Section 6.7 BalancingaTree K 255

Figurs 6 .36 Creating a binary search tree from an ordered array.

Stream of data: 5198702346
Array of sorted data: (1 123456789
@ o 1 2 3 s 6 7 8% 9 4

wm o [1] 2 3 @] s 6 7 8 9 4

(C)m356789 4

<d>[ﬂ[§] 4
1/\?

ANEVAY

tHH 2 s . 3

NN N
3 6 9

6.7.1 The DSW Algorithm

The algorithm discussed in the previous section was somewhat inefficient in that it re-
quired an additional array which needed to be sorted before the construction of a per-
fectly balanced tree began. To avoid sorting, it required deconstructing and then
reconstructing the tree, which is inefficient except for relatively small trees. There are,
however, algorithms that require litele additional storage for intermediate variables
and use no sorting procedure. The very elegant DSW algorithm was devised by Colin

Day and later improved by Quentin E. Stout and Bette L, Warren.

The building block for tree transformations in this algorithm is the rotation.
There are two types of rotation, left and right, which are symmetrical to one another.
The right rotation of the node Ch about its parent Par is performed according to the

following algorithm:

rotateRight (Gr, Far, ch}
if Par isnottheroot of thetree // 1.+, if Gr is not null
grandparent Gx of child Ch becomes Ch’s parent by replacing par;
right subiree of Ch becomes left subtree of Ch’s parent Par;
node Ch acquires Par asifs right child;

256 E! Chapter 6 Binary Trees

Ficure 6 .37 Right rotation of child Ch about parent Par.

o
=)

Gr

AN ™~

Par ’Ch:
/ \ /N
ch R P Pa
/ \ /\
P Q o R
(a) {b)

The steps involved in this compound operation are shown in Figure 6.37. The
third step is the core of the rotation, when Par, the parent node of child ch, becomes
the child of ch, when the roles of a parent and its child change. However, this ex-
change of roles cannot affect the principal property of the tree, namely, that it is a
search tree. The first and the second steps of rotateRight () are needed to ensure
that, after the rotation, the tree remains a search tree.

Basically, the DSW algorithm transfigures an arbitrary binary search tree into a
linked listlike tree called a backborie or vine. Then this elongated tree is transforimed in
a series of passes into a perfectly balanced tree by repeatedly rotating every second
node of the backbone about its parent.

In the first phase, a backbone is created using the following routine:

createBackbone(root, n)
tmp = root;
while (tmp != 0)
if tmp has aleft child
rotate this child about tmp; // hence the left child
// becomes parent of tmp;
set tmp to the child which just became parent;
else set tmp to its right child;

This algorithm is illustrated in Figure 6.38. Note that a rotation requires knowl-
edge about the parent of tmp, so another pointer has to be maintained when imple-
menting the algorithm.

In the best case, when the tree is already a backbone, the while loop is executed 7
times and no rotation is performed. In the worst case, when the root does not have a
right child, the while loop executes 27— 1 times with n — 1 rotations performed,
where # is the number of nodes in the tree; that is, the run time of the first phase is
O(n).In this case, for each node except the one with the smallest value, the left child of
tmp is rotated about tmp. After all rotations are finished, tmp points to the root, and
after # iterations, it descends down the backbone to become null.

Section 6.7 BalancingaTree K 2§7

Ficure 6 .38 Transforming a binary search tree into a backbone.
5~ tmp 5 5 5 5
\ \ \ \ \
10 10 10 10 1y
\ \ \ \ \
20 15 15 15 15
/\ \ \ \ \
15 30 20 20 20 20
/\ \ \ \ \
25 40 30 <~ tmp 25+ tmp 23 23
/\ /\ /\ \ \
23 28 25 40 23 30 25 25
/\ /\ \ \
23 28 28 40 30 «— tmp 28
) /\ \
28 40 30
(b) (€) \
() @ ATt

In the second phase, the backbone is transformed into a tree, but this time, the
tree is perfectly balanced by having leaves only on two adjacent levels. In each pass
down the backbone, every second node down to a certain point is rotated about its
parent. The first pass is used to account for the difference between the number n of
nodes in the current tree and the number Ml 1)] _) of nodes in the closest com-
plete binary tree where Lx] is the closest integer less than x. That is, the overflowing
nodes are treated separately.

createPerfectTree(n)
m = 2llga+i g,
make n-m rofations starting from the top of backbone;
while {(m > 1}
m=m/2;
make m rotations starting from the top of backbone;

Figure 6.39 contains an example. The backbone in Figure 6.38¢ has nine nodes
and is preprocessed by one pass outside the loop to be transformed into the backbone
shown in Figure 6.39b. Now, two passes are executed. In each backbone, the nodes to
be promoted by one level by left rotations are shown as squares; their parents, about

which they are rotated, are circles.
To compute the complexity of the tree building phase, observe that the number

of iterations performed by the while loop equals

2,58 B! Chapter 6 Binary Trees

FIGURE 639

Transforming a backbone into a perfectly balanced tree.

(20) /25\
10 20 30
/\ /\ /A
5 15 23 30 10 23 28 40
/\ /\
28 40 515
23
\ () (d)
25
\
28
\
30
\
() 40
Iglmt 1)1

]

(2lgtm -1 _ 4 Ql=1)y=m-lg(m+1)

s
Femrrer?

=1

YAh e e+ 1547 +341=
The number of rotations can now be given by the formula

n—-m+(m—lg{m+ 1))=n-lg(m+1) = n——ng(n+ 1)

that is, the number of rotations is O(rn). Because creating a backbone also required at
most O{#) rotations, the cost of global rebalancing with the DSW algorithm is opti-
mal in terms of time because it grows linearly with # and requires a very small and
fixed amount of storage.

6.7.2 AVL Trees

The previous two sections discussed algorithms which rebalanced the tree globally;
each and every node could have been involved in rebalancing either by moving data
from nodes or by reassigning new values to pointers. Tree rebalancing, however, can
be performed locally if only a portion of the tree is affected when changes are required
after an element is inserted into or deleted from the tree. One classical method has
been proposed by Adel’son-Vel'skii and Landis, which is commemorated in the name
of the tree modified with this method: the AVL tree.

An AVL tree (originally called an admissible tree) is one in which the height of left
and right subtrees of every node differ by at most one. For example, all the trees in
Figure 6.40 are AVL, trees. Numbers in the nodes indicate the balance factors which are
the differences between the heights of the left and right subtrees. A balance factor is

