Priority R-Tree

Paper by:
Lars Arge, Mark de
Berg, Herman J.
Haverkort, Ke Y

Presentation by:
Guilherme Fonseca

Professor:
Hanan Samet

04/2005

Problem

— e Data: Set of boxes S.

E * Query: Given a box q,
"EEEE B EEEEE 3 | find all boxes in S that
: | intersect g.

: e Data is stored on the
o disk.

D * Bounding boxes can be
used to approximate

] ‘ :l' complex shapes.

Goal

Efficient in practice and worst-case analysis.

Competitive with the best R-Tree variants on real-life
data and nicely distributed data.

Significantly outperform best R-Tree variants on
extreme data.

Optimal asymptotic worst-case number of disk
accesses.

The PR-tree is an R-tree, so all queries can be
performed the same way.

Complexity

N: Number of boxes stored.
T- Number of boxes reported in the query.
B: Size of disk block.

d. Dimension of space.

Query 1/0s: O((N/B)"" + T/B)

Other structures may visit all leaves in the tree
even when 7=0!!!

—

B,

1 |
1 1
1 1 1
1 | 1
G
-"\\l
i
3
A
! N
¥ "IIII L,
A O | \
Sl i .
Ig. Tg,

Pseudo PR-tree

e \/xmin: B boxes with
minimal xmin
coordinate.

* Vymin: B remaining
boxes with minimal
ymin coordinate.

e V/xmax: ... maximal
Xxmax coordinate.

* Vymax: ... maximal
ymax coordinate.

split on Ty —+

Pseudo PR-tree

* Remaining boxes are split
In two according to xmin,
Xxmax, ymin, ymax, in a
round-robin fashion.

J
. S 0
EY)

e The two subtrees are built
recursively.

* The round-robin split is
essential for the worst case

—

” = == analysis. It makes the
T i structure behave like a kd-
= S \ tree.
= LA & [[ﬂ A (Remember a rectangle in
5 b Je= - ol { 1 ".-M‘w
B ﬁj e fﬁf-—ﬂ d dimensions is a point in

g ,.-"'l . : ' - \ \ . .
. y [\ /2 2d dimensions.)
Ts

- Example with B=4

E Bounding box

Data

Wmin

Wymin

Woma

WNE

Ts=

Ts=

— VVxmin: 4 boxes with minimal xmin coordinate.

‘E ; : Bounding box

Data

:‘ E . Wmin

Wymin

i E Wamax

Wymas

Ts=

"""""" s Ts>

- Vymin: 4 remaining boxes with minimal ymin coordinate.

‘E ; : Bounding box

Data

:‘ E . Wmin

Wymin

WoRma

Wymas

-
HiE

Ts=

""""""" Ts=

- Vxmax: 4 remaining boxes with maximal xmax coordinate.

‘E ; : Bounding box

Data

Wmin

Wymin

WoRma

Wymas

Ts=

Ts=>

- Vymax: 4 remaining boxes with maximal xmax coordinate.

E Bounding box

Data

Wmin

Wymin

WoRma

Wymas

Ts=

Ts=>

- Ts<: Half remaining boxes with minimal xmin coordinate.

E Bounding box

Data

Wmin

Wymin

WoRma

Wymas

Ts=

Ts=>

- Is>. Remaining boxes.

E \E _____________________________ ; : Bounding box

i', Data

: ! i [
s R o I A e 3 A
: : : : : | B . Wmin
o : : L . WAmin

.......................................

Pseudo PR-tree

* Pseudo PR-trees are built recursively for
Ts<and Ts>.

E za

Pseudo PR-tree

* Pseudo PR-trees are built recursively for
Ts<and Ts>.

oo,

--

R-tree

e R-trees must have:
- all leafs on the same level:

— all internal nodes (except root) must have ®(B)
children;

— all leaves must store ©(B) boxes.

* The pseudo PR-tree will be used to construct the
PR-tree, which is an R-tree.

PR-tree

Constructed bottom-up using pseudo PR-trees.

1.Build pseudo PR-tree and get only the leaves.
2.Find the minimum bounding box for each leaf.

3.Build pseudo PR-tree of bounding box and get only
the leaves.

4.Repeat from step 2 until the pseudo PR-tree has
all leafs at level 1 (adjacent to the root).

PR-tree

* Build pseudo PR-tree and get only the leaves.
* Find the minimum bounding box for each leaf.
* These will be the leaves of the PR-tree.

PR-tree

* Compute a pseudo PR-tree from the bounding
boxes (on the previous slide) and get the leaves
again:

* As there are only four leaves, we can stop by
simply putting them on level 1.

Finally the PR-tree:

............

.................

.....

.......................................

The First Level in Detall:

* Huge overlap!

e * (Notice color

ﬁ [assignments in this
picture are different from

the previous pictures.)

Query Performance

I i e e I A R SRR S IR

11":"5.-"." T e e e e g e e e e e
? . Hilbert 4D (H4)

e ;.» *Hilbert 2D (H)

e _"_ﬁ"'"_ff e
; * Greedy (TGS)
100% - - ey gl 3=
{325 [!50' GTB IEH} 1.25 15[] 1?5 EDD':}'E:-th-:-tEﬂ area

123 463 777 12311647 2403 2814 39288 rectangles output

Figure 12: Query performance for queries with
squares of varying size on the Western TIGER. data.
The performance is given as the number of blocks
read divided by the output size T /5.

120% ——~———--——=—=——mm -
:.:‘-\; F
: 1\.‘:
e %5, Nens
N T
110% —— - — — - .-,":.\:H.;;L e T g a—— ———a===5 Hilbert 4D |:H4}
H'-‘m;-_-. Tt == Hilbert 2D (H)
N T e
. e Greedy (TGS)
100% -

DE*E Dfrl} I}TE II}D 125 15[} 1?5 EI}D"aoftotal ares

50 685 1208 1814 1959 2676346043868 rectangles output
Figure 13: Query performance for queries with
squares of varying size on the Eastern TIGER data.
The performance is given as the number of blocks
read divided by the output size T /5.

Query Performance

340% # H

100% - 902 0935 986 1_-:I'-‘||_: 14:,3 j]_ii}" Jc'“ 3 A _;'.:’-' 186 1195 1836 'J 304 ,. 887 892 904 9685 _ 1.'.i?'“-
U 2 {} b 1 2 5 10 20% 101 102 103 10" 105

SIZE(max_side) ASPECT(a) SKEWED(c)

Figure 15: Query performance for queries with squares of area (0.01 on synthetic data sets. The performance
is given as the number of blocks read divided by the output size T/B.

Build Performance

211 Greedy [TGS)

-
&

million blocks read or written

5.2,
ll-ﬂ‘ 4
62
' 44 PR-tree (FR)
33 e
: g == . :
1.8 r 15 i 1.7 H||bert |"H.-'H4}
0.6 il 0.9 13, - C
21 min 5.7 min 9.2 min 12.7 min 16.7 min rectangles

Figure 10: Bulk-loading performances on Eastern
datasets (I,/0s)

