
Priority R-Tree

Paper by:
Lars Arge, Mark de 
Berg, Herman J. 
Haverkort, Ke Yi

Presentation by:
Guilherme Fonseca

Professor:
Hanan Samet

04/2005



Problem

● Data: Set of boxes S.

● Query: Given a box q, 
find all boxes in S that 
intersect q.

● Data is stored on the 
disk.

● Bounding boxes can be 
used to approximate 
complex shapes.



Goal

● Efficient in practice and worst-case analysis.

● Competitive with the best R-Tree variants on real-life 
data and nicely distributed data.

● Significantly outperform best R-Tree variants on 
extreme data.

● Optimal asymptotic worst-case number of disk 
accesses.

● The PR-tree is an R-tree, so all queries can be 
performed the same way.



Complexity

● N: Number of boxes stored.

● T: Number of boxes reported in the query.

● B: Size of disk block.

● d: Dimension of space.

● Query I/Os: O((N/B)1-1/d + T/B)

● Other structures may visit all leaves in the tree 
even when T=0!!!



Pseudo PR-tree

● Vxmin: B boxes with 
minimal xmin 
coordinate.

● Vymin: B remaining 
boxes with minimal 
ymin coordinate.

● Vxmax: ... maximal 
xmax coordinate.

● Vymax: ... maximal 
ymax coordinate.



Pseudo PR-tree
● Remaining boxes are split 

in two according to xmin, 
xmax, ymin, ymax, in a 
round-robin fashion.

● The two subtrees are built 
recursively.

● The round-robin split is 
essential for the worst case 
analysis. It makes the 
structure behave like a kd-
tree.
(Remember a rectangle in 
d dimensions is a point in 
2d dimensions.)



– Example with B=4



– Vxmin: 4 boxes with minimal xmin coordinate.



– Vymin: 4 remaining boxes with minimal ymin coordinate.



– Vxmax: 4 remaining boxes with maximal xmax coordinate.



– Vymax: 4 remaining boxes with maximal xmax coordinate.



– Ts<: Half remaining boxes with minimal xmin coordinate.



– Ts>: Remaining boxes.



Pseudo PR-tree

● Pseudo PR-trees are built recursively for 
Ts< and Ts>.



Pseudo PR-tree

● Pseudo PR-trees are built recursively for 
Ts< and Ts>.



R-tree

● R-trees must have:

– all leafs on the same level;

– all internal nodes (except root) must have (B) 
children;

– all leaves must store (B) boxes.
● The pseudo PR-tree will be used to construct the 

PR-tree, which is an R-tree.



PR-tree

1.Build pseudo PR-tree and get only the leaves.

2.Find the minimum bounding box for each leaf.

3.Build pseudo PR-tree of bounding box and get only 
the leaves.

4.Repeat from step 2 until the pseudo PR-tree has 
all leafs at level 1 (adjacent to the root).

Constructed bottom-up using pseudo PR-trees.



PR-tree

● Build pseudo PR-tree and get only the leaves.

● Find the minimum bounding box for each leaf.

● These will be the leaves of the PR-tree.



PR-tree
● Compute a pseudo PR-tree from the bounding 

boxes (on the previous slide) and get the leaves 
again: (internal data boxes included in the picture 
for improved readability)

● As there are only four leaves, we can stop by 
simply putting them on level 1.



Finally the PR-tree:



The First Level in Detail:

● Huge overlap!

● (Notice color 
assignments in this 
picture are different from 
the previous pictures.)



Query Performance



Query Performance



Build Performance


