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Problem

— e Data: Set of boxes S.

E * Query: Given a box q,
"EEEE B EEEEE 3 | find all boxes in S that
: | intersect g.

: e Data is stored on the
o disk.

D * Bounding boxes can be
used to approximate

] ‘ :l' complex shapes.




Goal

Efficient in practice and worst-case analysis.

Competitive with the best R-Tree variants on real-life
data and nicely distributed data.

Significantly outperform best R-Tree variants on
extreme data.

Optimal asymptotic worst-case number of disk
accesses.

The PR-tree is an R-tree, so all queries can be
performed the same way.



Complexity

N: Number of boxes stored.
T- Number of boxes reported in the query.
B: Size of disk block.

d. Dimension of space.

Query 1/0s: O((N/B)"" + T/B)

Other structures may visit all leaves in the tree
even when 7=0!!!
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Pseudo PR-tree

e \/xmin: B boxes with
minimal xmin
coordinate.

* Vymin: B remaining
boxes with minimal
ymin coordinate.

e V/xmax: ... maximal
Xxmax coordinate.

* Vymax: ... maximal
ymax coordinate.



split on Ty —+

Pseudo PR-tree

* Remaining boxes are split
In two according to xmin,
Xxmax, ymin, ymax, in a
round-robin fashion.
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e The two subtrees are built
recursively.

* The round-robin split is
essential for the worst case

—

” = == analysis. It makes the
T i structure behave like a kd-
= S \ tree.
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- Example with B=4

E Bounding box

Data

Wmin

Wymin
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— VVxmin: 4 boxes with minimal xmin coordinate.

‘E ; : Bounding box

Data

:‘ E . Wmin

Wymin

i E Wamax

Wymas

Ts=

"""""" s Ts>




- Vymin: 4 remaining boxes with minimal ymin coordinate.

‘E ; : Bounding box

Data

:‘ E . Wmin
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- Vxmax: 4 remaining boxes with maximal xmax coordinate.

‘E ; : Bounding box

Data
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- Vymax: 4 remaining boxes with maximal xmax coordinate.

E Bounding box

Data

Wmin

Wymin

WoRma

Wymas

Ts=

Ts=>




- Ts<: Half remaining boxes with minimal xmin coordinate.

E Bounding box

Data
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- Is>. Remaining boxes.
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Pseudo PR-tree

* Pseudo PR-trees are built recursively for
Ts<and Ts>.
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Pseudo PR-tree

* Pseudo PR-trees are built recursively for
Ts<and Ts>.
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R-tree

e R-trees must have:
- all leafs on the same level:

— all internal nodes (except root) must have ®(B)
children;

— all leaves must store ©(B) boxes.

* The pseudo PR-tree will be used to construct the
PR-tree, which is an R-tree.



PR-tree

Constructed bottom-up using pseudo PR-trees.

1.Build pseudo PR-tree and get only the leaves.
2.Find the minimum bounding box for each leaf.

3.Build pseudo PR-tree of bounding box and get only
the leaves.

4.Repeat from step 2 until the pseudo PR-tree has
all leafs at level 1 (adjacent to the root).



PR-tree

* Build pseudo PR-tree and get only the leaves.
* Find the minimum bounding box for each leaf.
* These will be the leaves of the PR-tree.



PR-tree

* Compute a pseudo PR-tree from the bounding
boxes (on the previous slide) and get the leaves
again:

* As there are only four leaves, we can stop by
simply putting them on level 1.



Finally the PR-tree:

............

.................

.....

.......................................



The First Level in Detall:

* Huge overlap!

e * (Notice color

ﬁ [ assignments in this
picture are different from

the previous pictures.)




Query Performance
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Figure 12: Query performance for queries with
squares of varying size on the Western TIGER. data.
The performance is given as the number of blocks
read divided by the output size T /5.
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Figure 13: Query performance for queries with
squares of varying size on the Eastern TIGER data.
The performance is given as the number of blocks
read divided by the output size T /5.



Query Performance
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Figure 15: Query performance for queries with squares of area (0.01 on synthetic data sets. The performance
is given as the number of blocks read divided by the output size T/B.



Build Performance
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Figure 10: Bulk-loading performances on Eastern
datasets (I,/0s)



