) be the expected time required by the
stack-partition algorithm to sort a sequence of n ele-
ments. Suppose that the element chosen as a pivot is the
jth smallest element of the n elements. Then the other
elements are partitioned between the FIELD and the
BASE. This partition process has the cost (a + bn),
where a and b are constants. We can imagine the
exchange operation between the SOURCE and the
FIELD and between the SOURCE and the BASE as two
recursive calls of the sorting algorithm. The first call is
with an array of size (j - l), and the second call is with
an array of size (n - j). The cost of the first call is T(j
- 1) whereas, the cost of the second call is T(n - j).
Since j is equally likely to take on any value between 1
and n, we have the following relationship:

T(n)=@+bn)+b $ [T(j-l)+T(n-j)l
J=l

=(u+tm)+i “s T(j)
J=o

The next step is to find the average cost of the two
ignored parts under the assumption that all of the
permutation are equally likely. This step requires
measuring the behavior of the two performance parame-
ters; loop L2 and test L12. From this measurement
phase, the average number of iterations in loop L2 is
approximated by [0.5n(logz n) - 11, whereas the
average number of times we need to change the order of

R. A. Ammar

the sorted elements is almost a constant for n > 6(0.43)
and close to 0.5 for n Q 6.

Using these results, the average performance equation
is as shown in Table 5. A similar study for the Quicksort
algorithm produces the average cost shown in the same
table. Figure 8 represents the same results graphically.
Again, it is straightforward to notice that the stack-
partition sort algorithm has better performance than the
quicksort algorithm for the three working conditions;
namely, the best, the worst, and the average cases.

5. CONCLUSIONS

Computer architects design a high-performance system
out of the same components that the rest of us would use
to build a common one. They do it through an
understanding of how the system will actually be
programmed. One result of this insight is stack com-
puters. Our job is to use these architectures efftciently in
different computer applications.

Having this motivation, this paper has introduced two
sorting algorithms that are most suitable for stack
computers than the traditional sorting algorithms. The
first is based upon sorting by the insertion technique,
whereas the second is based upon sorting by the
exchange technique. The analysis of both algorithms
shows that they score the best performance when run on
stack computers as compared with other array sorting
algorithms.

REFERENCES

1.

2.

3.

4.

5.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wes-
ley, Reading, Massachusetts, 1976,
R. P. Blake, Exploring a Stack Architecture, Computer,
10, May 1977.
T. L. Booth, and C. A. Wiecek, Performance Abstract
Data Types as a Tool in Software Performance Analysis
and Design, IEEE Trans. Software Eng. (1980).
T. L. Booth, et al., PASS: A Performance-Analysis
Software System to Aid the Design of High-Performance
Software, Proc. 1st Int. Conf. Computers and Applica-
tions; June 1984,
Digital Equipment Corporation, PDPll Processor
Handbook, Mayard, Massachusetts, 1979,

Stack-Based Sorting Algorithms 239

6. Digital Equipment Corporation, Microcomputer Proces-
sor Handbook, Mayard, Massachusetts, 1980,

7. R. Doran, Architecture of stack machines, in High-Level
Language Computer Architecture, (Yaohan Chu, ed.),
Academic Press, New York, 1975.

8. E. A. Hauck, and B. A. Dent, Burroughs B6500/B7500
Stack Mechanism, Proc. AFIPS 1968 Spring Joint
Computer Conf., 32, AFIPS Press, Montvale, New
Jersey, 1968,

9. Intel, iAPX 432 Generai Data Processor Architecture
Reference Manual, Preliminary edition, Intel Corp.,
Aloha, Oregon, 1981,

10. D. E. Knuth, The Art of Computer Programming, Vol.
3: Sorting and Searching, Addison-Wesley, Reading,
Massachusetts, 1973,

11. W. M. McKeeman, Stack computer, in Introduction to
Computer Architecture, (Harold S. Stone, ed.), Science
Research Associates, Inc., Chicago, Illinois, 1975.

12. E. I. Organick, Computer System Organization: The
B57OO/B6700 Series, Academic Press, New York, 1973,

13. A. Osborne, An Introduction to Microconwtm,
Adam Osborne and Associates, Berkeley, California,
1975,

14. P. W. Purdom, and C. A. Brown, The Analysis Of
Algorithms, Holt, Rinehart and Winston, New York,
1985,

15. B. Qin, PASS-A Performance Analysis Tool for Soft-
ware Designs, M.Sc. Thesis, Computer Science Depart-
ment, University of Connecticut, Connecticut, 1984.

16. H. A. Sholl, and T. L. Booth, Software Performance
Modeling Using Computations Structure, IEEE Trans.
Software Eng. (1975).

17. T. T. Wetmore, The Performance Compiler-A Tool for
Software Design, M.Sc. Thesis, Computer Science De-
partment, University of Connecticut, Connecticut, 1980.

18. N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976,

19. C. K. Yuen, A Stack-Based Method For Sorting, TR-A3-
83, Centre of Hong Kong, 1983.

